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ABSTRACT

The purpose of this paper is to define the framework
within which empirical investigations of probabilistic grammars can
take place and to sketch how this attack can be made. The full
presentation of empirical results will be left to other papers. In
the detailed empirical work, the author has depended on the
collaboration of E. Gammon and A. Moskowitz, and draws on joint work
for examples in subsequent sections. Section II presents a simple
example of a probabilistic grammar to illustrate the methodology
without complications. Section III indicates how such ideas may be
applied to the spoken speech of a young child. Because of the
difficulties and complexities of working with actual speech, the
fourth section illustrates some of the results obtained telen the
apparatus of analysis is applied to e much simpler corpus, a
first-grade reader. The results of an empirical sort in this paper
are all preliminary in nature. (Author/AMM)
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Probabilistic Grammars for Natural Languages

Patrick Suppes

1. Introduction

Although e fully adequate grammar for a substantial portion of any

natural language does not exist, a vigorous and controversial discussion

of how to choose among several competing grammars has already developed.

On occasion, criteria of simplicity have been suggested as systematic

scientific criteria for selection. The absence of such systemtic criteria

of simplicity in other domains of science inevitably raises doubts about

the feasibility of such criteria for the selection of a grammar. Although

some informal and intuitive discussion of simplicity is often included

in the selection of theories or models in physics or in other branches of

science, there is no serious systematic literature on problems of measuring

simplicity. Nor is there any systematic literature in which criteria of

simplicity are used in a substantive fashion to select from among several

theories. There are many reasons for this, but perhaps the most pressing

one is that the use of more obviously objective criteria leaves little

room for the addition of further criteria of simplicity. The central

thesis of this paper is that objective probabilistic criteria of a standard

scientific sort may be used to select a grammar.

Certainly the general idea of looking at the distribution of linguistic

types in a given corpus is not new. Everyone is familiar with the remarkable

*This research has been supported in part by the National Science

Foundation under Grant NSFGJ-443X. The report will appear as an article

in a forthcoming issue of Synthese.
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agreement of Zipf's law with, the distribution of word frequencies in

almost any substantial sample of a natural language. The empirical

agreement of these distributions with Zipf's law is not in dispute,

although a large and controversial literature is concerned with the

most appropriate assumptions of a qualitative and elementary kind from

which to derive the law. While there is, I believe, general agreement

about the approximate empirical adequacy of Zipf's law, no one claims

that a probabilistic account of the frequency distribution of words in

a corpus is anything like an ultimate account of how the words are used

or why they are used when they are. In the same sense, in the discussion

here of probabilistic grammars, I do not claim that the frequency distri-
,

bution of grammatical types provides an ultimate account of how the

language is used or for what purpose a given utterance is made. Yet,

it does seem correct to claim that the generation of the relative fre-

quencies of utterances is a proper requirement to place on a generative

grammar for a corpus.

Because of the importance of this last point, let me expand it. It

might be claimed that the relative frequencies of grammatical utterances

are no more pertinent to grammar than is the relative frequency of shapes

to geometry. No doubt, in one sense such a claim is correct. If we are

concerned, on the one hand, simply with the mathematical relation between

formal languages and the types of automata that can generate these

languages, then there is a full set of mathematical questions for which

relative frequencies are not appropriate. In the same way, in standard

axiomatizations of geometry, we are concerned only with the representa-

tions of the geometry and its invariants, not with questions of actual



frequency of distribution of figures in nature. In fact, we all recog-

nize that such questions are foreign to the spirit of either classical

or modern geometry. On the other hand, when we deal with the physics

of objects in nature there are many aspects of shapes and their frequen.-

cies of fundamental importance, ranging from the discussion of the shape

of clouds and the reason for their shape to the spatial configuration of

large and complex organic molecules like proteins.

From the standpoint of empirical application, one of the more dis-

satisfying aspects of the purely formal theory of grammars is that no

distinction is made between utterances of ordinary length and utterances

that are arbitrarily long, for example, of more than 10
50

words. One of

the most obvious and fundamental features of actual spoken speech or

written text' is the distribution of length of utterance, uad the rela-

tively sharp bounds on the complexity of utterances, because of the

highly restricted use of embedding or other recursive devices. Not to

take account of these facts of utterance length and the limitations on

complexity is to ignore two major aspects of actual speech and writing.

As we shall see, one of the virtues of a probabilistic grammar is to

deal directly with these central features of language.

Still another way of putting the matter is this. In any application

of concepts to a complex empirical domain, there is always a degree of

uncertainty as to the level of abstraction we should reach for. In

mechanics, for example, we do not take account of the color of objects,

and it is not taken as a responsibility of mechanics to predict, the

color of objects. (I refer here to classical mechanics--it could be

taken as a responsibility of quantum mechanics.) But ignoring major



features of empirical phenomena is in all cases surely a defect and not

a virtue. We ignore major features because it is difficult to account

for them, not because they are uninteresting or improper subjects for

investigation. In the case of grammars, the features of utterance length

and utterance complexity seem central; the distribution of these features

is of primary importance in understanding the character of actual

language use.

