The Annals of Mathematical Statistics
1969, Vol. 40, No. 1, 97-115

PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS

By T. PetRIE
The Institute for Defense Analysis

0. Introduction. This paper is statistically motivated; the content mathe-
matical. The motivation is this: Given is an s X s ergodic stochastic matrix
A = ({(a;;)) and an s X r stochastic matrix B = ((b;z)). A generates a stationary
Markov process { W4 according to a;; = P[Wuq = j| W; = 4] and B generates
a process { ¥} described by P[Y, = k| Wi = j] = by . If R is the set of integers
1,2 ---7, R, = R, and R = [[7< R: (a point ¥ ¢ R* has coordinates Y,),
then the matrices A and B define a measure P4, 5 on R~ by

(0.1) PusiYy = ki, Yo = ke -+ Yo = Kk}
= Do vines QigOioi DiytyGiyigigks *** i yiDinky

where 8 = {1, .-+, 8} and {a;,} is the stationary absolute distribution for 4,
and k; ¢ B. The resulting process {Y.} is called a probabilistic function of the
Markov process { W. Let A; be the space of s X s ergodic stochastic matrices,
A; be the space of s X s stochastic matrices, A the space of s X r stochastic
matrices, IT = A; x A,and Il = A; x A, . The above associatestor = (4, B) e II
and the stationary vector a for A a stationary measure P, on B”. We write
P.(Yy,Y, -+ Y,) for that function on B” whose valueat Yy = Fky, -+ ¥, =k
is given by (0.1) if + = (4, B).

We also find it necessary to introduce R_, = II,=oR: and define the measure
Py 00 Bw by Pa,gy (Yon = kny Yonis = konia, +o+ Yo = ko) = Pa,p
(YI = k—n: Y, = k—n+1; Yn+1 = kO)

The problem: Fix m € II and let a sample Yy, Ys - - - Y, be generated according
to the distribution P,,. From the sample Y;, Y, --- Y, obtain estimators
6,(Y) of m so that 6,(Y) — m a.e. P,,. Throughout this paper o is fixed and
w varies in II.

The mathematics: Chapter I (Classification of Equivalent Processes) demon-
strates that the problem has a solution in the following sense: Let M([m] =
{x el | P, = P,, as measures on R”}. Clearly the points of M[m)] can’t be dis-
tinguished by any finite or infinite sample. The description of M[m] is crucial
in our study. Let &3 be the group of permutations of the integers 1 through s.
&g acts on IT by O'(A, B) = (O'A, O'B), (O'A),'j = Qe(i),0(j) » (O'B)jk- = b.,(j)k for
o &€ &g . Observe that P,, = P, as measures on R”.

The subset 2 31 ai; = 1, a;; = 0, is part of an s — 1 dimensional hyperplane
in Euclidean s space and has finite non zero (s — 1)-dimensional Lebesgue
measure d¢_yy ; similarly the set >t ibs =1, b = 0, has (r — 1)-dimensional
Lebesgue measure Ay_1y # 0. It follows that II with the product measure has
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98 T, PETRIE

measure (s—1A(-—1) . Wenormalize by this constant and, henceforth, assume II has
measure 1. The main result of Chapter I is

TaEOREM 1.3. There is an open subset Iy of II of measure 1 such that for me e Il ,
M) = Sgmo , i.€., 70 is distinguishable up to permutation by the measure P, (Ssmg
= {om | 0 £ Sg}).

Chapter IT (Limit Theorems and Statistical Analysis) extends and generalizes
the results of [1]. For each n and each Y & R* define the function H,[r, Y] on II
by H,lr, Y] = n" log P,[Yy, Y, - -+ Y,|. Each H,[r, -]is a random variable on
the probability space (R, P,,). For fixed Y the value Hy,[r, Y] is a function on II.
These random variables hold the solution to our problem as the following shows.

TrroREM 2.1. For each w in II, im,., H,[m, Y] = H,,(7) exists a.e. Py, .

Proposition 2.2 and Theorem 2.5 H, (r) = H,,(m) and

H, (x) = Hyy(m) iff = & Mim].

Define I,(Y) = {«’ e 1| H,[r, Y] is maximized at ='}.

TreoREM 2.8, IL,(Y) — M[n] a.e. Py .

These theorems theoretically solve our problem. Note in particular, the
importance of the function H,,(7) in view of Theorems 2.1 and 2.8.

Chapter III (Morse Theory) makes a further study of the function H ()
forrel;, = {(A,B)ell}a:; = &,bi = &}, & > 0, and ties the theory to-
gether with the following theorem of [2] and [6]: There exists a class of functions
3 on IT such that if f £ 3 there is a transformation 7;: IT — II with the property
that flr;(w)] = f(x) and flrs(x)]= f(x) iff x is a critical point of f. The transfor-
mations 7; are given explicitly in [2] and [4]. The class 3 contains each H,[r, Y.
Thus, a procedure which is naturally suggested for dealing with the problem is:
Given Yy --- Y, let f = H,[-, Y] and take 6,(w, ¥) = lims,« 7/°(x) for any
w ¢ II; 1 How good an estimate of my is 6,(w, Y)? The main theorem of
Chapter III answers this with

TarorREM 3.18. Let moeon IL;, . There exists an open set U,, conlaining
M{mo] such that given ¢ > O, there exists N = N(e) such that P{Y | 6,(z', V) &
Mz, €]} > 1 — eforn > N(e), for all ' & Uyry . (Mlmo, €| is the set of points
of II; whose Euclidean disiance from some point of M[wo] is less than e.)

I. CLASSIFICATION OF EQUIVALENT PROCESSES

1. Exhibiting II, . The major aim of this chapter is to prove Theorem 1.3.
We first exhibit the II, of that theorem.

Let V be an s X z matrix and P(A, V) = det (\I — V) where [ is the s X s
identity matrix. P’'(\, V) = (d/d\)P(), V). A stochastic matrix A is ergodic
iff it has a unique stationary vector a i.e., a"4 = a” and 2 a; = 1. Observe
that the set of ergodic stochastic matrices contains an open subset of the set of
all stochastic matrices, namely {4 | P'(1, A) # 0, A stochastic}. Since a is
unique for 4, the distribution P4,z is uniquely defined by A and B; moreover,
P (Y =k, --- Y, = k,) is a rational function of the coordinates of 4

11n g}eat generality this limit exists; for complete validity let 6.(x, Y) be the set of ac-
cumulation points of {r/(x)}.
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and B because the coordinates a; of a are rational functions of the coordinates
of A.

For each ¢ ¢ R, we will exhibit in Section 3 a rational function P;(A4, B) in the
coordinates of A and B. Let f(4, B) = P'(1, A)(det A) (I;zb;) (ILP:(4, B))-
(D net e (bga — bpra)?). Modulo the facts that the P;(A, B) and det 4 are not
identically zero on I, it follows that f(A4, B) £ 0 on II; thus IT; = {(4, B) eI |
f(A, B) = 0} is a closed subset of I of measure zero. Let I, = II — II, . It will
be seen that II, is the desired set.

