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Abstract

This research aims at developing new methods that predict the behaviors of the hu-

man driven traffic participants to enable safe operation of autonomous vehicles in complex

traffic environments. Autonomous vehicles are expected to operate amongst human driven

conventional vehicles in the traffic at least for the next few decades. For safe navigation

they will need to infer the intents as well as the behaviors of the human traffic participants

using extrinsically observable information, so that their trajectories can be predicted for a

time horizon long enough to do a predictive risk analysis and gracefully avert any risky

situation. This research approaches above challenge by recognizing that any maneuver per-

formed by a human driver can be divided into four stages that depend on the surrounding

context: intent determination, maneuver preparation, gap acceptance and maneuver execu-

tion. It builds on the hypothesis that for a given driver, the behavior not only spans across

these four maneuver stages, but across multiple maneuvers. As a result, identifying the

driver behavior in any of these stages can help characterize the nature of all the subsequent

maneuvers that the driver is likely to perform, thus resulting in a more accurate prediction

for a longer time horizon. To enable this, a novel probabilistic framework is proposed that

couples the different maneuver stages of the observed traffic participant together and as-

sociates them to a driving style. To realize this framework two candidate Multiple Model

Adaptive Estimation approaches were compared: Autonomous Multiple Model (AMM) and

Interacting Multiple Model (IMM) filtering approach. The IMM approach proved superior
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to the AMM approach and was eventually validated using a trajectory extracted from a real

world dataset for efficacy. The proposed framework was then implemented by extending

the validated IMM approach with contextual information of the observed traffic participant.

The classification of the driving style of the traffic participant (behavior characterization)

was then demonstrated for two use case scenarios. The proposed contextual IMM (CIMM)

framework also showed improvements in the performance of the behavior classification of

the traffic participants compared to the IMM for the identified use case scenarios. This out-

come warrants further exploration of this framework for different traffic scenarios. Further,

it contributes towards the ongoing endeavors for safe deployment of autonomous vehicles

on public roads.
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Chapter 1

Introduction

Advances in the field of artificial intelligence, sensing and computing in the past

30 years have opened up a lot of opportunities for the applications for autonomous vehi-

cles. Mobile robots, which are a category of autonomous vehicles, have found many uses

in factories, military reconnaissance ground vehicles, warehouses and even consumer prod-

ucts like robotic vacuum cleaners as well as lawn mowers [52]. Availability of excellent

texts and tutorials for robotics [65, 23, 45] coupled with open source platforms like Robot

Operating System (ROS)[55] have further propelled this revolution. Open communities

for sharing software for autonomous vehicles have a number of reference implementations

of the Simultaneous Localization and Mapping (SLAM), perception and navigation tech-

niques made available over the past decade, some even transitioning into industrial grade

off the shelf products [70, 6, 9, 2]. Due to operation in exclusive zones or in controlled con-

ditions, the mobile industrial robots have progressed in the phase where they can function

well towards their assigned goals but they need to be robust in performance [62, 21].

Another industry that is gearing up to adopt the benefits of the above developments

is automotive industry. Due to a significant increase in the road fatalities in the past few

decades, human safety has become one of the two key objectives of transportation, the other
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being fuel efficiency. Autonomous vehicle technology is seen as promising for both. Major

interest in it arose after Defense Advanced Research Projects Agency (DARPA) organized

two DARPA Grand Challenges and the DARPA Urban Challenge (DUC) for autonomous

vehicles from 2004-2007 [3, 4, 5, 7]. Although these competitions uncovered significant

challenges that needed to be addressed for getting the autonomous vehicles on public roads,

the public perception towards the robotic systems as a part of automobiles was shifted.

Since 2010, when Google announced it has been developing and testing a fleet of vehicles

for highly autonomous driving, various other auto makers have gradually started working

towards it. In 2014, Society of Automotive Engineers (SAE) released an information re-

port J3016 [58] in which it defines 6 different levels of autonomy, with level 2 as partially

automated and level 3 and above as highly automated. There have been two school of ap-

proaches for developing this technology. The newer players like Waymo (Google spinoff),

Uber, Cruise automation (GM undertaking) have been working on fully automated driving

(SAE Level 4+) whereas the traditional automakers have been working on incremental au-

tomation approaches. Many automakers already have an SAE Level 2 systems in the market.

Some like Tesla and Mercedes Benz are working towards SAE Level 3 autonomy in their

vehicles. Various independent studies have determined that by 2030, a significant portion

of the vehicles being sold will have some level of autonomy [8].

1.1 Motivation

Deployment of highly autonomous vehicles on the road has significant challenges

however. Unlike mobile industrial robots, which have the liberty to operate in controlled

environmental conditions and designated operating areas, autonomous vehicles will have

to work under changing weather and light conditions, all the while sharing the roads with

other manually driven vehicles. While the changing environmental conditions pose a sig-
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nificant challenge in perception of the surroundings, sharing the roads with the other traffic

participants pose challenges that span across perception and planning modules of the cars.

Unlike industrial environments where the robots and the other human or non-human par-

ticipants work towards a common overarching goal, the participants in the traffic have all

independent goals. This requires the participants to interact with each other and often ne-

gotiate their intent or right of the way to successfully navigate through the traffic. MIT -

Cornell collision [32] in the DUC, which occurred as a result of a failure to anticipate the

intent of the other car, was one of the first instances where this challenge was uncovered.

Now, almost a decade after the learnings from that incident in DUC, the obvious question

that comes to ones mind is where does the technology stand?

A good way to answer this question is to go through the Disengagement Reports from

the Autonomous Vehicle tests in the California Department of Motor Vehicles (CADMV)

website [1]. The CADMV issues Autonomous Vehicle Testing Permits to the manufacturers

developing and testing autonomous vehicles on the public roads and as per the regulations

the permit holders are required to submit a disengagement report annually summarizing the

cause of every disengagement during their tests. As of the date of writing of this publication,

there are 62 permit holders with this program. A quick glance through their disengagement

reports tells the challenges the autonomous vehicle developers are facing. The ego vehicle

giving insufficient or incorrect yields, exhibiting unwanted behaviors during a maneuver, or

other traffic participant driving recklessly make up a significant portion of reasons for the

disengagements (Table 1.1). This justifies the need for further understanding the various

interactions between the traffic participants.
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Table 1.1: Automakers facing behavior related issues as per disengagement reports

Automaker Behavior related Total Percentage

GM Cruise 46 82 56%

Zoox 6 8 75%

Baidu 57 88 65%

Honda 30 77 39%

Nuro 20 41 49%

Toyota 93 149 62%

Waymo 50 112 45%

1.2 Challenges

For operation in real world traffic, an autonomous vehicle will need to predict the

behaviors of other traffic participants so that it can analyze the risks involved well in ad-

vance. Doing so enables graceful handling of the situations, also avoiding the ones that

may lead to near term risks. Current Advanced Driver Assist Systems (ADAS) like colli-

sion avoidance, adaptive cruise control, are designed to use simplistic physics based models

to predict the motions of the traffic participants to analyze a possible dangerous situation,

and take necessary evasive action. The interactions between the traffic participants are typi-

cally ignored assuming they will maintain the states of their kinematic motions irrespective

of what other participants in their vicinity do. However, this approach is effective only in the

time horizon of 1-2 seconds i.e. a human response time [46]. For long horizon risk analysis

however, the autonomous vehicle systems need to be able to predict possible maneuvers for

every relevant traffic participant (other vehicle) to plan the feasible maneuvers for its own

safe navigation. In a heterogeneous traffic, where both connected automated vehicles and

conventional vehicles share the road, this has to be done by utilizing merely the extrinsic in-

formation of the observed traffic participants and is a challenging problem. Understanding

the manner in which a human driver executes a maneuver can aid in addressing this chal-

lenge. Any maneuver performed by a traffic participant can be broken down into following
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four stages:

i) Intent determination: The intent specifies what maneuver the driver wishes to per-

form eventually and is typically based upon the surrounding traffic participants as well

as upon the traffic situation. The reason for the initiation of most maneuvers lies usually

within a mandate arising from the route (exiting a freeway, turning at an approaching

intersection, merging from a ramp, etc.) or is due to a traffic obstruction (such as a

stopped vehicle, construction area, end of lane, etc.). Yet, there are some maneuvers

such as lane change, where the intent could be at discretion and is usually attributed

to a perceived benefit in the resulting driving conditions (e.g. increase in speed, clear

look ahead, etc.).

ii) Maneuver preparation: After self-identifying an intent for performing a maneuver,

the driver progresses into the preparation stage in which the intent may be advertised

using turn indicators or hand signals for instance. The driver may then accelerate, de-

celerate or simply maintain the speed to work out a sufficient gap between the relevant

traffic participants involved in the traffic scene.

iii) Gap acceptance: If the spatio-temporal gap between the relevant nearby traffic par-

ticipants is perceived as sufficiently safe, the driver progresses to the execution phase.

If the gap is considered to be not safe, the driver falls back to the preparation phase.

Although the gap acceptance is more of a decision point for transitioning from the ma-

neuver preparation to the maneuver execution stage, it is a factor that is influenced by

the driving style independently from maneuver preparation. For instance, a driver may

prepare aggressively for a maneuver (e.g. by increasing the speed), but may undergo a

change of mind based upon the eventual gap. This justifies to consider gap acceptance

as an individual stage.
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iv) Behavior execution: In this phase, the driver provides necessary steering, acceleration

or braking inputs to perform the desired maneuver.

The key challenge arises from the altering and driver-dependent consideration of

decision factors when determining intent. Apart from the mission level goals, the factors

influencing such decisions may also vary based on traffic, weather, and road conditions.

Furthermore, the manner of preparing for the maneuver after determining the intent differs

with every driver. Depending on the traffic situation, preparation may or may not be needed.

Some drivers may increase the speed (e.g. to move ahead of a vehicle in the adjoining lane

when changing lanes), others may decrease the speed in the same context. The tolerances

for gap acceptance (to perform the desired maneuver) also range among drivers. Thereafter,

the way in which the maneuver is executed might also deviate significantly. Some drivers

may turn or change a lane in a quick short way, others may do it more gradually. To predict

the evolution of a traffic situation effectively, estimation of the above characteristics of the

traffic participant at any given instant is important. The small time window of observation

for inferring these characteristics further amplifies difficulties.

1.3 Research Objectives & Scope

The goal of this research is to develop new methods that enable safe operation of

autonomous vehicles in complex traffic environments while sharing the roads with human

participants. Specifically, this work seeks to address the above mentioned challenges by in-

corporating the driver type characterizing of a traffic participant. It rests on the hypothesis

that for a given driver, the behavior not only spans across the four maneuver stages men-

tioned in the previous section, but also across multiple maneuvers. Estimating the charac-

teristics of one or more maneuver stages for a traffic participant aids in identifying the driver
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type. In turn, this helps to predict the nature of subsequent maneuvers the driver is likely to

perform, enabling trajectory prediction for a longer time horizon.

While the definition of human traffic participants includes pedestrians, bicyclists,

motorcyclists as well as conventional vehicles, the scope of this work will be focused only

on vehicle based traffic participants. Further, this work assumes that the data association

for traffic participants in the environment is perfect, the information of object tracking is

available and as a result the commonly chosen physical states of the vehicle as well as the

other traffic participants are estimated well. It also assumes that the scenarios and situation

classification is available.

Following research questions will be addressed as a part of this work:

(RQ1) How to predict the trajectories of the traffic participants for time horizons longer

than the human response time (1-2 secs) using only their extrinsic information?

(RQ2) How to model interactions between the traffic participants that follow different driv-

ing policies?

The first research question aims at investigating the system frameworks that enable

modeling the human characteristics influencing their driving manners. The outcome of

this research would help to improve risk analysis and planning capabilities of autonomous

vehicles.

The second research question aims at investigating the methods that enable operation

of autonomous vehicles under varying driving circumstances (for instance peak hour traffic

vs non-peak), where the human driving styles may vary even in a given geographical region.

The outcome of this research question will improve robustness of operation of autonomous

vehicles towards different driving situations and hence accelerate their deployment.

These research questions are stemmed in the realization that the long journey to

eventually solving the challenges that autonomous vehicles will face while sharing the road
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with conventional vehicles will have to be in steps. Since the driver behavior can vary geo-

graphically, and the factors that influence the driver behavior are numerous and not entirely

understood, model based approaches may edge out at some point. Data driven approaches

have proven to outperform model based approaches in many other areas involving human

behaviors like speech and text recognition. However, driving is a high level task with a lot

of hidden variables and influencing parameters. In order to even explore data driven ap-

proaches, as a first step, methods for generating and automated labeling of large amount of

real driver data are needed. The outcome of this research will open up new opportunities in

automated labeling of driver data. Further, the research will not only help open new oppor-

tunities for understanding human driving behaviors but will also accelerate the pace with

which this challenge is addressed.

1.4 Intellectual Merit / Research Contributions

This research addresses the challenges of prediction in complex traffic environments

by characterizing the driver behaviors of the relevant traffic participants in the scene. Doing

so, helps in estimating the policies for their driving and hence gives a better prediction for

their future trajectories. Following are the contributions of this research:

• A novel probabilistic framework for prediction was introduced that uses multiple

driver policies to characterize the behavior of different traffic participants and model

interactions between them [35].

• The proposed framework was implemented by extending an interacting multiple model

(IMM) filter with the contextual information of the observed traffic participants. The

approach for characterizing the driver behavior was demonstrated for two simulated

use cases. The simulated results also show an improvement in the performance for
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behavior classification compared to a traditional IMM.

• The work also compared two Multiple Model Adaptive Estimations (MMAE) ap-

proaches for behavior classification, Autonomous Multiple Model (AMM) approach

and IMM approach. The IMM approach was validated using a trajectory extracted

from a real world dataset.

1.5 Broader impact

The proposed work impacts the transportation safety and efficiency by accelerating

the deployment of autonomous vehicles. When running online in an autonomous vehicle,

the approach enables operation in complex traffic scenarios by determining the "active driver

policy" as well as driving behaviors of the traffic participant. These assist in providing a

more accurate prediction for risk analysis.

When running offline or online on a road side unit (traffic light controller etc.), it

can serve two benefits: it can enable automated labeling of the driver characteristics and

maneuvers of the traffic participants in the collected data, which can be used for training the

machine learning based driver models offline; and it can also characterize the predominant

driver models used in that geographical area, depending on the lane and traffic conditions.

This can be a valuable input for autonomous vehicle operation as well as microscopic traffic

analysis.

1.6 Dissertation organization

This dissertation is organized as follows. Chapter 2 discusses the needs for the pre-

diction in complex traffic environments and gives the state-of-the-art in prediction identi-

fying the research gaps available. Chapter 3 provides preliminaries on the motion models
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considered for the work. Chapter 4 proposes the probabilistic framework for representing

the traffic participant as a Dynamic Hierarchical Bayesian Network. Chapters 5, 6 and 7 ex-

plore two approaches for MMAE: AMM and IMM and provide an in-depth comparison of

the two for behavior identification of a traffic participant. Finally, chapter 8 implements the

proposed probabilistic framework by extending the IMM approach and presents the results

of evaluation for behavior identification as well as behavior characterization. The conclu-

sion and future works are summarized in chapter 9.
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Chapter 2

State Of The Art: Prediction In

Complex Traffic Environment

Deployment of highly autonomous vehicles on the road requires them to be able to

plan their motion in complex environment(environments with multiple maneuvering partic-

ipants). Planning problem in any environment can basically be considered as an optimiza-

tion problem with following steps: (i) identifying the possible states (i.e. search space) that

the vehicle can attain while staying within safety constraints; (ii) performing an optimized

search through this search space using an objective function (cost function) that represents

the identified constraints of the motion; and (iii) providing a reference to the motion execu-

tion modules of the vehicle. Depending on the different factors considered while generating

a search space, the different levels of planning are involved in navigation.

1. Path planning: A path is a collection of poses that a vehicle has followed in the past

or might be following in a finite future [62]. For navigation through a ground envi-

ronment, it usually consists of states like longitudinal position, lateral position and

orientation in case of 2D navigation in a road environment but without any informa-

tion of time. Path planning is determining the future path of the vehicle given its
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present states, available map and mission level goals. States of the other participants

of the traffic environment are usually not considered in this.

2. Trajectory planning: Trajectory is a collection of position, orientation, velocity and/or

higher derivative states of a vehicle marked with time stamps. A path can be ex-

tracted from a trajectory, but trajectory cannot be recreated from path due to lack of

time information[62]. Trajectory planning determines the future trajectory of the ve-

hicle given its present states, map, goal and the states of the other participants of the

environment.

3. Behavior planning: It can be seen in the literature [36, 73, 47, 46] that the terms ma-

neuver and behavior are often used interchangeably. However, it can be argued that

they are separate. This work differentiates between the two as follows. A maneuver is

a collection of motion sequences that a driver executes in order to achieve a local or a

global level mission objective and is usually described by a symbolic label like "lane

change", "lane merging", "left turn", "right turn", etc. On the other hand, the policies

and the physical parameters that govern the kind of inputs that the driver gives to the

vehicle for performing the maneuver constitute the behavior. In other words, different

behaviors can result in the different manners in which the same maneuver can be real-

ized. Behaviors for an identified maneuver can typically be described by trajectories

since they involve specifying stopping times, velocities and possibly accelerations at

different spatiotemporal points in the future. Hence, behavior planning is determin-

ing the future trajectories of the vehicle given its present states, map, goals and the

predicted behavior of the other traffic participants in the environment.

Navigation through a complex traffic environment requires planning to be performed

at the behavior level. Given the current states of the environment and its participants, anal-

ysis of risks that account for the participant behaviors provides the necessary search space
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for such planners. Risk analysis can be decomposed into following 3 steps[46, 27, 47]:

i) identify states of all the traffic participants

ii) predict their future states in a time step t+s in the future

iii) check the possibility of a risky event (e.g. collision) at each time step

To assess the risks in the correct domain space for effective planning, we need to

understand the needs of real-world driving scenarios. Collisions with other entities (pedes-

trian, bicyclists, other vehicles, stationary objects, etc.) are the primary risks that need to

be avoided, but in the real world the drivers also avoid executing behaviors that may lead

to a possible collision. Even if such behaviors don’t lead to collisions, they do disrupt the

smooth flow of the traffic. Hence, risks include behaviors that may lead to a risky situation.

Further, the risks can also include violating a road traffic rule or a road etiquette, or even

inconvenient driving conditions that may cause an injury to the occupants or the vehicle

functionality in the short or long term. Accurately identifying and predicting the trajecto-

ries (behaviors) of all the relevant traffic participants becomes key to analyzing the risks

and is a challenging problem.

This chapter seeks to approach the challenges of navigation through complex traffic

environments by collectively looking at the needs of the operating domain as well as the

state-of-the-art of the technology from a broader perspective to build the foundation for

the right solution. It is organized as follows. Section 2.1 provides a fresh taxonomy of

safety / risks that an autonomous vehicle needs to address while navigating through traffic.

Section 2.2 focuses on the needs of prediction for a longer time horizon and then covers the

state-of-the-art. The chapter concludes with identifying the research gaps.
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Figure 2.1: Risk assessment classification
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2.1 Risk Assessment Classification

At the highest level, risk assessment can be classified as either near term (short hori-

zon) or long horizon as illustrated in Fig. 2.1. Whenever the foreseen evaluation of the risk

is within the temporal vicinity of human reaction time, it is considered as near term, other-

wise it is interpreted as long horizon. This distinction has been chosen due to a key factor in

determining the risk mitigation strategy (i.e. motion planning): it must be decided whether

the traffic rules should be followed or not. For near term risk prevention, the dominating

priority of the planners lies within risk avoidance irrespective of rule following. For long

horizon risk prevention, however, the planners need to obey traffic rules. As a result, mit-

igation strategies for both categories of risks necessitate different policy models. For both

classes, identifying whether a traffic participant performs an expected or unexpected behav-

ior (as per traffic rules), can further assist in identifying a risk situation. One of the recent

works for the identification of such unexpected behaviors can be found in [47].

2.1.1 Short horizon risk assessment

For the short horizon risk assessment, existing literature ignores the interactions

between the traffic participants. Physics based models (like constant velocity, constant ac-

celeration, constant turning rate acceleration, constant curvature, etc. [48]) are utilized for

predicting the trajectories under the assumption that the participants are moving indepen-

dent of each other and hence will maintain their dynamic states. The argument that the

interactions between the vehicles can be ignored holds true only for the time horizon of a

human reaction time, which is about 1-2 seconds.

If an unexpected behavior is observed, i.e. another traffic participant is at fault (due

to a rule breaking or a failure), the risk analysis needs to determine whether the collision is

inevitable or avoidable. Here, metrics such as time-to-collision, time-to-react, distance-to-
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collision, etc. can be utilized [46]. Example situations in this category include: a participant

cutting across while the ego car drives straight; an on-coming vehicle crossing the divider

and entering the ego vehicle’s lane. If the collision is inevitable, the risk analysis module

must be able to provide an assessment of impact, such that a behavior minimizing damage,

for instance, can be planned simultaneously as the system is preparing for a collision. Most

of the emergency Advanced Driver Assistance Systems (ADAS) fall into this category. If

the collision is avoidable, the risk analysis module needs to provide an assessment such

that an evasive behavior (braking only, steering only, or a combination of braking and steer-

ing) with least possible consequences can be planned. Whether the collision is avoidable

or inevitable, planning for this situation is performed with low priority attributed to rule

following and higher priority attributed to realizing a maneuver with least possible conse-

quences.

