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We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for
natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and
frequency, bearing a resemblance to two-dimensional Gabor functions, and increasing the number of basis
functions results in a greater sampling density in position, orientation, and scale. These properties also re-
semble the spatial receptive fields of neurons in the primary visual cortex of mammals, suggesting that the
receptive-field structure of these neurons can be accounted for by a general efficient coding principle. The
probabilistic framework provides a method for comparing the coding efficiency of different bases objectively
by calculating their probability given the observed data or by measuring the entropy of the basis function
coefficients. The learned bases are shown to have better coding efficiency than traditional Fourier and wave-
let bases. This framework also provides a Bayesian solution to the problems of image denoising and filling
in of missing pixels. We demonstrate that the results obtained by applying the learned bases to these prob-
lems are improved over those obtained with traditional techniques. © 1999 Optical Society of America
[S0740-3232(99)03107-5]
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1. INTRODUCTION

The problem of encoding sensory information efficiently is
relevant both to the design of practical vision systems and
to advancing our understanding of how biological nervous
systems process information. Within the image-
processing community, much work has been done on im-
age codes that utilize a linear basis function expansion,
and considerable effort has gone into choosing sets of ba-
sis functions that satisfy certain mathematical desiderata
or that have desirable properties, such as ease of comput-
ability.

An approach that has been largely overlooked, how-
ever, is consideration of the efficiency of the image code as
defined by Shannon’s source coding theorem, i.e., how
well the basis functions capture the data’s probability
density. Typically, bases that are chosen for their low-
entropy coding properties, such as two-dimensional (2D)
Gabor functions or wavelets,1–5 are hand designed rather
than adapted to the data, so as to optimize coding effi-
ciency.

We show in this paper how the problem of image coding
may be cast within a probabilistic modeling framework.
Instead of making prior assumptions about the shape or
form of the basis functions, we adapt the bases to the data
(natural images), using an algorithm that maximizes the
log-probability of the data under the model,6 thereby op-
timizing coding efficiency in the sense of Shannon.

Shannon’s source coding theorem states that the lower
bound on code-word length is determined by the entropy
of the data:

L > H~ p ! 5 2( p~x !log p~x !. (1)

In many cases, p(x), the true density of the data, is un-
known and must be approximated by a density q(x). In
this case the lower bound on the expected code-word
length becomes

L 5 E@l~X !# > (
x

p~x !log
1

q~x !
, (2)

5 (
x

p~x !log
p~x !

q~x !
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p~x !log
1

p~x !
, (3)

5 DKL~ piq ! 1 H~ p !, (4)

where DKL( piq) is the Kullback–Leibler divergence be-
tween p and q. Thus, if the model density is equal to the
true density, then DKL( piq) 5 0 and the expected code
length is bounded by the entropy. Otherwise, there is a
penalty of DKL( piq) in the lower bound of the average
code length. Thus the better the model captures the un-
derlying probability density, the lower the bound on aver-
age code-word length.

Among existing techniques for modeling data with a set
of basis functions are principal-components analysis
(PCA) and a recently developed generalization of PCA
called independent-components analysis (ICA). PCA as-
sumes that the data distribution has Gaussian structure
and fits an appropriate orthogonal basis, while ICA gen-
eralizes PCA by allowing for non-Gaussian distributions
and nonorthogonal bases.7–9 Two limitations common to
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both of these techniques are that they do not allow for
noise to be modeled separately from the signal structure
and that they do not allow for overcomplete codes in
which there are more basis functions than input dimen-
sions.

In this paper we draw on an approach that generalizes
ICA in two ways that are relevant to learning efficient im-
age codes.6,10 The first generalization is that additive
noise is explicitly included in the model. For image
codes, this allows direct specification of the encoding pre-
cision and calculation of theoretical rate-distortion curves
by use of Shannon’s source coding theorem. Explicitly
modeling additive noise also provides a Bayesian solution
for the problem of image denoising and filling in of miss-
ing pixels. We demonstrate here that using these meth-
ods with the learned bases produces improved results in
comparison with results obtained with traditional tech-
niques.

The second generalization is that the number of basis
functions can be greater than the dimensionality of the
inputs. Both ICA and PCA are restricted to the case in
which the set of basis functions forms a complete or criti-
cally sampled basis, i.e., the number of basis vectors is
equal to the dimensionality of the input. Overcomplete
bases have been advocated because they allow certain ad-
vantages in terms of interpolation,11 in achieving a tight
frame with nonorthogonal basis functions,5 or in achiev-
ing sparsity in the representation.10,12 One approach
that has been proposed for adapting a basis is to select
from an overcomplete ‘‘dictionary’’ of basis functions a
subset that yields a low-entropy description12–14 of a par-
ticular signal or a class of signals such as texture (see Ref.
15, for example). A drawback of this approach is that the
basis functions are still prespecified and are often chosen
for rather ad hoc or intuitive criteria (e.g., 2D Gabor func-
tions appear suitable for capturing oriented structure in
images). In this paper the question of whether overcom-
plete representations can better capture the structure of
images is tested directly by evaluating the relative coding
efficiency.

An intriguing aspect of codes adapted to natural im-
ages is their resemblance to the receptive fields of neu-
rons in the primary visual cortex.10,16 Previous attempts
to account for the structure of V1 receptive fields in terms
of quantitative principles have been based either on
PCA17,18 or on the fact that 2D Gabor functions provide
an optimal trade-off in achieving localization in both the
spatial-position and spatial-frequency domains.1,5 How-
ever, in the former case the basis functions learn only
from the pairwise statistics in the images and so do not
become localized unless artificially constrained (see also
Refs. 19 and 20); in the latter case it is unclear why joint
localization in the space/spatial-frequency domains is de-
sirable in the first place or that it is a principle that could
be generalized to higher stages of processing and other
modalities. The results obtained here, as well as similar
results obtained with related methods,16,21,22 suggest that
the localized, oriented, and bandpass structure of V1 re-
ceptive fields can be accounted for in terms of a rather
general coding principle, i.e., formation of a probabilistic
model of images in terms of a superposition of sparse, sta-
tistically independent representational elements.

We begin by describing the linear, generative image
model and its probabilistic interpretation, and we show
how to adapt the basis functions to maximize the prob-
ability of the model. The algorithm is then applied to
natural images, and the resulting basis functions are fit-
ted with 2D Gabor functions and analyzed in terms of
their tiling of the joint domain of position, orientation,
and peak spatial-frequency tuning. These results are
compared with data from the receptive-field properties of
neurons in the primary visual cortex. To compare the
learned basis with traditional bases, we use the probabi-
listic model to compute the relative coding efficiencies.
Finally, we show how the generative image model can be
applied to practical problems such as image denoising
and filling in.

