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Probabilistic Forwarding of Coded Packets
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Abstract— We consider a scenario of broadcasting information
over a network of nodes connected by noiseless communication
links. A source node in the network has some data packets to
broadcast. It encodes these data packets into n coded packets
in such a way that any node in the network that receives any
k out of the n coded packets will be able to retrieve all the
original data packets. The source transmits the n coded packets
to its one-hop neighbours. Every other node in the network
follows a probabilistic forwarding protocol, in which it forwards
a previously unreceived packet to all its neighbours with a
certain probability p. We say that the information from the
source undergoes a “near-broadcast” if the expected fraction of
nodes that receive at least k of the n coded packets is close
to 1. The forwarding probability p is chosen so as to minimize
the expected total number of transmissions needed for a near-
broadcast. We study how, for a given k, this minimum forwarding
probability and the associated expected total number of packet
transmissions varies with n. We specifically analyze the proba-
bilistic forwarding of coded packets on two network topologies:
binary trees and square grids. For trees, our analysis shows that
for fixed k, the expected total number of transmissions increases
with n. On the other hand, on grids, a judicious choice of n

significantly reduces the expected total number of transmissions
needed for a near-broadcast. Behaviour similar to that of the
grid is also observed in other well-connected network topologies
such as random geometric graphs and random regular graphs.

Index Terms— Broadcast, ad-hoc networks, probabilistic for-
warding, coded packets, site percolation.

I. MOTIVATION

AN AD-HOC network is a network of nodes which
communicate with each other without relying on any

centralized infrastructure. A classical example of ad-hoc net-
works is wireless sensor networks (WSNs) which have sensors
measuring temperature, humidity etc. connected with each
other. The Internet of Things (IoT) network, which involves
different types of physical devices—sensors, actuators, routers,
mobiles etc.— communicating with each other over a network
can be thought of as an ad-hoc network.

Broadcast mechanisms on such distributed networks are
crucial in order to disburse key network-related information
throughout the network. In the applications mentioned above,
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updation of sensing parameters in WSNs or over-the-air pro-
gramming of the IoT nodes are done typically through a
broadcast mechanism. These broadcasts are usually initiated
from a single node in the network which is easily accessible
(a mobile phone, say). In this paper, we will assume that
there is a source node, s, which has ks packets of information
which need to be broadcast in the network. A natural broadcast
algorithm is flooding, wherein a node forwards every newly
received packet to all its one-hop neighbours. If there are N
nodes in the network, then the total number of transmissions
is ksN . However, a node might receive the same packet
from multiple neighbours resulting in wasteful transmissions.
Moreover, flooding is also known to result in the ‘broadcast-
storm’ problem [1]. In short, although the flooding mechanism
is simple and easy to implement, there is an excessive number
of transmissions in the network, resulting in a high energy
expenditure.

For the applications that we are interested in, such a
broadcast algorithm is not feasible since individual nodes are
energy-constrained. Additionally, each node in the network
has minimal computational ability and limited knowledge of
the network topology. To adhere to these limitations, any
broadcast algorithm that is proposed needs to be completely
distributed, must minimize energy consumption, should run in
finite time, and must impose minimal computational burden
on the individual nodes.

In this direction, we propose the following algorithm. The
ks message packets at the source are first encoded into n
coded packets such that, for some k ≥ ks, the reception
of any k out of the n coded packets by a node suffices to
retrieve the original ks message packets. Examples of codes
with this property are Maximum Distance Separable (MDS)
codes (k = ks), fountain codes (k = ks(1+�) for some � > 0)
etc. which are used in practice.

The n coded packets are indexed using integers from 1
to n, and the source transmits each packet to all its one-
hop neighbours. All the other nodes in the network use
a probabilistic forwarding mechanism: when a packet (say,
packet #j) is received by a node for the first time, it either
transmits it to all its one-hop neighbours with probability p
or does nothing with probability 1 − p. The node ignores
all subsequent receptions of packet #j. Packet collisions and
interference effects are neglected.

Our goal is to analyze the performance of the above
algorithm. In particular, we wish to find the minimum retrans-
mission probability p for which the expected fraction of nodes
receiving at least k out of the n coded packets is close
to 1, which we deem a “near-broadcast”. This probability
yields the minimum value for the expected total number
of transmissions across all the network nodes needed for a
near-broadcast. The expected total number of transmissions
is taken to be a measure of the energy expenditure in
the network.
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Fig. 1. Expected total number of transmissions on a RGG with 60 nodes in
a 20×20 square with two nodes being connected if they are at most r = 5.5
apart. The forwarding probability p is such that the expected fraction of nodes
that receive at least k = 100 of the n coded packets is at least 1 − δ.

Simulation results presented in [2] indicate that over a wide
range of network topologies (including the important case
of random geometric graphs (RGGs), but not including tree-
like topologies), the expected total number of transmissions
initially decreases to a minimum and then gradually increases
with n. A representative simulation result on an RGG is
provided in Fig. 1. Our aim is to understand this behaviour
and predict, via analysis, the value of n that minimizes
the expected number of transmissions. We would ultimately
like to explain this behaviour on random geometric graphs,
which constitute an important model for wireless ad-hoc
networks [3]. However, we have not yet developed the tools
required for the analysis there.

The broadcast mechanism proposed above brings together
probabilistic forwarding and coding, both of which have
gained substantial attention in the past for the broadcast
problem, as outlined in Section II. We wish to clarify here
that the novelty in this paper lies not so much in the proposed
algorithm, but rather in our analysis of the algorithm.

The rest of the paper is organized as follows. We review
some related literature in Section II. Section III contains a
mathematical formulation of the problem. In Section IV, some
initial observations are made on the minimum forwarding
probability for a near-broadcast and the expected total number
of transmissions at this probability. Some simulation results are
provided to support these observations as well. In Section V
we consider the problem on rooted binary trees and derive
expressions for the minimum forwarding probability and the
expected total number of transmissions. We show that prob-
abilistic forwarding using coded packets is not beneficial on
trees. In Section VI, we provide estimates for the expected
number of transmissions on the grid. Ergodic theory and the
theory of site percolation are used to obtain these estimates.
Section VII discusses some critical aspects of the analysis
and the behaviour of the probabilistic forwarding on other
graph topologies. It also briefly describes certain extensions of
the algorithm that are possible. The appendix contains some
auxiliary results needed for our analysis.

II. RELATED WORK

Algorithms for broadcast over ad-hoc networks have gar-
nered considerable attention in the past. We refer the reader
to [4], [5] and [6] and the references therein for a review of
the broad categories of algorithms employed for broadcasting.
We further supplement this list with references relevant to our
work here. Broadly, the literature in broadcast algorithms can
be divided into those which employ some kind of coding and
those which do not.

Network coding has been used for efficient data dissemi-
nation in wireless networks in [5], [6], [7] and [8]. In [7],
the authors propose random linear network coding for the

multicast problem and give bounds on the probability that all
the receivers are successful in obtaining the packets. Similarly,
the authors in [8] provide transmission strategies for universal
recovery and arrive at necessary and sufficient conditions on
the number of transmissions required using network coding.
However they assume complete knowledge of the network
topology at every node.

Our work is closest in spirit to that in [5], where the authors
have a similar motivation as ours, namely, to propose a low-
complexity distributed broadcast algorithm, with nodes having
no prior knowledge of the network topology. Moreover, similar
to the present paper, their figure of merit is energy efficiency
which is quantified using the number of transmissions required
for the broadcast. They employ network coding and propose
a decentralized algorithm that improves upon the number of
transmissions in flooding by a constant factor. While our work
also addresses similar questions, the results of the two papers
are not directly comparable. In the setting of [5], all the
nodes in the network have messages to broadcast, making the
network coding approach attractive. On the other hand, in our
setting, only a single source node has messages that need to
be broadcast.

Epidemic or rumour spreading models mentioned in [5]
and the references therein do not employ any coding. More
recently, throughput-optimal algorithms for broadcasting have
been proposed in [9], [10] and [11]. The algorithm in [11]
requires knowledge of packets possessed by the neighbours
and hence is not completely distributed. Moreover, they do
not make any claims about the number of transmissions.
The authors in [9] and [10] propose a novel algorithm that
caters to different kinds of network traffic including broad-
cast. However, in their algorithm, they assume a complete
knowledge of the network topology at the source for routing
the broadcast packets. Additionally, their algorithm involves
finding spanning trees or a connected dominating set to route
packets, coupled with link activation schemes, all of which
are computationally intensive and may not be appropriate for
energy-constrained nodes.

Probabilistic forwarding as a broadcast mechanism (see
e.g., [12]) has been proposed in the literature as an alternative
to flooding. Here, each node, on receiving a packet for the
first time, either forwards it to all its one-hop neighbours
with probability p or takes no action with probability 1 − p.
Probabilistic forwarding has also been referred to as a gossip
algorithm in [13], in which the authors claim a 35% reduc-
tion in the transmission overhead as compared to flooding.
An upper bound on the expected number of transmissions for
this algorithm can be obtained thus. On a network of N nodes,
an average of Np nodes decide to transmit a given source
packet, irrespective of whether they receive it or not. Since
there are ks source packets in all, there are ksNp expected
total number of transmissions. Note that p = 1 corresponds
to the flooding protocol. Thus, with a forwarding probability
p < 1, there are gains to be had over flooding. Nevertheless,
a drawback of probabilistic forwarding is that a particular node
in the network may not receive one of the ks packets, and
hence, is unable to obtain the information from the source.

