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Probabilistic framework for ego-lane determination

Abderrahim KASMI1,2, Dieumet DENIS1, Romuald AUFRERE2, Roland CHAPUIS2

Abstract— In this paper we propose a method for accurate
ego-lane localization using camera images, on-board sensors
and lanes number information from OpenStreetMap (OSM).
The novelty relies in the probabilistic framework developed, as
we introduce a modular Bayesian Network (BN) to infer the
ego-lane position from multiple inaccurate information sources.
The flexibility of the BN is proven, by first, using only informa-
tion from surrounding lane-marking detections and second, by
adding adjacent vehicles detection information. Afterward, we
design a Hidden Markov Model (HMM) to temporary filter
the outcome of the BN using the lane change information.
The effectiveness of the algorithm is first verified on recorded
images of national highway in the region of Clermont-Ferrand.
Then, the performances are validated on more challenging
scenarios and compared to an existing method, whose authors
made their datasets public. Consequently, the results achieved
highlight the modularity of the BN. In addition, our proposed
algorithm outperforms the existing method, since it provides
more accurate ego-lane localization: 85.35% compared to 77%.

I. INTRODUCTION

Vehicle localization is one of the critical features of

Advanced driver assistance Systems (ADAS) [1]. These

systems will recommand lane change [2] to drivers in order

to maintain the driver’s safety [3]. Therefore, an accurate but

also a reliable ego-vehicle localization is needed. Ego-vehicle

localization can be interpreted as the knowledge of two key

parts: first, the road on which the vehicle travels, which

is performed by Map-Matching methods, and second the

position of the host vehicle with respect to the corresponding

road.

In [4] we have tackled the Road-level localization issue,

where we proposed a probabilistic framework for Map-

Matching and lane number estimation using the Open-

StreetMap (OSM) database. Thus, in this paper, we suggest

to separate the localization of the host vehicle on a road in

two parts: first, the Ego lane-level localization, where we

estimate the ego-position within a lane, and second the Lane-

level localization by determining the ego-lane on the road.

For the following sections, we consider that the road-level

localization is achieved and the lanes number is known.

In the literature, ego-position estimation has been the

subject of various researches. One of the most common

approach uses a high-precision map, that contains landmarks

to enhance a stereo camera system [5] [6]. These approaches

show interesting results. However, one of the main drawback
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of these high-precision digital maps is its exorbitant cost.

Hence, to overcome this drawback, a lane-level localization

using GPS Precise Point Positioning GPS-PPP is presented

in [7], in which authors achieve precise lane-level localiza-

tion. Yet, the precision obtained depends on the number of

satellites received by the GPS and on the meteorological

conditions.

Other researches use the lane assignment information of

different vehicles that communicate with each others [8].

The GPS information shared between these vehicle is used

to calculate a probability for ego-lane determination. Al-

ternative approaches use the on-board sensors for ego-lane

estimation. The author in [9] estimates the probability of

belonging to a lane, using lane change information and lane-

markings detector. A similar approach is proposed in [10].

However, the results of lane-marking feed a Bayesian Net-

work which is temporally filtered by a particles filter. An

interesting approach is presented in [11], where the authors

introduce a Bayesian Network for ego-vehicle localization

in intersections. The Bayesian Network takes as an input

the information from a sensorial perception system and a

priori digital map. The approach shows interesting results.

However, the dynamic of the vehicle is not considered, hence

no temporary relation between frames is taken into account.

In [12] Ego-lane localization is achieved from multiple-

lanes detection. First, the author identifies the own-lane

geometry, then adjacent lanes are hypothesized and tested,

assuming same curvature and lane’s width. A more recent

approach [13] fuses the position of surrounding vehicles with

a map and a lane-marking detector into a Bayesian filter. The

early tests show promising results when surrounding vehicles

are detected. However, real-world experimental results are

missing to assess the efficiency of the approach especially

when there is no surrounding vehicle. Ego-lane estimation

can be formulated as a scence classifcation problem, as

in [14], where the authors describes the scene in a holistic

way bypassing individual object detection: {vehicle, lane

markers}.

In [15] the authors propose a Lane-level localization using

Hidden Markov model (HMM) to filter the outcome of a

marking-lane detector based on stereo images. Results on

real data-sets show very good results. Nevertheless, lane

changing situations have not been addressed. In addition, the

probabilistic HMM calculation was not explicitly defined, as

the transition and emission probability in the HMM have

been empirically defined.