2. MODEL FOR IMAGES

The proposed probabilistic model for images is based on a
linear, generative model. Each observed image,
x [ x1 ,..., xL , is assumed to be composed of a linear su-
perposition of basis functions plus additive noise:

x 5 As 1 e, (5)

where A is an L 3 M matrix whose columns are the basis
functions, s is an M-element vector of basis coefficients,
and e is assumed to be Gaussian white noise. Any given
image x thus has an internal representation in the model
s, which specifies which basis functions in A compose the
image. The number of basis functions can be greater
than the number of dimensions in the input, in which
case the basis is overcomplete.

Our goals are twofold: (1) to find a good matrix A for
coding natural images and (2) to infer for each image the
proper state of the coefficients s. The first problem is one
of adaptation and is analogous to the process of learning
(through either development or evolution) in the visual
system, while the second problem is one of image repre-
sentation and is most analogous to perception. We shall
take up the latter problem first and then address the
problem of adaptation.

A. Inferring an Image Representation
The problem of determining the coefficients s in Eq. (5),
given only information about the image x, is ill-posed for
two reasons. The first is that the basis functions will
generally not be linearly independent of each other (ow-
ing to overcompleteness), and thus there will be multiple
states of s that can account for the same image. The sec-
ond reason is that the noise e is unknown. Thus s must
be inferred from x. We do this by maximizing the condi-
tional probability distribution of s given x, P(sux, A),
which can be expressed by means of Bayes’s rule as

P~sux, A! } P~xuA, s!P~s!. (6)

The first term specifies the likelihood of the image under
the model for a given state of the coefficients. Because
the noise is assumed to be Gaussian, this likelihood is
given by P(xuA, s) } exp@2(l/2)ux 2 Asu2#, where l

5 1/s 2 and s is the standard deviation of the additive
noise. The noise level determines the encoding precision.
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The second term specifies the prior probability distribu-
tion over the basis coefficients. (We assume that this prior
does not depend on the basis matrix A and thus P(suA)
5 P(s).) We choose this distribution to be factorial and
Laplacian, P(sm) } exp(2umusmu), which assumes that A

decomposes the images into sparse, statistically indepen-
dent components.16 More will be said about this choice of
prior below.

Maximizing the posterior distribution P(sux, A) thus
presents us with the following problem:

ŝ 5 max
s

P~sux, A!, (7)

5 max
s

@log P~xuA, s! 1 log P~s!#, (8)

5 min
s

S l
2

ux 2 Asu2
1 uTusu D . (9)

In other words, we need to find the state of the coefficients
with minimum L1 norm that also minimizes mean
squared reconstruction error. This problem is formally
equivalent to that of ‘‘basis pursuit de-noising’’ proposed
by Chen et al.12 In our case, however, the L1 norm arises
from the Laplacian prior. Under this prior (or other
super-Gaussian priors), finding the most probable basis
coefficients essentially selects out a complete basis and
sets the coefficients for the remaining vectors to zero.
Thus, even though the generative image model is linear,
the most probable basis coefficients are a nonlinear func-
tion of the image.

Note that if P(s) is chosen to be factorial and Gaussian,
then ŝ is simply a linear function of x, given by the
pseudoinverse of A when e 5 0:

ŝ 5 A1x. (10)

In the special case where A is orthogonal, then we have
ŝ 5 ATx (again, assuming zero noise). If we specify A to
be Fourier basis and the variance on s i corresponds to the
power spectrum of the images x then the linear mapping
from x to s is the well-known Wiener filter. Our ap-
proach, by contrast, is entirely based on the use of non-
Gaussian priors, which lead to nonlinear image codes.

B. Adapting the Basis Vectors
Our goal in adapting the basis vectors is to obtain a good
model of the distribution of natural images. The good-
ness of fit can be assessed by computing the average log-
probability of images under the model

L 5 ^log P~xuA!&, (11)

where the distribution P(xuA) is obtained by marginaliz-
ing over the internal states s:

P~xuA! 5 E dsP~xuA, s!P~s!. (12)

To the extent that the model is accurate, 2L provides a
lower bound for the number of bits required to code the
images, and the more accurate the model, the closer one
can approach the true bound. Thus our goal amounts to
finding the basis matrix A that maximizes the data’s log-
probability (L ) or, equivalently, minimizes the data’s cod-
ing cost (2L ).

Equation (12) makes clear that the form of the model
distribution depends not only on the choice of basis func-

tions A but also on the choice of prior P(s). If the noise
model is Gaussian, then choosing P(s) to be Gaussian will
result in the entire model distribution P(xuA) also being
Gaussian. As such, it will be able to describe only
second-order statistical structure, as specified by the
covariance matrix. Because it is well established that
images are not well described by Gaussian
distributions,4,16,23,24 we are thus obligated to choose a
non-Gaussian prior. The specific form we choose for the
prior is to be sparse and factorial. By a sparse prior, we
mean that the probability distribution of each coefficient’s
activity, P(s i), is highly peaked around zero and with
heavy tails. Such a distribution reflects the notion that
natural images should be described in terms of a small
number of descriptive elements4,10; thus any given coeffi-
cient will rarely be active, and when it does become ac-
tive, it takes on a value along a continuum. We choose
here to represent such a distribution using a Laplacian,
but other super-Gaussian shapes are also possible. The
joint distribution of the coefficients is chosen to be facto-
rial, P(s) 5 P iP(s i), in line with Barlow’s proposal that
an efficient code should try to decompose the image in
terms of statistically independent elements.25,26

Maximizing L with respect to A will thus find a set of
basis functions that best account for the structure in im-
ages in terms of sparse, statistically independent ele-
ments. This can be accomplished in the most straightfor-
ward fashion by gradient ascent:

DA }
]L

]A
5

]

]A
^log P~xuA!&, (13)

5 K 1

P~xuA!
E ]

]A
P~xus, A!P~s!dsL , (14)

5 K 1

P~xuA!
E lesTP~xus, A!P~s!dsL , (15)

5 K E lesTP~sux, A!dsL , (16)

5 l^^esT&P~sux, A!&, (17)

where e 5 x 2 As. The practical problem that is pre-
sented by Eq. (17) is that of averaging over the internal
states s for each image presentation. One possible av-
enue might be to use efficient methods for sampling from
the posterior P(sux, A). This characterizes in part the
approach taken by Olshausen and Field,10 although that
algorithm samples the posterior only at its maximum, ig-
noring the volume and thus requiring an additional adap-
tive step to scale the basis functions so that the coeffi-
cients have the same variance as that dictated by the
prior. Here we explore an alternative route6 based on
approximating the posterior with the best-fitting Gauss-
ian distribution, which allows the integral to be solved
analytically. Such an approximation seems reasonable
because, for the Laplacian prior, there is in most cases a
single maximum in the posterior (in some pathological
cases, the posterior will be a ridge), and so a Gaussian
could be capable of capturing most of the volume under
the posterior. An advantage of this technique is that it
allows us to calculate explicitly an approximation to L,
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which allows for the objective comparison of different im-
age models (i.e., different bases or priors).

