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Abstract 

 
In this paper, a probabilistic fuzzy approach is proposed for mobile-robot reactive navigation using range 

sensors. The primary motivation is an integrated reactive navigation control system with good real-time per-

formance under uncertainty. To accomplish this aim, a probabilistic fuzzy logic system (PFLS) is introduced 

to range measurement and reactive navigation in local environments. PFLS is first adopted to handle the 

fuzzy and stochastic uncertainties in range sensors and to provide more precise distance information in un-

known environments. Consequently these sensor data are sent to a probabilistic fuzzy rule-based inference 

system with reactive behaviors for local navigation. The feasibility and effectiveness of the proposed ap-

proach are verified by simulation and the experiments on a real mobile robot. 
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1. Introduction 
 
Reactive navigation control of autonomous mobile ro-

bots in the unknown environment is a fundamental and 

crucial issue in robotics, cybernetics and artificial intel-

ligence [1-4]. In a local environment it is necessary for a 

robot to possess the capabilities of obstacle avoidance, 

moving toward sub-goal, escaping from local traps, etc. 

[5, 6]. Real-time and precise reactive navigation has been 

a challenging task for mobile robots because the envi-

ronment may be unpredictable and the sensory informa-

tion may be incomplete or not accurate enough for deci-

sion-making. Several reactive control approaches have 

been proposed to implement local navigation. For exam-

ple, occupancy maps have been built using sonar sensors 

to model the environment and have led to a series of lo-

calization and path planning methods [7]. The potential 

field and virtual force field have been used for navigation 

in a local environment, respectively, [8]. These methods 

are mainly employed to deal with stationary obstacles. In 

the middle of 1990s, some researchers presented behav-

ior-based control methods such as the subsumption ar-

chitecture [9], where the stimulus-action pairs are de-

fined for the decision and control rules of a robot after a 

proper coordination if it is necessary. Various soft com-

puting and machine learning methods have been applied 

to reactive navigation to improve the control perform-

ance [2,3,5,6,10,11]. To accomplish the better navigation 

performance, two problems need to be solved with suit-

able approaches. One problem is that the data of onboard 

sensors are always uncertain, which confines the detect-

ing ability of mobile robots in the unknown environ-

ments. The other problem is how to make decision using 

the sensor data to navigate in the unknown and changing 

environments.  

The navigation using range sensors, namely ultrasonic 

sensors, infrared sensors, laser scanner, etc., has been 

recognized as one of the most fundamental and important 

problems in the increasing applications of autonomous 

mobile robots [2,12-14]. It is well known that all meas-

urement processes are always accompanied by uncer-

tainty [15] and various uncertainties can be classified 

into nonstochastic uncertainty and stochastic uncertainty 

[16]. The uncertainties in the range data measured by 

range sensors with random noises and unpredictable 

conditions may include incomplete information, vague-

ness and stochastic uncertainty [17]. In order to handle 

these uncertainties, probabilistic approaches have been 

adopted to various robot systems [13,14,18,19]; but most 

of the existing results focus on sensor fusion, localization 

and behavior selection. Generally, fuzzy logic systems 

(FLS) [20] have the capability to deal with multiple un-

certainties without a precise mathematical formula [6,10]. 

The type-2 FLS [21-23] has also been recently studied in 
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detail to better modeling the fuzziness of a fuzzy relation, 

which could improve the ability to handle inexact infor-

mation. However, ordinary FLS could not catch the sto-

chastic uncertainty and the traditional fuzzy technique is 

not the best choice to process the stochastic uncertainty 

[25,26]. Stochastic uncertainty arises with random prob-

ability that cannot be predicted in advance or recognized 

accurately during the process of measurement. There are 

various circumstances that are full of stochastic uncer-

tainties. For example, it is possible that random noises, 

time-varying stochastic uncertainty, stochastic mutative 

temperature or weather, and the like occur as stochastic 

uncertainty. It is equally possible that the range sensor 

data measured by different sensors provide stochastic 

uncertainty. In addition, random disturbance involving 

the probability that someone walking around the range 

sensor will help make serious difference between the 

measured distance and the real distance. Thus, without 

ruling out all the possibilities above, the range sensor 

could not measure the precise distance under various 

circumstances. 