In this paper, we present a probabilistic framework to the

localization of the vehicle with respect of the ego-lane and

the road. To do so, we propose a Bayesian network that is



Fig. 1: Overall Algorithm proposed to ego-lane determination that takes in input camera and on board sensors information.

fed with an adjacent lanes detector and lanes number from

OSM. Moreover, the proposed network does not depend on

the type of sensor and remains modular for other information

sources. Hence, we added a vehicle detector to the network.

Furthermore, we introduce a Hidden Markov Model to filter

the outcome of the Bayesian Network. Compared to [15], no

heuristics are made to design the HMM. Thus, we propose a

probabilistic formalization for the HMM modeling. At last,

we tested our algorithm on two different datasets. First on

a collected datasets with two lanes road and which will be

available online for other researchers, Second, from some

highways images with four lanes road. These datasets are

refered in [15].

The remainder of the paper is organized as follows: Section II

introduces the problem formulation. Section III describes the

ego-lane level localization process. In Section IV we detail

the lane-level localization algorithm. Following, Section V

presents the real-world experimental results. The paper will

be summarized and concluded in Section VI.

II. PROBLEM FORMULATION

As discussed before, we perform the ego-lane determina-

tion in sequential fashion as illustrated in Fig 1:

• First, we estimate the lateral position of the ego-vehicle

in the lane using camera images in information-driven

way.

• Secondly, from the estimated position, we perform the

adjacent lanes detection. Depending on the number of

lanes, the adjacent lanes are hypothesized and tested.

The results of the tested assumption are fed into a

Bayesian Network (BN), that takes into account the

detector failure rate. Lately, we will show that the

proposed BN is modular for other types of detection.

• At last, we filter the results using a Hidden Markov

Model (HMM) that takes into account the lane change

probability and the accuracy of the detector used.

In the following sections, we will discuss the general outline

of the algorithm in more details.

III. EGO-LANE LEVEL LOCALIZATION

The ego-lane marking are generally the best seen in the

images. Thus, the first step of the overall algorithm consists

in the Ego-lane level localization, which is performed by the

detection of ego-lane marking.

A. Ego lane-level localization based on a ego-lane-marking

detector

In the following, we will briefly explain the method used.

The lane-marking detector used is derived from [16], so for

more details we invite the reader to look at the complete

paper. The different steps of the algorithm are illustrated in

Fig 2.

Fig. 2: The different steps of the Ego lane-level localization

The first step of the algorithm is the recognition step,

which is based on a recursive recognition driven by a

probabilistic model. This model is represented by a vector ud
and its co-variance matrix Cud

. The vector ud represents the

horizontal coordinates of the left and right ego-lane marking

in the image and Cud
expresses the confidence interval for

the ego-lane marking in the image as illustrated on Fig 3.

Fig. 3: Confidence intervals for right (in white) and left (in

black) edges.



This probabilistic model is defined from a road

model X and its co-variance matrix CX . The vector

X = (x0, α, Cl, ψ, w)
T contains different parameters of

the road and the ego-vehicle: x0 being the lateral position

of the vehicle relative to the closet lane marking, with 0

being the middle of the ego-lane, α the tilt angle of the

camera relative to the road plane, Cl the local curvature of

the road, ψ the steer angle of the vehicle and w the lane width

of the ego-lane. The recognition of the ego-lane marking is

performed in the interval regions defined by the probabilistic

model {ud, Cud
}. At the end of this step, an estimation of

the vector state ud is made.

The second step is the localization step, it lies in the esti-

mation of the road model {X,CX}, this estimation is directly

computed from the estimated image model {ud, Cud
}. Fig 4a

shows the results of the ego-lane-marking detection with the

estimation of the parameters x0, ψ and L. As the vehicle

travels in the middle of lane, the x0 value is equal to 0.01.

In Fig 4b, the lateral position estimated is equal to −1.84m
as the vehicle changes the lane from the right to the left.

(a) (b)

Fig. 4: Ego-lane marking detection with the corresponding

x0, L, ψ estimation.

Finally, the last part of the algorithm is the tracking step,

where the aim is to provide a smaller confidence interval

for the next image, than the one provided by the initial

image model. To do so, we update the model road estimated

{X,CX} using a Kalman filter [16], that takes as input

the distance traveled by the ego-vehicle between two frame

images, which can be retrieved from on board-sensors.