A different kind of objection to considering probabilistic grammars

at the present stage of inquiry might be the following. It is agreed on

all sides that an adequate grammar, in the sense of simply accounting

for the grammatical structure of sentences does not exist for any sub-

stantial portion of any natural language. In view of the absence of even

one grammar in terms of this criterion, what is the point of imposing a

stricter criterion to also account for the relative frequency of utterances?

It might be asserted that until at least one adequate grammar exists, there

is no need to be concerned with a probabilistic criterion of choice. My

answer to such a claim is this. The probabilistic program described in

this paper is meant to be supplementary rather than competitive with

traditional investigations of grammatical structure. The large and subtle

linguistic literature on important features of natural language syntax

constitutes an important and permanent body of material. To draw an

annlogy from meteorology, a probabilistic measure of a grammar's adequacy

stands to ordinary linguistic analysis of particular features, such as

verb nominalization or negative constructions, in the same relation that

dynamical meteorology stands to classical observation of the clouds.

While dynamical meteorology can predict the macroscopic movement of fronts,
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it cannot predict the exact shape of fair-weather cumulus or storm-generated

cumulonimbus. Put differently, one objective of a probabilistic grammar

is to account for a high percentage of a corpus with 'a relatively simple

grammar and to isolate the deviant cases that need additional analysis

and explanation. At the present time, the main tendency in linguistics

is to look at the deviant cases and not to concentrate on a quantitative

account of that part of a corpus that can be analyzed in relatively simple

terms.

Another feature of probabilistic grammars 'ciifolm,th' rioting is

that such a grammar can permit the generation of grammatical types that

do not occur in a given corpus. It is possible to take a tolerant attitude

toward utterances that are on the borderline of grammatical acceptability,

as long as the relative frequency of such utterances is low. The point

is that the objective of the probabilistic model is not just to give an

account of the finite .)rpus of spoken speech or written text used as a

basis for estimating the parameters of the model, but to use the finite

corpus as a sample to infer parameter values for a larger, potentially

infinite "population" in the standard probabilistic fashion. On occasion,

there seems to have been some confusion on this point. It has been

seriously suggested more than once that for a finite corpus one could

write a grammar by simply having a separate rewrite rule for each terminal

sentence. Once a probabilistic grammar is sought, such a proposal is

easily ruled out as acceptable. One method of so doing is to apply a

standard probabilistic test as to whether genuine probabilities have been

observed in a sample. We run a split-half analysis, and it is required

that within sampling variation the same estimates be obtained from two

randomly selected halves of the corpus.
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Another point of confusion among some linguists and philosophers

with whom I have discussed the methodology of fitting probabilistic gram-

mars to data is this. It is felt that some sort of legerdemain is involved

in estimating the parameters of a probabilistic grammar from the data which

it is supposed to predict. At a casual glance it may seem that the pre-

dictions should always be good and not too interesting, because the param-

eters are estimated from the very data they are used to predict. But this

is to misunderstand the many different ways the game of prediction may be

played. It is certainly true that if the number of parameters equals the

number of predictions the results are not very interesting. On the other

hand, the more the number of predictions exceeds the number of parameters

the greater the interest in the predictions of the theory. To convince

one linguist of the wide applicability of techniques of estimating param-

eters from data they predict and also to persuade him that such estimation

is not an Intellectually dishonest form of science, I pointed out that in

studying the motion of the simple mechanical system consisting of the Earth,

Moon and Sun, at least 9 position parameters and 9 velocity or momentum

parameters as well as mass parameters must be estimated from the data

(the actual situation is much more complicated), and everyone agrees that

this is "honest" science.

It is hardly possible in this paper to enter into a full-scale

analysis and defense of the role of probabilistic and statistical method-

ology in science. What I have said briefly here can easily be expanded

upon; I have tried to deal with some of the issues in a monograph on

causality (Suppes 1970). It is my own conviction that at present the

quantitative study of language must almost .always be probabilistic
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in nature. The data simply cannot be handled quantitatively by a deter-

ministic theory. A third confusion of some linguists needs to be mentioned

in this connection. The use of a probabilistic grammar in no way entails

a commitment to finite Markovian dependencies in the temporal sequence of

spoken speech. Two aspects of. suchlgrammars make this clear. First, in

general such grammars generate a stochastic process that is a chain of

infinite order in the terminal vocabulary, not a finite Markov process.

Second, the probabilistic parameters are attached directly to the generation

of non-terminal strings of syntactic categories. Both of these observations

are easy to check in the more technical details of later sections.

The purpose of this paper is to define the framework within which

empirical investigations of probabilistic grammars can take place and to

sketch how this attack can be made. The full presentation of empirical

results will be left to other papers. In the detailed empirical work I

have depended on the collaboration of younger colleagues, especially

Elizabeth Gammon and Arlene Moskowitz. I draw on our joint work for

examples in subsequent sections of this paper. In the next section I

give a simple example, indeed, a simple-minded example, of a probabilistic

grammar, to illustrate the methodology without complications. In the third

section I indicate how such ideas may be applied to the spoken speech of

a young child. Because of the difficulties and complexities of working

with actual speech, I illustrate in the fourth section some of the results

obtained when the apparatus of analysis is applied to a much simpler corpus,

a first-grade reader I emphasize the results of an empirical sort in this

paper are all preliminary in nature, . The detailed development of the empir-

ical applications is a complicated and involved affair and goes beyond the

scope of the work presented here.
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2. A simple example

To illustrate the methodology of constructing and testing probabilistic

grammars, a simple example is described in detail in this section. It is

not meant to be complex enough to fit any actual corpus.