In order to overcome this, in our work, we introduce coded
packets along with probabilistic forwarding. Some related
literature in this direction are the works in [13], [14] and [15].
In [13], the authors describe variants of the probabilistic
GOSSIP protocol and provide heuristics and simulation results
for improving flooding and routing mechanisms in networks.
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The authors in [15] map randomized broadcast mechanisms
to percolation on networks, which is the approach we take in
this paper when the underlying network has a grid topology.
They further go on to use directional antennas to reduce the
transmission overhead. However, both [13] and [15] do not
use any form of coding. The authors in [14] employ fountain
codes for broadcasting in vehicular networks. However, unlike
our setting, all the nodes are in a star topology and receive
transmissions from the source through erasure channels.

Our contributions in this paper comprise of a detailed
analysis of the probabilistic forwarding mechanism with coded
packets when the underlying network topologies are binary
trees and grids. The analysis on the tree is straightforward
and uses concentration bounds on binomial random variables.
The case of the grid is far more interesting with the arguments
involving ideas from ergodic theory and the site percolation
process on Z

2. The mapping between connectivity in finite
networks and the site percolation process has been discussed
briefly in [16, Chapter 3]. Our approach builds on this mapping
to obtain estimates of the minimum forwarding probability and
the expected total number of transmissions for the grid. We set
up the problem formally next, and analyze it on the tree and
grid topologies in the subsequent sections.

III. PROBLEM SETTING

Consider a graph G = (V, E), where V is the vertex
set with N vertices (nodes) and E is the set of edges
(noiseless communication links). It is assumed that when a
node broadcasts a packet, all its one-hop neighbours receive
the packet without any errors. A source node s ∈ V has a
certain number of message packets which need to be broadcast
in the network. The source s encodes these messages into n
coded packets in such a way that a node that receives any k
of the n coded packets can retrieve all the original message
packets. It is assumed that each packet has a header which
identifies the packet index j ∈ [n] := {1, 2, . . . , n}. The
source node broadcasts all n coded packets to its one-hop
neighbours, after which the probabilistic forwarding protocol
takes over. A node receiving a particular packet for the first
time, forwards it to all its one-hop neighbours with probability
p and takes no action with probability 1 − p. Each packet is
forwarded independently of other packets and other nodes.
This probabilistic forwarding continues until there are no
further transmissions in the system. The protocol indeed must
terminate after finitely many transmissions since each node
in the network may choose to forward a particular coded
packet only the first time it is received. The node ignores all
subsequent receptions of the same packet, irrespective of the
decision it took at the time of first reception.

We are interested in the following scenario. Let Rk,n be the
nodes, including the source node, that receive at least k out
of the n coded packets. We call these successful receivers and
denote the number of such nodes by Rk,n. Given a δ ∈ (0, 1),
let1 pk,n,δ be the minimum forwarding probability p for a
near-broadcast, i.e.,

pk,n,δ = inf

�

p

�

�

�

�

E

�

Rk,n

N

�

≥ 1 − δ

�

. (1)

1The quantities Rk,n, pk,n,δ , τk,n,δ etc. are all, of course, functions of
the underlying graph G as well, but for simplicity, we usually suppress this
dependence from our notation. We use Rk,n(G), pk,n,δ(G), τk,n,δ(G) etc.
whenever the dependence on G needs to be made explicit.

The performance measure of interest, denoted by τk,n,δ ,
is the expected total number of transmissions across all nodes
when the forwarding probability is set to pk,n,δ. Here, it should
be clarified that whenever a node forwards (broadcasts) a
packet to all its one-hop neighbours, it is counted as a
single (simulcast) transmission. Our aim is to determine, for
a given k and δ, how τk,n,δ varies with n, and the value
of n at which it is minimized (if it is indeed minimized).
To this end, it is necessary to first understand the behaviour
of pk,n,δ as a function of n. In the next section, we make
some initial observations for the minimum retransmission
probability, pk,n,δ , and the corresponding value of the expected
total number of transmissions, τk,n,δ, valid for any underlying
network topology.

IV. INITIAL OBSERVATIONS

On any connected graph G = (V, E), when a successful
receiver must receive k out of n0 coded packets, instead of
k out of n, where n0 > n, each packet can be transmitted
at a lower probability while still ensuring a near-broadcast.
In fact, the minimum forwarding probability goes to 0 as n is
increased. This is formalized in the following lemma.

Lemma 1: For fixed values of k and δ,

(a) pk,n,δ is a non-increasing function of n.
(b) pk,n,δ → 0 as n → ∞.

Proof: (a) For any n > 0, the random variables Rk,n and
Rk,n−1 can be coupled as follows: If there are a total of n
coded packets, then Rk,n−1 (resp. Rk,n) is realized as the
number of nodes, including the source node, that receive at
least k of the first n − 1 (resp. at least k of the n) coded
packets. It is then clear that E[ 1

N Rk,n] ≥ E[ 1
N Rk,n−1], and

hence, by (1), we have pk,n,δ ≤ pk,n−1,δ .
(b) From the n coded packets, create bn

k c non-overlapping
(i.e., disjoint) groups of k packets each. For i = 1, 2, · · · , bn

k c,
let Ai be the event that the ith group of k coded packets
is received by at least (1 − δ/2)N nodes. The events Ai

are mutually independent and have the same probability of
occurrence. For any p > 0, we have P(Ai) being strictly
positive (but perhaps small). Hence,

P(at least one Ai occurs) = 1 −
(

1 − P(A1)
)bn

k c ≥ 1 − δ

2

for all sufficiently large n, so that P

	

Rk,n

N ≥ 1 − δ/2



≥
1 − δ/2. This further implies that

E[Rk,n]
N ≥ (1 − δ/2)(1 −

δ/2) ≥ 1− δ. Thus, for any p > 0, we have pk,n,δ ≤ p for all
sufficiently large n.

Fig. 2 gives simulation results for the minimum forwarding
probability and the expected total number of transmissions
on a 31 × 31 grid with k = 100 packets. Notice that the
minimum forwarding probability, pk,n,δ, decreases with n as
proved above. On the other hand, the expected total number of
transmissions, τk,n,δ , typically exhibits more complex behav-
iour. Over a wide range of graph topologies (both deterministic
and random), except notably for trees (see Section V), τk,n,δ

initially decreases and then grows gradually as n increases.
This trend was seen on a RGG in Fig. 1 and is more
pronounced for a grid topology—see Fig. 2(b). Thus, there
typically is an optimal value of n that minimizes τk,n,δ . This
means that the ad-hoc network needs to be operated at this
value of the number of coded packets n and the corresponding
forwarding probability pk,n,δ , in order to have least energy
expenditure overall. Notice also that probabilistic forwarding
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Fig. 2. Simulation on a 31 × 31 grid with k=100 packets.

with no coding corresponds to the point n = k = 100 packets
in Fig. 2. The number of transmissions τk,n,δ decreases (ini-
tially) when coded packets are introduced which highlights
the advantage of coding with probabilistic forwarding on such
network topologies.

The decrease in τk,n,δ happens due to an interplay
between two opposing factors: as n increases, pk,n,δ decreases
(Lemma 1), which contributes towards a decrease in τk,n,δ .
But this is opposed by the fact that the overall number of
transmissions tends to increase when there are more number
of packets traversing the network.

To determine the value of n that minimizes τk,n,δ , we need
more precise estimates of pk,n,δ, and consequently, τk,n,δ .
For specific graph topologies, we may be able to obtain
such estimates using methods tailored to those topologies.
We demonstrate this for two topologies in the next two
sections, starting with the easiest case of a binary tree.

V. ROOTED BINARY TREES

Consider a rooted binary tree of height H ≥ 2 as depicted
in Fig. 3. Simulation results from running the probabilistic
forwarding protocol on a binary tree of height H = 10 with
k = 100 packets and n between 100 and 200 are shown
in Fig. 4. The minimum forwarding probability decreases as
the number of coded packets n is increased, as was proved
in Lemma 1. The expected total number of transmissions
however, increases monotonically when coded packets are
introduced, unlike the trend that is discussed in the previous
section. Thus, introducing coded packets along with prob-
abilistic forwarding does not help in reducing the number
of transmissions when the underlying network has a tree-
like structure. In this section, we analyze the probabilistic
forwarding mechanism on the binary tree and show that this
is indeed true. The analysis in this section extends easily to
the case of rooted d-ary trees, for any d ≥ 2.

In a binary tree of height H , there are 2` nodes at level `,
for ` = 0, 1, 2, · · · , H , and hence the total number of nodes in
the network are N = 2H+1 − 1. The root of the tree at level
` = 0 is the source node and it encodes its data packets into n
coded packets and transmits them to its children. Every other
node on the tree follows the probabilistic forwarding strategy
with some fixed forwarding probability p > 0. Nodes that
share a common parent receive the same packets and hence
will possess the same number of packets at the end of the
probabilistic forwarding mechanism.

Fig. 3. A rooted binary tree of height H .

Fig. 4. Probabilistic forwarding on a binary tree of height H = 10.