2. The probabilistic to deterministic mappings. Via (0.1) we have seen how
to obtain a process { Y} for each point = = (4, B) £II. The process { Y4} is called a
probabilistic function of the sstate Markov process whose transition matrixis A.The
{ Y} process can also be considered as a deterministic function of an s+ r state Markov
process as follows: let S’ be a new state space whose states are pairs G ie S,
jeR. Let A" be the transition matrix Azi, iy = @by for a new Markov
process with state space S'. Let h:.8" — R be defined by h(%, 7) = j. The Markov
matrix A’ together with its unique stationary vector a’ induce a distribution
Pl on 8. The map h defines a map hy:S8™ — R*. The induced measure
th;: = Phis precisely P, . For later convenience we formalize this. Let T be
the space of sr X sr stochastic matrices. There is a mapping ¢g:II — T such that
Py = P, .1Infactifr = (A, B) and if 4 « B(k) denotes the s X s matrix
whose 4jth entry is a;;b,; , then the matrix ¢g(w) is

A+B(l) AxB(2) --- A=xB(r)
AxB(1) AxB(2) --- A=xB(r)
AxB(1) AsBE) - AxBE)

Here we assume the states of S ordered as (1, 1), (2, 1) --- (s, 1), {1, 2), (2, 2),
-+ - . Since the mapping ¢ is an imbedding we can consider II as a subspace of
T if we so desire.

3. Regular functions. Let X(R) denote the free semigroup generated by the
states of R; so that if ¢ ¢ Z(R), @ = kik, - -+ k, for some n. Z(R) has a unit
&, the empty sequence. For vy e T let P," (o) = P,"{Y1 = Iy, Yy = ko -~
Y, = ka}. By previous remarks P.(a) = P,”(«) the latter being defined when
7 is considered as an element of T via g.

DerINITION 3.1. v & T is regular if for each k¢ R there exist s;(k), ¢{;(k) ¢
2(R), 4,7 =0,1, --- s — 1 such that det P,” (s:(k)kt;(k)) = 0.

We can now state the main result of Gilbert [7] tempered to our needs.

TureoreM [7]. Let v, v € T, v regular. A necessary and sufficient condition that
v and v be equivalent i.e., P,” = PY. as measures on R”, is that there exists a
non singular matriz Z of the form

X(1)
X(2) 0

0 . X(r)
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where X (%) is a nonsingular s X s matriz with Y 3y X (2 = L, 1= 1, --- s
and v = Z7%Z.

The main task of this section is to show that the set of regular points of II is
an open set of measure 1.

For any % € R, &’ ¢ Z(R). The functions Pi(A, B) mentioned in the introduc-
tion are now defined by P.(4, B) = det P,(k'kk’), 4,5 =0,1, --- s — 1 and
r = (A4, B). Let G(x) = [Jier Pe(4, B). Clearly if G(x) # 0, = is a regular
point of II. Since G(w) is a rational function of the coordinates of = the object
of this section will be completed if we can exhibit one = £ I such that G(x) = 0.

Let 2y, 22, - -+ x, be indeterminants and R{z,, x3, --- x.] the ring of poly-
nomials with real coefficients. Let 6,(21, @2 -+ + %) = 2.5 Ziva%its *** Tigr
where the subscripts are taken mod s. Let

a(Zy, X2, »+r, %) = det Oy ja(er -+ Ts), 4, =01, -5 —1,
Thus a(x1, 2, -+, &) € Blxy, 22 + -+ ).
LemuA 1.1, a(xr, &2, <« -, Ts) @5 not the zero polynomial.

Proor. Let ¢ be a primitive sth root of unity. Choose z; = ¢*7, ¢ = 1, 2,
cor, 8. Then 6; = 6;(1, 5,8 - &) =0forj < sand 6, = 6,(1, ¢, ¢ -+-
1) # 0. Also observe that 6,4 = s'6,6; for ¢ > 0; thus, (1, ¢, ¢ -+ ) =
[=6s(1, &, 8" -+ &*TOI # 0.

Let A® be the s X s matrix with A}, = 0if 7 ¢+ 1 mod s, 4741 = 1.
Observe that det A° > 0 and 1 is a simple eigenvalue of A°. Moreover, A° * B(k)
is the matrix (A° « B(k)):; = O unless 7 = ¢ + 1 mod s and (A° * B(k)): in1
= bi1s . Note that for 7 = (4° B)

(32) G(zx) = JIimia(bu, ba, ==+, baw)
a(l — 2Ebu, 1 — 2miba, -+, 1 — 2 ba)-

In view of (3.2) and Lemma 1.1 it is not hard to see that there is a B ¢ A, such
that for 7 = (4° B), G(x) # 0. Formally,
Prorosrrion 1.2. There is a « & Iy such that G(x) % 0.

4. Proof of Theorem 1.3. Let = and 7’ & I, C T. Suppose that «' ¢ M[x]. We
show that #' = or for some ¢ £ &, . Let 7 = (4, B) and « = (4', B'). Con-
gidered as an element of T

AxB(l) AxB(2) --- A=xB(r)

_ A+*B(l) A=xB(2) --- A=xB(r)
A+B() AxB(@2) - AxB(r)
Similarly for #’. Let Z be the matrix given by Gilbert’s theorem so that
(4.1) Z7'Z = 7.

This implies in particular that
(42) X()TA x B(1)X(1) = X(1)7'4 * B(1)X(1) for j = 1---7r.
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Since det 4 * B(1) = (H§=1 bj1) det A = 0 it follows that X (j) = X(1). Let X
denote the common value of the X (j)’s. It follows from (4.1) that
(4.3) X4 «B(k)X = A"« B'(k), k=17

Using the fact that ) .1 4 * B(k) = A, we deduce from (4.3) that X 'AX = 4’
hence (4.3) becomes

(4.4) X YA «B(k)}X = {X'AX} « B'(k).

Multiply (4.4) by A™'X on the left obtaining

(4.5) (bip — bur) X =0, j=1les w=1:"s
Since 7 & IIp there is a k' such that the by, 7 = 1, 2, --+, s, are pairwise

distinet. Examining (4.5) with k = k&’ we see that for each u there is at most one
j such that bjz = buw ; hence, the matrix X has at most one non zero entry in
each column; however, X is non singular; hence, X has at least one non zero
entry in each row and column. These two facts imply that X has exactly one
non zero entry-in each row and column. Since > ;Xi; = 1 foreach 7 thisnon zero
entry is one and so X is a permutation matrix. Let X = ¢. Then X4AX = A’
shows that AI = oA. (X_IA * B(k)X)t,, = ag(i)q(j)bg(j)k = a,(,-),<,~)b;k 1mphes
bie = beciy ; hence B' = B and the theorem is established.