The example is a phrase-structure grammar that can easily be rewritten

as a regular grammar. The five syntactic or semantic categories are just

V1, V
2/

Adj, PN and N, where V
1

is the class of intransitive verbs,

V
2

the class of transitive verbs or two-place predicates, Adj the class

of adjectives, PN the class of proper nouns and N the class of common

nouns. Additional non-terminal vocabulary consists of the symbols SI

WI VP and AdjP. The set P of production rules consists of the

following seven rules plus the rewrite rules for terminal vocabulary

belonging to one of the five categories. The probability of using one

of the rules is shown on the right. Thus, since Rule 1 is obligatory,

the probability of using. it 1. In the generation of any sentence

either Rule 2 or Rule 3 must be used. Thus the probabilities a and

1 - a, which sum to 1, and so forth for the other rules.

Production Rule

1. S -4 NP + VP

2. VP -) V1

3. VP- V2 + NP

. NP PN

5. NP AdjP + N

6. AdjP AdjP + Adj

7. AdjP Adj

8

Probability

1

1 - a

a

1 - p

P

1 - y



Thus this probabilistic grammar has three parameters, a, p and y,

and the probability of each grammatical type of sentence can be expressed

as a monomial function of the parameters. In particular, if Adjn is

understood to denote a string of n adjectives then the possible grammat-

ical types (infinite in number) all fall under one of the corresponding

schemes, with the indicated probability.

Grammatical 2222 Probability

1. PN + V
2

(1 -a)(1 - p)

2. PN + V
2
+ PN a(1 - p)2

3. Adjn + N + V (1 - a)p(1 y)n ly

4. PN + V
2

Adj
n
+ N ap(1 - p)(1 -

y)n-ly

5. Adjn + N + V + PN ap(1 - p) (1

6. Adj + N + V
2

+ Adjn + N

y)n-ly

2
afi (1 - qn+n-2y2

On the hypothesis that this grammar is adequate for the corpus we are study-

ing, each utterance will exemplify one of the grammatical types falling

under the six schemes. The empirical relative frequency of each type in

the corpus can be used to find a maximum-likelihood estimate of each of

the three parameters. Let x
1,

x be the finite sequence of actual

utterances. The likelihood function L(x ofito, xn; a, pl y) is the

function that has as its value the probability of obtaining or generating

sequence x
1

x
n

of utterances given parameters a, p, y. The com-

putation of L assumes the correctness of the probabilistic grammar, and

this implies among other things the statistical independence of the grammat-

ical type of utterances, an assumption.that is violated in any actual corpus,

but probably not, too excessively. The maximum-likelihood estimates of a,
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p and y are just those values of et, and 9 that maximize the

probability of the observed or generated sequence x1, x
n

. Let

y
1

be the number of occurrences of grammatical type 1, i.e., PN + V
1'

as given in the above table, let y2 be the number of occurrences of

type 2, i.e., PN + V2 + PN, let y
3 1n.

be the number of occurrences of

type 3 with a string of n adjectives, and let similar definitions apply

for v and y8
m n

. Then on the assumption of statistical
4-,n' Y5n

independence, the likelihood function can be expressed as:

Yl. 2 2 n-1
Y3 n

(1) L(xl ...x
n
; 01.43,y) = I:(1-a)(1- p)] ky(1- p) TT El- (Y)(3(1-y YI '

n=1

iT rj[1:43

2
(1-Y)

m+n-2
721

Y6 m n
00 m

n=1 m=1

Of course, in any finite corpus the infinite products will always have

only a finite number of terms not equal to one. To find a, f3.' and 9

as functions of the observed frequencies yl, Y6,1111n, the standard

approach is to take the logarithm of both sides of (1), in order to convert

products into sums, and then to take partial derivatives with respect to

a, p and y to find the values that maximize L. The maximum is not

changed by taking the log of L, because log is a strictly monotonic

increasing function. Letting XI = log L, y3 = Ey3,n, y4

. Ey5In, and y6 = EEy8lm n) we have

Y Y
1 3

- a

y

a
+Y6

0

-

y 2y
21 Y4 + Y5 Y4 + Y5 2Y6

p 1-p 1-p' p f3 1 - f3 f3

10

EY4 n'



+ y6 pi?
+ +

n-1)(y3,n+y4)n+y5)_)
" +

.0 Y3 Y4 "1"

dy 1 - y - y

112141
(m-n-2)y

- =
Ll - y 1 - y

+ I 0 .

If we let

z, E E -- y6 ,

b n
m'+n'=h4 '

then after solving the above three equations we have as maximum-likelihood

estimates:

a -
Y2 Y 4 Y 5 Y 6

Y2 Y 3 Y 4 Y 5 Y6

Y4 Y5 2Y6

+ 2Y2 + Y3 + 2Y4 + 215 + 216

Y-
En

Y3 Y4 4- Y5 z6

Y3,n Y4,n Y5,n z61n)

As would be expected from the role of y as a stopping parameter for the

addition of adjectives, the maximum-likelihood estimate of y is just

the standard one for the mean of a geometrical distribution.