Remark: To be consistent with our motivating assumption
that the nodes in the network have little or no knowledge of
the network topology, we allow all nodes, including the leaf
nodes at level H , to transmit. We could modify the protocol so
that leaf nodes do not transmit, but this does not substantively
change the analysis or the conclusions in this section.

To get a handle on the minimum retransmission probability
pk,n,δ for a near-broadcast, we first look at the number of

successful receivers, Rk,n. We can write Rk,n =
PH

`=0 R`,
where R` is the number of nodes at level ` that hold at least
k of the n packets. Similarly, define Tk,n =

PH
`=0 T`, where

T` is the number of transmissions by nodes at level `. Note
that T0 = n and R0 = 1 since the source transmits all the n
packets.

In a tree, there is only a single path from the root to any
node in the tree. Thus, for a node v at level ` to receive a
packet from the root, all the intermediate nodes on the unique
path from the root to v need to transmit the packet. Hence,
for ` ≥ 1,

P(node v at level ` receives the jth packet) = p`−1.

Since individual packets are transmitted independently of each
other, we have

P(node v at level ` receives at least k out of n packets)

=

n
X

r=k



n

r

�

p(`−1)r(1 − p`−1)n−r

= P(Z`−1 ≥ k),

where Z`−1 ∼ Bin(n, p`−1) is a binomial random variable
with parameters n and p`−1. Summing the above over all
nodes v at level `, we obtain E[R`] = 2`

P(Z`−1 ≥ k), and
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hence,

E[Rk,n] = 1 + E

�

H
X

`=1

R`

�

= 1 +

H
X

`=1

2`
P(Z`−1 ≥ k).

(2)

Similarly, a node v at level ` ∈ {0, 1, · · · , H} receives a
packet from the source and transmits it with probability p`.
This gives the total expected number of transmissions for a
transmission probability p to be

E[Tk,n] =
H
X

`=0

E[T`] = n
(2p)H+1 − 1

2p − 1
.

Thus, E[Tk,n] is a monotonically increasing function of p,
from which it can be inferred that

τk,n,δ = n
(2pk,n,δ)

H+1 − 1

2pk,n,δ − 1
. (3)

Moreover, from (2) and the fact that N = 2H+1 − 1, we have

pk,n,δ = inf

�

p

�

�

�

�

1 +
PH

`=1 2`
P(Z`−1 ≥ k)

2H+1 − 1
≥ 1 − δ

)

,

where Z` ∼ Bin(n, p`) for ` = 0, 1, . . . , H−1. The inequality
within the expression for pk,n,δ above can be rewritten as

PH−1
`=0 2`+1

P(Z` ≤ k − 1)

2H+1 − 1
≤ δ. (4)

An analysis starting from (4) yields the two propositions
below, which provide good lower and upper bounds on pk,n,δ.
These bounds are plotted, for k = 100, δ = 0.1 and H = 50,
in Fig. 5(a) along with the exact values of pk,n,δ obtained
numerically from (4). The corresponding plots for τk,n,δ ,
obtained via (3), are shown in Fig. 5(b).

Proposition 2: Let k ≥ 2, H ≥ 2, and 0 ≤ δ < 1
8 be fixed.

For all n ≥ k, we have pk,n,δ >
(

k−1
n

)
1

H−1 .
In the case of k = 1 and n > 1, the lower bound can be

improved to pk,n,δ >
(

1
n

)
1

H−1 .
Proof: Suppose that p is such that npH−1 ≤ k−1. Then,

ZH−1 has mean at most k − 1. As a result, the median of
ZH−1 is also at most k−1 [17, Corollary 3.1]. In other words,

P(ZH−1 ≤ k − 1) ≥ 1
2 . Consequently,

PH−1
l=0 2l+1

P(Zl ≤
k − 1) ≥ 2H

P(ZH−1 ≤ k − 1) ≥ 2H−1, so that the left-hand

side (LHS) of (4) is at least 2H−1

2H+1−1 ≥ 2H−1

2H+1 = 0.25 > δ.

Hence, for (4) to hold, we must have npH−1 > k − 1, from
which the lower bound on pk,n,δ follows.

In the case of k = 1, suppose that p ≤
(

1
n

)H−1
. Then,

P(ZH−1 = 0) = (1−pH−1)n ≥ (1− 1
n )n ≥ (1− 1

2 )2 = 0.25,

for all n ≥ 2. Hence,
PH−1

l=0 2l+1
P(Zl ≤ k − 1) ≥

2H
P(ZH−1 = 0) ≥ 2H−2. As a result, the LHS of (4) is

at least 2H−2

2H+1 = 0.125 > δ. Thus, again, for (4) to hold,

we need p >
(

1
n

)H−1
.

Proposition 3: Let k ≥ 2, H ≥ 2, and 0 < δ ≤ 1 be fixed,

and let δ0 := min
n

δ
	

2H+1−1
2H+1−2




, 1
o

. Then, for all n ≥ 1,

we have

pk,n,δ ≤ min

�



k − 1 + t

n

�
1

H−1

, 1

)

,

Fig. 5. The middle curves are plots of the true values of pk,n,δ and τk,n,δ

obtained from (4) and (3), for k = 100, δ = 0.1 and H = 50. The other
curves are bounds obtained via Propositions 2 and 3, (6), (5) and (3).

where t =
p

2(k − 1)(− ln δ0) + (ln δ0)2 − ln δ0. In the case
of k = 1, the bound

pk,n,δ ≤ min

�

− ln δ0

n

�
1

H−1

, 1

)

holds for all n ≥ 1.
Proof: Note first that for all l ≤ H −1, we have2

P(Zl ≤
k − 1) ≤ P(ZH−1 ≤ k − 1). Hence,

PH−1
l=0 2l+1

P(Zl ≤
k − 1) ≤

(
PH−1

l=0 2l+1
)

P(ZH−1 ≤ k − 1) =
(2H+1 − 2)P(ZH−1 ≤ k − 1). Thus, to show that (4) holds,

it suffices to prove that P(ZH−1 ≤ k − 1) ≤ δ
	

2H+1−1
2H+1−2




.

It is, therefore, enough to show that P(ZH−1 ≤ k − 1) ≤ δ0.

Consider k = 1 first. Take p = min

�

1,
	

C0

n



1

H−1

�

, where

C0 = − ln δ0. Then, P(ZH−1 ≤ k−1) = P(ZH−1 = 0) = (1−
pH−1)n, which, by choice of p, is either equal to 0 (if C0 ≥ n)
or (1 − C0/n)n (if C0 < n). In either case, P(ZH−1 = 0) is

less than e−C0

= δ0, as needed.

Consider k ≥ 2 now. Take p = min
n

1,
(

k−1+t
n

)
1

H−1

o

,

where t is as in the statement of the proposition. For n ≥
k − 1 + t, we have ZH−1 ∼ Bin(n, k−1+t

n ), so that

P(ZH−1 ≤ k − 1) = P
(

ZH−1 ≤ n(k−1+t
n − t

n )
)

≤ e−n D( k−1
n k k−1+t

n )

via the Chernoff bound. Here, D(· k ·) denotes the Kullback-
Leibler divergence, defined as D(x k y) = x ln x

y + (1 −
x) ln 1−x

1−y . Using the bound D(x k y) ≥ (x−y)2

2y , valid for

x ≤ y [18], we further have

P(ZH−1 ≤ k − 1) ≤ e
−n

�
(t/n)2

2(k−1+t)/n

�
= e−

t2

2(k−1+t) .

Thus, to conclude that P(ZH−1 ≤ k − 1) ≤ δ0, as required,

it suffices to show that t2

2(k−1+t) ≥ − ln δ0. This can be re-

written as t2 + 2t ln δ0 + 2(k − 1) ln δ0 ≥ 0, or equivalently,
(t + ln δ0)2 + 2(k − 1) ln δ0 − (ln δ0)2 ≥ 0, which is evidently
satisfied by our choice of t.

2This is easily shown by a standard coupling argument—see e.g., [2,
Lemma IV.1].
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Fig. 6. The source node (×) is at the centre of the 31 × 31 grid.

The following theorem, which summarizes the behaviour
of pk,n,δ on binary trees, is a direct consequence of
Propositions 2 and 3.

Theorem 4: Let k ≥ 2, H ≥ 2 and 0 < δ < 1
8 be fixed.

We then have pk,n,δ = Θ
	

(

k
n

)
1

H−1




, where the constants

implicit in the Θ-notation3 may be chosen to depend only on
H and δ.

Tighter bounds for pk,n,δ can be obtained by bounding the
binomial cumulative distributive function (CDF) in (4) using
Theorem 16 of the appendix. This gives,

pk,n,δ ≤ inf

�

p

�

�

�

�

�

PH−1
`=0 2`+1Cn,p`(k)

2H+1 − 1
≤ δ

)

(5)

and

pk,n,δ ≥ inf

�

p

�

�

�

�

�

PH−1
`=0 2`+1Cn,p`(k − 1)

2H+1 − 1
≤ δ

)

, (6)

where Cn,q(k) = Φ



sgn
(

k
n − q

)

q

2nD( k
n || q)

�

. The plots

in Fig. 5 provide a theoretical explanation for why τk,n,δ

increases with n.
In summary, introducing redundancy in the form of coding

into the probabilistic retransmission protocol on a rooted
binary tree (and more generally, on a rooted d-ary tree) is
not beneficial in terms of the overall energy expenditure in
the network.