Unexpected behavior can also be observed for the ego vehicle likely due to a failure

in some vehicle module. In such situations, the fault diagnosis and fault mitigation routines

need to take over as typical models may fail. This research area is out of scope of the

presented work.

For the case in which all participants behave as per the traffic rules, the main objec-

tive of the risk assessment module amounts to aiding short term rule adherence for the ego

vehicle and analyzing trajectories that may lead to dangerous situations. Driver assistance

systems such as lane keeping and adaptive cruise control fall under this category.

Most of the SAE Level 1 and 2 ADAS systems in the market address risks in this

category. Lane merge assist systems that are on the horizon also address such risks, however

a lane merge maneuver isn’t always a short term maneuver. Collision-based risk prediction

has been an active topic for researchers for quite some time now with a large body of lit-

erature available [17, 41, 69, 33, 53, 16, 64, 40, 19, 44, 13, 27, 31, 12, 68]. The popular

approach in such cases is to assume no inputs from the driver, make assumptions about con-
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stant velocity, acceleration, steering angle or steering rate, predict the trajectories of the traf-

fic participants and then check for an event like time-to-collision, distance-to-collision[46],

time to closest approach, etc. to determine possible conflicts. Some of the notable works

that implement computationally effective methods to determine possible conflicts are dis-

cussed here. Campos et. al. [27] provide the 3 step procedure for the threat assessment for

collision avoidance at intersections. The three step procedure is: (i) use unscented transform

to predict the trajectories using constant turn rate acceleration (CTRA) model; (ii) define

some geometric areas (collision zones approximated as rectangles) on the vehicles for cal-

culating the time-to-collision (TTC) and distance-to-collision (DTC) and then use bivariate

normal distribution integral approximation (Drezner, 1978[29]) to find the probability of

collision. (iii) employ reachability analysis for assessment of threat. This publication also

gives the values of covariance parameters from experiments, which are typically challeng-

ing to determine. Batz et al [16] use unscented transform for predicting trajectories. Here,

covariance ellipses are utilized in calculating the area representing the position of the vehi-

cles, adding uncertainty of orientation and then applying Minkowski’s sum operator to it for

every vehicle. Then for every vehicle pair, the approach calculates the minimum distance in

the short time in the future, if this distance falls below certain threshold it flags a dangerous

situation. However, these methods are usable only for short term prediction as they ignore

driver intent, which is the key uncertainty for long horizon risk assessment.

2.1.2 Long horizon risk assessment

This category addresses analyzed risks that are spatially or temporally distant enough

to effectively take risk averse actions in order to gracefully handle the situation. As such,

the assessment rather analyzes for possible near term risky situations than events, incor-

porating the notion that risky events will be avoided implicitly if risky situations can be
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avoided. Here, models assume the traffic participants to be either interaction-aware or non-

interactive. For complete risk analysis, however, the first case needs to be considered. Ir-

respective of whether an unexpected behavior has been observed or not, rule adherence in

the planning must be ensured.

If an unexpected behavior on the part of another participant is observed, the risk

assessment module analyzes different strategies to aid in planning a risk-averse maneuver

gracefully handling the situation. The strategies can either be based on the possible ma-

neuvers available to the ego vehicle or on the input space of the vehicle [26]. An example

scenario would be when the ego vehicle comes across a vehicle blocking an intersection.

The graceful behavior in such case would be either to brake to a complete halt or change

lanes in order to drive around the slower vehicle.

If no unexpected behaviors are observed for other traffic participants, then, the risk

assessment consists of safety and efficiency analysis for driving maneuvers such that poten-

tial near-term risks can be avoided. Examples include a car parked on the shoulder: here,

typical behavior of the vehicles driving in the adjoining lane is to either slow down or change

lanes. Another example could be a multiple lane intersection with merge-ins as vehicles in

an adjoining lane can change lanes to avoid any possible conflicts with merging vehicles.

For long term risks, necessary steps for risk assessment are:

1. Model and predict possible/expected behaviors of other traffic participants

2. Analyze the potential risk for every possible behavior of the ego vehicle against the

predicted behaviors of other traffic participants

3. Identify the realized behavior as soon as the other traffic participant executes a ma-

neuver

4. Differentiate an unexpected maneuver from the expected ones if such a situation oc-
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curs

Clearly, the most challenging part in the above steps is predicting the behavior (and

implicitly the trajectories) of the traffic participants accurately for a long time horizon. This

is due to three kinds of uncertainties that need to be factored into the prediction [71]:

i) The uncertainty in the maneuver that may be executed, which depends on the situation

and may vary with the driver for a given situation

ii) The uncertainty in the manner in which the maneuver is executed, which depends on

the driver

iii) The uncertainty in the state estimates of the observed participant due to sensor noise.

The prediction is also the most crucial step, since the risk analysis will be as effec-

tive as the accuracy of the predicted behaviors. Studies addressing the challenges in this

category are relatively recent. Lefevre et al. [47] presented a framework for reasoning for

collision risk at a semantic level by differentiating expected behaviors of the drivers from the

unexpected behaviors. Their approach rests on the assumption that participants that execute

unexpected behaviors invoke dangerous situations. The framework was demonstrated by ap-

plying to the road intersections with interactions. Among the most recent works, Damerow

[26] presents a situation-based risk evaluation and behavior planning framework for highly

automated driving. Analysis of risks is performed using prototypical predicted trajectories

of the traffic participants and the result of the analysis is a proposed risk map that is basi-

cally a search space for the behavior planner. The framework is demonstrated for parallel

driving and intersection traffic scenes. Prototypical trajectories based approaches however

implicitly assume the availability of the high definition digital maps for effective operation.

Further, the framework is decoupled from the environment perception module and doesn’t

reuse the information about uncertainty already available from it.
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The focus of this work is to enable prediction for a longer time horizon and it also

subsumes behavior identification. The next section covers the related work in prediction.

2.2 Prediction for long time horizon

Accurate prediction of trajectories for long time horizon requires the interactions

between the traffic participants to be considered. In heterogeneous traffic, where both con-

nected automated vehicles and conventional vehicles share the road, prediction has to rely

entirely on observing the traffic participant extrinsically and is a challenging problem. Un-

derstanding of the manner in which a human driver executes a maneuver can help in address-

ing this challenge. Any maneuver performed by a traffic participant can be broken down

into following stages [56], and can be collectively utilized to infer the driver behavior:

i) Intent determination: The intent specifies what maneuver the driver wishes to per-

form eventually, and is typically based on the surrounding traffic participants as well

as the traffic situation. The cause for most of the maneuvers is usually either a mandate

due to the route (exiting a free way, turning at an approaching intersection, merging

in from the ramp, etc.) or due to a traffic obstruction (like a stopped vehicle, con-

struction, end of lane, etc.). Yet, there are some maneuvers like lane change, where

the intent could be at discretion and is usually attributed to a perceived benefit in the

resulting driving conditions (e.g. increase in speed, clear look ahead, etc.).

ii) Maneuver preparation: After self-identifying an intent for performing a maneuver,

the driver progresses into the preparation stage where the intent may be advertised

using turn indicators or hand signals for instance. She may then accelerate, decelerate

or simply maintain the speed to work out a sufficient gap between the relevant traffic

participants.
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iii) Gap acceptance: When the spatiotemporal gap between the relevant nearby traffic par-

ticipants is perceived to be safe enough, the driver progresses to the execution phase.

If the gap is not perceived to be safe, the driver falls back to the preparation phase. Al-

though the gap acceptance is more of a decision point for transitioning from maneuver

preparation to maneuver execution stages, it is a factor that is influenced by the driving

style independently from maneuver preparation. For instance, a driver may prepare

aggressively for a maneuver by increasing the speed, but may change the mind given

the eventual gap. his justifies to consider it as an independent stage.

iv) Maneuver execution: In this phase, the driver gives the necessary steering, accelera-

tion or braking input to perform the desired maneuver, e.g. lane change.

As long as the traffic participant communicates the intent explicitly (using turn in-

dicators for instance), the prediction can be straight forward. However, studies show that

in many cases (55% [56]), the maneuvers are performed either without communicating the

intent explicitly, or communicated after / just before the maneuver has been initiated. In

such cases the intent must be inferred from the behavior of the participant. A popular way

of inferring is by running a mathematical model, associated with every relevant traffic par-

ticipant, that considers their surrounding information (also called as context [36]) and then

estimates their maneuver intent. Such approaches can be divided into model based ap-

proach and data driven approaches. In the model based approach, the mathematical model

is a driver model that considers the context of the subject vehicle, i.e. its spatiotermporal

relations with the surrounding traffic and estimates the driver intent. For the data driven

approach, machine learning based approaches are used to train the mathematical model of-

fline using data collected from different driving scenarios based on the identified parameters

with the surrounding traffic. Finally, the trained model is used on-line to infer the intent of

the observed vehicle. The challenge is that the factors that are considered in determining

21



the intent vary with every driver. The mission level goals like approaching a turn or an exit

/ ramp that the driver wants to take also influence such decisions. And even with a given

driver, these factors may vary based on the circumstances like traffic conditions, weather

conditions and road conditions.

Once a driver identifies an intent for performing a maneuver, the driver accelerates

or decelerates to prepare for the maneuver. The driver maintains this stage until gap accep-

tance, where the driver determines that the gap between the traffic participants is sufficient

/ safe enough to perform the maneuver. Finally, the driver proceeds to the execution of the

maneuver. Depending on the traffic situations the the preparation may or may not be needed.

However there can be a variation in the way different drivers prepare for a maneuver. Some

may increase the speed to move ahead of a vehicle on the side for a lane change for instance,

others may decrease the speed. Further the tolerances for gap acceptances also varies with

the driver. Finally, the way in which the maneuver is executed also deviates. Some may take

a quick short turn or lane change, others may perform it more gradually. preparation and

execution stages are basically motions based on the decision on an accepted threshold of

the gap. The maneuver execution can be represented as motion models for the maneuvers,

with the variability expressed in the form of parameters.

The approach to model the driver intents using contextual information has been uti-

lized in the microscopic traffic analysis for quite some time. Gipp’s car following [37] and

Intelligent Driver Model (IDM) [67] are two of the most popular car following models.

One of the recent additions to this is a Foresighted Driver Model (FDM) [30]. Likewise,

for lane change intents, Gipp’s lane change [38] and Minimum Overall Braking Deceler-

ations Induced by Lane changes (MOBIL) [42] are the popular ones. Toledo et al. were

one of the first ones to propose an integrated lane change and car following model [66].

For a comprehensive review on the lane change models, the reader is referred to Rahman

et al. [56]. Apart from the microscopic traffic analysis models, Dou et al. [28] presented
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their approach for predicting lane changes at higway lane change drops using SVM, Artifi-

cial Neural Network (ANN) and a combined classifier. Contextual information like relative

speed, difference and distance with the nearby vehicles are given as inputs to these classi-

fiers, and the output is a vote suggesting merge or not to merge. The approach is evaluated

on the I80 and US 101 datasets in the publicly available NGSIM database. All the above

models focus on intent determination as well as the gap acceptance aspects of the driver

behavior.

Amongst the recent works, Rehder et al. [57] use logistic regressions to identify lane

change intentions. The model was trained with data from humans driving on a simulator.

Influences like traffic rules, road structure, individual driving style, environmental condi-

tions as well as influence from co-drivers was considered to model the interactions. Aoude

et al. presented a machine learning base model for driver intents at intersections [14]. They

used Support Vector Machines with Bayesian Filter (SVM-BF) and Hidden Markov Model

(HMM) based models to classify the behaviors of the traffic participants as "compliant"

or "violators". The model was evaluated with the real world data collected in Christians-

burg, VA, through the US Department of Transportation Cooperative Intersection Collision

Avoidance System for Violations (CICAS-V) initiative. Social Force Model (SFM) [39] is

a popular approach for modeling interactions with the pedestrians. Recently, several studies

have utilized SFM to model vehicle to vehicle interactions. One such study is by Yoon et

al. [74], where SFM is utilized on a multilane highway to model the tendency of the drivers

to keep safe distances from the object vehicles, to get to the maximum allowable speed on

the route and to stay at the center of the lane. The works in this paragraph focus only on the

intent determination stage of the driver behavior.

The works that identify driver behaviors based on the maneuver intent and maneu-

ver execution are [26, 71, 72, 11, 15, 36, 10, 20, 47] . Damerow [26] utilizes the FDM to

model the driver intent and trajectory matching with prototype trajectories to predict the
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maneuver. Wissing et al. [71] use IDM and MOBIL for intent determination and Monte

Carlo approach for execution. They demonstrate their approach for lane keeping, left and

right lane change maneuvers. In another work by them [72], contextual information, such as

relative distances and relative velocities between the observed vehicle and its nearby vehi-

cles, is utilized along with the spatiotemporal information of the observed vehicle, such as

lateral distance to lane center, lateral velocity, longitudinal velocity, as features for training

an SVM model that classifies the maneuver and predicts the time to lane change. This in-

formation is used to model the predicted trajectories as cubic splines with constant velocity

assumption. Alin et al. [11] describe the use of attractor functions to determine the con-

text of the system and predict the potential target locations for the traffic participants. They

demonstrate this on a lane following as well as double lane scenarios and use grid-based

Bayesian filters for modeling the maneuver execution. The approach was evaluated using

TORCS simulator. Bahram [15] uses game theory for modeling intent and Naive Bayes

for classifying the maneuver based on the longitudinal and lateral motion. The approach

is demonstrated for lane keeping, left and right lane change maneuvers. An approach that

stands out from above works in this paragraph is by Gindele et al. [36]. This work was the

first comprehensive framework that integrates the interaction-aware driver intent determi-

nation and maneuver execution stages together in a probabilistic filtering framework. The

work represents the traffic scenario as a Dynamic Bayesian Network and neatly ties together

the context, maneuver, predicted trajectories and the base states (continuous physical states)

of the traffic participants. The approach is then demonstrated on a two lane highway sce-

nario for an overtaking situation using particle filters. This framework is also adapted by a

few other other works. Agamennoni et al. [10] adopted this framework and utilize feature

functions to extract the high level information from low level contextual information. The

inference in their implementation is deterministic and is implemented for mining safety on

haul trucks. Brechtel et al. [20] adopted the same framework in their work for behavior plan-
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ning for autonomous vehicles. Their framework is implemented with Partially Observable

Markov Decision Process (POMDP) and is evaluated at runtime on a simulator for overtak-

ing situation. Due to the intuitive design of the framework, our approach also extends the

framework by Gindele et al. [36]. Further, just like Agamennoni et al. [10] we utilize our

own feature functions. The details for this can be found in section 4.4.

The works that focus on maneuver execution phase of the driver behavior are [22,

51, 59, 50, 60, 73]. Carvalho et al. [22] use Interactive Multi Model based Kalman Filtering

(IMM-KF) for modeling left lane change ,lane keeping and right lane change maneuvers.

The longitudinal motion is modeled with constant acceleration and constant velocity mod-

els, where as the IMM-KF is utilized for lateral motion. The implementation uses a bank of

9 elemental filters each running a second order motion model. Liu et al. [51] use cascaded

HMM classifiers to identify the behaviors based on maneuver execution. In the first stage,

an HMM for a traffic participant classifies the maneuver type as lane change left, right or

lane keeping based on its base states. In the second stage two HMMs are modeled, one for an

normal driver and the other for a dangerous driver. Given the maneuver, this state maps the

base states of the participant to a symbolic driver behavior. In the final stage, the likelihood

of the models is used to give the decisive classification. Schreier et al. [59] use Bayesian

inference with multiple motion models to identify dangerous drivers. They demonstrate

their work for lane following, lane changes, turns and for a few trash maneuvers. Among

the most recent works, Li et al. [50] is Gaussian Mixture HMM (GMHMM) for maneu-

ver based threat assessment in lane keeping, left and right lane change maneuvers. Their

observation vector consists of lateral offset, lateral velocity and lateral acceleration. Con-

stant acceleration model is used for lane keeping motions and sinusoidal half lane change

with constant velocity for lane changes. Schulz et al. [60] use Autonomous Multiple Model

(AMM) [49], also known as classical Multi Model Adaptive Estimation (MMAE) [25] fil-

ters with Unscented Kalman Filters (UKF) for an intersection scenario. The number of
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modes in their model depends on a possible combination of route and maneuver intentions.

They evaluated their model with 6 modes for upto 15 vehicles, and concluded that their ap-

proach outperforms a particle filter with upto 50,000 particles. Further, the runtime of their

cycle was 0.5 secs as against 7 secs for the particle filter. Xie et al. [73] utilize Interactive

Multiple Model (IMM) to integrate maneuver based and physics model model for trajec-

tory prediction. Constant Turn Rate Acceleration (CTRA) [48] model was utilized for the

physics based mode and sinusoidal lane change was utilized for the maneuver based model.

The model was evaluated on naturalistic data collected and was validated to be superior than

the single model approaches.

To the best of my knowledge, the only available framework that models maneuver

intent, gap acceptance and maneuver execution together is by Lefevre et al. [47]. Their

framework extends the framework by Gindele et al. [36] for reasoning of collision risk at a

semantic level by differentiating expected behaviors of the drivers from the unexpected be-

haviors. The dangerous situations are identified by comparing what drivers intend to do with

what they are expected to do according to the traffic rules. The authors propose a Markov

State Space model (MSSM) based graphical representation where the previous intentions

of the other vehicles in a multiple vehicle situation influences the expected behaviors of the

vehicles. A hierarchical framework is presented in which the highest level corresponds to

the expected and the intended maneuver performed, next level corresponds to the physical

state of the vehicle and the lowest level the measurements. The framework is applied to

road intersection scenario and uses a feature function for gap acceptance to decide on the

necessity to stop. The risk estimation is performed using a bootstrap filter for approximate

inference.
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2.3 Research Gaps

Table 2.1 summarizes the presented works mapping them against the stages of driver

behaviors for a maneuver. To the best of my knowledge, following gaps exist in the litera-

ture:

1. There are no probabilistic filtering frameworks that couple together the four stages of

the driver maneuver discussed in the section above.

2. There are no filtering frameworks that characterize the driver style and update it on

the fly based on the behavior identified from one of the maneuver stages to influence

on the other stage. Driver behaviors have a correlation between the maneuver stages.

Characterizing the driver early on helps predict their intents, and hence the trajecto-

ries for long horizon more accurately. For instance, identifying the behavior of rash

driver in the maneuver execution stage reveals additional information about the intent

determination nature of the driver. Without associating these stages to a driving style

and coupling them together, crucial correlation between these stages is lost.

3. None of the works utilize the maneuver preparation stage of the driver for character-

izing the behavior. Utilizing this information can not only help identify the intent of

the driver, but also identify the driving style such as "cooperative", "opportunistic",

"aggressive" even before the initiation of the maneuver.
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Chapter 3

Preliminaries: Motion Models

3.1 Motion models explored in this study

Prediction and tracking share similar foundations when it comes to functioning but

with some significant differences. As against tracking, where the propagation horizon is rel-

atively short, is independent of the surroundings of the participants, and is typically utilized

in missed measurements or occlusions, the propagation horizon for prediction is longer as

it is utilized for planning. As a result, the error in prediction can differ by a large margin

if the motion model is incorrect, leading to sub optimal planning. The key to prediction

is identifying the right motion model that the target is believed to be following. The more

accurately the model represents the target, the longer the horizon of accurate prediction.

Ground vehicle motions are typically represented as 2D motions in the longitudi-

nal and lateral directions. The resulting motion models can be divided into symmetric and

asymmetric. Symmetric motion models have the same propagation equations representing

the longitudinal and lateral motions, whereas asymmetric ones have different propagation

equations for longitudinal and lateral motions. The effectiveness of the motion model de-

pends on the operation domain of the target. For an unstructured environment where the
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motion can be expected in both lateral as well as longitudinal direction symmetric models

work well. Constant acceleration (CA), constant velocity (CV) are examples of symmetric

motion models. For a road traffic environment, which is structured in terms of rules and

motions, and where larger motion is expected in the longitudinal direction than lateral, and

that certain predefined distributions of movements are performed for a typical maneuver,

asymmetric models are more effective. The continuous time state-space models for such

mathematical models are given by:

ẋ(t) = f (x(t),u(t),w(t), t), x(t0) = x0 (3.1)

ż(t) = ℎ(x(t),u(t), t) + v(t) (3.2)

The linearized, discrete time equivalent of the above model are of the form:

xk+1 = F (xk) + B(uk) (3.3)

zk = H(xk) +D(uk) (3.4)

where F and H are the Jacobian matrices of the state and measurement equations respec-

tively, if they are non-linear. Following are some of the motion models that were explored in

this work. Many of these come from the field of tracking. For ground vehicles, the motions

are typically considered in x-y plane.