The Gaussian approximation of the posterior leads to
the following expression for L:

L ' const. 2 K l

2
ux 2 Aŝu2

1 log P~ ŝ! 2

1

2
log det HL ,

(18)

where H is the Hessian of the log posterior at ŝ, given by
lATA 2 ¹s¹s log P(ŝ). We assume the image patches to
be independent. Performing gradient ascent on this ex-
pression yields the following learning rule (see Appendix
A for derivation):

DA } l^esT
2 AH21&. (19)

Note that the first term is precisely Olshausen and
Field’s16 learning rule, while the second term results from
approximating the volume under the posterior and thus
does away with the need for the additional rescaling step
that was used in Olshausen and Field’s algorithm. Pre-
multiplying this rule by AAT yields the form given by
Lewicki and Sejnowski6:

DA } 2A~zsT
1 ATAH21!, (20)

where z 5 d log P(s)/ds (see Appendix A for details).
This form of the learning rule is more stable, and it was
used to learn the basis functions in the examples below.

3. LEARNING CODES FOR NATURAL
SCENES

Here we learn complete and 23-overcomplete representa-
tions of natural scenes with the data set used by
Olshausen and Field16 (whitened images of Alaska nature
scenes).

A. Learning Procedure
The bases were initialized to random Gaussian blobs with
positions that were evenly distributed over the input
area. The initial bases were generated by first setting
the basis elements to random values between [21,1] and
then scaling these values by a 2D Gaussian envelope that
had a standard deviation of 0.25 pixels in the complete
case and 1 pixel in the 23-overcomplete case. This en-
sured that the initial set of basis functions spanned the
input space. Similar results were obtained with random
initial bases, but convergence was slower.

To further speed convergence, we used the modifica-
tions of the basic gradient-ascent procedure described
previously.6 For each gradient [Eq. (20)] a step size was
computed by d i 5 e i /amax , where amax is the element of
the basis matrix A with largest absolute value. The pa-
rameter e was reduced from 0.02r to 0.001r over the first
1000 iterations and fixed at 0.001r for the remaining it-
erations. The parameter r is a measure of the data range
and was set equal to be the standard deviation of the
data. Exponential averaging (e i 5 0.9e i21 1 0.1d i) was
used to ensure smoothness of the steps. Learning was
stopped after 10 000 gradient steps, at which point both of
the bases learned here were stable. The training data
consisted of 12 3 12 image patches randomly sampled

from the ten 512 3 512 images in the data set of
Olshausen and Field.16 The patches were repeatedly re-
sampled throughout training to avoid reuse of any one set
of patches. Training required approximately 12 h of com-
puting time on a 200-Mhz processor.

The most probable basis function coefficients, ŝ, were
obtained with a modified conjugate-gradient routine.27

The basic routine was modified to replace the line search
with an approximate Newton step. This approach re-
sulted in a substantial improvement in speed and pro-
duced much better solutions in a fixed amount of time
than the standard routine. A convergence tolerance of
0.02 was used for the examples shown here. This was
typically required between five and ten conjugate-
gradient steps, each requiring computation of the poste-
rior gradient. The noise level was set to l 5 3000, which
corresponds to ;7.8 bits of precision for the encoded im-
age patches.

B. Results
A sample of the learned basis functions (the odd-
numbered) is shown in Fig. 1, in decreasing order of L2

norm. Nearly all the learned basis functions show a
Gabor-like structure, as has been found previously.16,21

Fig. 1. Results from training (a) complete and (b) 23-
overcomplete bases on natural scenes. The graphs plot and the
odd-numbered basis functions in decreasing order of L2 norm.
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The basis functions largest in magnitude also have the
lowest peak spatial-frequency tuning. Peak spatial-
frequency tuning becomes progressively higher with de-
creasing magnitude. The checkerboardlike basis func-
tions are smallest in magnitude and resemble those
obtained from PCA which assumes that the data have
Gaussian structure. These could reflect an attempt of
the model to capture small-amplitude noise in the images.

The learned basis functions also resemble the spatial
receptive-field profiles of simple cells found in the pri-
mary visual cortex of mammals, which numerous investi-
gators have likened to Gabor functions.1,5,28 One of the
reasons that the Gabor basis has been advocated as a
model of V1 image coding, as well as for efficient image
coding in general, is that it possesses the attractive prop-
erty of optimal localization in both the spatial-position
and spatial-frequency domains.1,5 It is thus quite inter-
esting that, although the learned basis functions were
completely unconstrained in terms of what form they take
on within the 12 3 12 grid, the form that does emerge re-
sembles a Gabor wavelet basis. However, besides the
question of how well Gabor functions (or any functional
form) fit individual receptive fields, there is the more dif-
ficult technical question of how a population of such func-

tions tile the joint space/spatial-frequency domain to form
a complete basis for image representation. Fourier rep-
resentations, for example, do this quite simply by tiling
the spatial-frequency domain evenly in linear frequency.
But the Gabor basis presents one with the choice of many
parameters or degrees of freedom in deciding how to tile
the space, e.g., achieving fine resolution in orientation
versus coarse coverage in spatial position. The algo-
rithm used here learns the basis functions and automati-
cally chooses these parameters to tile the space so as to
maximize the probability of the data under the model.

C. Analysis of Basis Function Tiling Properties
The basis functions learned by the algorithm can be com-
pared with other attempts that have been made to tile a
physiologically plausible Gabor basis ‘‘by hand.’’ 2,3,5 To
analyze the tiling properties of the learned basis func-
tions, we fitted each basis function with a Gabor function
of the form

g~x, y ! 5 a expX21

2 H Fu~x, y !

su
G2

1 Fv~x, y !

sv
G2J C

3 cos@2pfu~x, y ! 1 f#, (21)

Fig. 2. Basis function characteristics for (a) the complete case and (b) the 23-overcomplete case. Each basis function was fitted by a
Gabor function to characterize its position, spatial-frequency selectivity, and orientation. At the top are polar plots of the peak spatial-
frequency tuning and orientation selectivity. Each dot denotes the center spatial frequency and orientation of a fitted basis function.
The cross hairs indicate the 1/4-bandwidth in spatial frequency and orientation. The plots at the bottom show the spatial layout of the
same set of basis functions. Each bar denotes the center position and orientation of a fitted basis function within the 12 3 12 grid. The
thickness and length of each line denotes its spatial-frequency band (lower spatial frequencies are represented with thicker lines, and
vice versa). Increasing the degree of overcompleteness results in a denser tiling of the joint four-dimensional space of position, orien-
tation, and spatial frequency.
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u~x, y ! 5 ~x 2 x0!cos~ u ! 1 ~ y 2 y0!sin~ u !, (22)

v~x, y ! 5 2~x 2 x0!sin~ u ! 1 ~ y 2 y0!cos~ u !. (23)

Note that Gabor functions, as defined by the joint mini-
mization of uncertainty in spatial position and spatial
frequency,1 are complex valued. To obtain a physically
meaningful expression, here we consider only its real
part.