VI. GRIDS

Consider, for an odd integer m > 1, the m×m grid Γm :=

[−m−1
2 , m−1

2 ]
2 ∩ Z

2 centred at the origin. The source node
is assumed to be at the centre of the grid. Simulation results
for the probabilistic forwarding algorithm on the 31× 31 grid
(in Fig. 6) were presented in Fig. 2. In this section, we try to
explain these observations by developing an analysis that is at
least valid for large m. Specifically, we turn to the theory of
site percolation on the integer lattice Z

2 to explain the pk,n,δ

and τk,n,δ curves obtained via simulations on large grids Γm.

A. Site Percolation on Z
2

We start with a brief description of the site percolation
process (see e.g. [19]) on Z

2. This is an i.i.d. process
(Xu)u∈Z2 , with Xu ∼ Ber(p) for each u ∈ Z

2, where
the probability p ∈ [0, 1] is a parameter of the process.
Let P1 denote the push-forward measure of the process on

{0, 1}Z
2

(or, in other words, the product measure ⊗uνu, with
νu ∼ Ber(p) ∀u ∈ Z

2). A node or site u ∈ Z
2 is open if

3The notation a(n) = Θ(b(n)) means that there are positive constants c1
and c2 such that c1 b(n) ≤ a(n) ≤ c2 b(n) for all sufficiently large n.

Fig. 7. θ(p) and θ+(p) vs. p.

Xu = 1, and is closed otherwise. For u = (ux, uy) ∈ Z
2,

define |u| := |ux| + |uy|. Two sites u and v are joined by
an edge, denoted by u—v, iff |u − v| = 1. The next few
definitions are made with respect to a given realization of
the process (Xu)u∈Z2 . Two sites u and v are connected by
an open path, denoted by u ←→ v, if there is a sequence
of sites u0 = u, u1, u2, . . . , un = v such that uk is open
for all k ∈ {0, 1, . . . , n} and uk−1—uk for all k ∈ [n].
The open cluster, Cu, containing the site u is defined as
Cu = {v ∈ Z

2|u ←→ v}. Thus, Cu consists of all sites
connected to u by open paths. In particular, Cu = ∅ if u is
itself closed. The boundary, ∂Cu, of a non-empty open cluster
Cu is the set of all closed sites v ∈ Z

2 such that v—w for
some w ∈ Cu. The set C+

u := Cu ∪∂Cu is called an extended
cluster. The cluster Cu (resp. C+

u ) is termed an infinite open
cluster (IOC) (resp. infinite extended cluster (IEC)) if it has
infinite cardinality. Note that C+

u is infinite iff Cu is infinite.
It is well-known that there exists a critical probability

pc ∈ (0, 1) such that for all p < pc, there is almost surely
(with respect to P1) no IOC, while for all p > pc, there is
almost surely a unique IOC. We do not know what happens
at p = pc, as the exact value of pc is itself not known (for
site percolation on Z

2). It is believed that pc ≈ 0.59 [19,
Chapter 1]. Another quantity of interest, which will play a
crucial role in our analysis, is the percolation probability θ(p),
defined to be the probability that the origin 0 is in an IOC.
In our analysis, we also consider the probability, θ+(p), of the
origin 0 being in an IEC. Clearly, from our definition of the
IEC, for p < pc, we have θ+(p) = θ(p) = 0; for p > pc,
it is not difficult to see that θ+(p) ≥ θ(p) > 0. It is known
that θ(p) is non-decreasing and infinitely differentiable in the
region p > pc [20], but there is no analytical expression known
for it. The following lemma, outlined in [15], expresses θ+(p)
in terms of θ(p).

Lemma 5: For any p > pc, we have θ+(p) = θ(p)
p .

Proof: Let C and C+ be the (unique) IOC and IEC,
respectively. We then have

θ(p) = P1(0 ∈ C) = P1(0 ∈ C+ and 0 is open). (7)

Now, observe that the event {0 ∈ C+} is determined purely by
the states of the nodes other than the origin. Hence, this event
is independent of the event that 0 is open. Thus, the right-hand
side (RHS) of (7) equals θ+(p) · p, which proves the lemma.

Fig. 7 plots θ(p) and θ+(p) as functions of p, the former
being obtained via simulations based on the theorem below.

Theorem 6: Let p > pc, and let C and C+, respectively,
be the (almost surely) unique IOC and IEC of a site perco-
lation process on Z

2 with parameter p. Then, almost surely,
we have

lim
m→∞

1

m2
|C ∩ Γm|=θ(p) and lim

m→∞

1

m2
|C+ ∩ Γm|=θ+(p).
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The theorem is obtained as a straightforward application of
an ergodic theorem for multi-dimensional i.i.d. random fields
[21, Proposition 8]—see Section B of the appendix. Using the
dominated convergence theorem (DCT), we also have

lim
m→∞

E

�

1

m2
|C ∩ Γm|

�

= θ(p) and

lim
m→∞

E

�

1

m2
|C+ ∩ Γm|

�

= θ+(p).

Based on the first equation above, to obtain an estimate
of θ(p), the site percolation process with parameter p was
simulated on a 1001 × 1001 grid and the average fraction of
nodes (averaged over 100 realizations of the process) in the
largest open cluster was taken to be the value of θ(p). These
are the values of θ(p) plotted in Fig. 7. We would like to
emphasize that the plots in the figure should only be trusted
for p > pc, as Theorem 6 is only valid in that range. However,
as the exact value of pc is unknown, simulation results are
reported for the range of p values shown in the plot.

B. Relating Site Percolation to Probabilistic Forwarding

Site percolation on Z
2 is a faithful model for probabilistic

forwarding of a single packet on the infinite lattice Z
2. The

origin 0 is the source of the packet. The open cluster, C0,
containing the origin 0 corresponds to the set of nodes that
transmit (forward) the packet, and the extended cluster C+

0

corresponds to the set of nodes that receive the packet. The
only caveat is that, since the source is assumed to always
transmit the packet, we must consider only those realizations
of the site percolation process in which the origin 0 is open.
In other words, we must consider the site percolation process,
conditioned on the event that the origin is open. By extension,
the probabilistic forwarding of n coded packets corresponds
to n independent site percolation processes on Z

2, conditioned
on the event that the origin is open in all n percolations.

Let O denote the event that the origin is open in all
n percolations. In our analysis, we will use P

o and E
o,

respectively, to denote the probability measure and expectation
operator conditioned on the event O, and P and E for the
unconditional versions of these.

C. Analysis of Probabilistic Forwarding on a Large (Finite)

Grid

In this section, we analyze the probabilistic forward-
ing mechanism on the finite grid Γm using the following
approach. We map the probabilistic forwarding mechanism
on Γm onto the probabilistic forwarding mechanism on the
infinite Z

2 lattice. From the discussion in the previous sub-
section, this is nothing but n independent site percolations on
Z

2 conditioned on the event O. Using ergodic theorems for
the site percolation process, we get a handle on the expected
number of nodes that receive at least k out of the n packets
from the origin on Z

2. This, in turn, is used to obtain estimates
of pk,n,δ and τk,n,δ . In our upcoming analysis, we make the
following assumption.

Assumption 1: We operate in the super-critical region
for site percolation on Z

2, i.e. p > pc.

We provide a justification for this assumption in
Section VII-A.

Fig. 8. Comparison of the minimum forwarding probability obtained via
simulations on a 31×31 grid and a 501×501 grid, with the results obtained
numerically from (9), for k = 100 data packets and δ = 0.1.

Denote by Rk,n(Γm), the number of successful receivers in
Γm, i.e., the number of nodes that receive at least k out of n
packets during the probabilistic forwarding mechanism on Γm.
The following theorem is our main result for grids. Its proof
is quite technical, and is presented in the next subsection.

Theorem 7: For p > pc, we have

lim
m→∞

E

�

Rk,n(Γm)

m2

�

=
n
X

t=k

t
X

j=k



n

t

�

t

j

�

(θ+(p))t+j(1 − θ+(p))n−j .

Equivalently,

lim
m→∞

E

�

Rk,n(Γm)

m2

�

= P(Y ≥ k), (8)

where Y ∼ Bin(n, (θ+(p))2).
Thus, for k, n, δ fixed, we have for all sufficiently large

grids Γm,

pk,n,δ(Γm) ≈ inf{p | Pr(Y ≥ k) ≥ 1 − δ}, (9)

where Y ∼ Bin(n, (θ+(p))2). This can be evaluated numeri-
cally using the values of θ+(p) plotted in Fig. 7. For large
k and n, the probability P(Y ≥ k) can be approximated
well using the bounds given in Theorem 16 in the appendix.
A sample of results thus obtained are shown in Fig. 8. It is
clear that these results match very well with those obtained
from simulations on a 501 × 501 grid.

We next look into estimating the expected total number of
transmissions at a given forwarding probability p. Consider
the transmission of a single packet on the finite grid Γm. Let
T (Γm) be the number of transmissions of the packet on the
finite grid Γm and let T (Z2)∩ Γm be the set of nodes in Γm

which receive the packet from the origin and transmit it on
the infinite Z

2 lattice. It can be shown4 that

lim
m→∞

E[T (Γm)]

m2
= lim

m→∞

E
��

�T (Z2) ∩ Γm

�

�

�

m2
.