3.1.1 Constant Velocity Motion Model

Constant Velocity (CV) motion model represents the linear motions of a vehicle

and can be used to represent straight, free flow highway like driving conditions where the

vehicle speeds are nearly constant over a period of time and the roads are nearly straight.
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The state vector comprises of,

ẋ =
[
x vx y vy

]′
(3.5)

and the state equations are given as:

ẋ = vx (3.6)

v̇x = 0 (3.7)

ẏ = vy (3.8)

v̇y = 0 (3.9)

The discrete time counter part of the above equation with the noise is:

xk+1 = Fcv ⋅ xk + �k (3.10)

where Fcv is the state transition matrix given by,

Fcv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

�cv is the process noise with statistics as,

�k ∼  (0, Qk) (3.12)

Qk is the process noise covariance matrix, and is usually assumed as diagonal for simplicity.
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Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�x 0 0 0

0 �vx 0 0

0 0 �y 0

0 0 0 �vy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

Remark. The noise in constant velocity is correlated due to acceleration, and is given as

following based on the sample time:

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T 2
s
∕2 0

Ts 0

0 T 2
s
∕2

0 Ts

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡
⎢⎢⎣
�x

�y

⎤
⎥⎥⎦

and the covariance of the noise is given by:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�x ⋅ T
4
s
∕3 �x ⋅ T

3
s
∕2 0 0

�x ⋅ T
3
s
∕2 �x ⋅ T

2
s

0 0

0 0 �y ⋅ T
4
s
∕3 �y ⋅ T

3
s
∕2

0 0 �y ⋅ T
3
s
∕2 �y ⋅ T

2
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

3.1.2 Constant Acceleration

Constant Acceleration (CA) motion model is good at representing accelerating as

well as decelerating targets and is very effective in the nearly straight urban driving condi-

tions where the vehicles undergo a lot of changes in speeds. It assumes a nearly constant

acceleration. The state vector comprises of ẋ =
[
x vx ax y vy ay

]′

The state equations are:
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ẋ = vx + ax t (3.15)

v̇x = ax (3.16)

ȧx = 0 (3.17)

ẏ = vy + ay t (3.18)

v̇y = ay (3.19)

ȧy = 0 (3.20)

The discrete time counter part of the above equation with the noise is:

xk+1 = Fca ⋅ xk + �k (3.21)

where Fca is the state transition matrix given by,

Fcv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Ts T 2
s
∕2 0 0 0

0 1 Ts 0 0 0

0 0 1 0 0 0

0 0 0 1 Ts T 2
s
∕2

0 0 0 0 1 Ts

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.22)

�k is the process noise with statistics as,

�k ∼  (0, Qk) (3.23)

Qk is the process noise covariance matrix, and is usually assumed as diagonal for simplicity.
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Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�x 0 0 0 0 0

0 �vx 0 0 0 0

0 0 �ax 0 0 0

0 0 0 �y 0 0

0 0 0 0 �vy 0

0 0 0 0 0 �ay

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.24)

3.1.3 Constant Turn Rate and Velocity

Constant Turn Rate and Velocity (CTRV) is employed in representing a target that

is turning and has nearly constant velocity as well as yaw rate. The state vector comprises

of

xk =
[
x y  v !

]′
(3.25)

where v is the velocity tangential to the direction of motion,  is the yaw angle and

! is the yaw rate of the target.

State transition equations are given by:

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v

!
⋅ sin

(
! ⋅ Ts +  

)
−

v

w
⋅ sin( ) + xk

−
v

w
⋅ cos

(
! ⋅ Ts +  

)
+

v

w
⋅ cos( ) + yk

v

! ⋅ Ts +  

!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.26)

3.1.4 Constant Turn Rate and Acceleration

The Constant Turn Rate and Acceleration (CTRA) motion model is employed in

representing turning motions where the targets are also accelerating. The state vector com-
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prises of

xk =
[
x y  v a !

]′
(3.27)

where in addition to Eqn. (3.25), a is acceleration in the tangential direction of motion of

the target.

The state transition equation is:

xk+1 = xk +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δx(Ts)

Δy(Ts)

! ⋅ Ts

a ⋅ Ts

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.28)

where

Δx(Ts) =

1

w2

[
(vk! + a!Ts) ⋅ sin(�k + !Ts) + a ⋅ cos(�k + !Ts) − vk! ⋅ sin(�k) − a ⋅ cos(�k)

]

(3.29)

and

Δy(Ts) =

1

w2

[
(−vk! − a!Ts) ⋅ cos(�k + !Ts) + a ⋅ sin(�k + !Ts) + vk! ⋅ cos(�k) − a ⋅ sin(�k)

]

(3.30)
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3.1.5 Sinusoidal Lane Change Maneuver Motion Models

As against the straight and turning motion, lane change is a maneuver that requires a

specific sequence of inputs and cannot be represented with any of the above motion models.

Popular approaches for representing the lane change is using a sinusoidal function, splines or

bezier curves. We chose the sinusoidal motion model for lateral motion due to its simplicity

and the fact that it can be represented using only two parameters: maneuver initiation point

and maneuver length. Also the input that the driver gives to make a lane change results in a

nearly sinusoidal steering input. It should be noted however that although the steering input

to the vehicle can be sinusoidal for a lane change, the resulting trajectory of a realistic vehicle

is not exactly a sinusoidal wave. The key parameters that have uncertainty associated with

them are the maneuver length and the maneuver initiation point. Based on these, following

three configurations of the sinusoidal motion model was explored. For longitudinal motion,

a constant velocity motion model was assumed. However the equations can be adapted to

any other longitudinal motion model.

3.1.5.1 Maneuver initiation point (Xmip) and maneuver length as parameters

The states are comprised of

x =
[
x vx y vy

]′
(3.31)

The state transition equations for the left lane change maneuver are given by:

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk + vxk ⋅ Ts

vxk

−A cos(! Δxk) + A + yL

A!vxksin(!Δxk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.32)
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with,

A =
wL

2
(3.33)

! =
�

L
(3.34)

Δx =xk − xmip (3.35)

and wL, L, yL and xmip are the lane width, maneuver length, lateral position from

where the maneuver will be initiated (typically around lane center) and the maneuver initi-

ation point.

The equations for the right lane change can be represented in a similar manner as:

xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk + vxk ⋅ Ts

vxk

A cos(! Δxk) − A + yL

−A!vxksin(!Δxk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.36)

3.1.5.2 Maneuver initiation point as parameter and maneuver length estimated

The states include maneuver length in addition to the ones in Eqn. (3.31).

x =
[
x vx y vy L

]′
(3.37)
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The state transition equations for the left lane change maneuver are given by:

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk + vxk ⋅ Ts

vxk

−A cos
(
�

Lk
(xk − xmip)

)
+ A + yL

A
�

Lk
vxk sin

(
�

Lk
(xk − xmip)

)

Lk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.38)

Equations for the right lane change can be extended similarly from Eq. (3.36)

3.1.5.3 Maneuver initiation point estimated and maneuver length as a parameter

The states include maneuver initiation point in addition to the ones in Eqn. (3.31).

x =
[
x vx y vy xmip

]′
(3.39)

The state transition equations for the left lane change maneuver are given by:

xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk + vxk ⋅ Ts

vxk

−A cos
(
! (xk − xmip)

)
+ A + yL

A ! vxk sin
(
! (xk − xmip)

)

xmip,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.40)
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Chapter 4

System Architecture and Probabilistic

Framework

This chapter seeks to address two challenges as part of the research work. First,

how to utilize the different stages of maneuvers in characterizing the behaviors of the traffic

participants? Second, how to model the interactions between different traffic participants in

a traffic scene to enable long term prediction? The chapter starts with an overview of an au-

tonomous vehicle block diagram explaining as to which block this research is being applied

for. It also explains the various dependencies between different modules involved. This

viewpoint helps understand the assumptions that can be made for our research. Thereafter,

it proposes a probabilistic framework for modeling the traffic participants as hybrid systems

using Dynamic Hierarchical Bayesian Network describing the approach for addressing the

above two challenges.
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4.1 System architecture for highly autonomous driving

Figure 4.1 provides the overall software architecture envisioned for a highly au-

tonomous driving vehicle. The different modules in it are described below.

4.1.1 Localization

This module utilizes the information from the proprioceptive and exteroceptive sen-

sors to estimate the detailed pose (position and orientation) of the ego-vehicle, including the

lane and offset from the center lane, in the operating environment. Typical proprioceptive

sensors for a vehicle are inertia measurement unit (IMU) and wheel speed sensors, whereas

commonly used exteroceptive sensors are camera, LiDAR, radar and GPS.

4.1.2 Environment perception

This module utilizes the information from exteroceptive sensors like cameras, lidars

and radars to detect stationary and dynamic obstacles in the vicinity of the ego vehicle,

classifies them and tracks them to estimate their kinematic states. It also separates quasi-

stationary features in the environment (e.g., parked vehicles, temporary obstacles, etc.) from

permanent features that define the environment (for e.g., landmarks, lane information, traffic

signs, etc.).

4.1.3 Mission planning

This module processes mission level parameters such as current position, goal po-

sition, and digital map information to plan the most optimal route for the vehicle. The re-

sulting route does not consider traffic or lane level information in its solution. Furthermore,

it is only specified in the form of way point or path data and does not contain trajectory
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Figure 4.1: Autonomous vehicle system architecture

information. The mission planning module is also responsible in ascertaining whether the

assigned mission has been accomplished.

4.1.4 Decision maker

The information about the ego-vehicle pose, the states of the other traffic partici-

pants and traffic conditions (signals, road geometry) determined from the localization and

perception module are provided to the decision-making module. This module can be further

divided into situational awareness (SA) and prediction sub-modules.

4.1.4.1 Situational awareness sub-module

This module uses the information from perception module as well as digital maps

to identify traffic scenarios. Traffic scenarios can be thought of as a high level semantic

representation of the traffic environment, like signalized intersection, non-signalized inter-
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section, lane following, round about, etc. Each traffic scenario can be further divided into

different situations depending on the overarching objective of the ego vehicle and the cur-

rent states of the other traffic participants. For e.g., in an intersection where the ego vehicle

intends to turn left, the situation can vary depending on whether there is another partici-

pant present in an oncoming lane that is going straight. This identification is important as

it defines the traffic policies (like right of the way) that apply to all the traffic participants in

the situation. After identifying the traffic scene, based on the current states of all the traffic

participants, this sub-module is also responsible for identifying the current situation of the

scenario.

4.1.4.2 Prediction sub-module

Based on the current situation, the prediction stage determines the possible evolu-

tion of the situation by taking into account all possible behaviors that may be executed.

For each situation, trajectories for a predefined time horizon are then predicted by forward

simulation utilizing driving input assumptions about traffic participants. These predicted

trajectories can then be employed to assess the associated safety/risk by analyzing the traf-

fic policies in place against all possible maneuvers available to the ego-vehicle. Metrics

for this conflict can be based upon lane occupancy, potential collisions, time to collision,

distance to collision, etc. The outcome of this risk analysis defines a search space utilized

by the planning modules to determine the future trajectory of the ego vehicle.

4.1.4.3 Behavior planning

Here, data from prediction is connected with mission planning requirement. The

route information from the mission planning module and the risk/safety assessment from

prediction are combined to identify the safest behavior that the ego-vehicle should perform

and to specify the trajectory realizing this behavior. The generated reference trajectory is
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provided to the trajectory tracker module for further processing.

4.1.5 Trajectory tracker

Based on the input from the behavior planner, the trajectory tracker represents the

controller that realizes the reference trajectory in the smoothest possible way incorporating

the the current state of the vehicle.

4.2 Decision making in complex traffic environments

For safe navigation in complex traffic environments, the situational awareness, pre-

diction and behavior stages together form the decision module of the vehicle. The success

of the behavior planner in navigating safely through a dynamic environment depends on

the risk identification capability of the prediction stage. The prediction stage performance

in turn depends on the quality of the situational awareness module in identifying the situa-

tion and applicable traffic policy. As a result, a comprehensive analysis of long-term risks

necessitates a significant information flow and interaction between the three stages, and it

requires a probabilistic framework capable of incorporating these interdependencies. This

is in contrast to near term risk planning where these stages are decoupled. Currently, the

most comprehensive framework available for prediction is provided by Gindele et. al. [36],

which utilizes the concept of context and establishes the relationships between context, sit-

uations and maneuvers. This research work builds on top of their framework introducing

additional states to fully characterize the driver behavior. This work belongs to the trajectory

prediction sub-module of the prediction module in the architecture described above. The

next section will formulate the problem of driver behavior identification mathematically,

and the following section will describe the probabilistic framework.
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4.3 Problem Formulation

The notation convention applied throughout this paper is as follows: capital letters

represent sets of random variables, with script and regular face-types signifying discrete

and continuous quantities, respectively. Lower case bold letters represent vectors while

lower case regular letters stand for scalars. Further, p(x) represents the probability (density)

distribution (pdf) of x, whereas ℙ(x) represents the probability measure of x.

Let j ∈ [0, J − 1] be an index distinguishing each traffic participant in a traffic

scenario, with j = 0 signifying the ego vehicle, and let k ∈ [0, 1, ...∞[ denote a discrete

time step. Then, ℳ is the set of maneuvers that can be executed by a traffic participant, i.e.

ℳ = [mm]m∈[1,...,M]

with M being the total number of executable maneuvers and m ∈ [1, ...,M] being the asso-

ciated maneuver index. Examples of maneuvers are ‘left lane change’, ‘right lane change’,

‘left turn’, ‘right turn’, and ‘straight’ (maintain lane).

Let D be a set of different driver types that can be associated with a traffic partici-

pant, i.e.

D = [di]i∈[1,...,I]

where I is the total size of the set D and i ∈ [1, ..., I] is the driver type index. Driver

types could for instance be characterized as ‘aggressive driver’, ‘passive driver’, ‘coopera-

tive driver’, etc.

Then, the possible behaviors of a traffic participant can be fully described by the po-

tential maneuvers that it may perform and their associate driver types. For each combination

of a driver type and a maneuver an identified list of parameters Θi,m can be predetermined

44



Figure 4.2: Representation of the behavior set

offline by observations from existing traffic data.

Θi,m = [�1, �2, ...�Lm]

where Lm is the total number of parameters for the mtℎ symbolic maneuver in ℳ. Exam-

ple of maneuver parameters are maneuver length, lateral acceleration, lateral velocity, etc.

These can be collectively represented by a set ℬ which is defined as follows for each traffic

participant:

Let ℬ
j

k
be a random variable representing the set of behaviors with the sample space

consisting of the qb
j

k
elementary elements (Fig. 4.2), where q ∈ [1, ...,M ⋅ I] and k is the

time step. Each elementary element consists of the parameter vector Θi,m. Hence, ℬ
j

k
has

three dimensions: driver types, maneuver types and corresponding parameters. If Lm is

same for all the maneuvers, ℬ could be represented by a 3D array. However, for simplicity,

it is being structured as a set of M ⋅ I vectors as shown in Fig. 4.2. Parameters Θi,m are

arguments for the state trajectories given by

x̂
j

k+1
= f(x

j

k
, b

j

k
, t)Δt + x

j

k
+wk (4.1)
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where Xk =
[
x0
k

x1
k
... xJ−1

k

]T
represent the base (continuous) states for the traffic sce-

nario with x
j

k
representing the base state of the jtℎ traffic participant at ktℎ time step.

Now, the probability distribution of the behavior set for a traffic participant can be

given as:

p(ℬ
j

k
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℙ(1b
j

k
)

.

.

.

ℙ(M ⋅Ib
j

k
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

The future behavior of a traffic participant is then completely described by the cur-

rent associated base states, the maneuver likely to be performed, and the trajectory to be

likely executed based upon the driver characteristics. Hence, the core challenge for risk

analysis based on behavior prediction for a traffic participant consists of two stages, i.e. for

every traffic participant j and driving style i:

1. determine ℙ(qb
j

k
), where q = i + I ⋅ (i − 1).

2. determine the trajectory x̂
j,i

k+1
.

4.4 Probabilistic framework

The solution to the above challenge can be addressed by utilizing a Dynamic Hier-

archical Bayesian Network in the following way. Let x
j

k
= [x

j

k
y
j

k
v
j

x,k
v
j

y,k
 
j

k
]′ represent

the base states for the jtℎ traffic participant at the ktℎ time step, i.e. longitudinal and lateral

positions and velocities as well as the yaw angle. The quantity z
j

k
= [x̃

j

k
ỹ
j

k
ṽ
j

x,k
ṽ
j

y,k
 ̃
j

k
]′

represents the observed states for the jtℎ traffic participant at the ktℎ time step. Note that

measurement intervals need not necessarily coincide with integration steps.
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Figure 4.3: Traffic scenario as an example. S is the subject vehicle being observed, 1 - 6

are the relevant traffic participants for S, with c1 - c6 forming the spatio-temporal relations

for the context

To predict the behavior of the traffic participant, we employ the concept of context,

as motivated by Gindele et al. [36]. The context vector establishes the necessary spatio-

temporal relationships between a subject vehicle and the relevant traffic participants around

it for every traffic participant, i.e. C
j

k
for the jtℎ traffic participant at the ktℎ time step. Fur-

thermore, let G
j

k
be a binary state at time k indicating that the jtℎ traffic participant has

accepted a gap in a traffic scenario for maneuver execution.

Inspired by Gindele et al. [36], we assume certain conditional independence be-

tween quantities. The joint probability density function for the traffic scenario can then be
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decomposed as follows:

ℙ
(
X̂k+1, X̂k, Ck+1,Gk+1,Gk,ℳk+1,ℳk,

Dk+1,Dk,ℬk+1,ℬk, Zk+1

)

= ℙ(X̂k) ℙ(Gk) ℙ(ℳk) ℙ(Dk) ℙ(ℬk)

ℙ(X̂k+1|X̂k,ℬk) ℙ(Ck+1|Xk+1)

ℙ(Gk+1|Gk, Ck+1,Dk) ℙ(ℳk+1|ℳk,Gk+1, Ck+1)

ℙ(ℬk+1|ℳk+1,Dk,ℬk,Gk+1)

ℙ(Zk+1|X̂k+1) ℙ(Zk+1|Dk+1) (4.3)

The application of the introduced abstract framework above to a particular traffic scenario

will be illustrated via the example of multi-lane driving on a highway. The presented frame-

work and its employed terms, however, are of such a generic nature that they can be easily

adapted to other urban as well as highway driving scenarios. For the exemplary applica-

tion, we assume three maneuvers (left lane change, LL, right lane change, LR, and straight

driving, S), two driver types (aggressive, d1, and passive, d2) and a context vector based

upon the relative longitudinal distances shown in Fig. 4.3. Hence, the introduced sets yield

ℳ ∶= [mLL, mLR, mS], D ∶= [d1, d2]

C
j

k
∶= [c

j

1
c
j

2
c
j

3
c
j

4
c
j

5
c
j

6
]

with the sets ℬ
j

k
each containing 6 behaviors (M = 3, I = 2). Further exemplary imple-

mentations of the employed terms in the framework are detailed in the following explanatory

sections:

Motion prediction, p(X̂k+1|X̂k,ℬk): The predicted motion of a traffic participant
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depends on its current states, the driver type, and the maneuver that the driver intends to per-

form. The driver type combined with the intended maneuver determine the corresponding

parameters for the trajectory generation of the participant as contained in the behavior set

B
j

k
. The identified trajectory can be used as the underlying motion model for propagating

the states of every traffic participant.

Context, p(Ck+1|X̂k+1): The context experienced by each traffic participant aids

in establishing the local traffic situation. In its simplest case, it can be derived directly

from the base states by creating a vector reflection the spatio-temporal relations to the

neighboring/near-by other traffic participants, for instance distances, velocity differences,

etc. Although the context in our example below arises from a linear combination of dis-

tances, it can be also include velocity or to any general state relationship that can aid in

predicting a driver’s intent, without the loss of generality of the probabilistic framework.

Since we assume our base states to be Gaussian perturbed, our context vector represents a

mixture of Gaussian terms.