The probabilistic fuzzy logic system (PFLS) [25-27] is 

different from the ordinary FLS and it uses probabilistic 

fuzzy sets instead of ordinary fuzzy sets to capture the 

information with stochastic uncertainties. The main dif-

ferences between the proposed PFLS approach and most 

ordinary FLS or probabilistic methods are two-fold. 1) In 

the proposed PFLS approach, both of the nonstochastic 

and stochastic uncertainties are processed for sensor fu-

sion and decision-making, while most of the existing 

results only focus on one of them. So the PFLS method 

can dramatically improves the performance of the meas-

urement and reasoning for mobile robots, especially in 

unknown dynamic environments. 2) PFLS bridges the 

gap of the numerical sensory fusion and fuzzy reasoning, 

which provides an alternative way for the robot to ac-

quire data-driven human-like intelligence. Hence PFLS 

will be more valuable for the processing of various un-

certainties and the reactive navigation control of mobile 

robots. 

In this paper, PFLS for range sensor is first proposed 

to process stochastic uncertainty and can effectively re-

duce the disturbance caused by stochastic uncertainty, so 

that the distance information can approximate to the ac-

tual measured values more accurately. Then these sensor 

data are sent to a probabilistic fuzzy rule-based inference 

system with reactive behaviors for the local navigation to 

attain better performance under uncertainty. The rest of 

the paper is organized as follows. The range measure-

ment problem is formulated in Section 2 for reactive 

navigation of mobile robots. In Section 3, a general 

probabilistic fuzzy system is designed with range sensor 

based reactive behaviors for robot navigation. Both the 

simulative and experimental results on a real mobile ro-

bot are shown and analyzed to test the presented ap-

proach in Section 4. Conclusions are given in Section 5. 

 

2. Problem Formulation 

 
The robot employed in this study is a MT-R mobile robot. 

Its main sensors and configurations are shown in Figure 

1. It is a two-wheel driven robot with 6 pairs of range 

sensors and each pair of sensors consists of an ultrasonic 

sensor and an infrared sensor. The detailed specifications 

of robot MT-R are listed as shown in Table 1 and the 

configuration of the 6 pairs of range sensors is shown as 

in Figure 1.  

To navigate the robot in a clustered environment, the 

mobile robot detects the surrounding environment and 

then decides the motion commands. The robot has six 

range sensor pairs and can detect the obstacles from six 

directions (Figure 1). So the inputs of the reactive navi-

gation control system are the six obstacle distances df, dlf, 

drf, dl, dr, db obtained from the front, left-front, right-front, 

left, right and back sensor pairs. The outputs are the mo-

tion commands to the two wheels with encoders. For 

MT-R, the sensitive range of the ultrasonic sensor is 0.2 

m ~ 7 m and that of the infrared sensor is 0.1 m ~ 0.8 m. 

These two kinds of range sensors are always combined to 

detect the obstacles in front of them. As addressed in 

Section 1, the sensory inputs are always full uncertain. 

Moreover, the robot control system has to judge the input 

distance is “far” or “close” and to decide the output mo-

tion command is “forward”, “turn left” or “back” and so 

on. To handle these vague and stochastic uncertainties,  

 
Table 1. Specifications of mobile robot MT-R. 