The parameters a, x0 , y0 , su , sv , u, f, f were ad-
justed by conjugate-gradient descent to minimize the
squared error between the learned basis function and the
model Gabor g(x, y). Because the error surface contains
local minima, multiple initial conditions were used, and
the parameters that formed the best fit were taken as the
final solution. Note that the reference frame of the
Gaussian envelope was locked to the orientation of the co-
sine grating. In addition, a soft constraint was placed on
the size of the envelope so that its width (;2su) did not
fall much below one-half wavelength of the carrier grat-
ing. This was necessary to discourage pathological solu-
tions that combined a very small envelope with a very-
low-frequency grating, which often happened in cases in
which there was only one positive and one negative lobe
in the learned basis function.

The Gabor functions parameterized in this way fitted
the learned basis functions quite well, and the mean
squared error for this example was 8% of the variance of
the basis functions. Figure 2 shows the result of this
analysis. One trend that appears immediately obvious is
that the preferred orientation tends to align vertically
and horizontally, but we suspect that this is an artifact of
our having used a rectangular sampling grid to digitize
the images rather than a reflection of an intrinsic prop-
erty of the images themselves.

The Gabor characterization of the learned basis func-
tions shows some differences when they are compared
with physiologically determined receptive fields. The av-
erage bandwidths of the learned basis functions are
1.8 6 0.2 and 1.7 6 0.2 octaves for the 13 and 23 basis
sets, respectively, whereas physiologically determined re-
ceptive fields tend to lie in the range of 1 to 1.5 octaves.
The average aspect ratios of the basis functions were
1.32 6 0.5 and 1.22 6 0.3 (13 and 23 basis sets), com-
pared with the 2:1 aspect ratios that tend to be more typi-
cal of the physiology. Thus the basis functions were
somewhat more broadband and less selective in orienta-
tion than those found physiologically. However, it
should be remembered that the basis functions of the
model are not generally equivalent to receptive fields be-
cause of the nonlinear mapping from the image space x to
the coefficient space s [see Eq. (9)]. To ascertain the re-
ceptive fields of the model, they would have to be mapped
with spots and gratings, and previous experience with
this10 has shown that the nonlinearity tends to make
units more selective than one would predict from a simple
linear input–output relationship. Thus it is possible that
this process could sharpen the tuning properties and
bring them closer to the receptive fields determined
physiologically.

Lee5 has designed a physiologically plausible Gabor ba-
sis by constraining the aspect ratio of the functions to be
2:1 and the bandwidth to be between 1 and 1.5 octaves.

To form a complete code with such a basis, the higher-
spatial-frequency functions must tile space more densely
than the low-spatial-frequency functions. If the separa-
tion between each spatial-frequency band is one octave,
then the sampling density increases by a factor of 4 for
each octave. The learned bases also show a similar in-
crease in sampling density, as shown in Fig. 3. The num-
ber of basis functions lying in the three spatial-frequency
bands 0–0.075, 0.075–0.15, and 0.15–0.3 cycles/pixel are
4:23:117 for the 13 basis set and 4:78:206 for the 23 basis
set. Thus there is an approximate 5-fold increase for
each octave in the 13 basis, while the 23 basis shows a
2.6-fold increase for the middle-to-high-transition and a
19-fold increase for the low-to-middle transition. This
general trend toward higher sampling density at higher
spatial frequencies found in both Lee’s basis and the
bases learned here is at odds with the observed distribu-
tion of peak spatial-frequency tuning in V1 cortical neu-
rons. The vast majority of recorded cells appear to reside
in the mid- to low-spatial-frequency range when scaled to
the retinal sampling lattice.29,30 One possible explana-
tion for this discrepancy is that the highest-spatial-
frequency cells were greatly undersampled in these ex-

Fig. 3. Histogram of peak spatial-frequency bandwidths (in
cycles per pixel) for (a) complete and (b) 23-overcomplete learned
basis functions.
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periments, since these cells will be relatively difficult to
isolate in comparison with the low-spatial-frequency cells.
Alternatively, it has been suggested that this discrepancy
might be resolved in part by considering the time domain
of the visual signal.31 When basis functions are learned
for natural movies, the distribution of spatial frequency is
more spread out, presumably because of the trade-off be-
tween tiling velocity and spatial frequency.

The basis function characteristics found here are gen-
erally consistent with previous results obtained with re-
lated methods.10,21,22 The differences are that Olshausen
and Field10 show a somewhat more multimodal distribu-
tion of spatial-frequency tuning clustered at either low,
medium, or high frequencies, while the bases of Bell and
Sejnowski,21 as well as those of van Hateren and van der
Schaaf,22 appear more highly skewed toward the highest
spatial frequencies. There are a number of differences
between our approach and these previous approaches
that could account for the broader distribution of spatial-
frequency tuning found here. One is the level of noise as-
sumed. Olshausen and Field assumed a relatively high
noise level compared with that assumed here (l ' 100
versus l 5 3000), whereas the methods of Bell and Se-
jnowski and of van Hateren and van der Schaaf assume
zero noise. The other difference lies in the choice of prior
on the coefficients. Olshausen and Field used a general-
ized Cauchy prior, whereas Bell and Sejnowski use the
prior P(sm) } sech(sm) (corresponding to the hyperbolic
tangent output nonlinearity), which is less peaked at zero
(approximately Gaussian for sm between 21 and 1, or ap-
proximately 50% of the total probability) and as a result
is less sparse than the Laplacian that we employ. The
method of van Hateren and van der Schaaf simply seeks
non-Gaussianity and is thus ambivalent as to the degree
of sparseness.

4. COMPARISON WITH TRADITIONAL
BASES

One of the advantages of the probabilistic framework is
that alternative bases can be compared objectively in
terms of coding efficiency. To estimate how well a par-
ticular basis represented a given set of data, we followed
two methods described in detail in Ref. 6.

The first method is to use Shannon’s theorem directly
to obtain a lower bound on the number of bits required to
encode the pattern, which is

number of bits > 2log2 P~xuA! 2 L log2~ sx!, (24)

where L is the dimensionality of the input pattern x and
sx is the standard deviation of the additive noise. This
defines the precision of the encoding and essentially dis-
cretizes the continuous distribution P(xuA) into hyper-
bins of size sx . The higher the noise level, the coarser
the encoding. As the noise level goes to zero, the code
words become longer. Shannon’s coding theorem states
that this expression will give a lower bound on coding
length if the model is correct, but if the assumptions of
the model are wrong, e.g., if P(s) does not match the ob-
served coefficient distribution, this measure will overesti-

mate the bound by an amount equal to the Kullback–

Leibler divergence between the model density and the
true density.