Gap acceptance policy, p(Gk+1|Gk, Ck+1,Dk): Given the current context around a

vehicle, the decision for gap acceptance varies with the driver. In addition to the condition-

ing on context and driver, we also include a dependence of gap acceptance on the decision

in the previous step to include memory. In an exemplary realization, the gap acceptance pdf

could be defined as

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
) =

⎡
⎢⎢⎣
ℙ(G

j

k+1
= 0 | Gj

k
, C

j

k+1
,D

j

k
)

ℙ(G
j

k+1
= 1 | Gj

k
, C

j

k+1
,D

j

k
)

⎤
⎥⎥⎦

(4.4)

where G
j

k
= 0 denotes gap rejection for participant j while G

j

k
= 1 stands for gap accep-
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tance. The terms on the right hand side of Eq. (4.4) can be further augmented as

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
)

∝
[
ℙ(D

j

k
= d1) ⋅ p

(
G
j

k+1
|Gj

k
, C

j

k+1
,D

j

k
= d1

)

+ℙ(D
j

k
= d2) ⋅ p

(
G
j

k+1
|Gj

k
, C

j

k+1
,D

j

k
= d2

)]
(4.5)

The first conditional probability on the right hand side of Eq. (8.7) can be expanded as

p
(
G
j

k+1
|Gj

k
, C

j

k+1
,D

j

k
= d1) =

⎡
⎢⎢⎣
1 − gag(C

j

k+1
)

gag(C
j

k+1
)

⎤
⎥⎥⎦

(4.6)

where gag(⋅) is a gap function associated with an aggressive driver. Here, the context for

the specific traffic participant is accepted as an input, returning an associated probability of

gap acceptance. This could, for instance, be realized via a step function, i.e.

gag(C
j

k+1
) =

⎧
⎪⎨⎪⎩

0 (c1 + c2) < �ag ∧ (c5 + c6) < �ag

1 otherwise

(4.7)

Here, �ag is a distance threshold for an aggressive driver for gap acceptance. To allow for a

more gradual decision transition, a logistic function could be utilized alternatively, yielding

gag(C
j

k+1
) =

1

1 + e−� (gap−�ag)

with � being a tuning factor and with gap being a placeholder for any of the relevant ob-

served gaps. The second conditional probability on the right hand side of Eq. (4.5) can be

treated in a similar fashion by using the corresponding gap functions for a passive driver.

It should be noted that these are only exemplary realization of the introduced gap func-
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tions only utilizing distance relations in the context. A more sophisticated gap processing

based upon relative velocities (or other relations) could certainly be employed without loss

of generality. The context vector would require modifications according to this case.

Maneuver policy, p(ℳk+1|ℳk,Gk+1, Ck+1): The maneuver policy can formally be

expanded similar to the gap acceptance policy, i.e.

p
(
ℳ

j

k+1
|ℳj

k
,G

j

k+1
, C

j

k+1

)

∝
[
ℙ(G

j

k+1
= 0) ⋅ p

(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 0

)

+ℙ(G
j

k+1
= 1) ⋅ p

(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 1

)]
(4.8)

with G
j

k+1
= 0 signifying that the driver did not accept the gap. Here, no maneuver other

than a nominal driving maneuver (for instance defined as straight) will be executed, irre-

spective of the driver type. Hence, the conditional probability for this case in Eq. (4.8)

reduces to

p
(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 0

)
=

⎡⎢⎢⎢⎢⎢⎣

ℙ(mLL)

ℙ(mLR)

ℙ(mS)

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎥⎥⎦

Similarly, the gap acceptance term in Eq. (4.8) can be realized as

p
(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 1

)
=

⎡
⎢⎢⎢⎢⎢⎣

fLL(C
j

k+1
)

fLR(C
j

k+1
)

0

⎤
⎥⎥⎥⎥⎥⎦

where f(.)(⋅) is a maneuver function establishing a relationship between the context and the

left and right lane maneuver, respectively. A simple exemplary implementation of such a
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function yields

fLL(Ck+1) =
c1 + c2

(c1 + c2) + (c5 + c6)
(4.9)

For countries with asymmetric lane changes, another parameter could be included in the

maneuver function reflecting different weights for left and right. To ensure that the model

does not switch instantaneously from one maneuver to another during execution, a history

factor can be included into the determination of the maneuver policy via weights given as

w1 = 1 − �e−�Δt

w2 = �e−�Δt
(4.10)

where � and � are the tuning parameters, and Δt is the sampling interval. The maneuver

policy now takes the weighted average of past decisions into account, i.e.

p
(
ℳk+1| ℳj

k
, C

j

k+1
,G

j

k+1

)

∝ w1

⎡⎢⎢⎢⎢⎢⎣

ℙ(mLL(k+1)|...)
ℙ(mRL(k+1)|...)
ℙ(mS(k+1)|...)

⎤⎥⎥⎥⎥⎥⎦

+w2

⎡⎢⎢⎢⎢⎢⎣

ℙ(mLL(k)|...)
ℙ(mRL(k)|...)
ℙ(mS(k)|...)

⎤⎥⎥⎥⎥⎥⎦

(4.11)

As the framework already factors the driver influence into the gap acceptance policy, the

maneuver policy does not depend on the driver directly. Yet, this does not prohibit the

consideration of the driver’s influence in a maneuver decision explicitly if such an extension

of the policy is desired in the future.

Behavior, p(ℬk+1|ℳk+1,Dk,ℬk): As we assume that the maneuver and driver

types can evolve independently for a specific traffic participant, they are addressed sepa-

rately instead of jointly in the behavior space. This allows for considering their probability
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transitions separately in update and propagation, yielding

ℙ(qb
j

k+1
) =

ℙ(id
j

k
) ⋅ ℙ(mm

j

k+1
)

∑M ⋅I

q=1
ℙ(id

j

k
) ⋅ ℙ(mm

j

k+1
)

(4.12)

where i = (q mod I +1) indicates the driver index and m =
⌈
q

I

⌉
the maneuver index in the

set ℬ
j

k+1
.

Likelihood, p(Zk+1|X̂k+1): For instance, standard Kalman Filter update expressions

can be utilized to update the estimates once the measurements are available. However, any

other sophisticated update relation is possible.

Driver policy update, p(Zk+1|Dk+1): In [34], we have presented an approach for

maneuver identification of a traffic participant using Multiple Model Adaptive Estimation

(MMAE). A bank of Extended Kalman Filters (EKFs) has been employed in a classic

MMAE configuration to differentiate between left lane change, right lane change, and straight

maneuver. The very same approach can be directly adapted for utilization in the framework

of this study. For every traffic participant, a bank of M ⋅ I EKFs can be employed in ei-

ther the classic MMAE or the Interactive Multiple Model (IMM) filter setting to propagate

trajectories and to estimate the likelihood of a particular behavior. The probabilistic driver

type itself is a parameter in the propagation in between measurement intervals. It will be

updated based upon the likelihood of the measurements for the employed behavior in the

individual single model filters. The driver model probability then yields

ℙ(d1) =
ℙ(1b

j

k
) + ℙ(3b

j

k
) + ℙ(5b

j

k
)

∑M ⋅I

q=1
ℙ(qb

j

k
)

(4.13)
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4.5 Filter equation

The entire filter equation for the presented approach becomes:

ℙ(X̂k+1, Ck+1|Zk+1)

= ℙ(Zk+1|X̂k+1)ℙ(Zk+1|Dk+1)∫
Gk,ℳk,Dk,ℬk

ℙ(X̂k+1, Ck+1,Gk+1,ℳk+1,Dk+1

,ℬk+1|Gk,ℳk,Dk,ℬk, X̂k)ℙ(Gk,ℳk,Dk,ℬk, X̂k) (4.14)

While various approaches based on Monte Carlo simulation can be employed for inference,

their limitation however is that the resulting posterior for the states is not Gaussian. Our

approach with Multi Model Adaptive Estimation results in a posterior that is approximated

with a mixture of Gaussians and hence, can be represented with only two parameters - the

mean and the variance.

If we fit this Bayesian structure to the system architecture shown in Figure 4.1, the

probability density function (pdf) of the prior positions, p(X̂k), is provided collectively

by the perception and the localization modules. The scene identification sub-module in

this block uses the available digital maps and/or the prior information to identify the traffic

scene. The situation classification then utilizes this information for the derivation of the con-

text information using helper functions (for details about helper functions refer to [36, 10])

and in turn employs the context, p(Ck+1|Xk+1), to classify the situation. Based on the traf-

fic policies defined within it, the trajectory prediction sub-module, supplies the conditional

pdf of the gap acceptance, p(Gk+1|Gk, Ck+1,Dk), maneuver intent, p(ℳk+1|ℳk,Gk+1, Ck+1),

and the possible behaviors for each traffic participant, p(ℬk+1|ℳk+1,Dk,ℬk). It then iden-

tifies likely trajectories to be executed in order to realize the behaviors, p(X̂k+1|X̂k,ℬk).

The risk evaluation sub-module then incorporates these predicted trajectories for all traffic

participants to predict possible risks as per the identified metrics.
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4.6 Conclusion

When sharing a traffic environment with human drivers, autonomous vehicles must

incorporate driving style identification for traffic participant similar to human performance.

Differentiating between aggressive, passive, cooperative drivers, for instance, aids in pre-

dicting the behavior of other traffic participants for a longer time horizon, and supports the

planning and decision making for autonomous cars. In this chapter, a probabilistic frame-

work incorporating driving style characterization for an observed traffic participant is pre-

sented. The framework takes four stages into account usually observed in human maneuver

performance: intent determination, maneuver preparation, gap acceptance, and maneuver

execution. In addition to constructing an abstract framework, this study includes basic sug-

gestions for implementation of intent determination, gap acceptance and maneuver execu-

tion stages. Yet, the modularity of the framework allows for an effortless expandability.

The remaining chapters will focus on implementing this framework using Multiple Model

Adaptive Estimation based approaches.
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Chapter 5

Maneuver Identification and Prediction

for Traffic Participants

Previous chapter described an approach to model the traffic participants using a Dy-

namic Hierarchical Bayesian Network. This chapter seeks to address one of the key chal-

lenges to build the framework: identifying an approach to infer the higher level behaviors

from the available low level measurements from the traffic participant. It summarizes a

Multiple Model Adaptive Estimation (MMAE) based approach called Autonomous Mul-

tiple Model (AMM) filtering and presents the results of process and measurement noise

analysis on inferring the behaviors from the observations. Since only one behavior for a

maneuver is considered in this evaluation, this chapter uses the terms behavior and maneu-

vers interchangeably.
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5.1 Maneuver identification model

5.1.1 Autonomous Multiple Model estimation approach

The presence of both discrete as well as continuous states in the autonomous ve-

hicle framework described above yields a hybrid system. MMAE methods are a popular

technique to cope with hybrid state estimation. For a comprehensive review of MMAE

based approaches, the reader is referred to[49, 24]. Here, MMAE is also categorized into 3

generations: the Autonomous Multiple Model (AMM, also called as the classic MMAE in

literature), the Interacting Multiple Model (IMM) approach, and variable structure MMAE

. The IMM technique is adopted the most [49] for a variety of applications and as it exhibits

a simpler design in comparison to variable structure approaches. Both AMM and IMM em-

ploy a bank of Kalman filters, each reflecting a different motion and/or measurement model.

Then, a combined state estimate is calculated as a weighted sum of every individual filter

result. IMM estimation, however, includes an additional stage called interaction in which

the most recent estimates from all individual filters are mixed according to their predicted

probabilities and then set as initial values for the next cycle. It is this interaction stage that

renders the execution of IMM filter banks dependent on each other in between every cycle.

As a result, the models in IMM can only run in parallel within a prediction step, but not

across multiple prediction cycles. This is in contrast to AMM where all single model filters

run independent across all cycles. This enables the full utilization of recent advances in

parallel computing technology.

One recent study by Xie et al. also utilizes a multi model approach for prediction.

Here, the authors employ an IMM to differentiate between long and near term trajectory

prediction for the same maneuver. Our study differs in two ways: first, we employ the

Autonomous Multiple Model approach (AMM), also called as a classic MMAE [25], for

trajectory prediction; second, each single-model filter corresponds to a different maneuver.
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With the recent advances in computing and sensor technologies, and due to a different set

of requirements for prediction applications in comparison to tracking applications, a careful

re-evaluation of MMAE is necessary. For the scope of this study, the MMAE approach is

applied to only one observed vehicle. Expanding to multiple vehicle will be addressed in

future work. Classic MMAE, or AMM, consists of three stages [24]:

1. Model specific filtering: The expressions for prediction and update for each single-

model filter resemble the ones employed in the Extended Kalman filter (EKF) [24].

Different model assumptions for each filter will be discussed in the next section.

2. Model probability update: This stage computes the likelihood of the measurements

for every single-model filter estimate, and subsequently determines the associated

weights for each filter. For M filters, the initial weight for every filter is uniform

distributed, i.e. w
q

0
= 1∕M for q = 1, 2, ... M. The update relations then yield

w
q

k
= w

q

k−1
p(zk|x−q

k
) (5.1)

w
q

k
←

w
q

k∑M

q=1
w
q

k

(5.2)
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k
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q

k
(5.4)

3. Combination: The estimates and covariances from all single-model filters are fused

utilizing their associated weights to provide a combined estimate, i.e.
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The AMM process is shown in Fig. 5.1, which is inspired from [25]. In the figure,

e
−q

k
is the vector of measurement residuals, zk is the measurement vector and x̂

+q

k
is the

estimated state vector for the qtℎ elemental filter, where q ∈ [1,M.I].

Figure 5.1: Autonomous Multiple Model filter block diagram

5.1.2 Motion models and measurement model

In the presented study, MMAE is applied to distinguish three maneuvers: straight

motion, left lane change and right lane change. Straight motion assumes a constant velocity

model (section 3.1.1) whereas the lane changes are modeled as sinusoidal trajectories with

the maneuver initiation point and maneuver length as parameters (as per section 3.1.5.1).

A bank of three filters runs in parallel: one linear Kalman filter for straight motion and two

EKFs for lane changes. The states of a traffic participant are represented by x = [x, vx, y, vy]
′

with x and y being the longitudinal and lateral position of the vehicle in the road coordinate

frame, and vx and vy being the respective velocities.

59



Model equations for straight motion: For the straight motion, the discrete-time state

transition for a single step k + 1 with sampling time Ts results as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk+1

vx(k+1)

yk+1

vy(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 T s 0 0

0 1 0 0

0 0 1 T s

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xk

vx(k)

yk

vy(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.7)

Model equations for lane change maneuvers: For a right lane change with the lane

widthwL, length of the maneuver L and longitudinal distance of the vehicle from the start-

ing point of the maneuver Δx (Fig. 5.2), the employed sinusoidal motion yields

y (Δx) =
wL

2
cos

(
�

L
Δx

)
(5.8)

Figure 5.2: Sinusoidal lane change parameters

For simplicity, we assume that the vehicle starts one particular maneuver with a

constant velocity at the initial position. The discrete-time equations of motion can then be
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approximated as

xk+1 = xk + vxkTs (5.9)

vx(k+1) = vxk (5.10)

yk+1 = yk + vykTs (5.11)

vy(k+1) = −
wL�vx

2L
sin

(
�

L
xk+1

)
. (5.12)

The Jacobian matrix for the right lane change then yields

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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0 1 0 0

0 0 1 T s

−
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2
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cos
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L
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)
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

Consequently, the equations for the left lane change can be described by a phase shifted

right lane maneuver

y (Δx) =
wL

2
cos

(
�

L
Δx − �

)
. (5.14)

Measurement model: Assuming a hybrid sensor fusion architecture[54], the measurement

model is chosen as linear, with vehicle positions directly observable, i.e.

⎡
⎢⎢⎣
zx
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⎤
⎥⎥⎦
=
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(5.15)
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5.2 Vehicle dynamics model

A single track nonlinear vehicle dynamics model is employed to evaluate the behav-

ior identification model. This model approximates the vehicle loads by considering only a

lumped front and rear axle, ignoring roll and pitch motions. The resulting two translational

and one rotational degree of freedoms are given by

v̇x − vy ̇ =
1

m

(
Fx,fcos(�) + Fx,r − Fy,fsin(�)

)
=
FX

m
(5.16)

v̇y + vx ̇ =
1

m

(
Fy,fcos(�) + Fy,r − Fx,fsin(�)

)
=
FY

m
(5.17)

Izz ̈ = (lfFy,fcos(�) − lrFy,r + Fx,fsin(�) =Mz (5.18)

where m is the mass of the vehicle, vx and vy are the longitudinal and lateral velocities,  

is the yaw, and � the steering angle of the vehicle. Fx,i and Fy,i, with i = [f, r], are the net

longitudinal and lateral forces acting on the front and rear axle whereas lf and lr correspond

to the distances of the axles from the center of gravity, and Iz is the vehicle inertia. For more

details on the parameter values selected, the reader is referred to [18]. Measurements fed to

the behavior model were synthetically generated by adding delta-correlated (white) noise

to the values resulting from the vehicle model.

5.3 Tuning and evaluation of the behavior identification

model

The simulation part of this study consists of two stages. At first, different cases of

process and measurement noises are considered, for the ground truth generated from the

motion models, to understand the variations that the approach can tolerate (Table 5.1) and
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to support filter tuning. Next, the approach is evaluated with the single track vehicle model.

Disturbances were modeled as additive white noise.

5.3.1 Process and measurement noise analysis

In this stage of simulations, the measurements were generated from the respective

motion model of the maneuver. The initial conditions for both measurements and filter

models were set identical to x = 0 m, y = 0 m, vx = 10 m/s, vy = 0 m/s with initial

covariances of P0 = 0.0025, thus, high confidence in the initial estimates. The maneuver

Figure 5.3: Right lane change weights for case 1
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Figure 5.4: Straight maneuver weights for case 1

lengths for left and right lane changes were configured to 60 m with a maneuver execution

duration of about 6 seconds. The times at which the weights cross 90% and remain above

are captured as detection times.

Non surprisingly, a noisy process increases maneuver detection times (see Table 5.1).

Figures 5.3 and 5.4 depict the weight evolution for right lane change (LC) and straight mo-

tion of case. For all other cases, some switching behavior between LC and straight maneu-

vers can be observed before detection (Figure 5.5 for case 3) which is discussed below. The

right LC version of cases 4 and 5 demonstrates continued switching in detection without
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Figure 5.5: Right lane change weights for case 3

convergence and has been represented as ’inf’ in table 5.1. For any given process noise,

increasing the measurement noise level showed marginal effect on detection times despite

adding fluctuations in the probabilistic weights. Interestingly, there is an asymmetry in the

detection times for left and right LC. The cause for this is yet to be investigated. These re-

sults are obtained under the assumption that the initial states of the observed vehicle match

the initial conditions of the filter banks. For the kinematic states, this is a valid assump-

tion. However, if the motion model includes maneuver specific states that have significant

uncertainty at the initiation of maneuver this is a strong assumption. An example of this is
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Table 5.1: Results of varying the process and measurement noise for MMAE

Maneuver detection time (s)

Case No Q(diagonal) R(diagonal) Straight
Left

lane change

Right

lane change

1 0.001 0.0025 0.7 0.7 0.5

2 0.01 0.0025 1 1.3 2.3

3 0.025 0.0025 1.3 1.5 3.8

4 0.05 0.0025 1.7 1.7 inf

5 0.1 0.0025 2.2 3.6 inf

6 0.025 0.025 1.6 1.6 4.2

7 0.025 0.25 1.6 1.6 inf

maneuver length for a lane change, which becomes more apparent as the participant pro-

gresses into the maneuver. In such cases, the initial covariances might need to modified a

relatively higher setting, signifying a lower confidence in the initial estimate. This will be

discussed in the next chapter.

5.3.2 Evaluation with the single track vehicle model

Figure 5.6: Evaluation of the maneuver identification model with a bicycle model

In the second simulation stage, the MMAE behavior model is evaluated using the

single track model with vehicle parameters from [18]. Fig. 5.6 summarizes the evaluation
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process. The straight maneuver is created by maintaining a zero steering wheel angle for

the vehicle model whereas the left and right lane change maneuvers result from a sinusoidal

input to the steering wheel of 10 second period length, therefore leading to a 60 meter ma-

neuver. Measurements were generated by adding Gaussian noise with parameters described

in table 5.2. The individual filters in the MMAE behavior model assume a fixed length of

60 meters for left and right lane change.

The detection times for all maneuvers under different process and noise parameters

are summarized in table 5.2. For cases 1 and 2, the model tends to switch between the re-

spective lane change and a straight maneuver for the first few seconds before convergence.

A likely explanation for these result is the intitial delay between a sinusoidal steering wheel

input and the (non-sinusoidal) path followed by the vehicle at first. As a result, the inno-

vation equations of the lane change maneuver and the straight maneuver initially compete

with each other reflected in the switching mode. However, this can be addressed by includ-

ing this discrepancy in the process noise. Figures 5.7 and 5.8 depict the results for case

6. Even though the detection times in this case is slightly increased, the weight transients

follow a gradual and unambiguous trend after divergence from the initial condition. Under

straight driving conditions, as the weights for left and right lane change maneuver are iden-

tical and cancel in the combined estimate, a consistent net straight maneuver identification

throughout the entire simulation interval can be observed. Under the right lane change, after

diverging from the initial conditions, the weights for the right as well as the straight maneu-

vers rise together for some time, before the right starts dominating. The resulting combined

estimate leads to a net right maneuver identification after 1 second into the maneuver execu-

tion, making this case superior to the other cases. Realistic process noise should associate

modeling errors primarily with velocities as they vary between different driver. Reflecting

this expectation by attributing more process noise to velocities instead of positions yields

even improved results as shown for cases 8 and 9.
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Figure 5.7: Straight maneuver detection when Q=0.1 and R=0.0025 with vehicle model

Note that there is an unusual sensitivity associated with the proper selection of initial

covariance parameters for the employed individual filters. There is not too much emphasis

in literature on the initial state estimate and associated covariance for the Kalman filter due

to its rather quick convergence property. The distinguishing feature in the presented appli-

cation, however, is the utilization of the elementary filters for classification of maneuvers.