IV. LANE LEVEL LOCALIZATION

Once the ego-lane localization is estimated, we have to

perform the lane-level localization in order to correctly

choose the right lane on which the vehicle travels. To do

so, we propose a probabilistic framework that is split into

three stages.

In the first stage, we extrapolate adjacent lanes by as-

suming that lanes in the same road have the same width

w and same curvature Cl. The second step consists in a

Bayesian Network (BN), that takes as input the results of the

hypothesized adjacent lane-marking detection, whether these

detections succeed or fail. Furthermore, since the proposed

BN is modular, we also use an adjacent vehicles detector.

The third step includes a filtering process, using a Hidden

Markov Model (HMM).

A. Adjacent lanes extrapolation

The adjacent lanes are extrapolated by taking advantage of

the estimated ego-lane localization. Thus, each adjacent lane

is described by a probabilistic model {Xl, CXl
}, where Xl

contains the parameters (x0, α, Cl, ψ, w)
T described in III-

A and Cl refers to the corresponding co-variance matrix.

Assuming that the curvature and lane width stay constant

for all the lanes in the same road. Thereby, the value of the

vector Xl remains the same as X , only the value of x0 will

be shifted by a (±iw) , with (−i) indicates that the edge is

at the right of the ego-lane and (+i) in the left. The number

of adjacent lanes extrapolated is equal to the lanes number,

which is assumed to be known. Thus, from a perspective

view, the hypothesized lanes are shown in Fig 5.

Fig. 5: Perspective view, ego-lane in solid lines and hypoth-

esized edges in dotted lines (case two lanes road)

As mentioned before, the model {Xl, CXl
} can be trans-

ferred to the model image {ul, Cul
}. As a consequence, ul

represents the horizontal pixel of the edges in the image

and Cul
its interval confidence. In Fig 6, the adjacent lane

regions of interest resulting from the extrapolation are shown

on a image. For each adjacent lane marking, the detection is

performed and the results are fed into a Bayesian Network

(BN).

B. Bayesian network for ego-lane determination

The BN proposed is designed to be flexible and modular

for other detection results from any type of sensor, i.e.

vehicle detector, guardrail detector. In order to show the

flexibility of the BN, we will first use only adjacent lanes

detection to determine the ego-lane, then, we will introduce

an adjacent vehicle detector based on DeepLearing available

in the litterature (YOLO [17]).

The general architecture of the BN used is illustrated in Fig 7.

The nodes described are the following:

- Zki: The element i is observable, this element can repre-

sents any element of the road scene: {vehicles, lane-marking,

traffic signs...},



Fig. 6: Confidence Intervals for adjacent hypothesized edges

for a two lanes road. Green represents the estimated edges

of the ego-lane and blue illustrates the confidence intervals

for adjacent lanes marking.

- Dki: The detection of the element i is successful,

- LBN : The lane on which the ego-vehicle is traveling

LBN = {l1, ..., ln}, where l1 indicates the leftmost lane

and n the lanes number.

Fig. 7: Graphic representation of the general architecture of

Bayesian Network used for the ego-lane determination

Depending on the results of the detection, we infer the

probability to belong to a lane {l1, l2, ..., ln} as follows:

P (LBN=li
) = P (LBN=li

|Dk1, Zk1, ..., Dkn, Zkn) (1)

The lane with the highest probability is chosen to be the lane

on which the vehicle travels.

1) Bayesian Network using only adjacent lanes detec-

tion (BN+ALD): To start, we only use the adjacent lanes

detections as input into our BN. Thus, the ego-lane will

be determined considering the result of these detections,

whether these success or fail. Fig 8 shows results of the

corresponding BN. As illustrated, there are some cases where

the BN is unable to overcome the ambiguity to locate the

ego-lane. Indeed, this happens when the adjacent edges are

not detected or wrongly detected.

2) Bayesian Network with the addition of the adjacent

vehicle detector (BN+ALD+AVD): As mentioned before, the

BN proposed is aimed to be modular for other detectors.

Thus, we use the same BN architecture presented earlier and

add the information about the adjacent vehicles.

Fig. 8: Results of ego-lane determination using the BN with

only the adjacent lanes detection. In (a) the BN success

as the marking are correctly detected, in (b) and (c) the

adjacent lanes are not detected, which leads to a false result.