Having estimated a, p and y from utterance frequency data, we

can then test the goodness of fit of the probabilistic grammar in some

standard statistical fashion, using a chi-square or some comparable sta-

tistical test. Some numerical results of such tests are reported later

in the paper. The criterion for acceptance of the grammar is then just

11



a standard statistical one. To say this is not to imply the; standard

statistical methods or criteria of testing are without their own conceptual

problems. Rather the intention is to emphasize that the selection of a

grammar can follow a standard scientific methodology of great power and

wide applicability, and methodological arguments meant to be special to

linguistics--like the discussions of simplicity--can be dispensed with.

3. Grammar for Adam I

Because of the relative syntactic simplicity and brevity of the

spoken utterances of very young children, it is natural to begin attempts

to write probabilistic grammars by examining such speech. This section

presents some preliminary results for Adam I, a well-known corpus col-

lected by. Roger Brown and his associates at Harvard.* Adam was ,a; young

boy of about 26 months at the time the speech was recorded. The corpus

analyzed by Arlene Moskowitz and me consists of eight hours of recordings

extending over a period of some weeks. Our work has been based on the

written transcript of the tapes made at Harvard. Accepting for the most

part the word and utterance boundaries established in the Harvard tran;-

script, the corpus consists of 6,109 word occurrences with a vocabulary

of 673 different words and 3,497 utterances.

Even though the mean utterancellength of Adam I ,is Somewhat lbss than

2.0, there are difficulties in writing a completely adequate probabilistic

grammar for the full corpus. An example is considered below.

*Roger Brown has generously made the transcribed records available

and given us permission to publish. any of our analyses.
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To provide, however, a sample of what can be done on a more restricted

basis, and in a framework that is fairly close to the simple artificial

example considered in the preceding section, I restrict my attention to

the noun phrases of Adam I. Noun phrases dominate Adam I, if for no

other reason than because the most common siagle utterance is the single

noun. Of the 3,497 utterances, we have classified 936 as single occur-

rences of nouns. Another 192 are occurrences of two nouns in sequence,

147 adjective followed by noun, and 138 adjectives alone. In a 'number

of other cases, the whole utterance is a simple noun phrase preceded or

followed by a one-word rejoinder, vocative or locative.

The following phrase - structure grammar was written for noun phrases

of Adam I. There are seven production rules, and the corresponding

probabilities are shown on the right, This particular probabilistic

model i19,s five free parameters; the sum of the al.' s is one, so the

a.'s contribute

caseoftheb.'s

four parameters to be fitted to the data, and in the

there is just one free parameter.

Production Rule Probability

1. NP a
1

2. NP -AdjP
a2

3. NP -AdjP + N a3

4. NP Fro
a4

5. NP NP + NP a5

6. AdjP -> AdjP + Adj b
1

7. AdjP Adj b2

13



What is pleasing about these rules and perhaps surprising is that six

of them are completely standard. (The one new symbol introduced here

is Pro for prorioun; inflection of pronouns has been ignored in the

present grammar.) The only slightly nonstandard rule is Rule 5. The

main application of this rule is in the production of the noun phrases

consisting of a noun followed by a noun, with the first noun being an

uninflected possessive modifying the second noun. Examples from the

corpus are Adam horn, Adam hat, Daddy racket and Doctordan circus.

To give a better approximation to statistical independence in the

occurrences of utterances, successive occurrences of the same noun phrase

were deleted in the frequency count, and only first occurrences in a run

of occurrences were considered in analyzing the data. Using the resulting

2,352 occurrences of noun phrases in the corpus, the maximum-likelihood

estimates of the parameters obtained are the following:

Estimated Parameter Values

a1 = .7001

a2 = .0966

a3 = .0072

a4 = .0787

a5 = .1174

b = .O599

b
2

= .9401

On the basis of remarks already made, the high value of al is not sur-

prising because of the high frequency of occurrences of single nouns in

the corpus. It should be noted that the value of al is even higher

than the relative frequency of single occurrences of nouns, because the

noun-phrase grammar has been written to fit all noun phrases, including

14.



those occurring in full sentence context or in conjunction with verbs,

etc. Thus in a count of single nouns as noun phrases every occurrence

of a single noun as a noun phrase 'was counted, and as can be seen from

the table below, there are 1,580 such single nouns without immediate

repetition. The high value of b2 indicates that there are very few

occurrences of successive adjectives, and therefore in almost all cases

the adjective phrase MEZ rewritten simply as an adjective (Rule 7).

Comparison of the theoretical frequencies of the probabilistic

grammar with the observed frequencies is given in Table 1.

WWI L. 1.." 1.