Specifications of Robot MT-R 

Dimensions 

Base: d = 0.490 m 

Height: 0.495 m 

Weight: 30 kg 

Motion Control 

DSP + CPLD 

2 DC motors (MAXON 24 V, 70 W) with 2 

shaft encoders 

Max speed: 2.5 m/s 

Exteroceptive 

Sensors 

6 sonar sensors:  

Resonance frequency (20 KHz) 

Sensitivity Range (0.2 m ~ 7 m) 

6 infrared sensors:  

Measurement frequency (100 HZ) 

Sensitivity Range (0.1 m ~ 0.8 m) 

CCD camera 

1.3 M pixel 

30 frames/s 

USB interface 

Other 

equipments 

Wireless communication: 54 M, 

etc. 
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(a)                                                            (b) 

Figure 1. Mobile robot MT-R and its configurations. (a) MT-R mobile robot with rang sensors; (b) Configuration of Range 

sensors. 

 

the probabilistic fuzzy approach is adopted as an inte-

grated control scheme for the reactive navigation control 

of mobile robots in unknown environments. 

Figure 2 shows three distance data measured by range 

sensor under different stochastic circumstances, respec-

tively. For instance, Situation 1 represents the distance 

data under normal condition without any disturbance. 

Situation 2 expresses the data under man-made distur-

bances such as the movement of someone around the 

range sensor during measurement. Situation 3 presents 

the distance information with the disturbance of random 

noises. Under each of these stochastic conditions, the 

error ( 1,2,3)i i   between actual measured distance 

and precise distance can be used for fuzzification with 

diverse membership function. In addition, each of the 

stochastic situations possesses a probability with a cer-

tain probabilistic distribution function in continuous case 

or discrete case. Due to the specific probability held by 

each of the stochastic uncertainties, PFLS for range 

measurement can be implemented to effectively reduce 

the measurement error caused by stochastic uncertainty. 

 

3. Reactive Navigation with PFLS 
 

Range sensors are most widely used for mobile robots to 

move autonomously with obstacle-avoidance. In this 

section, PFLS method is first introduced for processing 

the sensory inputs, and then an integral control scheme is 

designed and implemented to achieve robust and precise 

reactive navigation for mobile robots. 

 

3.1. Probabilistic Fuzzy Logic System 
 

Ordinary fuzzy logic is based on the theory of fuzzy set 

which is composed of discrete or continuous elements 

possessing degree of membership. An ordinary fuzzy set 

can be represented as a set , where an input 

variable 
 ,S I U 

x I  and    0,  1U u x  is its fuzzy 

membership grade. If  1 2,  , ,  nI x x  x  and n is the 

number of the elements in fuzzy set, then the fuzzy set 

( ,S I )U  can be expressed as 

         1 2

11 2

,
N

n i

in i

u x u xu x u x
S I U

x x x 

     
x

. 

In comparison with the ordinary fuzzy logic system 

(FLS), a probabilistic fuzzy logic system (PFLS) simi-

larly includes fuzzification, fuzzy rules, fuzzy inference 

and defuzzification. Nevertheless, the distinct difference 

of PFLS to FLS is that the fuzzification and defuzzifica-

tion procedure are based on probabilistic fuzzy sets in-

stead of ordinary fuzzy sets [25-27].  

 

3.1.1. Fuzzification in PFLS 

Definition (Probabilistic Fuzzy Set) The probabilistic 

fuzzy set  can be donated as a probability space of S
 P,S S , where { } {( ,  )j jS S x u    is 

the set of all possible events and 

1, 2, , }j m 
x I  is the input 

variable. For all element event  jS S

       0, Σ Σ , 1j j jP S P S P S P S  .  

The probabilistic fuzzy set can be formulated as the 

union of the finite space as follows: 

  , ,
x I

S I U


  P  

In PFLS, the fuzzy membership grade  is a ran-

dom variable with a certain probabilistic distribution 

function (PDF) 

 u x

  ,P x u x . For example, Figure 3 pre-

sents an instance of a discrete probabilistic fuzzy set  

in a three-dimension ordinary fuzzy space.  

S

  
1,2,3,4

, ,i i

i

S I u


  P  
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Figure 2. Demonstration of three measured distance data under different stochastic circumstances. 

