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Abstract. We prove that there are only O(H3+ε) quartic integer polynomials with
height at most H and a Galois group which is a proper subgroup of S4. This improves
in the special case of degree four a bound by Gallagher that yielded O(H7/2 log H).
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1. Introduction. On probabilistic grounds, one should expect that ‘almost all’
polynomials have the full symmetric group as Galois group acting on the roots. More
precisely, let

En(H) = #{(a1, . . . , an) ∈ Zn : |ai| ≤ H (1 ≤ i ≤ n) and

Xn + a1Xn−1 + . . . + an does not have Galois group Sn}.

Then van der Waerden [8] showed that

En(H) �n Hn−6/((n−2) log log H).

Later, Knobloch [4], [5] improved this to

En(H) �n Hn−cn

with

cn = 1
18n(n!)3

.

Finally, using the large sieve, Gallagher [2] proved that

En(H) �n Hn−1/2 log H.

Since there are only On,ε(Hn−1+ε) polynomials like the above that are not irreducible
over Q (see [1]), one could conjecture that En(H) �n,ε Hn−1+ε . This conjecture has been
confirmed by Lefton [6] for n = 3. In this note we tackle the case n = 4, building on
Lefton’s ideas and using an explicit characterization for Galois groups of polynomials
of degree four.

THEOREM. E4(H) �ε H3+ε .
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Note that Wong [10, Theorem 1.4] obtained the same result conditionally, assum-
ing the abc-conjecture, the Birch–Swinnerton-Dyer conjecture and the generalized
Riemann hypothesis for the L-functions of elliptic curves over Q. In fact, in his main
result Wong considered the problem of bounding the number of quartic fields with
bounded discriminant having Galois group A4 and gave both a strong conditional
result using the hypotheses from above and a weaker unconditional result. It is our
aim to show that the bound for E4(H) from above can be proved by an elementary
method without using any further hypotheses, utilizing bounds for the number of
points on conics (see Lemma 4) rather than on elliptic curves as in [10, Lemma 2.1].
Our main tool is the following characterization of quartic polynomials having Galois
group S4.

LEMMA 1. Let f (x) = x4 + ax3 + bx2 + cx + d ∈ Q[X ] be irreducible and

r(x) = x3 − bx2 + (ac − 4d)x − (a2d − 4bd + c2)

be the cubic resolvent of f . Then the splitting field of f over Q has Galois group S4 if and
only if r is irreducible over Q and the discriminant of f is not a square in Q.

Proof. This follows from Theorem 1 in [3].

2. Preparations.

LEMMA 2. Let f (x) = a0xn + a1xn−1 + . . . + an ∈ C[X ]. Then all roots z ∈ C of the
equation f (z) = 0 satisfy the inequality

|z| ≤ 1
n
√

2 − 1
· max

1≤k≤n
k

√∣∣∣∣ ak

a0
(n

k

) ∣∣∣∣.
Proof. This is Theorem 3 in § 27 of [7].

LEMMA 3. Let N(H) be the number of tuples (a, b, c, d) ∈ Z4 with

0 ≤ |a|, |b|, |c|, |d| ≤ H (1)

such that the polynomial

f (x) = x3 − bx2 + (ac − 4d)x − (a2d − 4bd + c2)

is reducible over Q. Then N(H) � H3.

Proof. If f is reducible over Q then, by Gauss’s Lemma, also over Z. (Because
deg f = 3 this means that f has an integer zero x.) Moreover, by Lemma 2, x � H.
Hence

N(H) �
∑

|x|�H

∑
|d|�H

M(x, d, H),

where M(x, d, H) denotes the number of (a, b, c) ∈ Z3 satisfying (1) such that

x3 − bx2 + (ac − 4d)x − (a2d − 4bd + c2) = 0. (2)
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Suppose first that x2 − 4d = 0. Then (2) yields

x3 + (ac − 4d) x − (a2d + c2) = 0, (3)

and so for fixed x and d with x2 − 4d = 0 there are clearly at most O(H) tuples (a, c)
with |a|, |c| ≤ H and satisfying (3). Furthermore, b can be chosen arbitrarily as long
as |b| ≤ H. All together, this gives

M(x, d, H) � H2

if x2 − 4d = 0. Now suppose that x2 − 4d �= 0. Then (2) yields

b = x3 + (ac − 4d)x − (a2d + c2)
x2 − 4d

.

Assume first that |x2 − 4d| ≥ H. Then clearly

M(x, d, H) ≤ #{(a, c) ∈ Z2 : 0 ≤ |a|, |c| ≤ H and

x3 + (ac − 4d)x − (a2d + c2) ≡ 0 (mod |x2 − 4d|)}
� H. (4)

Now suppose that |x2 − 4d| ≤ H. Then |x| � √
H, and for given P with 1 ≤ P ≤ H

clearly

#{(x, d) ∈ Z2 : |x|, |d| � H and P ≤ |x2 − 4d| ≤ 2P} � P
√

H.

Further, if P ≤ |x2 − 4d| ≤ 2P then, analogously to (4), we have

M(x, d, H) � H2

P
.

Collecting our findings from above, we conclude that

N(H) �
∑

|x|�H

⎛
⎜⎝ ∑

|d|�H:
x2−4d=0

M(x, d, H) +
∑
|d|�H:

x2−4d �=0

M(x, d, H)

⎞
⎟⎠

� H3 +
∑

|x|,|d|�H:
|x2−4d|≥H

H +
∑

P

∑
|x|,|d|�H:

P≤|x2−4d|≤2P

H2

P

� H3 + H5/2 log H

� H3.

LEMMA 4. Let Q(X, Y ) ∈ Z[X, Y ] be a quadratic polynomial with nonzero
discriminant and coefficients bounded in modulus by H. Then

#{(x, y) ∈ Z2 : |x|, |y| ≤ P and Q(x, y) = 0} �ε (PH)ε .

Proof. This is Lemma 2 in [6].
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3. Proof of the Theorem. Since there are only O(H3+ε) polynomials x4 + ax3 +
bx2 + cx + d satisfying (1) that are reducible over Q we may in the following assume
that our polynomials of this type are irreducible. By Lemma 3 and Lemma 1, it suffices
to show that

#{(a, b, c, d) ∈ Z4 : |a|, |b|, |c|, |d| ≤ H and the discriminant

of x4 + ax3 + bx2 + cx + d is a square in Q} �ε H3+ε . (5)

Now x4 + px2 + qx + r has discriminant

D = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3 (6)

(see [9, § 64]), so that

x4 + ax3 + bx2 + cx + d =
(

x + a
4

)4

+
(

b − 3
8

a2
)

x2 +
(

c − a3

16

)
x + d − a4

256

has discriminant (6) where

p = b − 3
8

a2, q = c − a3

16
, r = d − a4

256
. (7)

Fix a, b, d with |a|, |b|, |d| ≤ H. There are O(H3) possibilities of doing so. Then if D is
a square in Q, then by (6) and (7) we conclude that

224(−27(q2)2 + (144pr − 4p3)q2 + 16p4r − 128p2r2 + 256r3) = y2,

for some integer y. This is a quadratic equation in q2 and so, by Lemma 4, there
are at most O(Hε) solutions with q2 � H6 and thus at most O(Hε) solutions with
c = q + a3/16 � H. Hence the quantity on the left side of (5) can be bounded by
H3+ε , and we are done.
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