Insert Table 1 about here

Some fairly transparent abbreviations are used in the table in order to

reduce its size; as before, N stands for noun, A for adjective, and P

for pronoun. From the standpoint of a statistical goodness-of-fit test,

the chi-square is still enormous; its value is 355.0 and there are only

three net degrees of freedom. Thus by ordinary statistical standards

we must reject the of the model, but at this stage of the inv- bi-

gation the qualitative comparison of the observed and theoretical

frequencies is encouraging° The rank order of the theoretical frequen-

cies for the more frequent types of noun phrases closely matches that

of the observed frequencies. The only really serious discrepancy is in

the case of the phrases consisting of two nouns, for which the theoretical

frequency is substantially le s. than the observed frequency. It is

very possible that a different way of generating the possessives that

dominate the occurrences of these two nouns in sequence would improve

the prediction.

15



TABLE 1

Probabilistic Noun-Phrase Grammar for Adam I

Noun

Phrase

Observed

Frequency

Theoretical

Frequency

N 1580 1646.5

A 244 213.6

NN 231 135.4

P 176 185.2

PN 31 15.2

NA 19 17.6

NNN 12 11.1

AA 10 12.8

NAN 8 1.3

AP 6 2.0

PPN 6 .1

ANN 5 1.4

AAN 4 .9

PA 4 2.0

ANA 3 .2

APN 3 .2

AAA 2 .8

APA 2 .0

NPP 2 .1

PAA 2 .1

PAN 2 .1

_J
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Summation of the observed and theoretical frequencies will show

there is a discrepancy between the two columns. I explicitly note this.

It is expected, because the column of theoretical frequencies should

also include the classes that were not observed actually occurring in

the corpus. The prediction of the sum of these unobserved classes is

that they should have a frequency of 109.6, which is slightly less than

5% of the total observed frequency of 2,352.

It is also to be noted that the derivation of the probabilities

for each grammatical type of noun phrase used the simplest derivation.

For example, in the case of Adj N the theoretical probability was

computed from successive application of Rule 3, followed by Rule 6,

followed by Rule 7. It is also apparent that a quite different deriva-

tion of this noun phrase can be obtained by using Rule 5. Because of

the rather special character of Rule 5, all derivations avoided Rule 5

when possible and only the simplest derivation was used in computing

the probabilities. In other words, no account was taken of the ambiguity

of the noun phrases. A more exact and sensitive analysis would require

a more thorough investigation of this point. It is probable that there

would be no substantial improvement in theoretical predictions in the

present case, if these matters were taken account of. The reader may

also have noted that the theoretical frequencies reflect certain sym-

metries in the predictions that do not exist in the observed frequencies.

For example, the type Pro + Pro + N has an observed frequency of six,

and the permutation N + Pro + Pro has an observed frequency of two.

This discrepancy could easily be attributed to sampling. The symmetries

posed by the theoretical grammar generated from Rules 1 to 7 are

17



considerable, but they do not introduce symmetries in any strongly

disturbing way. Again it is to be emphasized that the symmetries tha'3.

are somewhat questionable are almost entirely introduced by means of

Rule 5. Finally, I note that I have omitted from the list of noun

phrases the occurrence of two pronouns in sequence because all cases

consisted of the question Who that? or What that?, and it seemed

inappropriate to classify these occurrences as single noun phrases.

I hasten to add that some remarks of a similar sort can be made about

some of the other classifications. I plan on a subsequent occasion to

reanalyze these data with a more careful attention to semantics and on

that occasion will enter into a more refined classification of the noun

phrases.

It is important for the reader to keep in mind the various qualifi-

cations that have been made here. I have no intention of conveying the

impression that a definitive result has been obtained. I present the

results of Table I. as a preliminary indication of what can be achieved

by the methods introduced in this paper. Appropriate qualifications

and refinements will undoubtedly lead to better and more substantial

findings.

I would like now to turn to the full corpus of Adam I. It is pos-

sible to write a phrase-structure grammar very much in the spirit of

the partial grammar for noun phrases that we have just been examining.

However, since approximately as good a fit has been obtained by using

a categorial grammar and because such a grammar exhibits a variant of

the methodology, I have chosen to discuss the best results I have yet

been able to obtain in fitting a categorial grammar to the data of

18



Adam I. I emphasize at the very beginning that the results are not

very good. In view of the many difficulties that seem to stand in the

way of improving them, I shall deal rather briefly with the quantitative

results.

Some preliminary remarks about categorial grammars will perhaps

be useful, because such grammars will probably not be familiar to some

readers. The basic ideas originated with the Polish logicians

Lesniewski (1929) and Ajdukiewicz (1935). The original developments

were aimed not at natural language, but at providing a method of parsing

of sentences in a formal language. From a formal standpoint there are

things of great beauty about categorial grammars. For example, in the

standard approaches there are at most two production rules. Let (1

and p be any two categories, then we generate an expression using the

right-slant operation by the rule

-)400,(3

and we generate an expression using the left-slant operation by the

rule

-)P,ONDt.

In addition, the grammars began with two primitive categories, s and

n standing respectively for sentence and noun. A simple sentence

like John walks has the follawing analysis

John walks

n, n \s

Note that n is the derived category of intransitive verbs. The

sentence

John loves Mary

n 7TST/n,n

19



has the analysis indicated. In this case the derived category of

transitive verbs is (n\s)/n. In a basic paper on categorial grammars,

Bar-Hillel, Gaifman and Shamir (1960) showed that the power of cate-

gorial grammars is that of context-free grammars. In a number of papers

that mention categorial grammars and describe some of their features,

the kind of simple examples 'I have just described are often given, but

as far as I know, there has been no large-scale effort to analyze an

empirical corpus using such grammars. (Fo an extensive discussion

see Marcus (1967).)