Now, T (Z2) is simply the open cluster C0 in the perco-
lation framework. Thus, when normalized by the grid size
m2, the expected number of transmissions, E[T (Γm)], for
probabilistic forwarding on a large (but finite) grid Γm is well-
approximated by E

�

|C0 ∩ Γm|
�

� 0 is open
�

. The following
lemma gives an expression for this quantity in the limit as the
grid size goes to infinity.

Lemma 8: For site percolation with p > pc, we have

lim
m→∞

1

m2
E
�

|C0 ∩ Γm|
�

� 0 is open
�

=
θ(p)

2

p
.

4This is shown using arguments entirely analogous to those used to show
(15) in Section VI-D. We omit the details.
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Fig. 9. Comparison of the expected total number of transmissions, normalized
by the grid size m2, obtained via simulations on Γ31 and Γ501, with the
expression from (10), for k = 100 data packets and δ = 0.1.

Proof: We use P
0 and E

0, respectively, to denote the
probability measure and expectation operator conditioned on
the event that the origin 0 is open. Let C be the (unique) IOC,
and A the event {0 ∈ C}. Then,

lim
m→∞

E
0

�

1

m2
|C0 ∩ Γm|

�

= lim
m→∞

E

�

1

m2
|C0 ∩ Γm|

�

� A

�

P
0(A)

+ lim
m→∞

E
0

�

1

m2
|C0 ∩ Γm|

�

� Ac

�

P
0(Ac)

Now, given Ac (i.e., 0 /∈ C), C0 is P
0-a.s. finite, and

so by the DCT, lim
m→∞

E
0
�

1
m2 |C0 ∩ Γm|

�

� Ac
�

= 0. On the

other hand, given A, we have C0 = C. From Theorem 6,
we know that lim

m→∞

1
m2 |C ∩ Γm| = θ(p) P1-a.s.. Moreover,

this statement holds even when the probability measure P1 is
conditioned on A, since P1(A) = θ(p) > 0 for p > pc. So,
again by the DCT, lim

m→∞
E[ 1

m2 |C ∩Γm| | A] = θ(p). We have

thus shown that

lim
m→∞

E
0

�

1

m2
|C0 ∩ Γm|

�

= θ(p) P
0(A).

The proof is completed by observing that P
0(A) =

P1(A)
P1(0 is open) = θ(p)

p .

Thus, in probabilistic forwarding of a single packet on a
large grid Γm, the expected number of transmissions, nor-

malized by the grid size m2, is approximately
θ(p)2

p . Hence,

when we have n coded packets, by linearity of expectation,
the expected total number of transmissions, again normalized

by the grid size m2, is approximately n θ(p)2

p . In particular,

setting p = pk,n,δ, we obtain

1

m2
τk,n,δ(Γm) ≈ n

θ(pk,n,δ)
2

pk,n,δ
, (10)

provided that pk,n,δ > pc.
Fig. 9 compares, for k = 100 data packets and δ = 0.1,

the values of 1
m2 τk,n,δ obtained using (10), (9) and the θ(p)

values from Fig. 7, with those obtained via simulations on the
Γ31 and Γ501 grids. The curve based on (10), (9) and θ(p)
initially tracks the Γ501 curve well, but trails off after n =
130. This is because the former curve uses the approximation
for pk,n,δ in (9), which, for any given n, is valid only for
sufficiently large m. For values of n larger than 130, m = 501
may not fall in the “sufficiently large” range. This is discussed
in more detail in Section VII-B.

Nonetheless, it is instructive to note that, for fixed values of
k and δ, the expression on the right-hand side (RHS) of (10) is
indeed minimized for some n. This can be verified numerically
by plotting the RHS of (10) using the values of θ(p) from

Fig. 10. The minimum forwarding probability is numerically computed from
(9) and the expected number of transmissions is obtained via (10), for k = 100
data packets and δ = 0.1.

Fig. 7 and the approximation to pk,n,δ in (9). Plots for k = 100
and δ = 0.1 are shown in Fig. 10. Observe that the curve
plotted in Fig. 10(b) is decreasing in n till n ≈ 180, and it
increases thereafter, albeit very slowly. This indicates that, for
k = 100 and δ = 0.1, the expected number of transmissions
τk,n,δ(Γm) is minimized at n ≈ 180 for all sufficiently large
grids Γm. Thus, our analysis provides theoretical validation,
at least for large grids, for the observed behaviour of τk,n,δ as
a function of n, and indicates a benefit to introducing some
coding into the probabilistic forwarding mechanism on grids.

D. Proof of Theorem 7

Let Rk,n(Z2) denote the set of all nodes that receive at least
k of the n coded packets during the probabilistic forwarding
protocol on Z

2. As a first step, we will show that Rk,n(Γm)
and |Rk,n(Z2)∩Γm| are the same in expectation, in the limit as
the grid size, m, goes to infinity. In general, it is only true that
Rk,n(Γm) is stochastically dominated5 by |Rk,n(Z2) ∩ Γm|,
since a node in Rk,n(Z2)∩Γm could receive packets from the
origin through paths in Z

2 that do not lie entirely within Γm.
In the percolation jargon (on Z

2), Rk,n(Z2)∩Γm comprises
those nodes of Γm that are in the extended cluster containing
the origin (C+

0
) in at least k out of n percolations. Recall

that a node u is in C+
0

if either the node u or some one-hop
neighbour of u is connected to the origin through an open
path. Call such an open path a conduit (for a packet) from the
origin to u. If a conduit lies completely within Γm, we call
it a Γm-conduit. We also say that, if vertex u has a conduit,
it is necessarily in C+

0
.

The nodes in Rk,n(Z2) ∩ Γm may have received some
packets from the origin through Γm-conduits, and some others
through conduits that go outside Γm. We are interested in
the former, since, when operating on a finite grid Γm, nodes
of Rk,n(Z2) ∩ Γm without Γm-conduits cannot be successful
receivers in Γm. More precisely, we are interested in those
nodes of Γm which are part of the extended cluster containing
the origin through at least one Γm-conduit, in at least k out
of the n percolations. Note that these are the nodes that
receive at least k out of the n packets in the finite grid

5A random variable X is stochastically dominated by a random variable Y
if P(X ≥ x) ≤ P(Y ≥ x) for all x ∈ R. For non-negative random variables,
this implies that E[X] ≤ E[Y ].
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model; we denote this collection of nodes by Rk,n(Γm). Thus,
|Rk,n(Γm)| = Rk,n(Γm). We denote the remaining nodes by

Rk,n(Γm) := (Rk,n(Z2) ∩ Γm)\Rk,n(Γm). Thus, Rk,n(Γm)
and Rk,n(Γm) form a partition of Rk,n(Z2) ∩ Γm, i.e.,

Rk,n(Γm) ∩Rk,n(Γm) = ∅
and

Rk,n(Γm) ∪Rk,n(Γm) = Rk,n(Z2) ∩ Γm. (11)

Note that any node in Rk,n(Γm) has the property that for at
least one of the packets it receives, any conduit through which
it receives that packet necessarily goes outside Γm. Such a
node is said to receive at least one packet from outside Γm.
It does not receive this packet through any Γm-conduit.

We first show that the expected fraction of nodes in Γm

that receive at least one packet from outside Γm vanishes
asymptotically with the grid size m. In this direction, we will
need the following definition: For 0 < � < 4, let

Γm,� :=















Γbm
√

1− �
4c, if

�

m

r

1 − �

4

�

is odd

Γbm
√

1− �
4c−1, if

�

m

r

1 − �

4

�

is even

Recall that Γm was defined as Γm := [−m−1
2 , m−1

2 ]
2 ∩ Z

2

when m was odd. We will think of Γm,� as being Γ
m
√

1− �
4

in our calculations, and hence the number of nodes in Γm,� is
approximately m2

(

1 − �
4

)

.
Lemma 9: For p > pc, we have

lim
m→∞

1

m2
E

o
�

|Rk,n(Γm)|
�

= 0

Proof: Fix an � > 0. We will find an m0 such that
1

m2 E
o
�

Rk,n(Γm)
�

< � for all m ≥ m0. This will prove the
lemma.

Any node in Rk,n(Γm) has a conduit in at least k out of
the n packet transmissions on Z

2 and receives at least one
packet from outside Γm. Denote by Mj the event that node j
receives at least one of the n packets from outside Γm. Recall
that this means that node j does not have any Γm-conduit for
this packet. We then have,

E
o

� |Rk,n(Γm)|
m2

�

≤ E
o





1

m2

X

j∈Γm

1Mj



 ,

= E
o





1

m2

X

j∈Γm,�

1Mj





+ E
o





1

m2

X

j∈Γm\Γm,�

1Mj



,

where 1Mj is the indicator random variable for the event Mj ,
i.e., 1Mj = 1 if Mj occurs, and 1Mj = 0 otherwise. Since

there are m2−m2
(

1 − �
4

)

= m2�
4 nodes in Γm\Γm,�, the latter

term can be further bounded to obtain,

E
o

� |Rk,n(Γm)|
m2

�

≤ 1

m2

X

j∈Γm,�

P
o (Mj) +

�

4
. (12)

Fig. 11. Illustration of open loop in the annulus Γm\Γm,�. Here the vertex
j receives the packet from origin 0, only along the path that is depicted.