II. LIMIT THEOREMS AND STATISTICAL ANALYSIS

1. Preliminaries. It is a well known fact, see [5], p. 175, that for any stochastic
matrix 4, imn™ Y pq A* = A” exists. Ay is the subspace of s X s stochastic
matrices consisting of those A’s for which the rows of A® are identical and all
ai; are positive; thus ai; = a; > 0. In this case A has a uinque stationary vector
a = {a;} and A defines an ergodic Markov process. Let II; € Il be Ay x A, . For
each 7 ¢ I, , P, is an ergodic measure on B”.

CoxvenNTIoN. In order to dispense with carrying the subseript throughout we
use IT for I, throughout this chapter.

Let M denote the semi-ring of real s X s matrices with non-negative entries.
For any subset X of IT, Cx[X] denotes the semi-ring of continuous functions on
X with values in M. The product, of course, is defined by (f-g)r = f(x)-g(=x).
In like manner Cg[X] denotes the semi-ring of continuous functions on X with
values in the real numbers Q.

Define two linear functions I and L, from C y[X] to Cg[X] by

Li@)[r] = 2Zijiwi(n), zeCulX], weX,
L(z)[x] = 2o axii(r), z & CulX],
x = (4, B) ¢ X. Again a is the unique stationary vector for A. Observe that
(1.1) Li(z-y)lr] £ Li(z)[x]-La(y)[x].
Also note that for v e I
(1.2) * L(z-y)[r] £ L(z)[r]Li(y) 7],
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(1.3) L(z-y)[r] £ L(z)[xL(y)[r]ex,
where
Or = ma,x,-a_,‘_1 < .,
(1.4) 0 < min; a; £ L{z)[xl/Li(a)[r] £ max;a;.
2. The basic construction and asymptotic behavior of n " log P,[Y1, - -, Ya].

We single out a particular point m € II. This point determines a distribution
P., on R as before and also a probability space I' = (R, P,,). Define random
variables ¥, on I' with values in Cy[II] by ¥ (Y )[rlij = P W, =7, YV | W1 = 7]
= aibjv, . If Qx(I1) denotes |]7=1 Cu[l]:, Cu[l]y = Cu[ll] then we have a
mapping ¢ = [ ¢: from R® to Qx(II). Let » = ¢P,, denote the induced
probability measure on Qx(II). Let x, denote the coordinate functions on Qx(II),
{z.} 1s a stationary ergodic process on (2x(II), »). Observe that

(2.1) 2ovi Tiproaer WY)W (Y) - Yupea(Y)[a] = A

and :

(22) Wa(Y)We(Y) -+ du(Y)islmr) = Po[Yy, Yo, o+, Yo, W = [ Wo = ’5]
(2.2) L(a(Y) - gu(¥))lr] = Po[Yy, Yy, -+, Vil

In view of (2.2") we wish to determine the asymptotic behavior of
1 log L(ga(Y) - - ¥ (Y)) as an element of Cg[I]; however, by (1.4) this is
the same as determining the asymptotic behavior of n™ log Ly(¢4(Y) - - - ¥ (¥)).

Let 7 ¢ II. The restriction mapping Cy[ll] — Cufwo U m] induces a map
r:Qg[l] — Qxfmoum]. Let ¥ = r» be the induced measure. We now follow
closely [5], Section 2. Let Q[m um] be the subset of [[ri [Culmoum] x
C yulmo U m]] defined as { (@4, 2,)| 7 = 1, L(2a%n41)2041 = 2nTn41, L(2a) = Oor 1}.
Q.[mo U m] is the subset of Q[ U m] defined by

21(w) = o(w)/L{x)[x] if z(x) £ 0,

21(w) = 0 otherwise, and z,u[r] = 0 if z,2,1[7] = 0. The projection mapping
p:Q[mo U m1] — Qu[mo U milp{(2a , 22)} = {@.} is a 1—1 correspondence; hence,
we can carry the measure » over to Q[ U m] and trivially extend it to a meas-
ure w; on Q[ U m]. X", Z" are defined to be the coordinate functions.

Let T:Qfroum] — Qfmoum] be the shift operator T{(z., z.)} =
{(Zn41, 2ns1)} and T its set valued inverse. The measure u; is generally not an
invariant measure so we construct one as follows: Define measures uy on Q[ U m1)
by () = p(T7FQ) for @ < Qreum] and 2,(Q) = 1™ D iy me(Q').

According to [6], Lemma 1, we have two measures u; and g on Q.fm U m] such
that u is stationary, and on subsets of Q.[mo U 7] defined by the X™ alone u; = u.

Define evaluation maps Aii(Qmum], Qlmum]) — (Qux, Qi) by
M (Zn, 20)) = (Za(7i), 2a(w:)} = O or 1. @y and Q,° are defined in the same
manner as Q[ry U ] and Q[ U m1] except that the coordinates arein M. Via the
A\: we obtain measures Ay and Au on Q4 . Let &;: Cglm u m1] — ® be the evalu-
ation functions.
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There is a 1—1 correspondence between random variables « on
(Qe[mo U m1], ) with values in Cglme U m1] and pairs of random variables Ao on
(2 , Aiu) with the property that & = (Ax)\; . Moreover, &:E.(a) = E\.(Na),
1=0,1.

Define convergence in Cglrg U] to be pointwise convergence of functions.
Let a, be a sequence of random variables on Q;[m U m] with values inCg[mo U m4].
Then a, converges a.e. p iff the M\, converge a.e. Ay, 2 = 0 and 1.

Consider the sequence of random variables a, on Q.[m U 71] with values in
Calme u m] defined by Mian = an(ms) = n7" log Ly(X'X? - - - X™)[ms). In [6] it was
shown that lima.. A, exists a.e., A By (1.4) it follows that lim,-e 7" log
LX'X® --- X™[m] exists a.e. \u. A diligent look at the argument of [5],
Section 2, together with (1.4) and (1.2) shows that lim, ., An " log L(X* - -+ X™)
= Ex,u(\ilog L(Z'X?)) and this is equal to &;E,(log L(Z'X?)) = E,log L(Z'X?)
-[w;] by the above discussion.

Since limn~ log L(X'X®--- X™)[r;] exists ae. Ap it follows that
limn ™ log Ppy(Vy +++ Y,) = lim#n ™ log LYa(Y) -+ ¢u(Y))[r] exists a.e. Py,
and equals E,(log L(Z'X*)[r.]; thus,

TuporEM 2.1. Let m; & I. Then lim, .., n " log P,,[Vy -+ Y] = H,[m] exists
a.e. Pry and H . [m] = E,[log L(Z'X")[m]].

Prorosrrion 2.2.
H,lml £ H, Imdl
Proor.
H,lm] — Hgylrol= lim n ' Ee, flog Pry[V1 -+ V,]] — Eragllog PrglYy - -+ Yl
= limn " Er,,log Py [Vy -+ YV, )/Pp V1 -+ Y, ] S0
by Jensen’s inequality.
LEMMA 2.3. E,log L(Z'X*) [m)/L(Z'X*)[m] < O

and equality holds iff L(Z'X*)[m] = L(Z'X*)[mo] a.e. w. If equality holds
L(Z'X* - X8 [m] = L(Z'X® - - - X*)[mo] aee. u.

