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In a Nutshell

• Most models for semantics are very local
                                              (cascades of classifiers)

• This work: towards more global modeling for rich 
semantic processing
                       (feature sharing among all semantic classes)

                                        (just two probabilistic models)

• Our model outperforms the state of the art

• Our framework lends itself to extensions and 
improvements
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Overview

• Annotate English sentences with semantic 
representations

• Combination of: 

• semantic frame (word sense) disambiguation

• semantic role labeling

• Frame and role repository: FrameNet (Fillmore et al., 2003)
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• Theory developed by Fillmore (1982)

• a word evokes a frame of semantic knowledge

• a frame encodes a gestalt event or scenario

• it has conceptual dependents filling roles 
elaborating the frame instance

6

Frame Semantics
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• a frame encodes a gestalt event or scenario

AuthorTime_of_creation
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FrameNet

(Fillmore et al., 2003)
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MAKE_NOISE
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lexical units

frame

roles

(Fillmore et al., 2003)
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relationships between frames and between roles

EVENT

Place

Time

Event

TRANSITIVE_ACTION

Agent

Patient

Event

Cause

Place

Time
OBJECTIVE_INFLUENCE

Dependent_entity

Influencing_situation

Place

Time

Influencing_entity

CAUSE_TO_MAKE_NOISE

Agent

Sound_maker

Cause

Place

Time

MAKE_NOISE

Noisy_event

Sound

Sound_source

Place

Time

cough.v, gobble.v, 

hiss.v, ring.v, yodel.v, ...
blare.v, honk.v, play.v, 

ring.v, toot.v, ...
—

affect.v, effect.n, 

impact.n, impact.v, ...

event.n, happen.v, 

occur.v, take place.v, ...

Inheritance relation Causative_of relation

Excludes relation

Purpose

(Fillmore et al., 2003)

FrameNet
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• Statistics:

• 795 semantic frames

• 7124 roles

• 8379 lexical units (predicates)

• 139,000 exemplar sentences containing one frame 
annotation per sentence

FrameNet
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Marco Polo wrote an account of Asian society during the 13th century .

TEXT

Author Topic

A Frame-Semantic Parse
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Marco Polo wrote an account of Asian society during the 13th century .

TEXT

Author Topic

 here, the ambiguous word 
evokes the TEXT  frame

A Frame-Semantic Parse
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Marco Polo wrote an account of Asian society during the 13th century .

TEXT

Author Topic

participants in the event or 
scenario

A Frame-Semantic Parse
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Marco Polo wrote an account of Asian society during the 13th century .

TEXT

Author Topic

A Frame-Semantic Parse

frame-specific

participants in the event or 
scenario
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Why Frame-Semantic Parsing?

• Combines lexical and predicate-argument semantics

• Exploits meaningful primitives developed by experts

• the FrameNet lexicon

• Richer representation than PropBank style SRL

• No inconsistent symbolic tags (ARG2-ARG5)
(Yi et al. 2007, Matsubayashi et al. 2009)

• Patterns generalizing across frames and roles can be learned 
(Matsubayashi et al. 2009)
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Early Work

• Gildea and Jurafsky (2002) 

• Much smaller version of FrameNet

• exemplar sentences
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SemEval 2007

• Baker et al. (2007) organized the SemEval task on 
frame structure extraction

• first set of full text annotations available

• released a corpus of ~2000 sentences with full 
frame-semantic parses

• Johansson and Nugues (2007) submitted the best 
performing system

• our baseline for comparison (J&N’07)
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SemEval 2007

• SemEval 2007 dataset:

• training set: 1941 sentences

• test set: 120 sentences

• Three domains

• American National Corpus (travel)

• Nuclear Threat Initiative (bureaucratic)

• PropBank (news)
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SemEval 2007

• Evaluation is done using the official SemEval script

• Measures precision, recall and F1 score for 
frames and arguments

• Features a partial matching criterion for frame 
identification

• assigns score between 0 and 1 to closely 
related frames in the FrameNet hierarchy
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Challenges

• Several times more labels than traditional 
shallow semantic parsing

• Annotated data does not have gold 
syntactic annotation

• Very little labeled data

• Identifying semantic frames for unknown 
lexical units

• Very sparse features
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Desired Structure

Everyone in Dublin seems intent on changing places with everyone else .
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Desired Structure

Everyone in Dublin seems intent on changing places with everyone else .