The direct application of standard categorial grammars to Adam I

is practically impossible. For example, in the standard formulation

the single axiom with which derivations begin is the primitive symbol s,

and with this beginning there is no way of accounting for the dominant

number of noun-phrase utterances in Adam I. I have reworked the ideas

of categorial grammars to generate always from left to right, to have

the possibility of incomplete utterances, and to begin derivations from

other categories than thoSe ollsentencehood. From a formal standpoint,

it is known from the paper of Bar-Hillel, Gaifman and Shamit that a

single production rule will suffice, but the point here is to introduce

not just a single left-right rewrite rule, but actually several rewrite

rules in order to try to give a more exact account of the actual corpus

of Adam I.

Although it is possible to write a categorial grammar in these

terms for Adam I, my efforts to fit this grammar probabilistically to

the frequencies of utterances have been notably unsuccessful. I have

spent more time than I care to say in this endeavor. It has been for
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me an instructive lesson on the sharp contrast between writing a grammar

for a corpus without regard for utterance frequencies, and writing a

probabilistic grammar. Because of the clear failure of the temporal

categorial grammar to account for the probabilistic features of Adam I,

I shall not enter into extensive details here.

The three left-right production rules were

1. p i3

2. a/13 ap,p,

3. a -4 a, ...
71' 7n'

provided a,71,...,yn cancels to a under the standard two rules given

earlier. Each of these three rewrite rules is used with probability

t., i = 1,2,3. Secondly, generalizing the classical single axiom s

any one of an additional 10 categories could begin a derivation; e.g.,

n (nouns), n/n (adjectives), 1/n (locatives), r/n (rejoinders), s \s

(adverbs), sin (transitive verbs), and so forth. After the generation

of each category, with probability cr the utterance terminated, and

thus a geometrical distribution was imposed on utterance length. In

the use of Rewrite Rule 1, the category a needed to be selected; the

model restricted the choice to n,s or v (vocatives). Finally, two

categories, the primitive poss for possessives and E for the empty set

were replacements used in applying Rewrite Rule 3. The model just

described was applied to the 22 types of utterances having a frequency

of 20 or more in the corpus. The most important fact about the poor

fit was that the theoretical frequencies were smaller than the observed

frequencies in all 22 cases. Much of the theoretical probability was

assigned to other utterance types, the effect being to spread the
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theoretical distribution more uniformly over a larger number of

utterance types 'than was the case for the actual distribution. Just

to illustrate the situation I cite the data for the three most frequent

utterance types, giving first the observed and then the predicted

frequency: n = 626, 422.6; s /n,n = 206, 25.6; r = 168, 133.3.

Some readers may properly ask why I should report at all this un-

satisfactory temporal categorial grammar. Partly it is just my on

lingering affection for these grammars, but mare, it is the simplicity

of developmental sequence these grammars would offer if successful.

With a uniform, fixed set of rewrite rules, only two things would

change with the maturation of the child: the list of derived cate-

gories, and the values of probability parameters. But I currently

see no hope of salvaging this approach.

Because it is natural to point a finger at the left-right feature

of the rewrite rules, I should also mention that I tried fitting a

grammar based on the two standard rewrite rules given earlier, one

going to the left and one to the right, but also without any reason-

able degree of success.
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1.. Grammar for a First-grade Reader

As the analysis of the preceding section shows it is not yet possible

to give a fully satisfactory account of the grammatical aspects of Adam I.

Preliminary indications for a larger corpus of more than twenty hours'

recording of a 30-month old girl are of a similar nature. We do not yet

understand how to write a probabilistic grammar that will not have sig-

nificant discrepancies between the grammatical model and the corpus of

spoken speech

Examining the results for Adam I early in 1969 and once again failing

to make a significant improvement over the results obtained with Arlene

Moskowitz in 1968, I asked myself in a pessimistic moment did there exist

any actual corpus of spoken or written speech for which it would be possible

to write a probabilistically adequate grammar. Perhaps the most natural

place to look for simple and regular utterances is in a set of first-grade

readers. Fortunately Elizabeth Gammon (1969) undertook the task of such

an analysis as her dissertation topic. With her permission I use some

of her data

Readers who have not tried to write a generative grammar for some

sample corpus may think that this sounds like a trivial task in view of

the much talked about and often 'derided simplicity of first-grade readers.

Far be it from the case. Gammon's grammar is far too complex to describe

in detail here. Perhaps the most surprising general feature it reveals

is that first-grade readers have a wider variety of grammatical forms

than of vocabulary. Before she undertook the analysis we had expected

a few stereotypic grammatical forms to dominate the corpus with the high

frequency of their appearance. The facts were quite different. No form
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had a high frequency, and a better a priori hypothesis would have been

that a large number of grammatical types of utterances were approximately

uniformly distributed, although this assumption errs in the other direction.