In general, two or more elementary filters in MMAE can have equally high confidence in

their estimate (reflected by small estimation error covariances) despite employing two fun-

damentally different underlying system models. This can be observed if uncertainty in the
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Figure 5.8: Right lane change detection when Q=0.1 and R=0.0025 with vehicle model

models is high while measurement noise is very low. Here, both filters would rely heavily

on measurements. For the estimate itself, it is without consequence what the associated

weights are as long as the resulting state estimate is optimal. There is a fundamentally dif-

ferent perspective, however, if the application goal consists of the inference of a correct

model from a selection. Therefore, very careful tuning of the involved error statistics is
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Table 5.2: Results of varying the process and measurement noise when evaluating with

vehicle model
Maneuver detection time (s)

Case No Q(diagonal) R(diagonal) Straight
Left

lane change

Right

lane change

1 0.001 0.0025 0.6 3.1 3.1

2 0.005 0.0025 0.9 2.8 2.8

3 0.01 0.0025 1.1 2.9 2.9

4 0.025 0.0025 1.9 1.3 1.3

5 0.05 0.0025 1.8 3.5 3.5

6 0.1 0.0025 2.4 4.3 4.3

7 [0.025 1 0.025 1] 0.0025 1.9 1.7 1.7

8 [0.01 1 0.01 1] 0.0025 1.39 2.4 2.4

necessary. A similar problem occurs at the beginning of the classification if the filters are

initialized with a too large (individual) covariances: sudden model association switching

can be observed during the early stages of the estimation when the transients in filter con-

vergence are still significant. We have analyzed these issues extensively, and the findings

will be subject of a future publication.

5.4 Conclusion

The challenge in complex traffic environments exists primarily due to the uncertainty

in the maneuvers drivers may execute. A novel approach for identifying and predicting these

maneuvers using an AMM is exemplary demonstrated for integration into the proposed ar-

chitecture. Furthermore, detailed results of filter tuning and its evaluation with a single

track vehicle model are discussed. As there is a significant variability in the way drivers

execute the maneuvers, a popular approach is to lump these effects into process noise. Yet,

literature provides very little analysis of the effect of process and measurement noise se-

lection when applying MMAE for classification instead of tracking. The presented results
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therefore include a detailed analysis of noise parameter effects on the performance of the

maneuver identification model. From the results, it can be concluded that the measurement

noise has relatively less impact on the classification performance, the main impact is due

to process noise. Hence, selecting the right motion model is undoubtedly the key in getting

the most optimal performance. Further, it was observed that the filter is sensitive to proper

initial state estimate covariance. An initial estimate with high covariance estimate affects

the convergence performance of the filter. Hence, it is best to base the initial estimates from

a filter rather than raw measurements.

71



Chapter 6

Behavior Identification in Prolonged

Observations using AMM

In the previous chapter, an Autonomous Multiple Model (AMM) filter was evalu-

ated for the effect of process and measurement noise employing only a single maneuver,

with the assumption that it was synchronized right when the observed traffic participant

initiated the maneuver. In practice however, observations will span across multiple maneu-

vers with the uncertainty associated with the initial maneuver conditions of the observed

vehicle. The challenge addressed in this chapter is to enable inference using an AMM for a

prolonged observation interval so that transitions in the behavior of the traffic participants

can be captured.

6.1 Motion model for lane change

In the previous chapter, we evaluated an AMM based behavior identification model

running three different elemental filter motion models, each corresponding to a maneu-

ver. The motion model corresponding to straight behavior constituted of Constant Velocity,
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whereas the ones corresponding to left and right lane changes were based upon sinusoidal

wave geometry with the maneuver length (L) assumed as a parameter. Hence, the states

assumed were
[
x vx y vy

]′
. We defined the length of the maneuver as the longitudinal

distance when starting from the origin lane and ending at the center of the target lane. This

assumption aided in evaluating the filter parameters and understanding the intuition of filter

tuning. For prolonged observation however, more information is required by the filters to

identify the behavior correctly in the form of the maneuver initiation point (xmip). xmip is

defined as the longitudinal position at which the traffic participant has accepted the gap and

initiated the maneuver, as shown in Fig. 6.1. This was implicitly assumed as xmip = 0 in the

previous chapter. For prolonged observations however, information about both xmip and L

have to be obtained at run-time. In this section, two approaches are explored for achieving

this requirement. In the first approach, xmip is assumed as a parameter and L is modeled as

a state. In the second approach, xmip is modeled as a state in the motion model while L is

assumed as a parameter. The following subsections describe the results of the approaches

in detail.

Figure 6.1: Exemplary scenario for behavior identification
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6.1.1 Maneuver initiation point assumed as a parameter and maneu-

ver length as a state

Figure 6.2: Evolution of estimated maneuver length (green) with P0 = 100

The premise for this approach is the idea that if the maneuver initiation point can

be obtained through a separate means (such as a curve fit, or lateral lane measurements),

the maneuver length can be estimated online. Here, three motion models were considered,

Constant Velocity for straight motion and sinusoidal waveforms for each of the left and right

lane changes. The states for the lane change motion models were subsequently augmented

as:

x =
[
x vx y vy L

]′
(6.1)

with motion equations as described in section 3.1.5.2.

In this case, initial values of the states x, vx, y, and vy for the filter can be obtained

from sensor measurements or from a tracking filter at a lower hierarchical level in the archi-
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Figure 6.3: Evolution of estimated maneuver length (green) with P0 = 2500

tecture, with high level of initial confidence (i.e., very low initial estimate covariances P).

However, L cannot be measured directly and will have an uncertainty associated with it at

the beginning of the maneuver as to the kind of maneuver that will be executed. Hence it

has to be initiated with a nominal value of L, and with high initial covariance (P0). If initial

covariance of L is set to a very low value, then it takes longer for the filter to converge to an

approximate maneuver length. In Fig. 6.2, the measurements were generated with a maneu-

ver length of 100 m, and the EKF initial state estimate was set to 150 m, with a covariance

of 100 m2, i.e. a standard deviation of 10 m. The convergence time for the maneuver length

estimate to settle within 5% band (less than 105 m) was 10.7 secs. With 2500 m2 (50 m

standard deviation) initial covariance for the initial value of L = 150 m and process noise

of Q = 10, it took less than 5 secs (Fig. 6.3).

For the initial length of the maneuver set as 100 m, process noise Q = 0.0025 and

measurement noiseR = 0.0025, P0 = diag
([

100 100 100 100 1e5

])
and an executed
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Figure 6.4: Probabilistic weights for maneuvers with AMM estimating maneuver length L

maneuver length of 60 m for a right lane change, the probabilistic weights of the AMM were

as shown in Fig. 6.4. The evolution of the estimate of the maneuver length for the elemental

filter running the right lane change motion model was as shown in Fig. 6.5, converging rather

quickly. Not surprisingly, the evolution of the estimated L for the elemental filter running

the left lane change model deviates largely from the ground truth as shown in Fig. 6.6.

Hence, one needs to be careful when combining the estimates as per the filter weights and

should rather not be included in the combined estimates. Since the weights of the left filter

fall to zero within a second, the influence of the maneuver length is only there at the initial

stages of the maneuver.
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Figure 6.5: Evolution of estimated maneuver length for right lane change elemental filter

Figure 6.6: Evolution of estimated maneuver length for left lane change elemental filter
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6.1.2 Maneuver initiation point as a state and maneuver length as a

parameter

The premise for this approach is the idea that if the right set of candidate lane change

behaviors, each with a different maneuver length, is assumed then it is possible to approx-

imate the maneuver initiation point. Again, three elemental filters were considered for this

case. First filter employed a constant longitudinal velocity and zero lateral velocity mo-

tion model for the straight maneuver, the other two filters employed sinusoidal waveforms

motion model with the states augmented as:

x =
[
x vx y vy xmip

]′
(6.2)

where xmip is the longitudinal position of the vehicle when the maneuver was initiated. The

motion equations are as described in section 3.1.5.3. From the simulated experiments, it

was learnt that the initial covariance of the xmip should be kept high (i.e. low confidence

in the initial estimate) when the filter is initialized since there is an uncertainty even in the

initial estimate of the maneuver initiation point. Fig. 6.7 shows the trajectory of xmip for the

initial covariance of 200 in the exemplary use case. It was also found that as long as the

filter is initialized even as the traffic participant is performing the maneuver, it converges

quickly. If the filter stays in the straight maneuver for too long however, there is a delay in

convergence due to the inertia of the Kalman Filter. Hence, if the straight maneuver has

continued beyond a certain time, the filter needs to be reset.

To evaluate this model, the vehicle has to be observed for a while before it initiates

the maneuver. Hence, measurements were generated from a synthetic ground truth for a

simulated scenario as shown in Fig. 6.8. In the scenario, the vehicle travels straight with a

constant velocity of 10 m/s for 10 seconds, and then performs a left lane change maneuver
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Figure 6.7: Evolution of estimated maneuver initiation point (green)

of 50 m, and then drives away from the scene at a constant velocity of 10 m/s.

From the model probability update equations of the AMM, Eqn. (5.1), it can be

seen that the pre-normalized weights are calculated by multiplying the likelihood in the

current time step of filtering with the normalized weights from the last time step. As can

be seen from the probabilistic weights in Fig. 6.9, the likelihood drops instantaneously for

the straight maneuver upon initiation of the lane change . Thereafter, it fluctuates a little

and then bottoms out because the sine wave is almost linear in the middle. Finally, it rises

towards the end of the left lane change maneuver.

The likelihood for the left lane change keeps spiking periodically (every 6 seconds)

while the motion is straight. At these instants the corresponding motion model is almost

linear in the longitudinal direction. Same can be concluded for the right lane change likeli-

hoods. Based on the simulations, it was observed that employing asymmetric motion mod-
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Figure 6.8: Simulated ground truth for the left lane change scenario

Figure 6.9: Maneuver likelihoods under no measurement noise for the lane change scenario
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Figure 6.10: Pre-normalized weights of the elemental filters for the scenario

els (which have dissimilar lateral and longitudinal models) for the straight maneuver gave

better results. CA or CV could be used for longitudinal motion, but for lateral, stationary

(i.e zero velocity) motion model was superior.

As can be seen from Fig. 6.10, prenormalized weights (which are a product of

weights from the last cycle and the likelihood) for the lane change behaviors do not rise

once the lane change is initiated (i.e. between 10 and 15 seconds of the simulation time).

This is because the weights from the last cycle were 0 and hence zero out, not reflecting

the right history representation. This uncovers a limitation of AMM in switching from one

mode to another. To handle this situation, AMM needs to be reset using an external logic. A

possible option is to reinitialize it as soon as the likelihood for the straight maneuver drops.

Owing to noisy measurements, the likelihood may also have fluctuations and will have to
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be smoothed (filtered) to detect a deviation from an expected trend. This will be discussed

in the next section.

6.2 Smoothing the likelihood of the default behavior

Figure 6.11: Block diagram for a cascaded moving average filter

Figure 6.12: Filtering the likelihood of the straight behavior
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For smoothing the likelihood, it was determined that a cascaded moving average

filter was more effective at smoothing than a single moving average filter. Fig. 6.11, shows

the block diagram depicting how single moving average filter (N = 5) and a cascaded mov-

ing average filtering (N1 = 5, and N2 = 10) can be utilized for resetting the AMM after

smoothing. It should be noted that smoother output could also be obtained from a single

filter by increasing the average window(for eg. N = 50), however, this introduces heavy

lag in the filter output and a delayed detection of the behavior compared to the cascaded

moving average filter. Applying a comparator on the unfiltered likelihood signal leads to

undesired switching. A smoothed likelihood from the cascaded filter on the other hand, can

help identify the deviation of likelihoods sooner, and can potentially have an earlier detec-

tion even though the signal is delayed (Fig. 6.12). The next section will show the results of

implementing this reset logic circuit with the AMM.

6.3 AMM with reinitialization logic

To ensure the filter weights are switched in time with the performed behaviors, the

filters have to be reset at the right time and not too late from the point when the likelihood of

the default behavior (straight) reduces. Delays in this reset add to the cumulative delays in

the behavior identification, which means the threshold for the increasing likelihood becomes

a tuning factor. If not tuned properly, the likelihood of the straight maneuver doesn’t rise

from zero. The cascaded moving average approach applied above can also be extended

to the weighted recency averaging, which uses the divergence ratio to identify a change

in the likelihood. This is a popular approach in the robotic Simultaneous Localization And

Mapping (SLAM) to identify an update in the robot’s environment or to identify a kidnapped

robot situation [61, 65]. Even in this case however, a threshold needs to be identified for the

divergence ratio.
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Figure 6.13: Tracking performance of the AMM with the reset logic

Figure 6.13 shows the results of the AMM filter reset logic. It should be noted

that the AMM needs a reset at two points, once when the traffic participant exits from the

default behavior, and another when it returns to the default behavior. The lower plot shows

the times at which the reset pulse was enabled for reinitializing the filter weights as well as

the initial states appropriately. It also illustrates how the cascaded moving average as well as
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Figure 6.14: AMM behavior weights with the reset logic

the single moving average filter evolve over the time. The plot on the top shows the results

of the combined estimates that the filter is following against the ground truth. The delay in

the reset as well as in detection is observed for both when the behavior is initiated and after

it is completed. After initiation of the maneuver, the reset pulse activates with a delay of 1
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Figure 6.15: Evolution of estimates showing the correction in Xmip due to reset pulses

second. The lane change maneuver is detected 0.7 seconds later, resulting in a cumulative

detection time of 1.7 seconds. After the maneuver is completed, another reset pulse is

activated with a delay of 1.1 seconds, the straight maneuver is detected 0.2 seconds later,

leading to a cumulative detection time of 1.3 seconds. As a result of these detection delays,

the filter’s trajectories diverge slightly from the ground truth at the maneuver initiation and

completion instants. The root mean squared error (RMSE) of the filter’s estimated position

with the ground truth are 0.0778 m for x-position and 0.0735 for the y-position. Fig. 6.14

shows the behavior weights of the AMM plotted against the time. As can be seen, the

model correctly identifies the left lane change behavior. Fig. 6.15 shows the trajectories of

the combined estimates of the filter. It can be seen that the reset pulses help correct the
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maneuver initiation point (Xmip) estimates.

6.4 Conclusion

In this chapter, two approaches for modeling the lane change behaviors in prolonged

observations were suggested and evaluated. The first approach modeled the maneuver initi-

ation point as a parameter and the maneuver length as a state. The second approach consid-

ered the maneuver initiation point as a state, while keeping maneuver length as a parameter.

By carefully selecting the appropriate set of lane change behaviors (each with a different ma-

neuver length as a parameter), a close approximation for the maneuver initiation point can

be determined at run time. The latter approach saves the additional computation and com-

plexity involved when alternatively employing external means for identifying the maneuver

initiation point such as curve fit. After exploring both approaches, it was also discovered

that AMMs have an inherent limitation in their weight update equations, such that the sys-

tem may not transition from one mode to another, and subsequently requires an external

reset. An approach for resetting the AMM utilizing changes in the likelihood of the default

behavior has been presented and applied to the use case. Two limitations were observed in

this approach: first, the thresholds for the likelihoods have to be determined and may vary

depending on the operating conditions (determined heuristically in this study); second, the

reset logic has its own inherent delay, which adds to the lag in the detection of the behavior.

To address these limitations, techniques like Interacting Multiple Model filter (as they have

re-initialization inherently incorporated) should be explored.
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Chapter 7

Behavior Identification using IMM

In this chapter, Interacting Multiple Model (IMM) filters will be analyzed and em-

ployed for behavior identification of traffic participants. This chapter addresses the chal-

lenge of enabling inference using an IMM for prolonged observations. In doing so, it also

compares their performance with the AMM filters. First, the Interacting Multiple Model

(IMM) algorithm is introduced. Then, the IMM is analyzed against different process noise

and compared with AMM for behavior identification. The subsequent section evaluates the

performance of IMM with the use case from the previous chapter. Finally, the developed

technique is validated with a vehicle trajectory extracted from a real world traffic dataset

from German highways.

7.1 Interacting Multiple Model alogrithm

Autonomous Multi Model (AMM), also known as classic MMAE, employs a bank

of Kalman filters (or variations such as EKF, UKF) running in parallel, independently of

each other while each represents a different mode of operation. They have proven success

[25] in parameter identification or model identification of a system that does not change
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over time. However, if the system switches between different mutually exclusive modes

over time, the probabilistic weights of the AMM may not follow the system as it does not

include a stage to re-initialize the system. Hence, a technique external to the AMM al-

gorithm has to be employed to re-initialize its model weights. Typically, motion models

representing different behaviors fall under this category of switching systems. Since a sin-

gle traffic participant may follow a straight behavior for a while, then perform a behavior

for the left lane change maneuver, for instance, before following a straight behavior, the

motion model of the traffic participant keeps changing over time. This is where Interactive

Multi Model (IMM) algorithm applies. In addition to the three steps similar to AMM (i.e.

model specific filtering, model probability update and combination), an IMM has a fourth

step called mixing/interaction, which carries out two things based on certain conditions: i)

reinitializing the initial weights of each model specific filter for the next time step by mixing

the updated probability weights from the current time step; ii) reinitializing the initial state

estimate as well as the associated covariance for the next time step by mixing them with the

weights from the current time step. This enables the IMM to follow the system faster when

mode switching occurs. The mixing of the weights, estimates, and associated covariances

is based on the predicted transition probabilities between discrete switching states of the

hybrid system.

7.1.1 Transition probability matrix for an IMM

Just to recall, a hybrid system is characterized by two elements, a discrete part

(modes) and a continuous part (base states). In this work we will restrict our scope to

Markov Jump Linear Systems which are conveniently used to represent the traffic partic-

ipants as hybrid systems. The discrete and the continuous elements of the system can be
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represented with following equations:

p(Mk+1) = Λ′
trans

⋅ p(Mk) (7.1)

ẋ(t) = f(x(t),u(t),Mk) (7.2)

Equation (7.2) represents the state propagation equation for the continuous part of

the system given that the system is in mode Mk at time step k, with t ∈ [(k − 1)Ts, kTs],

where Ts is the sampling time. Eqn. (7.1) describes the discrete part of the system, where,

Mk represents the mode of the system at a discrete time step k, with Mk ∈ [m1, m2, ...mn];

p(Mk) is the vector of probabilities of the modes of the system at time interval k, i.e.

p(Mk) = [ℙ(m1),ℙ(m2), ...,ℙ(mn)]
′; Λtrans is the transition probability matrix that governs

the transition of the system between any mode time step k and any mode at time step k+1.

For a system that can operate in n different modes, this yields a square matrix of dimensions

n by n,

Λtrans =

⎡
⎢⎢⎢⎢⎢⎣

�11 … �1n

⋮ ⋱

�n1 �nn

⎤
⎥⎥⎥⎥⎥⎦

(7.3)

where elements of each row sum up to 1, i.e.

n∑
b=1

�ab = 1, ∀ a ∈ [1, n] (7.4)

The following section will describe how the IMM algorithm utilizes the transition

probability matrix.
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7.1.2 Stages of IMM

Figure 7.1 describes the IMM process. In the figure, e
−q

k
is the vector of measure-

ment residuals, zk is the measurement vector, x̂
+q

k
is the estimated state vector for the qtℎ

elemental filter, where q ∈ [1,M.I] and x̂
+0q

k
is the mixed initial estimate for the qtℎ ele-

mental filter. The IMM consists of four stages [24]:

1. Interaction and Mixing: In the very first stage of the cycle, the weights and the es-

timates from the last cycle are mixed as per the Markov transition probabilities. At

time t = 0, these will result from the initial conditions. The predicted probability for

the filter to end up in mode j in this cycle, given that it was in the mode i during the

last cycle is given by:

w
(i|j)
k

=
1

�
j

k

wi

k−1
�ij (7.5)

�
j

k
=

M∑
i=1

wi

k−1
�ij (7.6)

where �ij ∈ Λtrans is the transition probability from mode i to j, �
j

k
is a normalizer and

basically represents the predicted probability of the the system ending up in mode j

(i.e. filter j being the one with highest likelihood) in the current cycle. This is nothing

but the result of the probabilistic weights of all the filters in the last cycle multiplied by

the Markov mode transition probabilities for transition to mode i. Since this stage is

at the beginning of the current cycle, before the measurements have arrived, these are

called as predicted probabilities. These probabilities are then utilized in computing
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the mixed initial conditions for each elemental filter yielding:

x̂
+0j

k
=

M∑
i=1

w
(i|j)
k

x̂
+i

k
(7.7)

P
+0j

k
=

M∑
i=1

w
(i|j)
k

[(
x̂
+i

k
− x̂

+0j

k

)(
x̂
+i

k
− x̂

+0j

k

)T
+ P +i

k

]
(7.8)

2. Model specific filtering: The expressions for prediction and update for each single-

model filter resemble the ones employed in the Extended Kalman filter (EKF) [24].