Proor. Let the reader note that for any function f on Q.[w U m] we have
J‘Qc[,,-ou,.—l] fdu = fﬂg rourd S dur = wa fo~'r¢ dP,, by construction of u; . The
inequality in the statement of the lemma was established in Proposition 2.2.
Since —H,,[m] is the entropy of the P,, process, H, [m] > — = ; so if

E,log L(Z'X*)[m)/L(Z'X*)[m) = 0
then H,[m] > — « and consequently
inf, n ' Ery, log L(Ya(Y) -+ ¢a(¥))m] > — .

This implies that P, {L(¥1(Y) ++- ¢u(Y))[m] = 0} = 0. These statements
imply that w{L(zi - - 2.)[7:] = 0} = 0 and w{L(z:)[xr] = 0} = 0. On the
support of u; we have z; = z;/L(2;) and by induection using L(znn1)2a+1 =
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2nZa+1 and the fact that L(z, - - - z,)[r;] vanishes with probability zero that
Zn = @1 Ta/L(21 -+ 2a);
hence, on the support of i
L(zitrs1) = L(zy -+ 1) /L2 - 22).
Let f,; be the real valued function on Q.[re u m] defined by
Fad (#ny 2)} = 07" 2205 L(zaugn) )/ L(2xesa) [ol.
Recall that
bny = i -1 Zk— T—k+1
Let
fi(zn, za)} = L{zx2)[m]/L(2:%;) [mo).
Then B, (f»;) = Ern;(f); furthermore,
By (fas) = 0 2284 [outmgurn L(@stasn) frl/ L(2ien) frol dia
=0t D i [ PV | Vi - - - Vil/Pr[Yiua | Yi oo Y1]dP,, = 1
because
L(zwwe1)[mi] = L(maz - -+ tepr) [m /L2, < - - 22) [m]
and
PelYen|Yi -+ Vil = L(Y) -+ $ua(V)) [m/L(1(Y) -+ - 0 (Y) ) [mi].

Thus we’ve shown that Ev,,(f) = 1. Since f = 0, Eu(f) = limpue Boa,(f) = 1
(because »,; — u by construction) so that

E,log L(Z'X*) [m]/L(Z'X*) o] < log EL(Z'X*)[m]/L(Z'X*)[m] < 0
and equality holds iff L(Z'X*)[r] = L(Z'X")[m), a.e. . Since u is a stationary
measure, the same reasoning shows that L(Z*X**)[m] = L(Z*X*™)[r] for all

k, a.e. u. Since E,(log L(Z°X ™) [m]) = Hyylm] > — o0, L(Z*X**)[m] # 0 a.e. p.
If we have shown that L(Z'X” - -+ X*)[r.] 5 0 a.e. u then

(T) Zka+l — Z1X2 . Xk+1/L(Z1X2 . Xk)

and L(Z*X*™)[x;] # 0 a.e. u implies the same for L(Z'X? - - - X*™)[r,]. Then
(1) holds a.e. u for all k,

L(szk+1) = L(Z] e Xk+1)L(Z1X2 . Xk)—l

and if L(Z'X*--- X“)[m] = L(Z'X* -+ X*)[m] and L(Z*X*"r] =
L(Z*X**")[mo] then L(Z'X® .- X*")[m] = L(Z'X*--- X*™")[m). Thus this
equality holds for all k.

ProrosriTion 2.4. Let v, = max; ; ai;/a; . Then

1. P,-[Yl ,Y2 e Yn+m] é ")’-,.-P,-[Y]_ e Y,.]P,,-[Y,,.H e Yn+m]
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Equivalenily
L(Y) -+ Ynim(Y))]n]
S vL((Y) - (V) IFL (YY) -+ dmam(Y)) ]
Proor.
Pi[Yy oo+ Yoayml/Pa[Y1 o+ YalPa[Yaia « o YVoiml]
= 2iia PaWa = j¥n o+ V1| Wo = laapPalVasn - Your | Waa = 1]
A 205 PalWa = §Y0 <+« V1| Wo = dlaPalYoim -+ Yasr | Wasx = llag ™
< max;, ;i QGi/0 = Yx .
Define M[mo] = {z e 1| Hylw] = Hplmol}
THEOREM 2.5. Mmy) = Mlm].

Proor. We have just seen that for every ¢, L(Z'x* .- X"m =
(L(Z'X? -+ X*™)[mo) ave. p if 71 & Mlmo). Let ky , ko, -+, ki1 be any sequence
with k; ¢ R. It is convenient to regard each k; as that element of Cy[r] such that
ki(n) = (Qimbmp;)), ™ = (a,b). Thenif A = {(X,,Z,) | Xi = ki, v = 2, 3,
et 41

JALZX - X' de = [A(L(Z'X" - X))ol dp.
For convenience we introduce the following notation:
K =kaks- - ki, er =XX"... X" and 'Pk(Y) =(Y) (YY) --- u(Y).
Then
fA L(Z; xt_l)—l[ﬂ'o] du
= limn; " D [rwr1y L(Z perx’ ) "] dp
= limn™ 208 fr-sria LX) ol /LX) o] dis
= lim ™ 2 [r_pp LOAY)) ol /LX) K) [mo] Py = 1
where T'_y1 = {Y | YViga = k2, Yisa = ks +++ Yiye = kepa}. The last equality
follows from the fact that L(¢*(¥))[m) = Pr(Y1, Y2, ---, Yi) and
L (Y)R)[mo] = Pay(Yy, Ya, -++ , Yi, Vi = ka, -+, Yire = kig1). On the
other hand
(*) fA L(Z; xH)_l[m] du
= limn™ 2284 [ LX) m)/LOF () %) 1] dPx, -
By Proposition 2.4 L($*(Y)R)[r1] £ ve, L($*(Y))[m]L(X)[r1]. Plugging this
in (*), we obtain
JaL(Zix ™) mlde 2 ¥miPeo(Yin = ko -+« Yige = kina)/
j Pr(Yirr = ko - Yiqe = keya).
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Thus we have

1= [ALZix ™) ' mdde 2 vorPe( Vi = ke +++ Yipr = kep)/
Poo(Yigr =k, + o+ Yir = ko).

Since both P,, and P,, are ergodic measures P,, = P, .}

3. Convergence of the maximum likelihood estimator. Let S(«, ¢) be the
open sphere about 7 & II of radius e. For £ Cy[11] define

Le(x)[‘lr,] = suprsﬂ(;r’.e) Z x(7r)i,]"
Then
(3.1) Le(z-y)[x'] £ Lr'\Le(y2[x').

For ¥ e R® let Halr, ¥, | = 1" log L(¥a(¥) -+ ¥a(¥))[x] and Hylr, ¥] =
n” log L(¥a(y) -+ ¥u(Y))lrl.