To provide a good statistical test of the probabilistic ideas developed

in this paper, the most practical move is to write grammars for parts of

utterances rather than whole utterances, as has already been seen in the

case of Adam I.

Using Gammon's empirical count for types of noun phrases in the

Ginn Pre-Primer (1957), I have written in the spirit of Sections 2 and 3

two grammars for noun phrases. In the first one the number of parameters

is Four of the 7 rules are also used in the NP grammar for Adam I

given above. The rule NP -4 Pro is dropped, but replaced by NP -4 PN,

the rule NP -4 AdjP is dropped and replaced by the rule NP -4 N + Adj.

This rule is of course derivable from the NP rules for Adam I; we just

use Rule 5, then Rules 1, 2 and 7. The rule NP -4 NP + NP of Adam I

is dropped, and a new rule to handle the use of definite articles (T) is

introduced:

1.

2.

3.

5.

6.

7.

NP -4 T. In summary form, the grammar G1 is the following.

Noun-Phrase Grammar G for Ginn Pre-Primer
1

Production Rule Probability-s

NP N

NP AdjP + N

NE' PN

NP N + Adj

AdjP AdjP + Adj

AdjP Adj

AdjP -4 T

al

2

a3

bl

2

3

24.



Using the 528 phrases classified as noun-phrases in Dr. Gammon's grammar,

we obtain the following maximum-likelihood estimates of the parameters

of Gl.

= .1383 bl = .2868

a
2

= .3674 b2 = .0662

a3 = .4697 b = .6471

a4 = .0246

Using thesg, estimated values of the parameterslwe may compute the theoretical

frequencies of all the types of noun-phrases actually occurring in the

corpus. The Grammar G1 generates an infinite number of types, but of

course almost all of them have very small theoretical frequencies. Ob-

served and theoretical frequencies are given in Table 2.

Insert Table 2 about here

It is apparent at once that Grammar G1 fits the Ginn data a good deal

better than the grammar for Adam I fits Adam's data. The chi-square of

3.4 reflects this fact. Let me be explicit about the chi-square computation.

The contribution of each type is simply the square of the difference of the

observed and theoretical frequencies divided by the theoretical frequency.

Except that when a theoretical frequency is less than 5, frequencies of

more than one type are combined.* In the case of G
1,

the theoretical

frequency 3.7 for Adj + Adj + N was combined with the residual of 5.61

*The number 5 is not sacred; it provides a good practical rule. When

the theoretical frequency is too small, 1, 2 or 3, the assumptions

on which the goodness-of-fit test is based are rather badly violated.
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TABLE 2

Prediction of Grammars G
1
and G

2
for Ginn Pre-Primer

Noun

Phrase

Observed*

Freq.

Theoretical

Freq. of Gi

Theoretical

Freq. of G2

PN 248 248.0 248.0

T + N 120 125.5 129.5

N 73 73.o 66.9

T + Adj + N 42 36.0 34.2

T + Adj + Adj + N 14 10.3 9.1

N + Adj 13 13.0 13.0

Adj + N 10 12.8 17.7

Adj + Adj + N 8 3.7 4.7

528

*Data from dissertation of Dr. Elizabeth Gammon



the sum theoretically assigned by Gi to all other types of noun phrases

generated by different from those listed in Table 2. This means the

chi-square was computed for an aggregate of 8 cells, 5 parameters were

estimated from the data, and so there remained 2 net degrees of freedom.

The chi-square value of 3.4 is not significant at the .10 level, to use

the ordinary statistical idiom, and so we mayt conclude that we have no

reason for rejecting G1 at the level of grammatical detail it offers. A

closer examination of the way the parameters operate does reveal the

following. Parameter a
3

is estimated so as to exactly fit the frequency

of noun phrases that are proper nouns (PN), and parameter a) so as to

exactly fit the frequency of the type N + Adj. Each of these parameters

uses up a degree of freedom, and so there is not an interesting test of

fit for them. The interest centers around the other types, and this may

well be taken as a criticism of Gl. Further structural assumptions are

needed that redusie the number of parameters, and especially that interlock

in a deeper way the probabilities of using the different production rules.

In spite of the relatively good fit of G1, it should be regarded as only

a beenning.

It is a familiar fact that two grammars that have different production

rules can generate the same language, i.e., the same set of terminal

strings. It should also be clear that as probabilistic grammars they

need not be equivalent, i.e., they need not make the same theoretical

predictions about frequencies of occurrences of utterance-types. These

matters may be illustrated by considering a second grammar G2 for the

noun phrases of the Ginn Pre-Primer.
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Noun-Phrase Grammar G
2
for Ginn Pre-Primer

Production Rule Probability

1. NP-4 AjdP + N a
1

2. NP-4 PN a
2

3. NP- N + Adj a3

4. AdjP -4 AdjP + Adj b
1

5. AdjP -4 T b2

6. AdjP E b3

In the sixth production rule of G
2

the symbol E is used, as earlier,

for the empty symbol.

The theoretical predictions of G2 are given in Table 21 and it is

apparent that as probabilistic grammars G
1
and G

2
are not equivalent, the

fit of G
1
being slightly better than that of G

2,
although it is to be

noted that G
2

estimates 4 rather than 5 parameters from the data.