LOCATIVE_RELATION

Figure Ground

LOCALE

Locale

EXCHANGE

Exchanger_1 Exchanger_2Themes

PURPOSE

Agent Goal

Phenomenon

APPEARANCE

Inference
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Three Subtasks:

• Target identification

• Identifying frame-evoking predicates 
(nontrivial!)

• Frame identification

• Labeling each target with a frame type 
(795 possibilities; ~WSD)

• Argument identification

• Finding each frame's arguments 
(~SRL; roleset is frame-specific)
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Target Identification

Everyone in Dublin seems intent on changing places with everyone else .
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• Rule-based identification

• list of all morphological variants of predicates in the lexicon

• all prepositions filtered

• support verbs were not identified

• J&N’07 filtered these

Target Identification

Everyone in Dublin seems intent on changing places with everyone else .
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Frame Identification

Everyone in Dublin seems intent on changing places with everyone else .

LOCATIVE_RELATION LOCALEEXCHANGEPURPOSEAPPEARANCE
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Frame Identification

Everyone in Dublin seems intent on changing places with everyone else .

LOCATIVE_RELATION LOCALEEXCHANGEPURPOSEAPPEARANCE

J&N’07 used several classifiers for this subtask
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Unseen LUs 
from WordNet-extended set

sixth ∈ ORDINAL_NUMBERS?

Y        N

Seen LUs 

sixth ∈ RELATIVE_TIME?

sixth ∈ INGESTION?

…
1 classifier

…
795 classifiers

Frame Identification
(Johansson and Nugues, 2007)

place

LOCALE    PLACING

book

in
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Unseen LUs 
from WordNet-extended set

intent ∈ PURPOSE?

Y        N

Seen LUs 

intent ∈ AIMING?

intent ∈ INGESTION?

…
1 classifier

…
795 classifiers

Frame Identification
(Johansson and Nugues, 2007)

place

LOCALE    PLACING

book

in
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Frame Identification

Our approach:

One single model for frame identification

Everyone in Dublin seems intent on changing places with everyone else .

LOCATIVE_RELATION LOCALEEXCHANGEPURPOSEAPPEARANCE
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NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Frame Identification

Assume POS tags and 
dependency trees to be given

Everyone in Dublin seems intent on changing places with everyone else .
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Frame Identification

Assume that target   is 
connected to the frame    through 

a prototype unit   

t

ℓ

f

t ℓ f

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .
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NN

41

Frame Identification

PURPOSE

Assume that target   is 
connected to the frame    through 

a prototype unit   

t

ℓ

f ?

NN IN NNP VBZ IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .

t ℓ f
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Frame Identification

PURPOSE

Goal

Means

Agent

aim.n, goal.n, object.n, 

objective.n, purpose.n, 

target.n

Attribute

Value

• Consider the PURPOSE frame
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Frame Identification

PURPOSE

Goal

Means

Agent

aim.n, goal.n, object.n, 
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Attribute

Value

{ }ℓ∈

note that the

target intent is
unseen

• Consider the PURPOSE frame
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• Consider the PURPOSE frame

45

Frame Identification

PURPOSE

Goal

Means

Agent

aim.n, goal.n, object.n, 

objective.n, purpose.n, 

target.n

Attribute

Value

{ }ℓ∈

note that the

target intent is
unseen

but lexical semantic 
relationships between 
some    and the target 

exist
ℓ

purpose ≈ intent
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Thus, we define a 
probabilistic model:

Frame Identification

pθ(f, ℓ | t,x) ∝ exp θ
⊤
g(f, ℓ, t,x)

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .
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Thus, we define a 
probabilistic model:

Frame Identification

pθ(f, ℓ | t,x) ∝ exp θ
⊤
g(f, ℓ, t,x)

WordNet relationships!

some features looking at the 
lexical and semantic 

relationships between   and   ℓ f

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .
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other features looking at the 
whole sentence structure

48

Thus, we define a 
probabilistic model:

Frame Identification

pθ(f, ℓ | t,x) ∝ exp θ
⊤
g(f, ℓ, t,x)

x

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .
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Thus, we define a 
probabilistic model:

Frame Identification

pθ(f, ℓ | t,x) ∝ exp θ
⊤
g(f, ℓ, t,x)

Note that    is unknown

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .

ℓ
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Thus, we define a 
probabilistic model:

Frame Identification

pθ(f, ℓ | t,x) ∝ exp θ
⊤
g(f, ℓ, t,x)

Marginalization of 
latent variable:

pθ(f | t,x) ∝
∑

ℓ

exp θ
⊤
g(f, ℓ, t,x)

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .
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Frame Identification

Inference:

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .

f̂ ← argmaxf

∑

ℓ

exp θ
⊤
g(f, ℓ, t,x)
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Frame Identification

Inference:

Training:

maximum conditional 
likelihood

NN IN NNP VBZ NN IN VBG NNS IN NN RB .

Everyone in Dublin seems intent on changing places with everyone else .

f̂ ← argmaxf

∑

ℓ

exp θ
⊤
g(f, ℓ, t,x)
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Results
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Frame Identification

significant 
improvement
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Frame Identification

• For gold standard targets, 210 out of 1058 lemmas 
were unseen

• 190 of these get some positive score for partial 
frame matching

• 4 of these exactly match

• 44 get 0.5 or more, indicating close match
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• Target Identification

• Frame Identification

• Argument Identification

• Final Results

• Conclusion

Outline
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Argument Identification 

Everyone in Dublin seems intent on changing places with everyone else .

EXCHANGEExchanger_1 Exchanger_2Themes
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Candidate spans

Two steps:

Argument Identification: The traditional approach 

 Everyone in Dublin
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Argument Identification: The traditional approach 

in Dublin
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with everyone else
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✔

binary filtering
potential 

arguments

✗

✗

✗

✗

✔

✔
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✔
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 Everyone in Dublin

......

Candidate spans

Two steps:

Argument Identification: The traditional approach 

in Dublin

on changing places

changing places

with everyone else

places

everyone

✔

✔

✗

✗

✗

✗

✔

Exchanger_1

Exchanger_2

Themes

Two steps 
unnecessary
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......

Candidate spansRoleset for EXCHANGE

Argument Identification: Our approach 
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......

Candidate spans

Exchanger_1

Exchanger_2

Exchangers

Theme_1

Theme_2

Themes

Manner

Means

Roleset for EXCHANGE

Argument Identification: Our approach 

...

 Everyone in Dublin

in Dublin

on changing places

changing places

with everyone else

places

everyone

one step!

∅
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A probabilistic model:

Argument Identification 

pψ(r → s | f, t,x) ∝ exp ψ⊤
h(r, s, f, t,x)
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A probabilistic model:

Argument Identification 

pψ(r → s | f, t,x) ∝ exp ψ⊤
h(r, s, f, t,x)

features looking at the span, the 
frame, the role and the observed 

sentence structure
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Argument Identification 

A probabilistic model:

pψ(r → s | f, t,x) ∝ exp ψ⊤
h(r, s, f, t,x)

Decoding:

Best span for each role is selected

For each frame, the best set of non-
overlapping arguments is decoded 

together 

66
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Argument Identification 

A probabilistic model:

pψ(r → s | f, t,x) ∝ exp ψ⊤
h(r, s, f, t,x)

Training:

Maximum conditional 
likelihood

67
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Results
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Results
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Conclusion

• Best results to date on frame-semantic parsing

• Only two probabilistic models instead of a cascade of 
classifiers for the frame-semantic parsing task

• Latent variable model for frame identification

• Better modeling of the argument identification (SRL) 
stage using only one model instead of two

• Publicly available software: http://www.ark.cs.cmu.edu/SEMAFOR

http://www.ark.cs.cmu.edu/SEMAFOR
http://www.ark.cs.cmu.edu/SEMAFOR
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