The summation above can be split over those nodes which
are on the boundary of Γm,� and those in the interior.

The former term contains at most 4m
p

1 − �/4 nodes. The
latter term involves those nodes which receive at least one
packet from outside Γm. Hence, in at least one percolation,
such nodes have a path from the origin as shown in Fig. 11.
This, then implies that there cannot be an open loop in the
annulus Γm\Γm,� as indicated by the dotted line in Fig. 11.
Let Km be the event that there is no open loop around the
origin in the annulus Γm\Γm,� in at least one percolation. We
then obtain,

1

m2

X

j∈Γm,�

P
o (Mj)

≤ 1

m2

�

4m

r

1 − �

4

�

+
	

1 − �

4




P
o (Km)

=
4

m

r

1 − �

4
+
	

1 − �

4




(1 − P
o (Kc

m)) . (13)

The event Kc
m is the event that there is an open loop in the

annulus Γm\Γm,� in each of the n percolations. Note that this
is an increasing event and so is the event O. Using the FKG
inequality (see [19, Chapter 2]), we have that

P
o (Kc

m) =
P (Kc

m ∩ O)

P (O)
,

(FKG)

≥ P (Kc
m) P (O)

P (O)
,

= P (Kc
m) . (14)

On {0, 1}Z
2

, define Ann to be the event that there is an open
loop in the annulus Γm\Γm,�. Exploiting the independence
of packet transmissions, we have that P (Kc

m) = P1 (Ann)
n

.
Substituting (14) and (13) in (12), and using this result,
we obtain,

E
o

� |Rk,n(Γm)|
m2

�

≤ 4

m

r

1 − �

4
+
	

1 − �

4




(1 − P1 (Ann)n) +
�

4
.

For super-critical site percolation process on Z
2 and a fixed

� > 0, the probability of an open loop in the annulus Γm\Γm,�

around the origin is known to approach 1 as m → ∞ (see [19]
for an idea of the proof, and [20] for specific results for site
percolation) i.e. P1(Ann) → 1 as m → ∞. Thus we can find
an m0 such that each of the first two terms on the RHS in the
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above expression are less than �
4 for all m ≥ m0. This is the

required m0.
Since Rk,n(Z2) ∩ Γm is a disjoint union of nodes in

Rk,n(Γm) and Rk,n(Γm), the previous lemma shows that

lim
m→∞

1

m2
E

o
�

|Rk,n(Γm)|
�

= lim
m→∞

1

m2
E

o
�

|Rk,n(Z2)∩Γm|
�

,

(15)

This provides us with a mapping between the probabilistic
forwarding mechanism on a large (but finite) grid Γm and the
infinite lattice Z

2.
In our analysis on the grid, we will be interested in the

expected value of |Rk,n(Z2) ∩ Γm| when conditioned on the

event A+
T , defined, for any T ⊂ [n], as the event that the origin

is in the IEC in exactly the percolations indexed by T . As a
corollary of Lemma 9, we also obtain

Corollary 10: For p > pc, we have

lim
m→∞

1

m2
E

o
�

Rk,n(Γm)
�

�A+
T

�

= 0.

Proof: The proof is along similar lines as that of Lemma 9
but with additional conditioning on the event A+

T . More

specifically, (13) would have P
o
(

Kc
m

�

� A+
T

)

on the RHS.

Notice that A+
T is an increasing event and hence O ∩ A+

T is
also increasing. Thus,

P
o
(

Kc
m

�

� A+
T

)

=
P
(

Kc
m ∩ A+

T ∩ O
)

P
(

A+
T ∩ O

)

(FKG)

≥ P (Kc
m) P

(

A+
T ∩ O

)

P
(

A+
T ∩ O

)

= P (Kc
m) . (16)

Using this in (13) and following subsequent steps from the
lemma, we get the statement of the corollary.

It is to be justified that such conditioning can indeed be
done, i.e., the event A+

T has a positive probability for the
specified range of values of p. The following proposition
relates the probability of the event A+

T , conditioned on the
event that the origin is open in all n percolations, to θ+(p).

Proposition 11: For any T ⊆ [n] with |T | = t, we have

P
o(A+

T ) = (θ+(p))t(1 − θ+(p))n−t.

Proof: By definition, P
o(A+

T ) = P(A+
T | O). Note that,

in a given percolation, conditioned on 0 being open, the event
{0 is in the IEC} is the same as the event {0 is in the IOC}.
Consequently, conditioned on O, the event A+

T is the same
as the event, AT , that the origin is in the IOC in exactly the
percolations indexed by T . Hence,

P
o(A+

T ) = P(AT | O) =
P(AT ∩ O)

P(O)
.

The denominator equals pn. The numerator is the event that
the origin is in the IOC in exactly the percolations indexed by
T , and is open but in a finite cluster in the remaining n− |T |
percolations. In a given percolation, the probability that the
origin is open but in a finite cluster is p−θ(p). Thus, we have

P(AT ∩O) = (θ(p))|T |(p−θ(p))n−|T |. The result now follows

from the fact (Lemma 5) that θ+(p) = θ(p)
p .

Since θ+(p) > 0 for p > pc, we have that P
o(A+

T ) > 0 as
well.

We now state an ergodic theorem for n independent copies
of the site percolation process on Z

2, which will aid us in
analyzing

�

�Rk,n(Z2) ∩ Γm

�

�. For this, let C+
k,n be the set of

all sites in Z
2 that belong to the IEC in at least k out of n

independent percolations. By a simple application of standard
ergodic theorems as detailed in Section B of the appendix,
we have the following theorem.

Theorem 12: We have

lim
m→∞

1

m2
|C+

k,n ∩ Γm| = θ+
k,n(p) P-a.s.

where

θ+
k,n(p) =

n
X

j=k



n

j

�

(θ+(p))j(1 − θ+(p))n−j

is the probability that the origin belongs to the IEC in at least
k out of the n percolations.
From the theorem, we derive a useful fact that plays a key
role in our analysis. Since the event, say An, that the origin
is in the IOC in all n percolations has positive probability
(θ(p)n > 0 for p > pc), the theorem statement also holds
almost surely when conditioned on An. Hence, by the DCT,
we also have

Corollary 13:

lim
m→∞

E

�

1

m2
|C+

k,n ∩ Γm|
�

�

�

�

An

�

= θ+
k,n(p).

We are now in a position to prove Theorem 7, which is
restated below for convenience. The proof is obtained by
carefully relating Rk,n(Z2) to the set C+

k,n, and then using
Corollary 13.

Theorem 14 (Restatement of Theorem 7): For p > pc,
we have

lim
m→∞

E
o

� |Rk,n(Γm)|
m2

�

=

n
X

t=k

t
X

j=k



n

t

�

t

j

�

(θ+(p))t+j(1 − θ+(p))n−j .

Equivalently,

lim
m→∞

E
o

� |Rk,n(Γm)|
m2

�

= P(Y ≥ k), (17)

where Y ∼ Bin(n, (θ+(p))2).
Proof: Before we begin, recall from (11) that Rk,n(Γm)

and Rk,n(Γm) form a partition of Rk,n(Z2) ∩ Γm. In the
framework of n independent site percolations, Rk,n(Z2) is the
set of sites in Z

2 that are in the extended cluster containing
the origin in at least k of the n percolations (conditioned on
the origin being open).

We start with

E
o [|Rk,n(Γm)|]

=

n
X

t=0

X

T⊆[n]:
|T |=t

E
o
�

|Rk,n(Γm)|
�

� A+
T

�

P
o(A+

T ). (18)

Our approach in the ensuing discussion would be to first
obtain results for Rk,n(Z2) ∩ Γm, and then transfer them to
Rk,n(Γm). Motivated by our discussion following Lemma 9,
consider the summand of (18) with Rk,n(Γm) replaced by

Rk,n(Z2) ∩ Γm, i.e., E
o
�

|Rk,n(Z2) ∩ Γm|
�

� A+
T

�

.
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Suppose that |T | = t < k. Given A+
T , the origin is in the

IEC in no more than k − 1 of the percolations; hence, each
site in Rk,n(Z2) must belong to the finite cluster, denoted by
C0[j], in the jth percolation, for some j /∈ T . As a result,
given A+

T , Rk,n(Z2) is contained in the union ∪j /∈T C0[j],
which is finite P

o-a.s, so that lim
m→∞

1
m2 |Rk,n(Z2) ∩ Γm| = 0

P
o-a.s.. Since Rk,n(Γm) ⊆ Rk,n(Z2) ∩ Γm, we also obtain

lim
m→∞

Rk,n(Γm)
m2 = 0 P

o-a.s.. Consequently, by the DCT,

we have for any T ⊆ [n] with |T | < k,

lim
m→∞

E
o

�

1

m2
|Rk,n(Z2) ∩ Γm|

�

�

�

�

A+
T

�

= 0

and lim
m→∞

E
o

� |Rk,n(Γm)|
m2

�

�

�

�

A+
T

�

= 0. (19)