In all figures, green represents ego-lane marking and yellow

represents adjacent lanes marking detected

The final Bayesian Network used is illustrated on Fig 9,

where Dli indicates whether the detection of adjacent lane

i is successful. Concerning Dvi, it indicates whether the

detection of the adjacent vehicle i is successful. Knowing

that this detection is performed in the regions of the image

bounded by the neighboring marking-lanes.

Fig. 9: BN with adjacent lanes and vehicles detection (case

4 lanes road)

As a result of this addition, the determination of the own-

lane is affected as shown on Fig 10.

C. Hidden Markov Model (HMM)

The BN proposed in the section before is applied in a

per-frame basis. However, the dynamic relation between two

frames is not taken into account. Indeed, the BN does not

take into consideration the dynamic constraints of the ego-

vehicle (i.e, the ego-vehicle can only change lane to an

adjacent lane). In order to take into account these constraints,

we filter the output of the BN by a Dynamic Bayesian

Network which is the Hidden Markov Model (HMM).



Fig. 10: Results of ego-lane determination using the BN

with the adjacent lanes and vehicle detection. For the case

(a), the addition of the vehicle detector does not change the

result, since no vehicle is detected. However, in (b) and (c)

the vehicle detector leads to a correct determination of the

ego-lane. In all figures, cyan indicates the bounding box of

vehicles detected on the image.

We will use Lt to denote the set of ego-lane state variables

at time t, which depends on the lanes number nlanes and

which are assumed to be observable. et denotes the observ-

able evidence variable. The aim of the filter algorithm is to

estimate the probability P (Lt+1|e1:t+1). According to [18],

this probability can be formulated as follows:

P (Lt+1|e1:t+1) = P (Lt+1|e1:t, et+1)(dividing up the evidence) (2)

= αP (et+1|Lt+1, e1:t)P (Lt+1|et+1)(Baye’s rule) (3)

= αP (et+1|Lt+1)P (Lt+1|et+1)(Markov assumption) (4)

Where α denotes a normalizing constant to make probabili-

ties sum equal to 1. By arranging Equation (4):

P (Lt+1|e1:t+1) = αP (et+1|Lt+1)
∑
lt

P (Lt+1|Lt, e1:t)P (Lt, e1:t)

= αP (et+1|Lt+1)
∑
lt

P (Lt+1|Lt)P (Lt, e1:t) (5)

The probability P (et+1|Lt+1) comes from the observation

model. Hence, in this paper from the BN described previ-

ously, thus:

P (et+1|Lt+1) = P (LBN ) (6)

With regard to the probability P (Lt+1|lt), it comes from

the transition model. It expresses the probability of the ego-

lane to change its current state, which is the lane change

probability. Finally, the third term P (Lt, e1:t) expresses the

current state distribution. Graphically, we can illustrate the

corresponding HMM as in Fig 11.

With the recursive formulation obtained in Equation (5),

we can estimate the current ego-lane state given the observa-

tion obtained from the BN, but before we have to compute

the lane change probability.

Fig. 11: Hidden Markov Model for n lanes case, with L =
{l1, l2, ..., ln} being the set of hidden states.

D. Transition probability (Lane change probability)

To calculate the lane change probability, we model the

lateral position x0 estimated in Section III-A as normal

distribution with mean µx0 and variance σx0 :

x0 ∼ N (µx0 , σ
2
x0

) (7)

The value µx0 and variance σx0 are obtained from the esti-

mated probabilistic model {X,CX}. Therefore, we predict the

lateral position x0 at tk+1 as shown on Fig 12. Accordingly,

the lane-change probability is calculated as follow:

P (Cr) =

∫
∞

w/2

1

σx0

√
2π

e
−

(x−µx0 )2

2σ2
x0 dx (8)

P (Cl) =

∫
−w/2

−∞

1

σx0

√
2π

e
−

(x−µx0
)2

2σ2
x0 dx (9)

With P (Cr) the probability to right change lane and P (Cl)

the probability to left change lane.

Fig. 12: Lane change probability, with the blue area repre-

senting the right change probability.

Now, that we have designed the HMM, we will introduce

the real-world experimental results on the following section.



BN +ALD BN +ALD +HMM BN +ALD +AV D BN +ALD +AV D +HMM

2-lanes 91.89% 99.00% 93.60% 99.00%
4-lanes 67.36% 78.36% 74.67% 85.35%

TABLE I: Classification accuracy for ego-lane determination. BN+ALD refers to the BN fed with the adjacent lanes detection,

BN+ALD+HMM indicates the HMM with the corresponding BN, BN+ALD+AVD refers to the BN fed with adjacent lanes

and vehicles detection and BN+ALD+AVD+HMM refers to the HMM with the corresponding BN.