 

 

Figure 3. An instance of discrete probabilistic fuzzy set in three-dimension coordinate. 

 

where  1 2 3{ , , } {1,2,3}I x x x 
{0.6,0.2,0.1}u  P1 0.4P 

0.2P 
, ; ,  1

{0.1,0.3,0.7}u 
2 0.1

0.3P 
2 {0,0.5,0.3}u 

{0.4,0.8,0.5}3 , ; , . 3 4 4u

3.1.2. Inference in PFLS 

The jth rule of a PFLS is usually expressed as follows: 

Rule j: IF x1 is 1, jA  and x2 is 2, jA  and   and nx  
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is ,n jA ; Then  is q jB
,

.  

where , )i j ( 1, 2, )( 1, 2, ,A i n j    m  and jB  are pro- 

babilistic fuzzy sets. For more details, please refer to 

[25-27]. 

 

3.1.3. Defuzzification in PFLS 

The method of probabilistic defuzzification is deduced 

from ordinary fuzzy sets. In ordinary FLS, it is usually 

used for defuzzification with a centroid calculation. 

However, the operation of defuzzification in PFLS is 

realized by computing centroid calculation with the as-

sociation of the mathematical expectation. 

For each possible input event, the output has a fuzzy 

set which has L elements that each element is assigned a 

value k  and every number is corre-

sponding to a membership grade  

where the input variable 1 2

( 1,2,v k  , L)

( , )( 1, 2, , )v ku x v k L 
{ , , , }nx I x x x   . Thus, 

with the centroid calculation, the centroid output is ob-

tained 

 

 
1

1

,

,

M

k v k

k
d 

, M

, 2,

X

M

v k
k

v u x v

v

u x v









)

)

d

 

There are M possible events that each of them has an 

output d  through the defuzzification of 

centroid calculation, and accordingly the probability dis-

tribution is . In the stochastic circum-

stance, the mathematical expectation  from  is 

used as the terminative output of PFLS 

( 1

dP d

, 2,v d  

( 1 , M

v dv

  
1

M

d d

d

v E v v P


  

 

3.2. PFLS for Reactive Navigation 

 
Generally, reactive navigation refers to the navigation 

control without map-building and global planning. In this 

paper, the reactive navigation system is designed to help 

the robot moves in a local area freely and safely. The 

robot used in our study is called MT-R as shown in Fig-

ure 1. It is a two-wheel driven mobile robot and takes 

range sensory data as inputs to detect the surrounding 

environment and try to seek free regions after processing 

these range data. So to achieve effective reactive naviga-

tion, firstly we have to adopt a range sensor data proc-

essing method to get more accurate range information; 

secondly suitable reactive behavior and decision-making 

approach should be designed to navigate the robot. In 

[28], the probabilistic fuzzy system has been shown to be 

effective to deal with both the nonstochastic and stochas-

tic uncertainties in range measurement. In addition, 

PFLS is also a good candidate for the behavior control of 

mobile robots. Hence we present an integral reactive 

navigation approach based on range sensors using PFLS. 

The overall reactive navigation system is described as 

Figure 4. For each control step, the range sensory date 

{ , , , , , }f lf rf l r bd d d d d d  are first sent to a PFLS, after 

being processed, the outputs of range data are used for 

the reactive behavior control. For the details of the PFLS 

based method for range measurement, please refer to 

[28]. As for the reactive behavior, the decision-making is 

based on the range information { , , , , , }f lf rf l r bd d d d d d . 

Here three kinds of primitive behaviors are designed for 

the local navigation control: emergency behavior, obsta-

cle-avoidance and goal-seeking. The reactive navigation 

task is decomposed in terms of all these primitive be-

havior that respond to the immediate sensory inputs. 