Next, consider any summand in (18) with |T | = t ≥ k and
Rk,n(Γm) replaced by Rk,n(Z2)∩Γm as before. The sites in
Rk,n(Z2) can be exactly one of two types: those that belong

to the extended cluster C+
0

in at least k of the percolations
indexed by T ; and those that do not. Let Rk,T be the subset
of Rk,n(Z2) consisting of sites of the first type, and let Q =
Rk,n(Z2) \ Rk,T . Thus,

E
o
�

|Rk,n(Z2) ∩ Γm|
�

� A+
T

�

= E
o
�

|Rk,T ∩ Γm|
�

� A+
T

�

+ E
o
�

|Q ∩ Γm|
�

� A+
T

�

. (20)

Note that any site in Q must belong to C+
0

in at least one
percolation outside of T . In particular, given A+

T , Q is P
o-a.s.

finite. Thus, arguing as in the |T | < k case, we have

lim
m→∞

E
o

�

1

m2
|Q ∩ Γm|

�

� A+
T

�

= 0

and lim
m→∞

E
o

� |Rk,n(Γm) ∩Q|
m2

�

�

�

�

A+
T

�

= 0. (21)

Finally, note that

E
o
�

|Rk,T ∩ Γm|
�

� A+
T

�

= E
�

|Rk,T ∩ Γm|
�

� A+
T ∩ O

�

(a)
= E

h

|C+
k,T ∩ Γm|

�

� A+
T ∩ O

i

(b)
= E

h

|C+
k,T ∩ Γm|

�

� AT

i

,

where AT is the event that 0 is in the IOC in exactly the
percolations indexed by T , and C+

k,T is the set of sites of Z
2

that belong to the IEC in at least k of the percolations indexed
by T . The equality labeled (a) above is due to the fact that,
conditioned on A+

T ∩ O, Rk,T = C+
k,T . The equality labeled

(b) is because A+
T ∩ O = AT ∩ O, and moreover, the event

that 0 is open in the percolations outside T is independent of
the percolations indexed by T .

Thus, restricting our attention to only the percolations
indexed by T , we can apply Corollary (13) with n = t to

obtain lim
m→∞

E

h

1
m2 |C+

k,T ∩ Γm|
�

� AT

i

= θ+
k,t(p). Hence,

lim
m→∞

E
o

�

1

m2
|Rk,T ∩ Γm|

�

� A+
T

�

= θ+
k,t(p). (22)

Now using (11) and the fact that Rk,T ⊂ Rk,n(Z2), we obtain

Rk,T ∩ Γm = Rk,T ∩Rk,n(Z2) ∩ Γm

= Rk,T ∩ (Rk,n(Γm) ∪Rk,n(Γm))

= (Rk,T ∩Rk,n(Γm)) ∪ (Rk,T ∩Rk,n(Γm)),

in which the two sets Rk,T ∩Rk,n(Γm) and Rk,T ∩Rk,n(Γm)
on the RHS are disjoint (from (11)). Using this, we can write
the expectation term in (22) as follows

E
o

�

1

m2
|Rk,T ∩ Γm|

�

� A+
T

�

= E
o

�

1

m2
|Rk,n(Γm) ∩Rk,T |

�

�

�

�

A+
T

�

+ E
o

�

1

m2
|Rk,n(Γm) ∩Rk,T |

�

�

�

�

A+
T

�

. (23)

Using Lemma 9, we have that

lim
m→∞

E
o

�

1

m2
|Rk,n(Γm) ∩Rk,T |

�

�

�

�

A+
T

�

≤ lim
m→∞

E
o

� |Rk,n(Γm)|
m2

�

�

�

�

A+
T

�

= 0 (24)

Substituting (23) in (22), and using (24), we get

θ+
k,t(p) = lim

m→∞
E

o

�

1

m2
|Rk,T ∩ Γm|

�

� A+
T

�

= lim
m→∞

E
o

�

1

m2
|Rk,n(Γm) ∩Rk,T |

�

�

�

�

A+
T

�

(a)
= lim

m→∞
E

o

�

1

m2
|Rk,n(Γm) ∩Rk,T |

�

�

�

�

A+
T

�

+ lim
m→∞

E
o

� |Rk,n(Γm) ∩ Q|
m2

�

�

�

�

A+
T

�

= lim
m→∞

E
o

� |Rk,n(Γm)|
m2

�

�

�

�

A+
T

�

, (25)

where the equality labelled (a) above is obtained using (21).
Upon multiplying (18) by 1

m2 , and letting m → ∞, we obtain
via (19) and (25):

lim
m→∞

E
o

�

Rk,n(Γm)

m2

�

=

n
X

t=k

X

T⊆[n]:
|T |=t

θ+
k,t(p) P

o(A+
T ).

Applying Proposition 11 completes the proof of the first
part of the theorem. The second part of the theorem is a
consequence of the proposition below.

Proposition 15:

n
X

t=k

t
X

j=k



n

t

�

t

j

�

(θ+(p))t+j(1 − θ+(p))n−j = P(Y ≥ k),

where Y ∼ Bin(n, (θ+(p))2).
Proof: Consider Y =

Pn
i=1 XiUi, where Xi, Ui,

i = 1, 2 . . . , n, are i.i.d. Ber(θ+(p)) random variables.
Clearly, each product XiUi is Ber((θ+(p))2), so that
Y ∼ Bin(n, (θ+(p))2).

Alternatively, P(Y = j) =
Pn

t=0 P(Y = j | X = t)
P(X = t), with X =

Pn
i=1 Xi. Thus,

P(Y = j) =

n
X

t=j



t

j

�

(θ+(p))j(1 − θ+(p))t−j

×


n

t

�

(θ+(p))t(1 − θ+(p))n−t

=

n
X

t=j



n

t

�

t

j

�

(θ+(p))t+j(1 − θ+(p))n−j .
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Hence,

P(Y ≥ k) =

n
X

j=k

n
X

t=j



n

t

�

t

j

�

(θ+(p))t+j(1 − θ+(p))n−j ,

from which, upon exchanging the order of the summations,
we get the expression in the statement of the proposition.

VII. DISCUSSION

In this section, we give justifications and heuristics for some
of the assumptions made in our analysis.

A. Super-Critical Region

Our entire analysis for grids is based on the assumption
(Assumption 1) that we operate in the super-critical region
for the site-percolation process. We give an explanation for
the same here. Recall that we want values of the forwarding
probability p for which the expected fraction of successful
receivers, E[ 1

m2 Rk,n(Γm)] is at least 1 − δ, for some (small)

δ > 0. Hence, we need E[ 1
m2 |Rk,n(Z2) ∩ Γm|] ≥ 1 − δ.

If we would like this to hold for all sufficiently large m,
then p must be such that Rk,n(Z2) has infinite cardinality.
This implies, due to the correspondence between probabilistic
forwarding and site percolation on Z

2, that p must be such
that there exists an infinite (open/extended) cluster in the
site percolation process. Thus, we must operate in the super-
critical region p > pc. It can also be seen from the simulation
results in Figs. 8 and 9 that τk,n,δ is minimized when pk,n,δ

is in the super-critical region. Further, from Fig. 10(a),
which provides the minimum forwarding probability obtained
numerically from (9), and which is used to generate the plots
in Fig. 10(b), it is clear that the expected total number of
transmissions is indeed minimized when operating in the
super-critical region. We use these arguments as justification
for considering only the p > pc case in our analysis.

B. Insufficiently Large m

We now re-visit the disparity seen in Fig. 9 between the
τk,n,δ curves (normalized by the grid size m2) for Γ31 and
Γ501 obtained via simulations, and the corresponding curve
for large grids Γm obtained via (10). As discussed previously,
the numerical evaluation of the RHS of (10) relies on the
approximation to pk,n,δ in (9), which, for fixed k, n and δ,
is valid only for sufficiently large m. In the regime where
the approximation is not valid (as happens for n ≥ 130
and m = 501 in Fig. 9), there is a small discrepancy
between the true value of pk,n,δ(Γm) obtained via simulations,
and the approximation in (9). While this discrepancy is too
small to be seen in the plots in Fig. 8, it gets blown up
when evaluating τk,n,δ using the expression in (10), which
involves θ+(p). This blow-up is attributable to the fact that
θ+(p) exhibits a sharp phase transition around p = 0.6 (see
Fig. 7), so that small changes in p near 0.6 translate to large
changes in θ+(p).

Interestingly, our simulations also indicate that for any value
of m, the true curve for 1

m2 τk,n,δ(Γm) always lies on or above
the curve for the “large-Γm approximation” obtained via (10)
and (9). We attempt an explanation for this here. We conjecture
that the large-m approximation in (9) is in fact an inequality
valid for all m, at least when δ is small.

Fig. 12. Plot of the expected fraction of nodes that receive at least k = 20
out of n = 30 packets in a 501 × 501 grid. Expectation over 100 iterations.

Conjecture 1: Fix δ ∈ (0, 1/8). Then, for any k, n and m,
we have

pk,n,δ(Γm) ≥ inf{p | Pr(Y ≥ k) ≥ 1 − δ}, (26)

where Y ∼ Bin(n, (θ+(p))2).
Thus, assuming the validity of the conjecture, the expected
total number of transmissions, τk,n,δ(Γm), at a forwarding
probability equal to pk,n,δ(Γm) is at least as large as that
when the forwarding probability is set to be equal to the RHS
of (9) (or (26)). We next provide an argument in support of
the conjecture.