ProPOSITION 2.6. lim,sew Bp . (Halm, ¥, €]) exists and
lim sup H,[r, Y, €] = limy,n B (Hyr, YV, €) = &[r, .

Proor. Stationarity and (3.1) imply the first statement. Ergodicity, sta-
tionarity and (3.1) imply the second. See [6], Theorem 1.

ProrosiTioN 2.7. If Hyyw] < Hylmol, then there exists € > 0 such that 3C[m, €]
<H #o[WO]-

Proor. Define 3C,[r, €] = Ep, (Hilr, Y, €]). Then

(1) Bpinlr, €] = n(n + ’m)_IGC,.[W, e + m(n + ’m)_lﬁ(’,m[w, €] so that

(2) 3C,..[7, €] < 3C.[r, €] for any r and n.

Suppose that H,[x] < Hym] — @, @ > 0. Since 3u[r] = Ep, [H,[r, Y]] con-
verges to H,,[r], there exists N such that for n > N, |3¢,[x] — Hx[n] < a/3.
Thus, forn > N 3C,[xr] < H,[r] + «/3. Let ng > N be fixed. Since 3Cy[m, ] —
3C,[7] at € — 0, there exists e > 0 such that 3a,[r, €] < 3po[r] + /3 < H [l
By Property 2 above we see that 3C[r, ] < 3C,[m, ¢ and therefore 3C[r, ¢]
< H py[mo)-

Let K be any compact subset of IT and for any ¥ ¢ R® define [[2[Y] =
(7" ¢ K | max Hu[r, Y] = H,[«, Y].

TaeoreM 2.8. []Z [Y]1— M[x]n K a.e. P,, .

Proor. Let Mg[m) = Mm]n K. Let ¢ > 0 be given. By the preceding
theorem, for any «’ & K — M g[m) there exists an e, such that Gc[r', err] < Hyolmol-
Let Mglmo, €] = {we K|d(x, Mgl[r]) < ¢ where d denotes the Euclidean
distance. Cover K — Mx[mo, €], which is compact, by spheres S(x’, &) such
that 3¢[r’, ex] < Hg,[mo]. There is a finite subset w1 «-+ 7 and e, ** -, €,
such that the spheres S(=:, er;) cover K — Mglm, , €.

By Proposition 3.2 we have a.e. Py, , lim Suprestri ey Halm, Y1 S Xre, €] <

2 T wish to thank Leonard E. Baum for useful comments on this proof.
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H, [xo]; thus, if N is chosen so that for the finite number of points my, « -, =,,
SUPres(es,ery) Halm, Y] < Hyylm] for n > N a.e. P, we have for n > N,
SUDrex—sigirg,] Halm, Y1 < Hyylmol a.e. Py ice., [[2 (Y) e Mim, €] forn > N
a.e, P, .

III. MORSE THEORY

1. Preliminaries. For a fixed ¥ ¢ R®, H,[r, Y] is an analytic function on
Moy , limpee Hafr, Y] = H, () exists a.e. Py, and is a C* function of 7 & 1I,,
([1], Corollary 4.3). Here we show that H,,(7) is an analytic function on II;,
and give a structure theorem for the set of critical points M’[ry] of Hy, (7).

We see from the theorems emphasized in the introduction that a theoretical
solution to the problem is effected by choosing any =~ which maximizes H,[r, ¥)
(n large) as an estimate of mo . A practical method for obtaining such a 7 is to
take ©' = 6,(m, ¥) for almost any = ¢ II. (See the introduction for the definition
of 6.(w, Y).) This chapter is devoted to justifying this practical method which
has been found to work in all the examples studied to date. The reader is referred
to a forthcoming paper concerning an application of these ideas to stock market
prediction {3].

6,(m, ¥) does not necessarily yield an absolute maximum of H,[r, ¥]. It does
provide a local maximum; in particular it is a critical point of this funection. Thus
an understanding of the relation between the set of absolute maxima of H, (=)
(i.e., M{mo]) and its full set of critical points M’[r,] and its connection with the
corresponding sets for the functions H,[r, Y] is of utmost importance. These
theorems are set forth in Theorem 3.18 and culminate in (3.19) which we offer
as a first step towards proving this

CoNJECTURE. There is a subset I' € II of measure zero such that given ¢ > 0
there is an N (e) such that P{Y | 6,(x', Y) € M[my, €]} > 1 — e for N(¢) and any
7 1 — T. (Recall that 6,(x’, ¥) = limg.., tetrri(n).)

For any sequence of real numbers {X3, let X_ denote its maximum and
X_ denote its minimum. We shall also deal with doubly indexed sequences
{X;;} and the corresponding notation will be X_; = max; X;;, X_; = min; X,; .
If ¢ is any complex number Re ¢ and I(¢) are respectively the real and imag-
inary parts of c.

A complex s vector A is an s triple (44, A4; -+ A,) where 4, is a complex num-
ber. A complex [s, v, 8)] stochastic vector NV is a complex s vector N = (Ny, N;,
«++, N,) such that: Re N; = v > 0, 2. I(N;) < 6 where c is the set of j such
that I(N;) > 0, 2_;N; = 1.

Lemma 3.1. Let A be a complex s vector and let N; = (N - - Ny,) be a sequence
of complez [s, (v, 0)] stochastic vectors. Define A, = D ; NiA; then

(i) Red' = (1 —v)Red_+ yRe A 4 o(I(4-) — I(4.)),
(i) Red'z yRed_+ (1 — ) Red_ — o(J(4.) = I(4.)),
(il) T(A-) £ (1 —y)[(A_) +vI(A-) + 6(Re A_ — Re 4_),

(iv) I(A) =2 yI(4-) + (1 — y)I(A-) — 6(Re A_ — Re A_),
PROOF."Qmitted
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CoroLLARY 3.2. Under the hypothesis of Lemma 3.1 we have
(i) max (Red' —Red ', [(4) — I(4.))
S (1 —2y+26)max (Red- —Red_ I(4.) — I(4.)),

(i) max ([Re A — Red |, |[(4) — I(A)], [Re A- — Re A,

T(A_) — I(A)) = (1 —y + 6) max (Red_ —Re 4_, I(4)
— I(4.)).

The situation in which this corollary is applied is this: Let A and B be complex
stochastic matrices ie., 2., A;; = 2;Bi; = 1 for which Re 4;; = ~ and
[I(A:;)|, [I(Bij)| are sufficiently small. Corollary 3.2 implies in particular that
the elements of any column of the product BA are closer together than the ele-
ments of any column of 4. Precisely:

CoroLLARY 3.3. Let A and B be complex s X s stochastic (v, 8) matrices. Then
if A" = BA we have

(i) max (Red’; — Real; JA’, — 147,
S (1—2y+20)max (Red; —Red_; T4, — J4_)

(ii) max (JRe Ai; — Re Ay, [14:; — I44))

S(1—v4+60max(Red_; —Red_; , IAd_; — IA_)).