The mixed initial conditions computed from the first stage above are utilized for every

time step in the prediction stage, i.e.

x̂
q

k+1
= F

q

k
x̂
+0q + B

q

k
u
j

k
(7.9)

P
−q

k+1
= H

q

k
P

+0q

k
H

qT

k
+Q

q

k
(7.10)

3. Model probability update: This stage computes the likelihood of the measurements

for every single-model filter estimate, and subsequently determines the associated

weights for each filter. For M filters, the initial weight for every filter is uniformly

distributed, i.e. w
q

0
= 1∕M for q = 1, 2, ... M. The update relations utilize the pre-

dicted probabilities calculated in step 1, yielding:

w
q

k
= �

q

k−1
p(zk|x−q

k
) (7.11)

w
q

k
←

w
q

k∑M

q=1
w
q

k

(7.12)

p(zk|x−q

k
) =

1

||2�E−q

k
||1∕2

e

{
−

1

2
e
−qT

k
(E

−q

k
)−1e

−q

k

}
(7.13)

E
−q

k
= E

{
e
−q

k
[e

−q

k
]T
}
= H

q

k
P

−q

k
[H

q

k
]T + R

q

k
(7.14)

92



4. Combination: The estimates and covariances from all single-model filters are fused

utilizing their associated weights to provide a combined estimate, i.e.

x̂
+

k
=

M∑
q=1

w
q

k
x̂
+q

k
(7.15)

P +
k
=

M∑
q=1

w
q

k

[(
x̂
+q

k
− x̂

+

k

) (
x̂
+q

k
− x̂

+

k

)T
+ P

+q

k

]
(7.16)

Note that if the Markov transition probability matrix Λtrans is an identity matrix, the

IMM algorithm reduces to an AMM.

Figure 7.1: Interacting Multiple Model filter approach
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7.2 Maneuver identification using IMM

7.2.1 Motion models and measurement model

Similar to chapter 5, the IMM is employed to distinguish between three maneuvers

in this section : straight motion, left lane change and right lane change. The straight motion

assumes a Constant Velocity motion model. The lane changes in this chapter assume a

sinusoidal motion model with the maneuver initiation point (xmip) as a state and maneuver

length as a parameter according to the description in section 3.1.5.3. The measurement

model is assumed to be linear with x and y positions directly observable.

7.2.2 Evaluation of the maneuver identification model

In this section, the IMM based maneuver identification model is evaluated using the

single track vehicle dynamics model described in chapter 5. To recall, the ground truth for

the straight maneuver is created by maintaining a zero steering wheel angle for the vehicle

model whereas the ground truth for left and right lane change maneuvers result from a sinu-

soidal input to the steering wheel of 10 second period length, therefore leading to a 60 meter

maneuver. Measurements were generated by adding white Gaussian noise with parameters

given in table 7.1. The elemental filters in the IMM for left and right lane changes assume

a fixed maneuver length of 60 meters.

For underlying real physical processes, the Markov transition probabilities for the

IMM are a function of sampling time. In this study, we assumed a sampling time of 0.1 sec-

onds. The transition probabilities were then determined heuristically with the assumption

that the lane change maneuvers would typically last anywhere from 4 to 10 seconds. In a 10

second maneuver, there would be a chance in the order of 1/100 for the traffic participant

to switch from a lane change maneuver to a straight maneuver. As a result, the observed
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participant will spend the majority of the time maintaining the current state at this given

sampling rate. Similar transition probabilities were assumed for switching from straight to

any of the maneuvers. It should be noted however, that the straight maneuvers are one of the

default maneuvers in driving and traffic participants typically spend majority of time in this

condition. So switching from straight to one of the lane change maneuvers would have an

even lower occurrence rate with a sampling time of 0.1 seconds. With these assumptions,

the transition probability matrix was chosen as

Λtrans1 =

⎡⎢⎢⎢⎢⎢⎣

0.97 0.015 0.015

0.015 0.97 0.015

0.015 0.015 0.97

⎤⎥⎥⎥⎥⎥⎦

(7.17)

Remark. Whereas, the chosen transition probabilities work well for our evaluation, these

should be determined from traffic data statistics in practice. The chances of a participant

switching from a straight maneuver to a lane change maneuver, for example, depend on the

driving conditions. For free flowing (highway) traffic, these chances will be much lower

compared to peak hour bumper-to-bumper traffic. Hence, contextual information can be

utilized in determining the appropriate set of pre-determined transition probabilities in real-

time.

It should be noted that the lane change motion models in our maneuver identifica-

tion model employ an additional state, xmip, the maneuver initiation point, in contrast to the

straight driving motion model. Hence, mixing, re-initialization and combination of prob-

abilities between the filter cycles is performed only for x, vx, y and vy states for all the

elemental filters. The estimates for the maneuver initiation point are autonomous for the

respective elemental filter.

The detection times for all maneuvers under different process and noise parameters

95



Table 7.1: Detection times for IMM with Λtrans1

Straight Right Left

Case no Q (diagonal)
Detection

time (s)

RMSE

x

RMSE

y

Detection

time (s)

RMSE

x

RMSE

y

Detection

time (s)

RMSE

x

RMSE

y

1 0.001 0.9 0.1399 0.0201 2.8 0.1383 0.0443 2.3 0.1455 0.0615

2 0.005 1.1 0.109 0.0255 2.8 0.1083 0.0347 2.3 0.1105 0.0397

3 0.01 1.2 0.0922 0.0288 2.8 0.0917 0.0331 2.3 0.0932 0.0369

4 0.025 1.5 0.0705 0.0336 2.8 0.0701 0.0345 2.3 0.071 0.0373

5 0.05 1.7 0.0575 0.0369 2.2 0.0572 0.0369 2.4 0.0579 0.0388

6 0.1 2.3 0.0496 0.0397 2.9 0.0493 0.0393 2.6 0.0498 0.0407

7 0.025 1 0.025 1 1.6 0.0717 0.0351 2.1 0.0715 0.0353 2.4 0.0718 0.038

8 0.01 1 0.01 1 1.4 0.0896 0.0323 2.1 0.0894 0.0335 2.3 0.0897 0.037

Table 7.2: Detection times for IMM with Λtrans2

Straight Right Left

Case

no
Q (diagonal)

Detection

time (s)

RMSE

x

RMSE

y

Detection

time (s)

RMSE

x

RMSE

y

Detection

time (s)

RMSE

x

RMSE

y

1 0.001 0.9 0.1399 0.0182 2.8 0.1363 0.0464 2.3 0.1455 0.0625

2 0.005 1.1 0.109 0.0245 2.8 0.1083 0.0351 2.3 0.1105 0.0396

3 0.01 1.2 0.0922 0.0282 2 0.0917 0.0329 2.3 0.0932 0.0372

4 0.025 1.4 0.0705 0.0332 2.1 0.0701 0.0343 2.3 0.071 0.0371

5 0.05 1.7 0.0575 0.0367 2.1 0.0572 0.0368 2.4 0.0579 0.0386

6 0.1 2 0.0496 0.0396 2.8 0.0493 0.0393 2.6 0.0498 0.0405

7 0.025 1 0.025 1 1.5 0.0718 0.0377 2.1 0.0715 0.0351 2.4 0.0718 0.0377

8 0.01 1 0.01 1 1.4 0.0896 0.0319 2.1 0.0894 0.0333 2.3 0.0897 0.0369

Table 7.3: Detection times for AMM
Straight Right Left

Case

no
Q (diagonal)

Detection

time (s)

RMSE

x

RMSE

y

Detection

time (s)

RMSE

x

RMSE

y

Detection

time (s)

RMSE

x

RMSE

y

1 0.001 0.9 0.1399 0.0175 1.9 0.1383 0.0593 2.3 0.1459 0.0841

2 0.005 1 0.109 0.0241 1.9 0.1083 0.0353 2.3 0.1106 0.0448

3 0.01 1.2 0.0922 0.0279 1.9 0.0917 0.0328 2.3 0.0932 0.0383

4 0.025 1.4 0.0705 0.033 2.1 0.0701 0.0342 2.3 0.071 0.0369

5 0.05 1.6 0.0575 0.0366 2.1 0.0572 0.0367 2.4 0.0579 0.0384

6 0.1 2.2 0.0496 0.0396 2.8 0.0493 0.0393 2.5 0.0498 0.0404

7 0.025 1 0.025 1 1.5 0.0717 0.0347 2.1 0.0715 0.0351 2.3 0.0718 0.0375

8 0.01 1 0.01 1 1.4 0.0896 0.0317 2 0.0894 0.0332 2.3 0.0897 0.0368
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are summarized in table 7.1. For cases 1 and 2, the model tends to switch between the

respective lane change and a straight maneuver for the first few seconds before convergence.

A likely explanation for lies in the initial delay between a sinusoidal steering wheel input

and the (non-sinusoidal) path followed by the vehicle at first. As a result, the innovation

equations of the lane change and the straight maneuver initially compete against each other,

thus reflected in the switching. However, this can be addressed by including this discrepancy

in the process noise. Although, detection times for the lane change maneuvers do not exhibit

much of a variation with change in process noise, the switching between the straight as well

as the respective lane change maneuvers is less for the cases 4, 5 and 6. This is also reflected

in the RMSE between the ground truth and the estimated trajectory of the traffic participant.

The RMSE is the least for the process noise 0.05 and 0.1 (cases 5 and 6) in the table.

Table 7.3 shows the detection times for the AMM based maneuver identification

mode for comparisonl. Here, the AMM based identifier is marginally superior to the IMM in

identifcation in a given maneuver. However, the IMM exhibits its strength in the prolonged

observations as will be described in the next section. Further, if the transition probability

matrix is chosen as below, the IMM behaves almost the same as the AMM. This is reason-

able as an IMM with a diagonal transition probability matrix functions as a pure AMM.

The detection times for the IMM with the following transition probabilities are shown in

table 7.2.

Λtrans2 =

⎡
⎢⎢⎢⎢⎢⎣

0.99 0.005 0.005

0.005 0.99 0.005

0.005 0.005 0.99

⎤
⎥⎥⎥⎥⎥⎦

(7.18)
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7.3 IMM for prolonged observations

After evaluation under different assumptions of process noise, the IMM maneuver

identifier the straight, left lane change and right lane change motion models was assessed

against the use case we identified in chapter 6, subsection 6.1.2. To recall, in the use case

the observed participant travels with a constant velocity of 10 m/s in a straight motion for 10

seconds, performs a left lane change maneuver of length 50 m and then proceeds straight

for another 5 seconds. The initial conditions for the filter were chosen as x = 0, y = 0,

vx = 10 and vy = 0. The maneuver length parameter for the elemental filters were set to 50

meters.

Figure 7.2 shows the inference results for the use case with IMM. The lower plot

illustrates the probabilistic weights for the maneuvers changing as the scenario evolves.

The weights diverge after 0.6 seconds, identifying the straight maneuver correctly by 0.8

seconds. As the traffic participant initiates a left lane change maneuver at 10 seconds, it

is identified in 1.1 seconds. After the traffic participant completes the maneuver, some

ambiguity between the left lane change and straight maneuvers appears briefly before the

weights switch at 0.4 seconds after the completion. The straight maneuver is again classified

correctly 0.7 seconds after the participant completes the maneuver. The upper plot shows

how closely the estimates are tracking the measurements and the ground truth. The RMSE

error between the ground truth and the estimated position is 0.0539 m and 0.0298 m for x

and y positions respectively, as shown in table 7.3. Compared to the AMM based maneuver

identification evaluated in the last chapter the IMM proves superior, as the AMM exhibited

the detection times of 1.7 and 1.3 seconds, as well as the RMSE errors for x and y positions

of 0.0778 and 0.0735.
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Figure 7.2: IMM based maneuver identification estimates and probabilistic weights under

prolonged observations
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Table 7.4: AMM and IMM approach comparison under prolonged observation

Behavior identifier

Detection time

straight to

left LC (s)

Detection time

left LC to

straight (s)

RMSE

x position (m)

RMSE

y position (m)

IMM based 1.1s 0.7s 0.0539m 0.0298m

AMM based 1.7s 1.1s 0.0778m 0.0735m

7.4 IMM for behavior identification

The IMM developed above was then extended to identify five different behaviors:

straight motion, and two different behaviors each for left and right lane change maneuvers.

The straight behavior was modeled with the same constant longitudinal velocity motion

model with zero lateral velocity. The lane changes employed sinusoidal lateral motion. For

each lane change maneuver, one behavior utilized 50 meters maneuver length, whereas the

second one is realized with 100 m maneuver length. The initial conditions for the scenario

were kept identical to the last use case. However, the IMM based identifier was tested against

two use case scenarios of 25 seconds each. First scenario was similar to last use case, where

the traffic participant drives straight for the first 10 seconds, performs a short left lane change

maneuver (50 m maneuver length) and then keeps going straight for another 10 seconds. In

the second scenario, the traffic participant drives straight for 10 seconds, performs a long

left lane change maneuver (100 m length) lasting 10 seconds, and then keeps going straight

for another 5 seconds.

100



The transition probabilities in the IMM for the five behaviors were chosen as

Λtras =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.97 0.075 0.0075 0.0075 0.0075

0.027 0.97 0.001 0.001 0.001

0.027 0.001 0.97 0.001 0.001

0.027 0.001 0.001 0.97 0.001

0.027 0.001 0.001 0.001 0.97

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.19)

The underlying order of the transition probabilities in Eq. 7.19 are as follows: straight

maneuver, short left lane change, long left lane change, short right lane change and long

right lane change. Hence, the top row corresponds to the condition in which the traffic par-

ticipant is performing the straight maneuver in the last cycle. The bottom row corresponds

to the case where the traffic participant is performing a long right lane change in the last

cycle. It should be noted that the transition probabilities for a participant switching from

any left lane change behavior to a right lane change behavior (or vice-versa) are chosen as

very low (0.001). This is a valid assumption, since in a real driving scenario like this case

the participant will be momentarily back to the straight maneuver between the switch. Also,

for a given maneuver, the transition probabilities for the participant switching from one be-

havior to other is chosen very low. This is a strong assumption as in real driving conditions

chances of a participant switching from one behavior to other depend entirely on the traffic

conditions. However, this refinement is outside the scope of the current work. For all the

lane change behaviors, the exit path leads to the straight maneuver as the typical default

state for a participant. Again, these values were determined heuristically. In practice, these

values should be determined from traffic statistics.

Figure 7.3 depicts the inference results of the IMM for the first use case. After

the initial switching, the weights diverge after 1 second detecting the straight maneuver

correctly. Once the participant initiates a short left lane change behavior at 10 seconds into
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Figure 7.3: IMM based behavior identification estimates and probabilistic weights for short

left lane change under prolonged observations
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Figure 7.4: IMM based behavior identification estimates and probabilistic weights for long

left lane change under prolonged observations
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the simulation, the correct behavior is identified in 1.1 seconds (table 7.4), and the weights

of the appropriate behavior rise quickly at 11tℎ second. As the behavior is completed, the

model infers some ambiguity between the left lane change and the straight behaviors, before

correctly identifying straight within 0.7 seconds (at time 15.7 seconds). Notice the spike

in the long left lane change behavior weights as the maneuver is initiated by the traffic

participant. This is due to the ambiguity between the two behaviors the participant is likely

to execute. As a result, the innovations for both the elemental filters initially remain close,

before diverging in the next few time steps. Interestingly, after the behavior completion, the

weights of the long left lane change behavior rise again. This is likely due to the fact that

the a priori estimates of the straight and the long left lane change elemental filters were in

the vicinity so as to result in similar innovations. The upper plot shows how closely the

estimates are tracking the measurements and the ground truth. The RMSE error between

the ground truth and the estimated position is 0.0498 m and 0.0298 m for x and y positions

respectively.

Figure 7.4 shows the inference results of the IMM for the second use case. After

the initial switching, the weights diverge at about 1 second similar to the first use case,

detecting the straight maneuver correctly. Once the participant initiates a long left lane

change behavior, the filter sees some ambiguity between the straight behavior and the long

left lane change behavior for a short period. This is intuitively expected as the longer left

lane change behavior includes an extended almost straight traversal at the beginning. As a

result the left lane change behavior weights rise gradually before corectly identifying it 3

seconds into the behavior (Table 7.4). As the behavior is completed, the model identifies

the straight behavior correctly within 1.2 seconds of reaching the center of the lane. This

is acceptable as the lane change behavior becomes almost linear at this stage. The RMSE

between the ground truth and the estimated position is 0.0497 m and 0.0302 m for x and y

positions respectively. It should be noted that there is no ambiguity between the short and
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the long lane change behavior at the initiation of the maneuver in this use case scenario.

This leads to an important conclusion: when a short lane change is performed, the IMM

based behavior might predict a longer lane change for a short period, which may lead to

underestimation of risks initially.

Table 7.5: IMM based behavior identification performance for the two behaviors

Behavior

Detection time

straight to

left LC (s)

Detection time

left LC to

straight (s)

RMSE

x position

(m)

RMSE

y position

(m)

Short LC 1.1s 0.7s 0.0498m 0.0298m

Long LC 3.0s 1.2s 0.0497m 0.0302m

There is a reason why an asymmetric motion model (constant longitudinal velocity

motion with zero lateral velocity) was chosen for the straight behavior versus a symmetric

constant velocity motion model. Figure 7.5 depicts the performance of the IMM with the

latter. As the sinusoidal waveform becomes almost linear towards the middle of the am-

plitude transition the influence of the straight maneuver weights is demonstrated relatively

higher during the lane change behavior. Whereas the tracking performance as well as the

identification of weights for the behavior remain adequate, weights of the straight behavior

have an increased influence in the prediction and may lead to an incorrect prediction in the

middle of the maneuver.

Remark. It should be noted that although a constant longitudinal velocity motion model

with zero lateral velocity works well for our use case, the weights of the straight motion ex-

hibit a delay in rising after a lane change behavior is completed. An improved performance

could be obtained with a constant longitudinal acceleration motion model with zero lateral

velocity. It was observed that the weights of the straight behavior rise faster towards the

end of the lane change behavior in that case.
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Figure 7.5: IMM based behavior identification with constant velocity motion model for

straight behavior
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7.5 Validation of the maneuver identification model

The validation for the maneuver identification model was carried out using a trajec-

tory extracted from the highD dataset [43]. The following section will provide the overview

of this dataset with the subsequent section discussing the results of the behavior identifica-

tion module.

7.5.1 highD dataset overview

The highD dataset, short for Highway Drone dataset contains naturalistic trajecto-

ries of vehicles collected using a high resolution (4K) drone-based camera over German

highways. The dataset consists of trajectories of 110,500 different vehicles recorded over

147 hours from six different locations around Cologne, Germany. The records include both

light as well as heavy traffic conditions and feature multiple lanes in both driving direc-

tions. The claimed position accuracy is of at least 10 cm for about 400 meters stretch of

vehicle observations. Apart from trajectories, the dataset also provides enhanced informa-

tion such as class of the vehicle, information about the surrounding vehicles, time headway

(THW), distance headway (DHW) as well as the Time-to-Collision (TTC) along with the

lane change information. Further, the dataset also provides some MATLAB and Python

based tools that aid in visualization (Fig. 7.6). The dataset comes with 60 different record-

Figure 7.6: Visialization of highD dataset with vehicle 167 in track 01 trajectories
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ings calls as tracks. Each track is in a csv format containing vehicle trajectories information

in comma separated values.

7.5.2 Evaluation using a highD dataset trajectory

From the dataset, a trajectory of vehicle 167 from the track 01 was chosen for eval-

uating the developed IMM based behavior identification model. The measurements are

available at a frame rate of 25 per second. The traffic participant is a vehicle of class ’Car’

and its trajectory has a minimum longitudinal velocity of 36.38 m/s and maximum velocity

of 43.46 m/s. In the travel distance of 410 m, it performs a single lane change of maneu-

ver length of approximately 250 m, executed 1.5 seconds into the scene. For inference, an

IMM with two different lane change behaviors of 200 m and 300 m maneuver lengths were

implemented for each left and right lane change maneuver.

For evaluation, the ground truth was chosen as the smoothed trajectories provided

by the dataset and the measurements were generated by adding white Gaussian noise of

variance 0.0025 to this ground truth. The initial conditions of the filter were set as the

initial conditions observed in the dataset (x = 6.005 m, vx = 36.38 m/s, y = 22.64 m and

vy = 0 m/s). The process noise for the straight elemental filter was assumed as diag([0.01

0.01 0.01 0.01]), whereas the process noise of the lane change behavior filters were assumed

as diag([0.01 0.01 0.01 0.01 1]). The measurement noise for all the filters was matched with

the added Gaussian noise and assumed as diag([0.0025 0.0025]). This is a valid assumption

as the statistics of measurement noise can be estimated from sample measurements.

Figure 7.8 shows the results of inference of the IMM with the identified vehicle

and table 7.5.2 depicts the detection times as well as the RMSE for the identifier. The

corresponding weights for the behavior start rising 1.4 seconds into the maneuver, with

the behavior completely identified 1.7 seconds into the maneuver. The RMSE between the
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Figure 7.7: IMM performance with highD dataset trajectory

ground truth of the vehicle trajectory and the estimated position of the vehicle is 0.1005 m

in the x direction, and 0.0283 m in the y direction.