Recall that

pk,n,δ(Γm) = inf

�

p

�

�

�

�

E

�

Rk,n(Γm)

m2

�

≥ 1 − δ

�

,

while the RHS of (26) is, by virtue of Theorem 7,

inf

�

p

�

�

�

�

lim
m→∞

E

�

Rk,n(Γm)

m2

�

≥ 1 − δ

�

.

Thus, it would suffice to show that when p is large

enough to ensure that E

h

Rk,n(Γm)
m2

i

≥ 1 − δ, we also

have limm→∞ E

h

Rk,n(Γm)
m2

i

≥ E

h

Rk,n(Γm)
m2

i

. This seems

to be true: simulation results (see Fig. 12) in fact indicate
that, for fixed k and n, and p sufficiently above criticality,

E

h

Rk,n(Γm)
m2

i

is an increasing function of m.

The intuition behind the increasing nature of the fraction of
receivers can be illustrated via the case of k = 1 and n = 1.
Consider a node v on the boundary of Γm which receives the
sole packet from outside Γm. Let us further suppose that the
path through which it receives the packet is contained within
Γm+l for some small l > 0. Node v is not a successful receiver
in Γm but it is successful in Γm+l. Additionally, nodes in the
Γm+l-conduit of v (and the neighbours of these nodes) that
are not successful receivers in Γm become successful receivers
in Γm+l. Moreover, if node v transmits the packet, there are
additional nodes in the interior of Γm that receive the packet.
So, increasing the grid size from m to m+ l not only leads to
an increase in the number of receivers on the boundary but also
results in additional receivers in the bulk. This suggests that
the expected number of receivers in Γm increases in chunks
of m2 rather than just m. Unfortunately, a rigorous proof of
this fact eludes us.

C. Tree Vs. Grid

The analysis on the binary tree and the grid reveals that there
is a significant benefit to introducing coding-based redundancy
into the probabilistic forwarding protocol when the underlying

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on March 09,2021 at 09:48:50 UTC from IEEE Xplore.  Restrictions apply. 



246 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

network topology is well-connected (as in a large grid), but
not so when the underlying network is a tree. The benefit is
in terms of a reduction in the overall number of transmissions
needed for a successful broadcast. Here, we give a qualitative
explanation for this behaviour.

Recall that a “near-broadcast” is when the expected fraction
of successful receivers is at least 1− δ, for some small δ > 0.
On a binary tree, leaves constitute (approximately) 50% of the
nodes. So, for a near-broadcast on a binary tree, the expected
fraction of successful receivers among the leaf nodes should
be at least 1−2δ. It then follows, via linearity of expectation,
that the probability of a given leaf node receiving at least k of
the n coded packets should be at least 1−2δ. Since there is a
unique path from the source (root node) to a leaf node on the
tree, for a leaf node to receive a packet, every node on this
unique path needs to transmit the packet. Hence, for a tree with
a large height H , to ensure a near-broadcast, the forwarding
probability needed for a leaf node to receive (with high
probability) at least k out of n packets must necessarily be
high. Of course, as Lemma 1 shows, the minimum forwarding
probability, pk,n,δ, needed for a near-broadcast decreases to 0
monotonically in n. However, the estimates in Section V show
that, for a binary tree, pk,n,δ does not decrease quickly enough
in n to offset the increase in the number n of packets to be
transmitted, resulting in a net overall increase in the expected
total number of transmissions as n increases.

On the other hand, on a grid, there are multiple paths from
the source to any node. A packet is received by a node if
all the nodes on at least one of these paths transmit it. It is
the existence of these multiple paths between the source node
and any other node on the grid that causes the minimum
forwarding probability pk,n,δ, for fixed k, δ and increasing
values of n, to decrease sharply at first (as seen in Fig. 8),
which results in an initial decrease in the expected total
number of transmissions. The effect of multiple paths is not
so strong after a point, and it is the binomial “k out of n”
probability that dominates, causing a slowdown in the rate of
decrease of pk,n,δ in n, which then results in an increase in
the expected total number of transmissions.

D. Other Graphs

The analysis on the grid can be extended to other network
topologies as well. The ergodic theorems which are detailed
in Section B of the appendix constitute a key ingredient of
our proofs. Similar ergodic theorems are available for other
lattice structures as well, like the triangular and hexagonal
lattices etc.; we refer the reader to [22] and [23] for further
reading on this topic. Our analysis extends to these lattice
structures, and we expect finite subgraphs of these lattices to
exhibit behaviour similar to that of the grid.

E. Communication Aspects

For the purpose of analysis, it might be easier to think
of each of the packet transmissions happening one after the
other in the network. In this scenario, packet collisions are
avoided. In a practical implementation, however, it might be
that different packets are transmitted on different sub-carriers
of an OFDM signal so that interference effects are minimized.
Thus, a node could possibly receive different packets from
each of its neighbours without any collisions.

F. Algorithm Variants

Several variants of the probabilistic forwarding with coded
packets algorithm could be set up and analyzed. For example,
the forwarding probability at a node could be a function of
its distance from the origin. Alternatively, a node could use
more sophisticated means of deciding which received packets
it should forward. However, these algorithms require either
greater knowledge of the network topology, or they demand
additional resources such as buffers or computation capability
at the individual nodes. This does not align with our idea of
a completely distributed, energy-efficient broadcast algorithm.
However, a certain light-weight extension is possible for our
model: a node on receiving k out of the n coded packets,
can decode the data and subsequently behave as a source
for generating additional coded packets which are broadcast.
One can reduce the forwarding probability of these secondary
sources, and further stipulate that, only those nodes which
receive exactly k packets encode and forward packets. Natu-
rally, this is a harder problem to analyze, and we believe that
the analysis in this paper will prove to be a stepping stone in
understanding such algorithms.

Another minor variant is to ask for pk,n,δ to be the minimum
probability such that the fraction of successful receivers is
close to 1 with a high probability. Simulations using this
criterion indicate similar trends for pk,n,δ and τk,n,δ as in the
results presented here.

APPENDIX

A. Bounds for the CDF of a Binomial Random Variable

The following theorem from [24] gives tight bounds on the
CDF of a binomial random variable in terms of the standard
normal CDF.

Theorem 16 ( [24], Theorem 1): Let 0 ≤ x, p ≤ 1 and
define D (x || p) := x ln x

p + (1 − x) ln 1−x
1−p , sgn(x) := x

|x|

for x 6= 0, and sgn(0) := 0. Let {Cn,p(k)}n
k=0 be defined as

follows:

Cn,p(0) = (1 − p)n, Cn,p(n) = 1 − pn,

Cn,p(k) = Φ

&

sgn



k

n
− p

�

s

2nD



k

n
|| p
�

(

, 1 ≤ k < n.

For a binomial random variable X ∼ Bin(n, p), for every
k = 0, 1, ..., n− 1, and for every p ∈ (0, 1),

Cn,p(k) ≤ P(X ≤ k) ≤ Cn,p(k + 1).

Equalities hold for k = 0 and k = n − 1 only.

B. Ergodic Theorems

Let A be a finite alphabet, and ν a probability measure on it.

Consider the probability space (Ω,F , P), where Ω = A
Z
2

, F
is the σ-algebra of cylinder sets, and P is the product measure
⊗uνu with νu = ν for all u ∈ Z2. For z ∈ Z

2, define the
shift operator Tz : Ω → Ω that maps ω = (ωu)u∈Z2 to Tzω
such that (Tzω)u = ωu−z for all u ∈ Z

2. Correspondingly,
for a random variable X defined on this probability space, set
TzX := X ◦ T−z , i.e., (TzX)(ω) = X(T−zω) for all ω ∈ Ω.

The following theorem is a special case of Tempelman’s
pointwise ergodic theorem (see e.g., [23, Chapter 6]). For A =
{0, 1}, this was stated as Proposition 8 in [21].
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Theorem 17: For any random variable X on (Ω,F , P) with
finite mean, we have

lim
m→∞

1

m2

X

z∈Γm

TzX = E[X ] P-a.s.,

where Γm := [−m−1
2 , m−1

2 ]2∩Z
2 is the m×m grid (m odd).

The theorem applies to the case of site percolation, in which
ν above is the Bernoulli(p) measure on A = {0, 1}. Applying
the theorem with X = 1{0∈C}, the indicator function of 0

being in the (unique when p > pc) IOC C, and again with
X = 1{0∈C+}, we obtain Theorem 6.

Next, with A = {0, 1}n and ν the product of n independent
Bernoulli(p) measures, we are in the setting of n independent
site percolations on Z

2. Let C+
k,n be the set of sites that are

in the IEC in at least k out of the n percolations. In this case,
taking E to be the event that the 0 is in the IEC in at least k
of the n independent percolations and X = 1E , and applying
Theorem 17, we obtain

lim
m→∞

1

m2
|C+

k,n ∩ Γm| = P(E) P-a.s.

Using the fact that the origin is in the IEC with probability
θ+(p), and since all the n percolations are independent,
the probability on the RHS in the above equation can be
evaluated to obtain Theorem 12.
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