For any s X s matrix M, M« = D> i M and My, = >t M. Let K and
6 be positive constants and let & be the set of real s X s matrices M satisfying
8 < M;; £ K. We shall be concerned with sequences M®, M, M, ... of
matrices M ¢ %X and the behavior of the sequences (MM . M,/
(MM ... M®), as k approaches o.

Let M°, denote the matrix (M *M** ... M°). The following theorem is
probably folklore. Because we need the ideas involved in the proof, we include it.

THEOREM 3.4. Let M°, M, -+- | M, - - denote any sequence with M~ & X.
Then limy.e (M%) 5/ (M) exists, is independent of v and the rate of convergence
is exponential.

Proor.

(M2 )rs/ (ML) = 2 M (ML) o/ (M M) (M) jof (ML) 3 o
Let a,; = M7 (M%) 5/ (M~ M2%,),s . Then
ri/Orjr S M08Xy ;50 M M/ M5 My £ K2/

since >_; ar; = 1, it follows that 1 + 2 ri/am = 1/an <1+ (s — 1)K*/8
soa; = (1 + (s — 1)K%/6")™ = . (Similarly it can be established that for
every kr (M?—k)rs/(MO‘k)r* g >\0 -)

Thus

(M) rs/ (Mn1)re
= 250 (ML) 5/ (ML) £ (1 — No) max; (M2,),0/(M2,) o
+ N miny (M2,) 50/ (ML) j«
and
(M2 t)re/ (Mpey) e
= Aomax; (M) e/ (ML) 5+ (1 — No) min; (ML) 0/ (M) 55 .
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Thus max, (M-o—n—l)rs/(M-o—n—l)r* — min, (Mo—n-l)n/(MO—n_l)r* = (1 — 20)-
(max; (ML,)r/ (M%) — min (M2,),/(M% 1)) = (1 — 20)™" by in-
duction.

The two main ingredients to this proof are the positivity of the M,; and the
fact that we could easily establish a lower bound for the a,; independent of .
We seek a complex analog of Theorem 3.4. Its proof is more complicated precisely
because we are not able to obtain a simple lower bound for the real part of the a,; .

Let 3C be the set of s X s matrices M with complex entries satisfying the
following

|z | M, 1—é6zReM,;zs

Let 3¢° be the product of 3¢ with itself a countable number of times. An element
of 5° will be denoted by m = (M’ M ...) with M e5. Let 3, =
{Me3e||I(M;;)| < o and let 3¢,° C 3* be the subspace with all M~ £ 3¢, .

Define these functions on 3¢”:

(1) R"(r,m)s; = (M™™)ri(MZoya) 5o/ (MZ3)ss

(1) H*(m)ri = (MZ8)ys/ (M%)

({il) T™(m)r = (MZ3)p M/ (M%) ;

(iv) B"(m)eg = (M) (M e M) /(M -+ M)

(V) p"(m)rs = (M) pi(MT"7 e M) o/ (M7 - M)

(Vi) P™(m)rs = (M2,)ri/ (M2,)s0 .

Let T:3¢° — 3¢° be the shift operator T(M°, M~ ---) = (M, M™%, ...).
(Note that T maps 3C, onto itself.) Then h"(m) = p"(Tm) and H"(m) =
P™(Tm). Thus if we have established a property of p"~'(m) or for P"*(m)
for all m £ 3¢ we have established that property for A"(m) and H"(m) for all m.

We record the basic relations among these functions

(1) 2sH (m)pR™(r, m)ij = B"(m) ;

(2) 22 T™(m)nR™(r, m)i; = p"(m)r; ;

(3) p™(m)-P"(m) = P"(m) as matrices;

(4) T™(m)rs = H™(m) M/ 25 H*(m), ;M ;

(5) R™(r,m)s; = H" (6" "'m) ;053" 205 H™ (8" "'m) ;07"

Here M is the transpose of M and 6™ ':3¢° — 3 is the mapping which takes
(M, M- M M™...) to

(MO, M—n+l, M—nﬂ, .. M—l, M—n, M-—n—l .. -).
Observe that 8" maps 3, onto itself. )

LemMma 3.5. There is an e, > 0 such that if M e 3¢, m e 7| I(M7)| < e for
all i, [I(M,;)| £ e and P*(m) s = s D_tc1 PX(m) 1 , then

2(1 — &I = (2 PH(m) 7| < 267

Proor. If I(M;;) = 0and I(M,;) = 0, then (1 — 8)™ £ [>; P*(m) My,
< 257%. The result now follows from the fact that P is a continuous function on
3¢ depending on only & + 1 coordinates of m.

Let ¢ > 0 be such that if  is any complex number satisfying [2(1 — 8)]" <
|£7 < 267" and |8] < e then [4(1 — 8)] =< |(z + 8)7'| < 45™". Suppose that
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0 < p < 1 and k has been chosen so large that 8sp*(1 — &) < % and
250°/(1 — p) < &.

LemMa 3.6. Suppose that for all m in 3.~ and M in 3¢, we have

(1) (L = &) = |[2a Pr(m)aMy] | < 267,

(i) |PaT**(m) — P5™**(m)| £ 2" for all 7 and I,

(iti) |[P3F**(m) — P%y(m)| £ 20*/1 — pforall l.
Then for all m in 3.° and M in 3q, (D P"™* 2 (m)aM,]” = 1/K, +
zw/(1 — 2:4/K,) and [4(1 — 8)]" £ |1/K,| < 467" and

|2/ (1 — za/K,)| < 4sp™.

Proor. We suppress the reference to m in expressions like P %(m);; and
write P2;™% Then

(2 PE*2My™ = (2 PAT7 Mo, — 2 (PR — PR M
= [K, — za] "
where
/K, = [ PlaM. + 250 (P37 — Pl M.

Now |[ D (P"+"‘2 — P5)ML)| = 250°/(1 — p) < e s0 that [4(1 — 8)]7 =<
K7 < 487" Also

Ix.-,/(l — za/K)| £ |zal/(1 = |2a/Ks]) S 250" /(1 — 850" (1 — 8)) < 4sp™™

CoROLLARY 3.7. Under the conditions of Lemma 3.6 we have

Rn+k(r’ m)ij — Hn+k~1(0n+k—lm),'j(K + K"]

where K,, = M:,"“"/K and Kri; = M7 z./K2/(1 — z./K,) satisfy
|K%| < 4/8, K] < 6467 %sp™ ™,

Proor.

R"H(T, m),-j/H"+k—1(0"+k_ m)ij - —ﬂ—k ZJ Hn+k—-l(0n+k—-lm>”M”

= —n—k[ZJ Pn+k—-2(T0n+k—l )”M”] ]

LemMa 3.8. Let1 > a > 0,1 > 8 > 0 and & > 0 be real numbers. Then there
isan a = ala, B) > 0 such that of H = (H,;) and M = (M) are matrices
satisfying: 2 jH.; = 1,1 > ReH,; > a, 1 > ReM,; = 8, [(M,;)| < «,
\I(H,;)| < e then Re (H ;M a2, HiMal™) Z af and

\[(H M a2 HiM T )| £ /s,

Proor, Omitted.