The second method is to calculate the entropy of the ba-
sis vector coefficients. A single function, f(s), is used to
estimate the probability density for all the coefficients
from the observed distributions on a training set. The
coding cost for a test data set is computed by estimating
the entropy (in bits per pattern) of the fitted coefficients

number of bits > 2(
i

n i

N
log2 f @i#, (25)

where the notation f @i# represents the fact that f(s) is
quantized to a precision needed to maintain an encoding
noise level of sx and n i is the number of counts observed
in each bin of f @ # for each of the coefficients fitted to a
data set consisting of N patterns. See Ref. 6 for details.
This method has the advantage over the probability
method that it is not a bound but a direct measure of cod-
ing cost, albeit with a simple coding scheme. The en-
tropy method has the drawback that it does not include
the cost of misfitting the data, but, because it uses the ac-
tual distribution of the observed coefficients, it can yield a
more accurate estimate of the coding efficiency if the data
are well fitted. Thus the estimate of coding efficiency
based on entropy can be higher or lower than the estimate
of the bound based on probability, depending on the ex-
tent to which the data can be encoded to maintain an er-
ror of sx and on the accuracy of the probabilistic model.

In the comparisons below, the learned basis functions
were obtained with the same methods as described above
but with a data set consisting of randomly sampled
8 3 8 image patches. The basis coefficients were fitted
to test data by the same procedure as above but with a
tolerance of 1024. The Laplacian-prior parameter um

was adapted to fit the density of sm obtained from the im-
ages. The noise level was set to be the same as that used
during the learning, ;7.8 bits/pixel @ sx 5 1/(3000)1/2#.
The estimated coding efficiencies were calculated by using
8 3 8 image patches randomly sampled from a test data
set. The standard deviations of these estimates were cal-
culated by using ten different test data sets of 100 image
patches each.

A. Comparison of Complete Bases (A64364)
Figure 4 shows some of the bases used in the comparison
with the learned basis: a Gabor wavelet basis fitted to
the learned basis, a basis obtained with PCA, the stan-
dard Fourier basis, the Haar wavelet basis, a Daubechies
wavelet basis [without wrap-around, N 5 2 (Ref. 32)] ba-
sis, and a Gabor wavelet basis. The Gabor wavelet basis
was constructed with the methods of Lee,5 in which the
Gabor basis functions are constrained so that they better
match the properties of V1 simple cells. The Gabor basis
was constructed by using the parameters K 5 3, N 5 1,
a0 5 2, b0 5 2 (using Lee’s5 notation) with an aspect ra-
tio of 2:1 and a bandwidth of 1.5. Three levels generated
67 basis functions (only 64 are shown in the figure). Not
shown are the learned bases for 8 3 8 image patches
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(similar to those shown in Fig. 1), a Daubechies wavelet
basis with wrap-around on the 8 3 8 grid, and a pixel ba-
sis (A is the identity).

We also tested a basis learned by using the standard
ICA learning rule. Because these are complete bases,
the only difference between the ICA learning rule and the
rule used here is the assumption of additive noise and the

choice of the prior. ICA assumes zero noise and a prior
corresponding to P(sm) } sech(sm), which assumes that
the distribution of s is less sparse than under the Laplac-
ian.

Table 1 shows the estimated coding efficiencies in bits
per pixel for the various bases. The results show that the
learned basis is between 0.7 and 1.1 bits/pixel more effi-

Fig. 4. Some of the complete bases used for comparison with the learned basis.
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cient than any of the nonadapted bases. Note that al-
though the fitted Gabor basis achieves the best coding ef-
ficiency in terms of entropy, it is among the worst in
terms of probability. This means that this set of basis
functions does not efficiently span the space of natural
images, i.e., achieving both a low-entropy-coefficient dis-
tribution and a misfit consistent with the assumed noise
level. The misfit cost is not taken into account by the en-
tropy estimate but is considered in the efficiency estimate
based on probability.

One reason for why the Gabor bases do not represent
the data efficiently is that in many cases, especially for
images with significant high-spatial-frequency structure,
very large coefficients are required to achieve low residual
errors. The large difference in coding efficiency between
the hand-generated and the fitted Gabor clearly shows
that it is difficult to choose values for the large number of
free parameters in a Gabor basis so that the space is op-
timally tiled. This problem is exacerbated by using a
small sampling grid. The approach here (i.e., the learn-
ing algorithm) optimizes these parameters to maximize
coding efficiency and solves the tiling problem by adapt-
ing the basis functions themselves, which are not neces-
sarily constrained to be of Gabor form, to the data.

The coding efficiency is reflected in the distributions of
the coefficients obtained when natural images are en-
coded. Figure 5 shows the histograms and kurtosis val-
ues for some of the bases used in the coding efficiency
comparisons. The adapted bases, the 13 and 23 learned
bases, the Gabor bases fitted to the 13 learned basis, and
the PCA basis, all show much larger kurtosis values than
the Fourier, Haar, Daubechies, or Gabor basis. Note
that all the histograms for the nonadapted bases are non-
Gaussian, consistent with previous observations.4,33 It is
also evident from these figures that the Laplacian as-
sumed by the model does not describe either of the distri-
butions for the learned bases particularly well. It would
be desirable to incorporate a prior that better describes
the actual coefficient distribution, which would lead to
better coding efficiency. The difficulties associated with
this are discussed below.

The predicted compression rates for these bases might
seem poor compared with standard compression algo-

rithms, but it should be kept in mind that these rates are
for near-noiseless compression (7.8 bits of resolution/
pixel) on black-and-white image patches that are already
whitened. For comparison, the table also reports the
compression rate achieved by using JPEG on the same
data set. JPEG is designed as a lossy compression algo-
rithm and contains a quality parameter that controls the
trade-off between image quality and compressed size. To
achieve a comparable encoding precision required a qual-
ity parameter between 96 and 97, which yielded a mea-
sured encoding precision of 7.62 and 7.90 bits/pixel, re-
spectively, with a corresponding compression rate of 4.16
and 4.58 bits/pixel. Interpolating to get an encoding pre-
cision of 7.77 bits/pixel (the same precision used for the
other estimates) gives an approximate compression rate
of 4.36 bits/pixel. This efficiency is significantly better
than that of the Fourier basis (on which JPEG is based),
reflecting the fact that JPEG is able to reduce redundancy
among the coefficients, whereas the model assumes that

Table 1. Bits per Pixel for Complete Bases on

Natural Image Data Set

Basis

Estimation Method

2log2 P(xuA) 2 L log2( sx) Entropy of s

Learned 4.69 6 0.05 4.11 6 0.05

ICA 4.80 6 0.06 4.71 6 0.05

Gabor fit 5.86 6 0.02 3.60 6 0.04

PCA 5.43 6 0.07 5.22 6 0.06

Fourier 5.48 6 0.08 5.34 6 0.07

Haar 5.55 6 0.07 5.46 6 0.06

Daubechies (wrap) 5.60 6 0.07 5.51 6 0.07

Daubechies (nonwrap) 5.63 6 0.07 5.49 6 0.07

Gabor 7.28 6 0.36 8.20 6 0.10

Pixel 5.79 6 0.08 5.77 6 0.08

JPEG 4.36

Fig. 5. Coefficient histograms for some of the bases used in the
coding efficiency comparisons. Each histogram shows 97.5% of
the coefficient range. The vertical axis is scaled so that each
histogram peak falls within the plot. The sample kurtosis is
shown for each histogram.
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the coefficients are independent. The estimated coding
efficiency of the learned basis functions (4.11, with the en-
tropy estimate) shows a small but significant improve-
ment, suggesting that incorporating learned basis func-
tions into compression algorithms could yield improved
compression rates. This comparison shows that there
are at least two routes to an efficient code. Compression
algorithms such as JPEG uses the mathematically conve-
nient basis and compensate for the correlations in the co-
efficients. The approach presented here learns a set of
basis functions such that the coefficients are maximally
independent.