109



Figure 7.8: IMM performance with highD dataset trajectory against time

Table 7.6: IMM based behavior identification on a trajectory from HighD dataset

Behavior

identifier

Detection time

straight to

left LC (s)

RMSE

x position

(m)

RMSE

y position

(m)

IMM based 1.7s 0.1005m 0.0283m

7.6 Conclusion

Interacting multiple model (IMM) filters were adapted for behavior identification

and evaluated in this chapter. As the reset and mixing is part of the inherent framework of

the IMM hence makes them suitable for representing the behaviors of the traffic participants

as they are able to handle transitions between maneuvers in contrast to an AMM. Further-

more, the fact that they take transition probabilities of modes into account, allows them to
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integrate with discrete stochastic approaches to represent hybrid systems. IMMs were eval-

uated with the measurements generated from a single track vehicle model, and analyzed

with varying process noise. Here, the intuition of selecting the transition probabilities for

the IMM was also described. Although AMMs were found to be marginally superior in

the identification of a single maneuver, for prolonged observations, IMMs exhibited their

superior potential. Their performance was then analyzed with simulated use case scenar-

ios. Finally, their performance was validated with a realistic trajectory from highD traffic

dataset.
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Chapter 8

Probabilistic Framework

Implementation with IMM

This chapter describes the implementation and evaluation of the proposed interaction-

aware Dynamic Hierarchical Bayesian Network using IMM. The challenges addressed in

this chapter are, reformulation of the proposed framework to be used with an IMM and

evaluating the performance of the framework. In section 4.4, we presented a generic ap-

proach for representing the driver behavior using various stages of maneuver. While that

approach was more suitable for implementation with AMMs, using this approach with an

IMM requires a bit of reformulation, which will be elaborated in the next two sections. For

the sake of readability, some portions of the formulation will be reiterated below. The result-

ing IMM will be context-aware, hence, it is occasionally referred in the text as Contextual

Interacting Multiple Model (CIMM) filter. Thereafter, the framework will be demonstrated

by implementing it for a simple use case scenario. Finally, we will compare it’s performance

with the IMM based behavior identifier implemented in the last chapter.
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Figure 8.1: Traffic scenario as an example. j is the subject vehicle being observed, 1 - 6 are

the relevant traffic participants for j, with c1 - c6 forming the relations for the context

8.1 Probabilistic framework revisited

Recalling from section 4.3, given the vector of possible behaviors and their associ-

ated paramters, the core challenge for risk analysis based on behavior prediction for a traffic

participant consists of two stages, i.e. for every traffic participant j and driving style i:

1. determine ℙ(qb
j

k
), where q = i + I ⋅ (i − 1).

2. determine the trajectory x̂
j,i

k+1
.

The solution to the above challenge can be addressed by utilizing a Hierarchical Dy-

namic Bayesian Network (HDBN) in the following way. Let x
j

k
= [x

j

k
y
j

k
v
j

x,k
v
j

y,k
 
j

k
]T repre-

sent the base states for the jth traffic participant at the kth time step, i.e. longitudinal and lat-

eral positions and velocities as well as the yaw angle. The quantity z
j

k
= [x̃

j

k
ỹ
j

k
ṽ
j

x,k
ṽ
j

y,k
 ̃
j

k
]T

represents the observed states for the jtℎ traffic participant at the ktℎ time step. As described

earlier, we will we employ the concept of context vector that establishes the necessary

spatio-temporal relationships between a subject vehicle and the relevant traffic participants
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around it for every traffic participant, i.e. C
j

k
for the jtℎ traffic participant at the ktℎ time step.

Furthermore, let G
j

k
be a binary state at time k indicating that the jtℎ traffic participant has

accepted a gap in a traffic scenario for maneuver execution.

Based on certain conditional independence between quantities, the joint probability

density function for the traffic scenario can then be decomposed as follows:

ℙ(X̂k+1, X̂k, Ck+1,Gk+1,Gk,ℳk+1,ℳk,Dk+1,Dk,ℬk+1,ℬk, Zk+1)

= ℙ(X̂k)ℙ(Gk)ℙ(ℳk)ℙ(Dk)ℙ(ℬk)

ℙ(X̂k+1|X̂k,ℬk)ℙ(Ck+1|Xk+1)

ℙ(Gk+1|Gk, Ck+1,Dk)ℙ(ℳk+1|ℳk,Gk+1, Ck+1)

ℙ(ℬk+1|ℳk+1,Dk,ℬk,Gk+1)

ℙ(Zk+1|X̂k+1)ℙ(Zk+1|Dk+1) (8.1)

The resulting HDBN can be respresented as depicted in Fig. 8.2. The application of

the introduced abstract framework above to a particular traffic scenario will be illustrated

via the example of multi-lane driving on a highway. The presented framework and its em-

ployed terms, however, are of such a generic nature that they can be easily adapted to other

urban as well as highway driving scenarios. For the exemplary application, we assume

three maneuvers (left lane change, LL, right lane change, LR, and straight driving, S), two

driver types (aggressive, d1, and passive, d2) and a context vector based upon the relative

longitudinal distances shown in Fig. 8.1. Hence, the introduced sets yield

ℳ ∶= [mLL, mLR, mS], D ∶= [d1, d2]

C
j

k
∶= [c

j

1
c
j

2
c
j

3
c
j

4
c
j

5
c
j

6
]
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Figure 8.2: Hierarchical Dynamic Bayesian Network representing a traffic participant

Based on our example, our behavior vector can be represented as per Fig. 8.3

In chapter 7 we assumed the transition probabilities for the IMM for behaviors

heuristically. In a typical system, these transition probabilities are determined from sample

Figure 8.3: Behavior vector for a traffic participant j with two driver styles (d1 and d2) and

with 5 behaviors, 2 for left and right lane change, and one for straight.
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observations of the system under relevant conditions. However, when the traffic participants

are represented as hybrid systems, and the modes of the system represent their behaviors

for maneuvers, these probabilities cannot rely simply on predetermined values. The maneu-

vers and behaviors are typically influenced by the context of the traffic participant. Hence,

in such case the transition probabilities have to be determined online. Following section

will illustrate this with the exemplary implementations.

8.2 Representing a traffic participant using IMM

To realize this with IMM, we will have to employ a motion model for each of these

behaviors as elemental filters in the IMM bank. Also, we will need the transition probability

matrix Λbeℎ for the behaviors, which in our case will be a 6 by 6 matrix:

Λbeℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15 �16

�21 �22 �23 �24 �25 �26

�31 �32 �33 �34 �35 �36

�41 �42 �43 �44 �45 �46

�51 �52 �53 �54 �55 �56

�61 �62 �63 �64 �65 �66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.2)

where �ab is the predicted transition probability of the participant to execute the

behavior b in the next time step, given that it is executing the behavior a in the current time

step, such that a, b ∈ [1, 6. Also, for every row a for Λbeℎ,

6∑
b=1

�ab = 1,∀ a ∈ [1, 6] (8.3)
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The probabilities of the behavior can then be predicted as:

p(ℬ
j

k+1
) = Λ′

beℎ
⋅ p(ℬ

j

k
) (8.4)

To utilize this transitional probability matrix with IMM, we need to find out the

coefficients �ab. In reality, all the behaviors are coupled with each other and determining

all the coefficients of the transition probability can be complex. However, using certain

assumptions below, their calculation can be simplified.

i. If a traffic participant is executing a particular non-default maneuver, it will not switch

to another mid-way. It may choose to abort the maneuver and come back to the de-

fault maneuver, i.e. straight, or return to the default maneuver after it has executed the

current behavior in entirety.

ii. If a traffic participant chooses a maneuver with a particular driving style, it is expected

to complete it without switching the driving style.

iii. The only way a participant switches to another non-default behavior is after it arrives

back at the default behavior.

With the above assumptions, the transition probability matrix Λbeℎ for the traffic

participant looks like:

Λbeℎ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15 �16

�21 �22 0 �24 0 �26

�31 0 �33 0 0 0

0 �42 0 �44 0 0

�51 0 0 0 �55 0

0 �62 0 0 0 �66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.5)
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Following the order of the behaviors in our behavior vector ℬ
j

k
, the above Λbeℎ can

be read as follows. Given that the participant is in the default straight maneuver, there is a

�11 chance that it will continue with the same behavior, �12 chance that it may switch to an

aggressive straight behavior, �13 chance that it may switch to a passive left lane change and

so on. On the other hand, if the traffic participant is executing an aggressive (driver d1) right

lane change behavior, there is a �66 probability that it will continue executing the behavior,

and �61 probability that it will return to an aggressive straight maneuver. The predictions

for the other lane change behaviors can be interpreted in a similar way.

It is important to note that these transition probability matrix coefficients are influ-

enced by factors such as the context of the traffic participant, the situation they are in, their

mission goals as well as their opportunistic inclination. Hence these coefficients need to be

determined at run-time and cannot be entirely predetermined. Every subsequent explana-

tory section below contains exemplary implementations of different terms in Eqn. (8.1).

The relevant sections also illustrate a way to determine these coefficients.

1. Motion prediction, p(X̂k+1|X̂k,ℬk): The predicted motion of a traffic participant

depends on its current states, the driver type, and the maneuver that the driver intends

to perform. The driver type combined with the intended maneuver determine the

corresponding parameters for the trajectory generation of the participant as contained

in the behavior set B
j

k
. The identified trajectory can be used as the underlying model

for propagating the states of every traffic participant.

2. Context, p(Ck+1|X̂k+1): The context experienced by each traffic participant aids in

establishing the local traffic situation. In its simplest case, it can be derived directly

from the base states by creating a vector reflecting the spatio-temporal relations to

the neighboring/near-by other traffic participants, for instance distances, velocity dif-

ferences, etc. Although the context in our example below arises from a linear com-
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bination of distances, it can be expanded to include velocity or to any general state

relationship that can aid in predicting a driver’s intent. Since we assume our base

states to be Gaussian perturbed, our context vector represents a mixture of Gaussian

terms.

3. Gap acceptance policy, p(Gk+1|Gk, Ck+1,Dk): Given a current context around a ve-

hicle, the decision for gap acceptance varies with the driver. In addition to the con-

ditioning on context and driver, we also include a dependence of gap acceptance on

the decision in the previous step to include memory. In an exemplary realization, the

gap acceptance pdf could be defined as

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
) =

⎡
⎢⎢⎣
ℙ(G

j

k+1
= 0 | Gj

k
, C

j

k+1
,D

j

k
)

ℙ(G
j

k+1
= 1 | Gj

k
, C

j

k+1
,D

j

k
)

⎤
⎥⎥⎦

(8.6)

where G
j

k
= 0 denotes gap rejection for participant j while G

j

k
= 1 stands for gap

acceptance. The terms on the right hand side of Eq. (8.6) can be further augmented

as

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
)

∝
[
ℙ(D

j

k
= d1) ⋅ p

(
G
j

k+1
|Gj

k
, C

j

k+1
,D

j

k
= d1

)

+ℙ(D
j

k
= d2) ⋅ p

(
G
j

k+1
|Gj

k
, C

j

k+1
,D

j

k
= d2

)]
(8.7)

The first conditional probability on the right hand side of Eq. (8.7) can be expanded

as

p
(
G
j

k+1
|Gj

k
, C

j

k+1
,D

j

k
= d1) =

⎡
⎢⎢⎣
1 − gag(C

j

k+1
)

gag(C
j

k+1
)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣
gNAd1

gAd1

⎤
⎥⎥⎦

(8.8)

where gNAd1 and gAd1 are the resultant probabilities that the driver d1 has accepted and
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not accepted the gap, whereas gag(⋅) is a gap function associated with the aggressive

driver. Here, the context for the specific traffic participant is accepted as an input,

returning an associated probability of gap acceptance. This could, for instance, be

realized via a step function, i.e.

gag(C
j

k+1
) =

⎧⎪⎨⎪⎩

0 (c1 + c2) < �ag ∧ (c5 + c6) < �ag

1 otherwise

(8.9)

Here, �ag is a distance threshold for an aggressive driver for gap acceptance. To allow

for a more gradual decision transition, a logistic function could be utilized alterna-

tively, yielding

gag(C
j

k+1
) =

1

1 + e−� (gap−�ag)

with � being a tuning factor and with gap being a placeholder for any of the relevant

observed gaps. The second conditional probability on the right hand side of Eq. (8.7)

can be treated in a similar fashion by using the corresponding gap functions for a

passive driver. Let gNAd2 and gAd2 be the respective probabilities of the driver 2

accepting or not accepting a gap. Eq. (8.7) hence becomes:

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
) ∝ ℙ(d1) ⋅

⎡
⎢⎢⎣
gNAd1

gAd1

⎤
⎥⎥⎦
+ ℙ(d2) ⋅

⎡
⎢⎢⎣
gNAd2

gAd2

⎤
⎥⎥⎦

(8.10)

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
) ∝

⎡
⎢⎢⎣
ℙ(d1) ⋅ gNAd1 + ℙ(d2) ⋅ gNAd2

ℙ(d1) ⋅ gAd1 + ℙ(d2) ⋅ gAd2

⎤
⎥⎥⎦

(8.11)

The normalization term, �gap in the above equation will be the sum of both the ele-
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ments of Eq.(8.11), i.e.:

�gap =
∑
g=0,1

ℙ(G
j

k+1
= g | Gj

k
, C

j

k+1
,D

j

k
)

= ℙ(d1) ⋅ gNAd1 + ℙ(d2) ⋅ gNAd2 + ℙ(d1) ⋅ gAd1 + ℙ(d2) ⋅ gAd2 (8.12)

After normalizing, let the conditional probability be represented as:

p(G
j

k+1
| Gj

k
, C

j

k+1
,D

j

k
) =

⎡
⎢⎢⎣
gNA

gA

⎤
⎥⎥⎦

(8.13)

where gNA and gA are the probabilities that the gap is accepted or not accepted re-

spectively, given the context.

It should be noted that these are only exemplary realization of the introduced gap

functions only utilizing distance relations in the context. A more sophisticated gap

processing based upon relative velocities (or other relations) could certainly be em-

ployed without loss of generality. The context vector would require modifications

according to this case.

4. Maneuver policy, p(ℳk+1|ℳk,Gk+1, Ck+1): The maneuver policy can formally be

expanded similar to the gap acceptance policy, i.e.

p(ℳk+1|ℳk,Gk+1, Ck+1) =

J−1∏
j=0

p(ℳ
j

k+1
|ℳj

k
,G

j

k+1
, C

j

k+1
) (8.14)
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p
(
ℳ

j

k+1
| ℳj

k
,G

j

k+1
, C

j

k+1

)

∝
[
ℙ(G

j

k+1
= 0)p

(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 0

)

+ℙ(G
j

k+1
= 1)p

(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 1

)]
(8.15)

with G
j

k+1
= 0 signifying that the driver did not accept the gap.

Here, no maneuver other than a nominal driving maneuver (for instance defined as

straight) will be executed, irrespective of the driver type and the maneuver currently

being executed. Hence, the conditional probability for this case in Eq. (8.15) reduces

to

p
(
ℳ

j

k+1
|ℳj

k
, C

j

k+1
,G

j

k+1
= 0

)
=

⎡⎢⎢⎢⎢⎢⎣

ℙ(mS)

ℙ(mLL)

ℙ(mLR)

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎦

Similarly, the gap acceptance term in Eq. (8.15) can be realized as

p
(
ℳ

j

k+1
| ℳj

k
, C

j

k+1
,G

j

k+1
= 1

)
=

⎡⎢⎢⎢⎢⎢⎣

0

fLL(C
j

k+1
)

fLR(C
j

k+1
)

⎤⎥⎥⎥⎥⎥⎦

where f(.)(⋅) is a maneuver function establishing a relationship between the context

and the left and right lane maneuver, respectively. A simple exemplary implementa-

tion of such a function yields

fLL(Ck+1) =
c1 + c2

(c1 + c2) + (c5 + c6)
(8.16)

For countries with asymmetric lane changes, another parameter could be included in
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the maneuver function reflecting different weights for left and right. From Eq. (8.15),

the maneuver policy for participant is:

p(ℳk+1|ℳk,Gk+1, Ck+1) =

⎡⎢⎢⎢⎢⎢⎣

gNA

gA fLL

gA fRL

⎤
⎥⎥⎥⎥⎥⎦

(8.17)

As the framework already factors the driver influence into the gap acceptance policy,

the maneuver policy does not depend on the driver directly. Yet, this does not prohibit

the consideration of the driver’s influence in a maneuver decision explicitly if such

an extension of the policy is desired in the future.

5. Behavior, p(ℬk+1|ℳk+1,Dk,ℬk): As we assume that the maneuver and driver types

can evolve independently for a specific traffic participant, they are addressed sepa-

rately instead of jointly in the behavior space.

The transition probability matrix for the behaviors can then be obtained using the

maneuver policies in Eq. (8.17) and the probabilistic weights of the drivers from the

last time step. For the sake of brevity, in the following equation, d1 = ℙ(Dk = d1)

and d2 = ℙ(Dk = d2).

Λbeℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �1 gNA �1d2fLLgA �1d1fLLgA �1d2fRLgA �1d1fRLgA

�2gNA �22 0 �2gAfLL 0 �2gAfRL

�31 0 �33 0 0 0

0 �42 0 �44 0 0

�51 0 0 0 �55 0

0 �62 0 0 0 �66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.18)
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where,

�1 =
1 − �11

gNA + d2fLLgA + d1fLLgA + d2fRLgA + d1fRLgA
(8.19)

�2 =
1 − �22

gNA + gAfLL + gAfRL
(8.20)

The non zero transition probabilities marked with �ab in the Eqn. 8.18 need to based

on statistical data. The above transition probability matrix can now be used with the

IMM for mixing and reinitialization stage. Also, the predicted behaviors of the traffic

participant can then be determined using:

p(ℬ
j

k+1
|ℳk+1,Dk,ℬk) = Λ′

beℎ
⋅ p(ℬ

j

k
) (8.21)

6. Likelihood, p(Zk+1|X̂k+1): When used with the IMM, the likelihood is calculated for

all the elemental filters and the updates applied to calculate the estimates. Further,

these likelihoods are then used to update the mode probabilities of different modes,

which in our case are behaviors.

7. Driver policy update, p(Zk+1|Dk+1): For every traffic participant, a bank of 6 (i.e.

the number of behaviors) EKFs can be employed in the Interactive Multiple Model

(IMM) filter setting to propagate trajectories and to estimate the likelihood of a par-

ticular behavior. The probabilistic driver type itself is a parameter in the propagation

in between measurement intervals. It will be updated based upon the likelihood of

the measurements for the employed behavior in the individual single model filters.

The driver model probability then yields

ℙ(d2) =
ℙ(1b

j

k
) + ℙ(3b

j

k
) + ℙ(5b

j

k
)

∑M ⋅I

q=1
ℙ(qb

j

k
)

(8.22)

124



Figure 8.4: Simulation scenario with Sub being the observed vehicle, O1 and O2 are other

traffic participants in the scene

8. Filter equation: The complete filter equation for the presented framework then yields

ℙ
(
X̂k+1, Ck+1 | Zk+1

)

= ℙ(Zk+1|X̂k+1) ℙ(Zk+1|Dk+1)

∫
Gk,ℳk,Dk,ℬk

ℙ(X̂k+1, Ck+1,Gk+1,ℳk+1,Dk+1,

ℬk+1|Gk,ℳk,Dk,ℬk, X̂k)

ℙ(Gk,ℳk,Dk,ℬk, X̂k) (8.23)

8.3 Simulation setup

To evaluate the filter, a simulation scenario as shown in Fig. 8.4 was considered.

The scenario consists of two lanes with the observed vehicle (Sub) driving in the right lane

at a speed of 10 m/s. When encountering a slower vehicle O1 ahead moving at a speed of

7 m/s, in the left lane, a faster vehicle O2 is approaching at a faster speed of 15 m/s. From

here the use case bifurcates into two potential use cases depending on the subject vehicle

behaviors: (i) the Sub vehicle can accelerate and perform an aggressive left lane change

cutting into the path of the faster vehicle O2; (ii) or it can let the O2 vehicle pass and then

perform a lane change maneuver. The first behavior would be classified as aggressive while

the latter would be considered as a passive driver behavior.
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The complete simulation run consisted of 25 seconds. The center of the right lane

on the left hand side was assumed as the origin for the coordinate frame. The subject vehicle

starts from the origin, i.e x = 0 m and y = 0 m with a longitudinal velocity vx = 10 m/s

and lateral velocity vy = 0 m/s. The vehicle O1 starts at y = 0 m, with the velocities

vx = 6.67 m/s and vy = 0 m/s. The vehicle O2 starts at y = 3.5 m (left lane) with velocities

vx = 15 m/s and vy = 0 m/s. The initial x position of O1 and O2 will be described along

with the use cases in the next section. The frequency of measurements was chosen as 10

Hz generated by simulating the motions of the subject vehicle changing lanes and adding

Gaussian white noise to it. For simplicity of demonstration, the inference was run only for

the subject vehicle and a simulated context provided for the filter. In practice, the inference

should be running for every vehicle in the scene with the context extracted using a helper

function from the estimated states of all the vehicles in the scene. Predetermined maps

can also be utilized in calculating the context. The context vector chosen for the use case

consists of 8 elements,

C
j

k
=
[
c1 c2 c3 c4 c5 c6 c7 c8

]
(8.24)

The elements (c1 to c6) are the longitudinal distances from the longitudinal center of the

observed vehicle to the vehicles in the front and rear in the current as well as adjacent lanes.