The examples that have been given should make clear how a probabilistic

criterion can be imposed as an additional objective or behavioral constraint

on the acceptability of a grammar. In a subsequent paper I intend to show

how the probabilistic viewpoint developed here may be combined with a

model-theoretic generative semantics. In this more complex setup the

semantic base of an utterance affects the probability of its occurrence

and requires a formal extension of the ideas set forth here.
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5. Representation Problem for Probabilistic Languages

From what has already been said it should be clear enough that the

imposition of a probabilistic generative structure is an additional

constraint on a grammar. It is natural to ask if a probabilistic grammar

can always be found, for a language known merely to have a grammar. Put

in this intuitive fashion, it is not clear exactly what question is being

asked.

As a preliminary to a precise formulation of the question, an explicit

formal characterization of probabilistic grammars is needed. In a fashion

familiar from the literature we may define a grammar as a quadruple

(VN, VT, R, S), where VN, VT and R are finite sets, S is a member

of VN, V
N

and V
T

are disjoint, and R is a set of ordered pairs,

whose first members are in V
+

1 and whose second members are in Vim,

where V = VN U VT, V is the set of all finite sequences whose terms

are elements of V, and V is V minus the empty sequence. As usual,

it is intended that V
N

be the, non-terminal and V
T

the terminal

vocabulary, R the set of productions and S the start symbol. The

language L generated by G is defined in the standard manner and will

be omitted here.

In the sense of the earlier sections of this paper, we obtain a

probabilistic grammar by adding a conditional probability distribution

on the set R of productions. Formally we have:

Definition. A quintuple G = (VN, VT, R, SI p) is a probabilistic

grammar if and only if G = (VN, VT, R, S) is a grammar, and p is a

real-valued function defined on R such that



(i) for each (o., crj ) in R, p(o1, cr ) > 0,

(ii) for each cri in the domain of R

E ) = 1

Q.

where the summation is over the range of R.

Various generalizations of this definition are easily given; for example,

it is natural in some contexts to replace the fixed start symbol S by

a probability distribution over VII.. But such generalizations will not

really affect the essential character of the representation problem as

formulated here.

For explicitness, we also need the concept of a probabilistic language,

which is just a pair (L, p), where L is a language and p is a proba-

bility density defined on L, i.e., for each x in L, p(x) > 0 and

E p(x) = 1

xL

The first formulation of the representation problem is then this.

Let L be a language of type i (i = 0, 1, 2, 3), with probability

density p. Does there always exist a _probabilistic grammar G (of type i)

that generates (L, p)?

What is meant by generation is apparent. If x E L, p(x) must be the

sum of the probabilities of all the derivations of x in G. Ellis

(1969) has answered this formulation of the representation problem in the

negative for type 2 and type 3 grammars. His example is easy to describe.

Let V
T

= (a), and let L = Canin > 1). Le t p(a
n+1)

=
1

, n > 0,

ft
n

where t1 =4' and t. = smallest prime such that t. > max(t
1-1'

221)
1
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for i > 1. In addition, set

00

p(an+1)

n=1

The argument depends upon showing that the probabilities assigned to the

strings of L by the above characterization cannot all lie in the

extensions of the field of rational numbers generated by the finite set

of conditional probabilities attached to the finite set of production

rules of any context-free grammar.

From the empirically-oriented standpoint of this paper, Ellis°

example, while perfectly correct mathematically, is conceptually unsatis-

factory, because any finite sample of L drawn according to the density p

as described could be described also by a density taking only rational values.

Put another way, algebraic examples of Ellis' sort do not settle the repre-

sentation problem when it is given a clearly statistical formulation. Here

is one such formulation. (As a matter of notation, if p is a density

on L, ps is the sample density of a finite random sample drawn from

(L, p).)

Let L be a language of type i with probability density p. Does

there always exist a probabilistic grammar G (of type i) that generates

a density p' on L such that for every sample s of L of size less

than N and with density ps the null hypothesis that s is drawn from

(L, p') would not be rejected:

I have deliberately imposed a limit N on the size of the sample in

order directly to block asymptotic arguments that yield negative results.

In referring to the null hypothesis' not being rejected I have in mind

using some standard test such as Kolmogorov's and some standard level of
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significance. The details on this point do not matter here, although a

precise solution must be explicit on these matters and also on problems

of repeated sampling, fixing the power of the test, etc. My own conjecture

is that the statistical formulation of the problem has an affirmative

solution for every N, but the positive solutions will often not be

conceptually interesting.

A final remark about the density p on L is perhaps needed. Some

may be concerned about the single occurrence of many individual utterances

even in a large corpus. The entire discussion of the representation

problem is easily shifted to the category descriptions of terminal strings

as exemplified in earlier sections of this paper, and at this level cer-

tainly many grammatical types occur repeatedly.*

*W. C. Watt has called My attehtiot:to an article by Harwood (1959),

which _reports some frequency data for the speech of Australian children,

but no probabilistic grammar or other sort of model is proposed or tested.

Aa far as I know, the explicit statistical test of probabilistic grammars,

including estimation of parameters, has not been reported prior to the

present paper, but given the scattered character of the possibly relevant

literature I could just be ignorant of important predecessors to my own
work.
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