B. Checking the Coding Efficiency Estimates
To check the consistency of the coding efficiency esti-
mates, we generated an artificial data set by synthesizing
data from the pixel basis with a Laplacian distribution for
the coefficients. This produced images that consisted of
independent pixels, each with a Laplacian intensity dis-
tribution.

Table 2 shows the estimated coding efficiencies for the
same set of bases. For this data set, the pixel basis
achieves the best coding efficiency, and the learned and
the Gabor-fit bases perform much worse than any of the
fixed bases. This indicates that the coding efficiency es-
timates are consistent, because the true generating basis
gives the best estimated coding efficiency. Also note that
for the pixel basis, the two estimates of coding efficiency
are nearly identical. This indicates that the approxima-
tion to P(xuA) is reasonably accurate, because in this case
the assumptions of the model are correct.

C. Comparison of 23-Overcomplete Bases (A643128)
Two bases were used for comparison with the learned 23-
overcomplete bases. A Fourier basis was generated by
evenly sampling in frequency, orientation, and phase, and
a Gabor basis was generated with the parameters K

5 3, N 5 1, a0 5 2, b0 5 1.5 (with Lee’s5 notation) with
an aspect ratio of 2:1 and a bandwidth of 1.5. Four levels
generated 118 basis functions. Table 3 shows the coding
efficiency estimates in bits per pixel for these 23-
overcomplete bases, in comparison with the learned
bases. Again, the learned basis achieves better coding ef-
ficiency than the hand-tiled, unadapted Fourier or Gabor
basis on the same image data set. The relatively large
values for the entropy of the Gabor basis suggest that
there are strong correlations in the basis function coeffi-
cients.

One might expect that as more basis functions are
added to the overcomplete representation, the coding effi-
ciency should increase, because the basis functions can
become more and more specific and obtain a better ap-
proximation of the underlying density. A comparison of
Tables 1 and 3, however, shows that this is not the case.
A likely reason for this is that the assumptions of the
model are breaking down for higher degrees of overcom-
pleteness. In particular, the present model assumes that
the coefficients s are independent, an assumption that be-
comes increasingly inaccurate for higher degrees of over-
completeness. Models that can capture a greater variety

of structure in the coefficients, such as with hierarchical
priors, could achieve better representation and greater
coding efficiency.

5. NOISE REMOVAL

To demonstrate the ability of the adapted bases to cap-
ture typical structure in the data, we applied the algo-
rithm to the problem of noise removal in images. This
task is well suited to the algorithm because Gaussian ad-
ditive noise is incorporated into the specification of the
image model. A set of bases that characterizes the prob-
ability distribution of the data well should have improved
noise removal properties, because they will be better at
inferring the most probable image in the face of uncer-
tainty.

A 60 3 60 subimage was extracted from the training
set, and Gaussian noise with variance of 0.05 was added
to the image, which had a variance of 0.124 [signal-to-
noise ratio (SNR) 5 3.9 dB]. The image model was ap-
plied to nonoverlapping 12 3 12 blocks for different basis
sets. On each image presentation the coefficients are fit-
ted so as to maximize the probability of the image, with a
Laplacian prior on the coefficients (i.e., the same as in
learning):

ŝ 5 max
s

P~sux, A! (26)

5 min
s

Fl
2

ux 2 Asu2
1 uTusu G. (27)

The denoised image x̂ is then computed as

x̂ 5 Aŝ. (28)

Table 2. Bits per Pixel for Complete Bases on

Pixel Data Set

Basis

Estimation Method

2log2 P(xuA) 2 L log2( sx) Entropy of s

Natural image basis 7.45 6 0.10 5.54 6 0.02

Gabor fit 9.65 6 0.29 4.88 6 0.05

ICA 7.28 6 0.09 6.12 6 0.03

PCA 5.06 6 0.01 4.99 6 0.01

Fourier 5.06 6 0.01 4.99 6 0.03

Haar 5.03 6 0.01 4.98 6 0.01

Daubechies (wrap) 5.03 6 0.01 4.97 6 0.01

Daubechies (nonwrap) 5.02 6 0.01 4.97 6 0.01

Gabor 8.99 6 0.26 8.63 6 0.05

Pixel 4.89 6 0.01 4.87 6 0.01

Table 3. Bits per Pixel for 23-Overcomplete Bases

on Images Data Set

Basis

Estimation Method

2log2 P(xuA) 2 L log2( sx) Entropy of s

Learned 6.28 6 0.04 6.81 6 0.08

Gabor fit 6.46 6 0.05 6.33 6 0.07

Fourier 7.35 6 0.17 7.89 6 0.11

Gabor 7.16 6 0.19 12.19 6 0.16
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The resulting image reconstructions are shown in Fig. 6.
The learned bases appear to do well at rejecting noise in
the flat, uniform luminance regions of the image and also
capture more details of the structure (e.g., the details in
the lower left portion of the image are a bit sharper). De-
noising with the Wiener filter, which uses the Fourier ba-
sis and a Gaussian prior as its image model, produces a
perceptually different reconstruction, reflecting different
assumptions about the underlying image structure.
Quantitatively, there is only a slight improvement in us-
ing the learned basis functions over the Wiener filter
(SNR 5 9.5 versus 8.6 dB). It should be noted that be-
cause the images were preprocessed by low-pass filtering
and whitening, the Wiener filter is using information that
is mainly in the corners of the 2D frequency domain.

This method of denoising has many elements in com-
mon with the method of Bayesian wavelet ‘‘coring’’ devel-
oped by Simoncelli and Adelson.34 Both utilize a trans-
formation through a set of basis functions to reveal
sparse, non-Gaussian histograms on the coefficients, and
both utilize Bayesian inference based on these histograms
to estimate the underlying signal. The main difference
lies in the way that the optimal coefficient values are ar-
rived at. The coefficient values in the approach pre-
sented here are computed iteratively by maximizing the
posterior distribution over the coefficients, whereas Simo-
ncelli and Adelson compute the coefficients by simply pro-
jecting the image onto the basis functions and then com-
puting the mean of the posterior distribution given these
coefficients (no iteration required). Both methods appear
to yield sizable gains over Wiener filtering, but how they

compare with each other on similar image ensembles at
similar noise levels deserves further exploration.