Emergency behavior is directly added to the control 

system without probabilistic fuzzy inference to avoid 

collision with a dynamic obstacle or a stationary wall 

when a possible sensing failure. The emergency behavior 

has the priority to guarantee very safe navigation. When 

an obstacle is closer than a threshold and the robot has no 

time to avoid it while moving, the robot has to stop im-

mediately and retreat from the imminent danger. The 

threshold distances are selected online according to the 

robot velocity. 

Obstacle-avoidance has always been the basic ability 

to navigate in a local area. The distance information for 

obstacle-avoidance is gained by detecting the environ-

ment with range sensors { , , , , , }f lf rf l r bd d d d d d . If the 

threshold value δ = 0.15 m is set as the safe distance and 

the maximum sensing range L = 7 m, then the obsta-

cle-avoidance behavior is controlled by using a probabil-

istic fuzzy inference engine within the range δ ~ L.  

As for goal-seeking behavior, an autonomous robot 

has the ability of recognizing or knowing where the goal 

is. For the behavior of turning to goal or subgoal, the key 

is to recognize the goal and measure the distance be-

tween the robot and the goal. In this paper, the location 

of the goal is assumed to be known to the robot.  

As shown in Figure 4, all of the behavior are imple-

mented using the probabilistic fuzzy controller and the 

output data 1  and 2  refer to the control output after 

defuzzification for the two DC motors with encoders. 

m m

 

4. Experimental Results 

 
To demonstrate the performance of the presented reac-

tive navigation system based on PFLS, several groups of 

experiments are carried out using a simulated navigation 

platform and the real mobile robot MT-R, respectively. 

Figure 5 shows the range measurement results for the   

Copyright © 2011 SciRes.                                                                                  ICA 
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Figure 4. The PFLS controller for reactive navigation. 

 

 

Figure 5. Experimental results of range measurement for mobile robots. 



C. L. CHEN  ET  AL. 

Copyright © 2011 SciRes.                                                                                  ICA 

83

   
reactive navigation in a local environment. The per-

formance of range measurement using PFLS is compared 

with the ordinary FLS method. It is clear that FLS can 

reduce the distance errors, but it can not process the sto-

chastic errors and is difficult to further improve the range 

measurement performance. On the contrary, PFLS based 

range data processing method works better.  

Figure 6 demonstrates the navigation results in the 

simulation environment, which is built up using Visual 

C++ with the setting of 600 × 400 (Grid representation). 

In each case, the environment is assumed to be com-

pletely unknown for the mobile robot except the start and 

goal states. The robot has to explore the environment 

using onboard range sensors. It is shown in Figure 6 that 

the PFLS method navigates the robot more safely and 

effectively. Then we further test the reactive navigation 

performance on the real robot MT-R in our office build-

ing. As shown in Figure 7, the robot walks through a 

corridor with clustered obstacles quickly and safely. All 

these results also demonstrate the success and practica-

bility of the proposed reactive navigation control ap-

proach. 

 

5. Conclusions 
 

PFLS has been demonstrated to be an effective approach 

to map the typical non-linear relation of input-output 

model with stochastic and fuzzy uncertainties. In this 

paper, PFLS is further extended to a general method for 

range measurement based reactive navigation. First, 

PFLS for range sensor is proposed to process stochastic 

uncertainty and can effectively reduce the disturbance 

caused by stochastic uncertainty, so that the distance 

information can approximate to the actual measured val-

ues more accurately. Then these sensor data are sent to a  

probabilistic fuzzy rule-based inference system with de-

signed reactive behaviors for the local navigation. Both 

of the simulated experiments and the experiments on a 

real mobile robot MT-R show that the presented prob-

abilistic fuzzy approach can help obtain more precise 

sensory information robustly and improves the perform-

ance of the reactive navigation in uncertain environ-

ments.  

Our future work will focus on the application of PFLS 

to more sensor systems and the combination of robot 

learning systems. The probabilistc fuzzy rules of behav-

ior-selection are mostly configured by experiences. It 

will be more useful and practical for the robot to adjust 

the existing control rules through learning. 
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