Lemma 3.9. Fiz the constants K>0and1l — 2N < p < 1. There is an ey, ©
0 such that if |I(M,7)] = e4k,z =0,1, -, k, then

@) ReP"(m)u =N — o

(i) [P (m)y| < 67,

(i) max; (Re P*(m)_; — Re P*(m)_;) < p'",

(iv) max; (I(P*(m)_;) — I(P*(m)_;)) < "7,
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(v) Rep®(m),; = » — K,

(vi) [Ip"(m).;| £ Ko".

Proor. The statements follow from the fact that P* and p* are continuous
functions depending on only %k -+ 1 coordinates of m and if all M;; are real
numbers, P*(m),; = A, p*(m),; = N\ and max; (P*(m)_; — P*(m)_;) <
(1 — 20)F™ < "1 (Refer to the proof of Theorem 3.4.)

Let K = 2505% % Choose A < 8N\o/2and e < A Letp = (1 — A+ 8 <1
and choose & so that

(i) M — Kp"/(1 — p) > 3\, min (e(No/2, 8), &) > sKp*/(1 — p),

(i) 28p4(1 — 8) < &, 2s0"/(1 — p) < &5.

For this fixed k& choose ¢ < min (eg(X/2), ex, es) with the additional con-
dition that if ¢ is a complex number with [Re ¢] < 1 — A and |I(¢)| < e we have
le < L.

TasoreM 3.10. For all m € 3¢~ and all n = 1 we have

(i) max; (Re P""*(m)_; — Re P"™(m)_;,
I_P"H’—l(m)_j _ IPn+k—l(m)_j) é pn-Hc,
(ii) Re P"* 7 (m)s; = N — o 1(1 + ot "),

(i) [IP" " (m)s| = “‘(1 +pF - o),

(iv) Rep" ™ (m)y; 2 N — Ko* (1 + p + c 4",

(v) [Ip" ™ (m) sl = Kp L+p+ -+ ,,"—1).

Proor. The theorem is true for n = 1 by Lemma 3.9. Assume the truth of
these statements for n. We establish them for n 4- 1. The induction hypothesis (11)
and (iii) and the fact that p**'(1/(1 — p)) < &/simply that Re H***(m);; =
and D_., IH"**(m);; £ & We also show that these inequalities hold for the
matrix T™*(m). Recall that T"(m),; = H"™(m), ;M52 ; H**(m),;Mu]™
The inductive assumptions (ii) and (iii) imply that Re H""*(m),; = N\
_ pk+l(1 + . + pn——l) > )\0/2 and ]IHn-Hs(m)”.[‘ é pk+1(1 + e + pn—l) é
e(Mo/2, 8). Since [I(M3;)| < e(Mo/2, 5), we have by Lemma 3.8 the desired in-
equalities for T™"*(m).

Now we establish the conditions of Lemma 3.6. The condition (i) of that
lemma is satisfied because e < ey . See Lemma 3.5. Condition (ii) follows from
these facts:

P m) = 2 ta s P (m)a,

induction hypothesis ¢ applied to P"™*(m) and Corollary 3.2 statement (ii).

Condition (iii) holds for these reasons: p"™*(m)P ¥ (m) = P™**(m), the in-
ductive assumptions, and Corollary 3.3 shows that |P**(m):; — P (m)
=Ml rsn—2

Having satisﬁed the conditions of Lemmsa 3.6 we have the conclusion of
Corollary 3.7, R"+"(r m)s; = H"™ 0" 'm) (Kl + Kri;) where
Ky < 467 and ]K,, i = p"**64s5™%. The relations (1) and (2) of this section
with n replaced by n + k thus gives

(1) 2 H™*(m) H" (0" m) (K5 + KJij) = K" (m),;,

(2) 22 T (m)H (0" m) (KT + Kfsj) = p™™(m)y; .

The inductive assumption (ii) applied to H**7 ("™ 'm) = P*H2(T9" " 'm)

il
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together with Corollary 3.2 and the bounds on K;; and Ki,; give
B" " (m),; — p"F(m)ny| S (2| K.l 4 1288%7)p" ™ < (8671 4 1285%7)p"
The equality A"**(m) = p" ™ (Tm) together with the inductive assumptions
(iv) and (v) show that

(iv)) Rep"™(m),; 2 N — Kp* (1 4+ p + -+ + o),

(V) Ip"™(m)yy] £ Kp* (1 4 p+ --- 4+ p").

The lower bound in (iv') exceeds X while the upper bound in (v') is less than
&/s; hence, the relation p"™*(m)P**(m) = P"**(m) together with Corollary
3.3 and the inductive assumption(iv) imply the inductive assumption (i) with n
replaced by n + 1.

Corollary 3.3 also implies that

IRe P"+k—1(m),,- . Re P"+k(m),,-] é pn-Hc-l’
|IPn+k—l(m)”_ _ IPn-Hc(m)rj] é pn+k+1.

These two inequalities together with inductive assumptions (ii) and (iii) for n
imply these assumptions for n + 1.
CoroLLARY 3.11. For all m & 3¢.” we have

|P™(m)rs — P (m)n] S 20"

COROLLARY 3.12. limy,.., P"(m) exists uniformly for all m e 3¢.° and for each
m the rows of the limiting matriz are equal.

2. Applications. Let A;j5, be the set of s X s matrices 4 = (a:;) such that
D= 1,1 — & = Reai; = 6, |I(ai;)] £ a; let Ay, be the set of s X r
matrices B = (bjk) such that Zk bjk = 1, 1—46 = Re bjk = 6 , ]I(b,k)l = o,
and let Il;, = Ay, X Ay, . If 8 < &’ and a is sufficiently small, then for every
7 elly, ,m = (A, B) the r matrices (a:;b:)k = 1,2, --- rarein 3¢.. With this
assumption we define for each Y ¢ B_., a mapping f(-, ¥):I;, — 3. by
f(r, )™ = a;bjr_,if * = (4, B). From Corollaries 3.11 and 3.12 we conclude
that

CoROLLARY 3.13. For every Y ¢ RB_., and each = &€ Iy, limg.., P*(f(mw, Y))s; =
P%[r, Y; exists uniformly in the coordinates of = in Ts,.

CoroLLARY 3.14. For every Y e R_., the function P”[-, Y]; is analytic in the
coordinates of w.

Proor. This follows from the fact that for every n, P*(f(-, Y));; is analytic
in the coordinates of = and the fact that P"(f(-, Y)):; — P*(f(-, ¥)); uni-
formly.

Observe that if # = (A, B) and the coordinates of = are real, then
Pw[’ll', Y]] = P-,[Wo = ]] YoY_1Y_2 .. ] 80

CoRroLLARY 3.15. For every Y ¢ R—, , the function P.[Wy = j| YoV 1Y 5 ---]
s analytic for all = € IT;, .