The method described here is virtually identical to the
‘‘basis pursuit denoising’’ method.35 The only difference
here is that the learned bases (or ‘‘dictionaries,’’ in their
terms) have been adapted to the signal structure, accord-
ing to the same probability model used for inferring the
denoised image, rather than using a basis set that is
specified a priori. Again, careful tests that compare the
relative merits of these different techniques have yet to be
done.

6. FILLING IN MISSING PIXELS

The same procedure that was used for denoising can also
be used to fill in missing pixels, because missing informa-
tion can be viewed as another form of noise. If the noise
level of the missing pixels is set to infinity (lm 5 0) in the
likelihood function

P~xuA, s! } expS 2(
i

l i

2
ux 2 Asui

2D , (29)

then the procedure for finding the most probable values of
the coefficients,

ŝ 5 min
s

S(
i

l i

2
ux 2 Asui

2
1 uTusu D , (30)

will result in an image,

x̂ 5 Aŝ, (31)

that interpolates the values for these pixels. Figure 7
shows an example where the complete (13) learned bases
were used to infer the image structure when 70% of the
pixel values had been removed. Compared with spatial
interpolation using, for example, cubic splines [Fig. 7(c)],
the model reconstruction is able to fill in features such as
lines or edges, whereas spline interpolation smoothes
among the available pixels (compare, for example, the
patches in the second row, first column, and also the
patches in the third row, fourth column). The model re-
construction gives 5.3 dB versus 3.7 dB SNR for interpo-
lation. Further experiments (not shown) indicate that
reconstruction by the model performs increasingly better
than spline interpolation (in terms of mean squared error)
with an increasing amount of missing information.

Everson and Sirovich36 describe a similar method for
filling in missing pixels by using the Karhunen–Loève
transform applied to a specific image class, i.e., faces. In
terms of our framework, their procedure corresponds to
using a Gaussian prior, and thus it captures only the
second-order statistics in the data. The method de-
scribed here, by contrast, utilizes the higher-order statis-
tics because of the non-Gaussian prior. In the case of
natural images, this approach allows the model to fill in
missing data by using learned features like edges and
lines.

Fig. 6. Demonstration of image denoising by use of the 13 (com-
plete) basis set. Each image is shown tiled into nonoverlapping
12 3 12 blocks, to which the image model was then applied.
The results (lower left) show both a qualitative and a quantita-
tive improvement over Wiener filtering (lower right).
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7. DISCUSSION

We have shown in this paper how the framework of
probabilistic inference can be employed both for learning
efficient image codes [Eq. (20)] and for inferring the most
probable representation for a given image [Eq. (9)]. We
have demonstrated moderate success in learning bases
that capture the underlying statistical structure of im-
ages and have demonstrated how these can be compared
quantitatively with a number of standard image codes.
In these comparisons, the learned bases show a 15–20%
improvement over traditional bases and compare favor-
ably with compression rates of highly optimized compres-
sion algorithms such as JPEG.

This framework also allowed us to test the viability of
using overcomplete representations for the purposes of ef-
ficient coding. Overcomplete codes have been shown to
yield greater coding efficiency on some test data sets,6 but
for the natural image data used here, overcomplete codes
did not yield an improvement in coding efficiency. Al-
though the entropy per coefficient was less in the over-
complete case than in the complete case, this reduction in
entropy did not outweigh the cost of having to transmit
twice as many coefficients. This could be the result of
both inaccuracies in the approximation used to estimate
the data likelihood and shortcomings in the present im-
age model.

An important concern in our present specification of
the model is the accuracy of the coefficient prior, P(s).
Clearly, there is a need for this prior to be more flexible.
For overcomplete codes, a Laplacian is not sparse enough
to reflect the fact that, for each pattern, a subset of the
coefficients will be zero. Buccigrossi and Simoncelli33

have observed that coefficients of wavelet representations
of images are more sparse than predicted by the Laplace
distribution and can be well modeled with a generalized
Laplace distribution (log P(s) } 2 uu sup). Another possi-
bility for improving the prior is to use a mixture distribu-
tion consisting of a delta function at zero and a second
function describing the distribution of nonzero coeffi-
cients. A more flexible approach proposed recently is to
model P(s) with Gaussian mixtures.37,38 Better approxi-
mation of the coefficient prior would allow the model to
better capture the actual coefficient distribution, but two
important problems must be addressed before the benefits
of such a model can be realized. The first is finding the
most probable coefficient values. For the cases of posi-

tive noise (e . 0) and overcomplete representations, com-
puting the most probable coefficients is not straightfor-
ward, although recent research has made progress in
finding the most probable coefficients for overcomplete
representations with a generalized Laplacian prior.39 A
second issue is how to evaluate or approximate the inte-
gral required to compute the data probability, P(xuA) [Eq.
(12)]. This problem remains a challenge for general mod-
els.

In this report we approximate P(xuA) by approximat-
ing the coefficient posterior distribution P(sux, A) with a
Gaussian. One promising approach for more accurate es-
timates is to model P(s) with a Gaussian mixture37,38 and
again use a Gaussian approximation at the (maximum)
posterior mode. A more general approach, suggested by
Eq. (17), is to use Monte Carlo methods40 to estimate
P(xuA) by sampling the coefficient posterior.

It should be emphasized, however, that, despite these
shortcomings of the particular models and approxima-
tions used, the probabilistic framework described here
provides a new perspective on the utility of working with
an adapted basis set, i.e., a better modeling of the under-
lying probability density. In the case of nonzero additive
noise or an overcomplete basis, the resulting image rep-
resentation is not a simple linear transformation of the
image but a result of a nonlinear inference process that
finds the most probable explanation of the image. A by-
product of the algorithm used to infer the representations
(the encoding step) is that it naturally lends itself to de-
noising and filling in of missing data. A further advan-
tage of the probabilistic framework is that the assump-
tions about the form of the model as well as the noise are
made explicit and can be tested objectively.

A second issue addressed in this article is the relevance
of the learned codes to neurobiology. Almost 40 years
ago Barlow25 proposed the principle of redundancy reduc-
tion for neural coding, i.e., that a population of neurons
should form a factorial code in which the neural outputs
for the particular data ensemble, such as natural scenes,
are statistically independent. The general framework
applied here is one of density estimation, i.e., estimating
P(xuA) [Eq. (12)], which minimizes the Kullback–Leibler
divergence between the model density and the distribu-
tion of the data. Under certain forms of the model, this is
equivalent to the methods of redundancy reduction and
maximizing the mutual information between the input

Fig. 7. Reconstruction of missing information. From the original image, 71% of the pixels were removed and reconstructed with the
methods described in the text. The reconstruction by the model is superior to the reconstruction based on spline interpolation, because
the model can fill in actual structure in the image, whereas spline interpolation only smoothes between available pixels. This can be
seen by comparing the image patches in row 2, column 1 and row 3, column 4.
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and the representation41–43 and has been advocated by
several researchers.3,25,26,44–46 Because the model we
have used here assumes statistical independence of the
basis function coefficients, it provides a direct method for
generating predictions from these principles about the
structure of population codes.