V. REAL-WORLD EXPERIMENTAL RESULTS

In order to evaluate our proposed method, we tested

our algorithm on real driving data-sets. The first one, was

collected in the region of Clermont-Ferrand in France, where

we drove our vehicle on two lanes road in national highway

for a total of 838 frames. Given the number of frames,

these datasets were only used to show the effectiveness

of the algorithm. In addition, we wanted to compare the

performances of our algorithm to the literature on more

challenging scenarios. Naturally, we turned our attetion to

the KITTI datasets [19]. However, these datasets contain few

lanes and few lane-changing scenarios. Thus, we tested our

algorithm on some datasets refered in [15] 1. Unfortunately,

all the data were not ready yet. But, we were able to test on

some of them, noted as the A4-Highway Italy, for a total of

9528 frames. The collected datasets were manually annotated

in per-frame basis in order to determine the correct ego-lane

classification. In the following, we will refers to our datasets

as ”2-lanes” and the A4-Highway Italy as ”4-lanes”.

To show the increment of each component added. We first,

determined the ego-lane using only the BN with adjacent

lanes. In second instance, we introduced the adjacent vehicles

detection in the BN. In all instances, we filtered the outcome

of the BN with the HMM. All the results obtained are

summarized in Table I.

Considering the results, the increment provided by each

module is clearly illustrated. Indeed, in all cases the

BN+ALD+AVD provides more accurate classification then

the BN+ALD, which suggests that the addition of an another

information source will also improve the accuracy obtained.

Beside that, in all instances, the HMM improves highly the

classification accuracy compared to the outcome of the BN.

Which is attributable to the temporal cohesion added in the

model, for example, the vehicle can not travel from leftmost

lane to rightmost lane in two consecutive frames. Another in-

teresting point is the classification accuracy achieved for the

2-lanes datasets. We notice that the accuracy achieved with

the BN+ALD+HMM is the same as the one achieved with

the BN+ALD+AVD+HMM, which shows that the HMM was

sufficiently robust in the first place and the addition of the

adjacent vehicles detector did not affect the results.

After investigation on the incorrect results, it appears that

the false classifications obtained using the BN+ALD are due

to two main reasons: the lane marking are not detected and

the lane marking are wrongly detected. For the first case, this

can be explained if the lane marking are missing or hidden

1The authors would like to acknowledge the authors of [15] for their help
with the datasets

by an object. For the second case, it shows the limitation

of the lane marking detector used. Furthermore, even if the

introduction of the adjacent vehicle detection shows excellent

results, there are some cases where the vehicle detection

are not relevant, for example if the vehicle detected is in

the nearby road. To overcome this issue, we will have to

determine the localization of the detected vehicle relative to

the ego-vehicle, which is not the case since we use only

images as input.

Finally, despite that the author in [15] did not take into

account the lane change scenarios and designed empirically

the HMM. We manage to outperform his results on the same

datasets. Indeed, the author achieved 77% correct classifica-

tions, where we were able to reach 85.35% on 9528 frames. In

Fig 13 we show ego-lane determination in different example

images.

VI. CONCLUSION

In this paper, we tackled the problem of ego-lane de-

termination. Unlike other works, we presented a modular

Bayesian Network that takes as input different detection

results. Moreover, we designed a Hidden Markov Model to

filter the outcome of the proposed network. Furthermore,

we showed that the proposed algorithm improve lane level

localization. In this way, we tested our algorithm on real-

world datasets, and we showed the increment provided by

each detector.

For our future works, we are currently working on adding

detectors from different sensors, i.e., lidar, radar to enhance

the proposed framework. In the other hand, we are working

on questioning the lanes number information coming from

OSM, as we intend to compare it with detection results.

Furthermore, we intend to develop a more flexible probabilis-

tic framework, which will be able to adapt to lane number

change. In addition, we think that improvement can be done

on the Bayesian network as the correlation between different

detectors are not considered.

Finally, we plan to propose a unique algorithm for all

localization parts, that includes road level localization, lane

level localization and ego-lane level localization. From a

technical point of view, we aim to use our algorithm under

ROS [20] for a real-time implementation.
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Fig. 13: Examples of correct ego-lane determination on the 4-lanes datasets.
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