(c7 and c8) are the relative velocities from the succeeding vehicles (i.e., vehicles behind) in

the adjacent lanes. For the case of no preceding or succeeding vehicle being present, the

relevant distance vector was artificially assumed as a large value (here 100 m).

A simplified version of the model was considered for this simulation scenario as it

had only two lanes. Two driver types were considered, aggressive and passive executing

two potential maneuvers, straight and left lane change. As a result, the behavior matrix

consisted of four behaviors as following:

126



i) Passive straight behavior: The longitudinal motion was modeled with constant veloc-

ity whereas the lateral motion was assigned with zero lateral velocity motion models.

The behavior parameter (1b
j

k
) for this maneuver was chosen to contain only acceleration

(being zero for this behavior).

ii) Aggressive straight behavior: The longitudinal motion was modeled with constant

acceleration whereas the lateral motion maintained zero lateral velocity. The behav-

ior parameter for this behavior similarly reduces to acceleration (ideally being a value

suggesting a strong increase or decrease in speed).

iii) Passive left lane change behavior: The longitudinal motion was modeled with con-

stant acceleration whereas the lateral behavior was modeled with sinusoidal motion

model with a longer maneuver length of 100 m. The maneuver length then becomes

the behavior parameter for this maneuver.

iv) Aggressive left lane change behavior: The longitudinal motion was modeled with

constant acceleration, whereas lateral motion maintained a sinusoidal lane change with

a shorter maneuver length of 70 m.

For each driver type, three thresholds were considered:

i) Headway distance threshold �a: This represents the minimum distance gap a driver

prefers to keep from the vehicle in front. If this distance falls below the threshold the

driver is expected to either slow down to increase the distance or change lanes to arrive

at a comfortable driving conditions. For an aggressive driver, this threshold is assumed

significantly smaller than the one for passive driver.

ii) Adjacent lane distance threshold �b: This represents the minimum distance a driver

considers for gap acceptance. If the distance of the succeeding vehicle (rear vehicle

in the adjacent lane) is less than this threshold, the driver rejects the gap to perform a
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lane change maneuver. For an aggressive driver, this threshold would be smaller than

a passive driver.

iii) Adjacent lane velocity threshold �c: This represents the difference in velocity be-

tween the succeeding vehicle in the adjacent lane and the observed vehicle. If this

velocity difference is larger than the threshold, the driver is expected to reject the gap

for performing a lane change maneuver. For an aggressive driver this threshold would

be larger compared to a passive driver. In other words, an aggressive driver is likely to

accept the gap even if the vehicle in the adjacent lane has a velocity exceeding its own,

possibly cutting into the way of the vehicle in the rear, whereas a passive driver is less

likely to accept the gap in such case.

Based on the definitions above, for the aggressive driver, the thresholds were chosen

as �a = 60 m, �b = 5 m and �c = 3 m/s. For a passive driver, the thresholds were chosen

as �a = 60 m, �b = 15 m and �c = −1 m/s. The gap acceptance policy for each driver is

determined based on two factors: current lane satisfaction and adjacent lane dissatisfaction.

The current lane satisfaction is calculated as

clsat = c3 > �a (8.25)

whereas, the adjacent lane dissatisfaction is calculated as:

aldiss =
(
abs(c2) ≤ �b

)
∨
(
(c2 > �b) ∧ (c7 − vx) ≥ �c

)
(8.26)

Gap rejection and acceptance probabilities for the driver are then calculated as fol-

lows based upon a binary vector for the gap functions described in Eqn. (8.8).

gNAd = clsat ∨ aldiss (8.27)
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gAd = 1 − gNAd (8.28)

Remark. While the adjacent lane dissatisfaction criterion in our example was based on

the distance and velocity relations with the rear vehicles in the target lane, a more sophisti-

cated criteria could be applied in practice. A similar argument can be made about the lane

satisfaction criterion, by exploring other factors such as velocity, time headway, etc. An

example of a more sophisticated choice for the gap policies are model-based or machine-

learning-based techniques in traffic engineering to model drivers.

Utilizing the above expressions, the resulting transition probability matrix yields

Λtrans =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�11
(1−�11)gNA

�

(1−�11) d2 gA

�

(1−�11) d1 gA

�

(1 − �22)gNA �22 0 (1 − �22)gA

1 − �33 0 �33 0

1 − �44 0 0 �44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.29)

with

� = gNA + d2 gA + d1 gA (8.30)

Here, the diagonal elements of the transition probabilities, �11−�44, were determined heuris-

tically as described in the chapter 7. In practice however, these values could be derived from

traffic data statistics. An underlying and well justified assumption is that a traffic participant

in general has a high probability of staying in its current state yielding constant values, i.e.

�11 = �22 = �33 = �44 = 0.97 (8.31)

Now, for every cycle of the proposed behavior identifier filter, the steps involved are as

follows:
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1. Extract the context from the prior states of all the traffic participants

2. Find the gap acceptance policy for all the considered driver types for each traffic partic-

pant

3. Calculate behavior transition probability matrix for every traffic participant

4. Mix and reinitialize the estimates of the CIMM filter

5. Propagate the estimates using the prediction steps of all the elemental filters

6. When the measurements are available, update the estimates using the correction step

7. Update the probabilistic weights of the behaviors

8. Update the driver type based on the weights of the behaviors executed

9. Calculate combined estimates from each elemental filter

10. Goto Step 1.

To evaluate its performance, the implemented filter was compared with a traditional IMM

for the two bifurcations of the above scenario discussed in the next section. The transition

probability matrix for the IMM based behavior identifier was chosen as:

Λtrans,(IMM) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.97 0.01 0.01 0.01

0.01 0.97 0.01 0.01

0.01 0.01 0.97 0.01

0.01 0.01 0.01 0.97

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(8.32)
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8.3.1 Discussion of results

8.3.1.1 Aggressive driver use case

For this use case, Sub andO1 start with the conditions described above. In addition,

the longitudinal condition for O1 is x = 100 m. The vehicle O2 starts at x = −106 m, y =

3.5 m with velocities vx = 15 m/s and vy = 0 m/s. As the subject vehicle (Sub) approaches

the slower leading vehicle in the right lane, it notices the vehicle O2 approaching in the

adjacent lane at a higher velocity. The driver hence starts accelerating at simulation time

10 seconds, exhibiting an opportunistic behavior. Eventually, after a gap acceptable to the

driver is achieved, it performs an aggressive left lane change 15 seconds into the simulation,

cutting-in front of the vehicle O2. It should be noted that the transition probability matrix

for the IMM stays constant throughout the simulation since it is independent of the context

of the vehicle. The proposed Contextual IMM (CIMM) on the other hand, monitors the

context of the observed traffic participant and adapts the transition probability matrix as the

simulation evolves.

Figure 8.5 demonstrates the results of the inference using CIMM. The CIMM is not

only able to identify the behaviors correctly but also correctly classify the driver as aggres-

sive. The detection times for the respective behaviors for both IMM and the CIMM are

shown in the table 8.1. Fig. 8.6 and Fig. 8.7 show the trends followed by the probabilistic

weights of the elemental filters for the corresponding behavior identification models being

evaluated. As depicted in Fig. 8.7, although the IMM correctly identifies the lane change

Table 8.1: Detction times for the IMM and CIMM for the aggressive driver use case

Behavior identifier

Aggressive straight

behavior detection

time (s)

Aggressive lane change

detection time (s)
RMSE x (m) RMSE y (m)

IMM 1.7 1.5 0.0328 0.0289

Proposed CIMM 1.7 0.6 0.0334 0.028
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Figure 8.5: CIMM inferencing the Sub vehicle for the aggressive driver use case

behavior as an aggressive one, it shows some ambiguity between the aggressive and passive

before the weights diverge. The CIMM on the other hand, profits from context-awareness

and detects the aggressive left lane change behavior roughly one second earlier. It expects an

aggressive behavior as the driver is classified due to the vehicle acceleration in the prepara-

tory phase. The detection times as well as the RMSE for this use case are given in Table 8.1
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Figure 8.6: Behavior weights for the CIMM

for both the filters.

8.3.1.2 Passive driver use case

Table 8.2: Detction times for the IMM and CIMM for the passive driver use case

Behavior identifier
Passive lane change

detection time (s)
RMSE x (m) RMSE y (m)

IMM 3.2 0.0519 0.0335

Proposed CIMM 2.7 0.0519 0.0329

For this use case, Sub vehicle stats with the same initial conditions as before. The
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Figure 8.7: Behavior weights for the IMM inferencing the Sub vehicle for the aggressive

driver use case

vehicle O2 starts at x = −25 m, y = 3.5 m and the vehicle O1 starts at x = 80 m, y = 0

m. These conditions were chosen such that all the contextual changes in the surroundings

of the vehicle occurs during the simulation interval. The filter itself has no dependency

on the starting conditions of other vehicles. As the subject vehicle (Sub) approaches the

slower vehicle in the front of the right lane, it notices the vehicle O2 approaching from the

adjacent lane at a higher velocity. The driver maintains the current speed, lets the faster

vehicle in the adjacent lane pass and then performs a passive left lane change behavior with

longer maneuver length after an acceptable gap. The results for the inference using both
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Figure 8.8: CIMM inferencing the Sub vehicle for the passive driver use case

the CIMM and IMM filters are shown in the table 8.2. From Fig. 8.8, it can be seen that

the CIMM correctly identifies the behaviors and also classifies the driver as passive. Again

CIMM detection times are about half a second shorter than the regular IMM. Furthermore,
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Figure 8.9: CIMM inferencing the Sub vehicle for the passive driver use case

the RMSE values exhibit that the CIMM is not only faster, but also at least matches the

tracking performance of the regular IMM. It should be noted that given this performance,

the proposed CIMM not only improves the behavior identification by monitoring the context

of the vehicle, but also provides additional information about the driver behavior. Gathering

both pieces of information is a non-trivial task for long term trajectory prediction.
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Figure 8.10: IMM inferencing the Sub vehicle for the passive driver use case

8.4 Conclusion

In this chapter, we reformulated our previous approach for modeling traffic partic-

ipants by realizing the proposed framework utilizing an IMM and demonstrated how the

contextual information aids in improving the performance of behavior identification. The

developed framework was evaluated for two simulated scenarios. To demonstrate its effec-

tiveness, the resultant contextual IMM (CIMM) was compared with the traditional IMM

based approach that was detailed in the chapter 7. The proposed CIMM has only exhibited

vast improvements in the detection times for behaviors, but its tracking performance was at
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par with the IMM. Furthermore, it achieved classification of the driving style based on the

sequence of behaviors that were executed.
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Chapter 9

Conclusions and Future Work

This study has developed and analyzed a new method for predicting the behaviors

of the traffic participants operating around autonomous vehicles. Since autonomous vehi-

cles will be sharing the space with human operated vehicles for a foreseeable future, this

work contributes towards improving prediction methods for safe operation. The research

rests on the hypothesis that a characteristic behavior of a traffic participant spans across

multiple maneuvers performed. Furthermore, human drivers perform any maneuver in four

stages: intent determination, maneuver preparation, gap acceptance and maneuver execu-

tion. Identifying the driver behavior in any of these stages aids in identifying the driver type

(i.e. aggressive, passive, cooperative, etc.) and supports the characterization of subsequent

maneuvers the driver is likely to perform.

In chapter 4, a probabilistic framework was proposed that takes the contextual infor-

mation of a traffic participant into consideration, and observes them for the different stages

of maneuver execution described above. Based on the behavior, this framework charac-

terizes the driver type so that its influence can be factored in during subsequent predic-

tions. The traffic participant was modeled as a hybrid system using a Dynamic Hierarchical

Bayesian Network, and an exemplary approach for implementing the framework was pre-
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sented.

One of the key challenges in developing the framework is to be able to reliably iden-

tify the behaviors that the traffic participants are executing. Since all the other parameters

in the model rely on the estimated base and modal states of the system (i.e continuous states

and behaviors) in depth attention was given for exploring the methods involved. Chapter 5

- 7 focus on exploring two different approaches in Multiple Model Adaptive Estimation: an

Autonomous Multiple Model (AMM) approach and an Interacting Multiple Model (IMM)

approach. Chapter 5 analyzes the AMM against different measurement and process noise

quantities. Simulations were conducted by synthetically adding process and measurement

noise to a geometric model as well as a single track vehicle dynamics model. These synthetic

measurements were then employed to evaluate the classification performance of an AMM

that modeled three maneuvers: straight motion, left lane change and right lane change.

Existing literature provides very limited analysis of the effect of the process noise on the

MMAE classification, but rather focuses on tracking. While AMM performance was found

satisfactory against the measurement noise, the impact of process noise on classification was

significant. Furthermore, the filter has exhibited higher sensitivity to initial covariances of

the states.

Chapter 6 extends the inference of the AMM approach to prolonged observations

across multiple maneuvers. It was observed that AMMs lack an inherent reset mechanism

to enable transitioning to another model after classification is complete. To address this

challenge, an approach based on monitoring the likelihood of the default elemental filter was

presented. The premise of this approach stems from the fact that traffic participants spend

majority of their time executing a default behavior (typically straight or lane following). By

monitoring the divergence of the likelihood of a participant from this behavior, the AMM

can be reinitialized. This implemented method was evaluated with a simulated scenario and

the results were discussed. Yet, the approach involved some tuning factors that had to be
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determined heuristically.

Chapter 7 explored IMM filters for behavior identification with subsequent analysis

against different process noise qualities. Their performance was compared with the AMMs

for similar experimental settings. The metrics used for comparison were detection times

for a maneuver and root mean squared error (RMSE) for both x and y positions. While

AMMs peformed better for identification of the current maneuver executed by an observed

participant, IMMs were able to transition between multiple modes effortlessly for prolonged

observations. Furthermore, their performance for prolonged observations was found to be

superior than AMMs. In the study, an intuition of selecting the involved Markov transition

probabilities for the IMM was also presented. The developed IMM was then validated

utilizing a trajectory extracted from a naturalistic dataset called highD-dataset (obtained

from German highways). From the results it was concluded that IMMs appear to be a

superior choice for realizing the proposed framework.

Chapter 8 focused on reformulating the introduced framework for IMMs. The frame-

work rests on the premise that adapting the transition probabilities of the IMM can improve

the performance for prediction if the context of the traffic participants can be observed.

Hence, a Contextual IMM (CIMM) results. Additionally, the driver style can be taken into

account aiding the characterization of subsequent behaviors of the traffic particpants. The

framework with CIMM was then evaluated against the IMM evaluated in Chapter 7 with two

use cases involving aggressive and passive driving. The CIMM not only outperformed the

IMM in behavior classification, but also classified the driver type of the traffic participant

correctly, while matching its tracking performance with the IMM.
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9.1 Answering the Research Questions

1. How to predict the trajectories of traffic participants for time horizons exceeding the

human response time (1-2 secs) using only their extrinsic information?

Both the type of driver as well as their contextual information, together influence the

future trajectories of a traffic participant. In this research, an approach was demon-

strated that takes into consideration different driving styles as well as the context of

a traffic participant in order to predict subsequent behaviors. The developed frame-

work showed an improvement of atleast 0.5-1 second in behavior identification times

compared to a traditional IMM based approach lacking this information.

2. How to model interactions between the traffic participants that follow different driving

policies?

In this research, an approach based on Hierarchical Dynamic Bayesian Network was

presented that takes into account different driving policies for modeling the interac-

tions between traffic participants. While this approach was demonstrated with two

driving styles (aggressive and passive), it can be extended to a multitude of driving

styles.

9.2 Recommendations for Further Research

We suggest to extend this research further in the following directions:

(i) In this study, the filter was utilized to infer the behavior of only a single vehicle. This

work should be extended to perform inference on multiple vehicles. The challenge

arises that the datasets describing and characterizing different driver behaviors in traf-

fic are very rare and limited. Hence, tools such as Siemens PreScan and Metamoto
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could be utilized in generating simulated scenarios such that the performance of the

framework can be analyzed further.

(ii) Since the presented approach involves adapting the transition probability matrix for an

IMM, further work is needed to analyze the efficiency and robustness of the filter. This

can be done via traditional efficincy and consistency analysis, e.g. utilizing Cramer

Rao error lower bound estimation [25]. However, this is expected to be challenging

for multiple model filtering. Developments in this area are relatively recent [63].

(iii) Literature on selecting the right motion model for prediction, in contrast to tracking, is

relatively limited. Analyzing existing popular motion models against realistic dataset

could help identify effective motion models as the foundation of prediction.
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Appendix A Linearization and Discretization of Systems

Linear system state space representation is:

Ẋ = A ⋅X + B ⋅ U (1)

Y = C ⋅X +D ⋅ U (2)

Its important to note that the Ẋ indicates just an increment in the continuous time step.

Whereas xk in a discrete time equation represents the full state at next time step (which

includes state at k-1 time step plus increment/decrement).

A.1 Discretization of Linear Systems

1. To discretize this system, sampling time is important, since changes in the system

need to be propagated over the time step. If A is constant the system is an LTI (linear

time invariant) system. The state matrix A remains the same in every time step, so it

can be calculated once at the beginning

2. If the state transition matrix is dependent on time, i.e. A(t), then it is called as Linear

Time Varying system. In this case, the linear state matrix needs to be calculated at

every time step before propagation.

3. Discretization solution lies in the time domain solution for a first order differential

equation since eqn.(1) is nothing but a first order differential equation (See the hand-

outs in Ayalew’s notes). Different approximations are as follows.
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4. Euler forward:

Ad = I + A ⋅ Ts (3)

Bd = B ⋅ Ts (4)

Cd = C (5)

Dd = D (6)

5. Euler backward:

Ad = (I − A ⋅ Ts)
−1 (7)

Bd = (I − A ⋅ Ts)
−1

⋅ B ⋅ Ts (8)

Cd = C ⋅ (I − A ⋅ T s)−1 (9)

Dd = D + Cd ⋅ B ⋅ Ts = D + C ⋅ Bd (10)

In MATLAB:

Bd = (I − A ⋅ Ts)∖Ts = Ad ⋅ B ⋅ Ts (11)

Cd = C∕(I − A ⋅ Ts) (12)
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6. Numerical Integration:

Ad = expm(A ⋅ Ts) (13)

Bd = (Ad − I) ⋅ A
−1

⋅ B; (14)

Cd = C (15)

Dd = D (16)

(17)

In MATLAB,

Bd = (Ad − I) ⋅ A∖B) (18)

Careful with this one. The MATLAB function is expm and NOT exp (which is a

different function in MATLAB). expm() is equivalent to the Taylor’s series expansion

below, which is similar to Euler forward, but a little more accurate

e(A⋅Ts) = I + A ⋅ Ts + A
2
⋅
T s2

2!
+ A3

⋅
T s3

3!
+ . . .

7. Trapezoidal, also called bilinear transformation:

T rap_term = (I − A ⋅
Ts

2
) (19)

Ad = T rap_term−1
⋅ (I + A ⋅

Ts

2
) (20)

Bd = T rap_term−1
⋅ B ⋅ Ts (21)

Cd = C ⋅ T rap_term−1 (22)

Dd = Cd ⋅ B ⋅ Ts (23)
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A.2 Discretization of Non-linear Systems:

Non linear systems are represeted as:

Ẋ = f (x, u, t) +w (24)

Ẏ = ℎ(x, u, t) + r (25)

They cannot be put into the linear form A, B, C, D directly due to the non-linearity

and hence discretization becomes tricky. An approximation is as follows:

1. For every time step, calculate the f (⋅) and ℎ(⋅) functions as they are dependent on

input, current state as well as time.

2. Linearize the non-linear system around the operating points (i.e. xk) in continuous

time using Taylor series expansion and then discretize. Taylor series expansion of the

next time step is:

f (xk+1) = f (xk) + F (xk) ⋅ Ts + f
′′(xk) ⋅ T

2
s
∕2 + . . .

Where F is the jacobian, f ′′(x) is the Hessian matrix

3. Hence, it requires finding the Jacobian (gradient) matrix for the system. Find this in

continuous time function. Then use the current values of X to calculate F(X)

4. The discretized Fd can now be calculated from the linearized system F (jacobian ma-

trix) using any of the above mentioned discretization techniques. For euler fwd or

numerical integration, using expm(Fd ⋅ Ts)

5. The same for H
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6. Now the system can be propagated either using the linearized & discretized function

or using the non-linear discretized function. For filters, the updates need the jacobian

matrices.
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