The analyses of both complete and overcomplete bases
adapted to natural images suggest that some of the prop-
erties of V1 receptive fields can be accounted for by Bar-
low’s efficient coding principle. This result is consistent
with previous observations,10,16,21,22 and in fact the learn-
ing algorithm used by Olshausen and Field10,16 and the
ICA learning rule used by Bell and Sejnowski21 can both
be derived from this framework.6 The notion of efficient
coding can be defined only with respect to a model, and
this represents perhaps the simplest non-Gaussian model
that produces Gabor-like receptive fields. The class of
models used here can capture only the most elementary
structure in natural images. This perhaps is one reason
that the overcomplete bases did not result in improved
coding efficiency in spite of producing a more dense tiling
of the Gabor spaces that is closer to that observed in the
physiological population.

Whether these principles are actually used by the brain
is an issue that can be addressed only by using these prin-
ciples to make explicit predictions and contrasting these
with physiology. The framework used here finds com-
pact descriptions of arbitrary high-dimensional data
spaces and has the potential for a wide variety of applica-
tions. It will be exciting to apply this framework to pat-
tern domains where good codes remain largely unknown.
We do not suggest that efficient coding is the only prin-
ciple underlying cortical function. It remains to be seen
to what extent these ideas, which show promise in ac-
counting for elementary aspects of sensory coding, will
apply to higher levels of cortical processing.

APPENDIX A

1. Derivation of the Learning Rule
A derivation of the learning rule has been presented pre-
viously by Lewicki and Sejnowski.6 Here we present an
alternate derivation that demonstrates more directly the
connections to the previous learning rule of Olshausen
and Field.10 The log-probability of the data has the form

log P~xuA! 5 const. 1 F~A, ŝ! 1 V~ ŝ!, (A1)

where

ŝ 5 arg max
s

F~A, s!, (A2)

F~A, s! 5 2

l

2
ux 2 Asu2

1 log P~s!, (A3)

} log P~sux, A!, (A4)

V~A, s! 5 2

1

2
logudet H~s!u, (A5)

H~s! 5 2¹¹F~A, s!. (A6)

Throughout, ¹ denotes the gradient with respect to s, and
¹k denotes the kth component of that gradient. Some
useful quantities are

e 5 x 2 As, (A7)

z 5 ¹ log P~s!, (A8)

¹F 5 lATe 1 z, (A9)

B~s! 5 2¹¹ log P~s!, (A10)

H~s! 5 2¹¹F~s! 5 lATA 1 B~s!,
(A11)

yk 5 2¹kV 5 ~H21!kk

dBkk

dsk

, (A12)

dŝk

dA ij

5 l@e iHkj
21

2 ~AH21!iksj#. (A13)

The derivation for expression (A13) is given below.
The derivative of F with respect to A is

d

dA
F@A, ŝ~A!# 5

]F

]A
1 ¹F •

]dŝ

]A
, (A14)

and because ¹F 5 0 at ŝ, we are left only with the first
term, which yields

dF

dA
5 leŝT. (A15)

The derivative of V with respect to A is

d

dA
V@A, ŝ~A!# 5

]V

]A
1 ¹V •

]dŝ

]A
. (A16)

The first term is

]V

]A
5 2lAH21, (A17)

and the second two terms are given above [Eqs. (A12) and
(A13)], yielding

dV

dA
5 lF2AH21

1

1

2
~eyTH21

2 AH21yŝT!G . (A18)

Combining the derivatives of F [Eq. (A15)] and V [Eq.
(A18)] gives us the total learning rule

DA } lFeŝT
2 AH21

1

1

2
~eyTH21

2 AH21yŝT!G . (A19)

We conjecture that the terms involving y can be ignored
because they represent curvature components that are
unrelated to the volume. In practice, omitting these
terms yields more stable learning. The rule then reduces
to

DA } l~esT
2 AH21!. (A20)

It might appear that the learning rule does not incorpo-
rate information about the gradient of the prior, but bear
in mind that at the maximum of F(s), ¹F 5 0 and so
lATe 5 2z [Eq. (A9)]. Thus if the posterior has been
properly maximized, e reflects information about the
prior.

This rule can be written in the form derived by Lewicki
and Sejnowski6 by premultiplying by AAT
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AATDA } l~AATesT
2 AATAH21#, (A21)

5 2A~zsT
1 ATAH21!, (A22)

where the last step is obtained by using lATe 5 2z.

2. Derivation of dŝk /dA ij

The quantity dŝk /dA ij can be computed by observing that
at the maximum of F(s), the gradient of F with respect to
s must remain zero as we perturb A ij . Thus if we per-
turb A ij by a small amount, the resulting change in the
coefficients, dŝ, must be such that ¹F 5 0. The deriva-
tive of ¹F with respect to A ij is

]¹kF

]A ij

5 l~dkjei 2 A iksj!, (A23)

where dkj 5 1 if k 5 j and dkj 5 0 otherwise. The de-
rivative of ¹F with respect to s is simply 2H [Eq. (A6)].
For these two changes to cancel, we require that

]¹F

]A ij

2 H
dŝ

dA ij

5 0. (A24)

Thus

dŝ

dA ij

5 H21
]¹F

]A ij

. (A25)

Writing this out in terms of each component dŝk and sub-
stituting into Eq. (A23), we get

dŝk

dA ij

5 l@e iHkj
21

2 ~AH21!iksj#. (A26)

This relation assumes that changes in ŝk are smooth with
respect to changes in A ij , which may not be true at a
small number of critical points because the mapping from
x to ŝ is nonlinear [Eq. (9)].

3. Approximating lATAH21

The expression for the term lATAH21 in expression (20)
can be approximated with the identity matrix,6 which
works well in many cases but can break down under some
circumstances. The following approximation works un-
der a broader range of conditions. Letting C 5 lATA,
we first apply a singular-value decomposition C

5 QVQT:

H21
5 ~C 1 B!21, (A27)

5 ~QVQT
1 B!21, (A28)

5 Q~V 1 QTBQ!21QT. (A29)

We can write

C~C 1 B!21
5 I 2 B~C 1 B!21, (A30)

5 I 2 BQ~V 1 QTBQ!21QT, (A31)

' I 2 BQ diag21~V 1 QTBQ!QT, (A32)

where diag21@ • # represents a diagonal approximation to
the inverse. For an ensemble of N patterns, this opera-
tion can be performed in NO(M2) 1 O(M3) time if QT is
factored out.
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