CoROLLARY 3.16. Forevery Y1, Yy, Y_1, - - - the function P.[Y1| Yo, Y 4, ---]
1s analytic for all = £ IT;, .

PROOF. P [YV1| Yo, Y1, -] = D i aihir,PelWo = | Yo, V4 ---].
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By stationarity, for every Y e B_, P-[Y| Y_1, Y= - - -] is an analytic func-
tion of 7 ¢ II;, .

Define H,(7) = E'pwo(log P.[Yy| Y_; --+]). The reader ought to check that

this definition coincides with that of Theorem 2.1 (compare [1]). In [1], Corollary
4.3, it was shown that H,[r, Y] — H, (=) a.e. Py, and H, () is a C° function
of the coordinates of .

CoroLLARY 3.17. H, (=) s an analytic function of the coordinates of = € Il;, .

3. The critical point set M'[r,] of the function H,,(r). Let M'[r,] be the
set of critical points of H,(7) in the interior of II;, n I, . If m is in this set, then
Mmo] = Semo C interior I, n X and M[me] © M’ [ro] because H,,(r) assumes its
maximum on the set M [m].

Optimally we seek to determine the set M[m)] = {r els, | Pr = P} =
Sro = {m | Hro(r) is maximized at = = ='}. One method of accomplishing this
is to determine M’[r,] and then characterize the subset M [mol © M'[m].

The reason for working so hard to establish the analyticity of H.,(«) is this.
The critical point set of an analytic function is in particular an analytic variety
i.e., the simultaneously zero set of a finite number of analytic functions. In this
case that set is the set of = ¢ II;, such that (8/87:)H.(7) = 0. Now an analytic
variety in Euclidean n space is by no means an arbitrary closed subset. We use
the known structure theorems about analytic varieties to study the set M'[ro].
We also warn the reader that it is important that the funetion H,, (=) is analytic
and not just C*. For in dim 1 an arbitrary closed subset of R’ is the eritical
point set of a C* function. This is far from true for an analytic function. I don’t
know the corresponding statements for the higher dimensional case of the critical
point set of a C function but I suppose it’s not any better.

With this motivation we set down a structure theorem for the set M’[r,]. Let
M'ro ,a]l = M'[mo] nf{w | Heg(7) = a}. Let @ = H,,(m) ;80 that M[mo] = M'[r, , a]
and M'[r, , a] is empty if a > a.

TrarorREM 3.18. For moe interior s n Ty, M'[m) = D aca M'[m0, a]l + Mm).
The summation is finite. Each M'[ry , a] is an analytic variety. S.M 'Imo, @] =
My, a] and M) = S, . In particular the elements of Mlm) are isolated
eritical points of Hry(w).

Proor. The reader is referred to the fine book by Gunning and Rossi [8] for
the details of analytic varieties. The fact that the summation is finite is due to the
fact that any compact set intersects only a finite number of connected compo-
nents of an analytic variety and to the fact that an analytic function is constant
on the connected components of its critical point set. (This statement is false
for a C* function.) The fact that the points of M[mo| are isolated critical points
follows from the fact that M[rg] = &S.re for me £ Iy and thus is finite (Theorem
1.1) and from the fact that H.o(x) > Hy(x') if =& Mlr] and = 2M[m)
(Theorem 2.2); thus =’ ¢ M'[m, a] for a < @ and M'[rq , @] is separated from
M'[r,, @. The invariance of M'[ry, a] under the action of &, comes from a
straight forward check.
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4. The connection with the physical problem. Recall the fundamental prop-
erty of the Baum-Eagan theorem discussed in the introduction. It is:
flt;(7)] = f(x) and f[t;(x)] = f(x) iff = is a critical point of f. Also recall that 3
contains the functions H,[r, Y].

An extremely useful application of the above theorem would be the conjecture
mentioned in the preliminary section of this chapter. The obstacle to proving the
conjecture is a lack of knowledge concerning the set of critical points of Hyy(w)
in II. Another complication is that this set is not finite. In fact if = = (4° B,
2’ is a stationary vector for A° and B is the s X r matrix with

= b = D isaiby then any = of the form (4. B') with A an arbitrary
stochastic matrix is a critical point of H, (7). Of course, this set of points has
measured zero in I would be included in T

Here, however, is a positive step towards the theorem. There is an open set
U., containing M [mo] and contained in II; such that if » is large and =’ & U, then
the probability that ti,ir, yil7'] is near M(m,) for k large is large. Precisely: Let
d(m1, m) be the Euclidean distance between m; and = and set Mlmo, ] =
{1r, eI, | d(m, 7') < efor some 7 &€ M[mo]}.

TurorREM 3.19. Let 7o £ Iy n T1; . There exists an open set Us, containing M [mo}
such that given ¢ > O thereis an N (e) = N such that Po{Y | 0,(7, Y) € M{mo, €]} >
1 — eforn > N(e) for all = contained in U, .

Proor. Set M'[m,, € = |« eIy, | d(m, r') < e for some = "eM' [1r0]} and
M[ro, Y] = {x" € II; | = maximize H,[r, Y] and M, '[r, Y] = (v eX;, | o' is a
critical point of H,[r, Y]}. Let ai = sup over = & M'[mo] — M(mo] of Hyo(w)
so that @i < a. For positive r > 1, let a, = a1 + (@ — @)/r. Let Ur =
(m ey, | Heg(w) > ag}, Uny = {1r£H51|H,,0(7r) > as};s0 Uy, © Ux, . From
[1], Corollary 4.3, it follows that given ¢ > O there is an N(e) such that if
n > N(e) and if the set C is defined by C = {¥Y | M,/[me, Y] € M'[r, €] and
|Hulwr, Y] — Heo(w)| < e for all 7}, then P(C) > 1 — e For the remainder of
the proof we restrict ¥ to the set C and set ¢ = fg,txv1. Let Uln, Y] =
{r e, | Hulm, Y] > ay}; thus, U,, € Uln, Y] C U, for small e. Also observe
that if e is sufficiently small all the critical points of H,[r, Y] i in Uln, Y] 11e in
Mlro, €] because M, [m, Y] € My, €, Uln, Y] C U,ro , and Usr,n
(Za<a1 M'[ro, ¢ a]) = ¢. Here M'ry, ¢, a]l = {welly, | d(x, = "} < e for some
x e M'[m, a]}. By the fundamental property of ¢, tU[n Y] € Uln, Y]; thus
tUr, < Uln, Y] c U,,o Since 6,[Ux, , Y] © Uln, Y] C U,,o and since 0,[Ux, , Y]
is contained in the critical point set of H,[r, Y] i.e., in M, 'Imo, Y] we have
0u[Uxo, Y1 © Mmo, €]

ReMARKs. At present an explicit form for N(e) in terms of m = (4, B)
appears quite difficult. It is now determined by Monte Carlo methods for each
application.
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