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Abstract

Single-cell RNA sequencing (scRNA-seq) technologies profile gene expression patterns in

individual cells. It is often of interest to test for differential expression (DE) between condi-

tions, e.g. treatment vs control or between cell types. Simulation studies have shown that

non-parametric tests, such as the Wilcoxon-rank sum test, can robustly detect significant DE,

with better performance than many parametric tools specifically developed for scRNA-seq data

analysis. However, these rank tests cannot be used for complex experimental designs involving

multiple groups, multiple factors and confounding variables. Further, rank based tests do not

provide an interpretable measure of the effect size. We propose a semi-parametric approach

based on probabilistic index models (PIM) that form a flexible class of models that generalize

classical rank tests. Our method does not rely on strong distributional assumptions and it allows

accounting for confounding factors. Moreover, it allows for the estimation of the effect size in

terms of a probabilistic index. Real data analysis demonstrate that PIM is capable of identi-

fying biologically meaningful DE. Our simulation studies also show that DE tests succeed well

in controlling the false discovery rate at its nominal level, while maintaining good sensitivity as

compared to competing methods.

Keywords: differential expression, single-cell RNA-sequencing, probabilistic index models,

semi-parametric.

1 INTRODUCTION

Single cell RNA sequencing (scRNA-seq) technologies have become powerful tools to study the

dynamics of gene expression at unprecedented high resolution [1, 2]. The data produced by such

scRNA-seq technologies represent measures of transcript/gene abundance in individual cells. In
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the field of biology and medicine, it is actively used in various applications including delineating

population diversity, tracing cell lineages, classifying cell types, and genomic profiling of rare cells

[2]. For example, analysis of scRNA-seq data is of paramount interest in studying diseases, such as

cancer, to characterize intra-tumoral heterogeneity and to classify cancer cell sub-populations [2].

Of note, scRNA-seq data are known to be associated with particular issues that challenge ordinary

data analysis pipelines [3, 4]. Such issues include high abundance of zero counts, over-dispersion,

and complex expression distributions (multimodal distributions) [5, 6, 7]. These issues are the

result of either intrinsic biological variation or technical artifacts involved in various steps of the

data processing pipeline [1, 6, 8]. Yet, the high level of noise can to some extent be compensated

by the large number of cells processed in a scRNA-seq study [7].

One of the most common gene level analyses is testing for differential expression (DE). DE

analysis aims at identifying a set of genes with different distributions of expression across pop-

ulations of cells. Yet, the high magnitude of noise in scRNA-seq data challenge DE analysis in

terms of controlling the type-I error rate, and hence the false discovery rate [9]. Various statisti-

cal methods for testing DE have been introduced. Many of them start from the assumption that

the distribution of the data can be described by a particular parametric probability distribution.

Among these, (zero inflated) negative binomial [10, 11] and two-component mixture distribution

are common [12]. Parametric methods provide a flexible and straightforward modelling framework

focusing on the difference in the mean expression across groups. Nevertheless, it is well known that

the performance of parametric methods depends on the validity of the distributional assumptions,

as well as on the precision of the parameter estimators. Simulation studies have demonstrated that

non-parametric tests, such as the Wilcoxon rank sum test and SAMSeq [13], are equally useful for

robustly testing DE with competitive performance in terms of sensitivity and false discovery rate

(FDR) control [9, 14, 15]. Unfortunately, the rank tests available for scRNA-seq have a limited

scope. First, they cannot be used for experiments involving comparison of multiple populations of

cells or more than one factor of interest [9]. For example, Xin et al. [16] demonstrated cell type-

specific DE between type-2 diabetics and controls while adjusting for subject specific characteristics

such as gender and ethnicity. This design involves two main factors (disease status and cell type),

their interaction effect and two additional nuisance factors, in which case simple rank-based tests

cannot be used. Second, classical rank tests focus on hypothesis testing and they do not provide

an estimate of an interpretable effect size measure. In this paper, we propose a new and flexible

method that broadens the scope of rank-based tools and alleviates their limitation while retaining

their robustness for testing DE in scRNA-seq data.

We propose a semi-parametric method based on Probabilistic Index Models (PIM) [17, 18],
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for testing DE in scRNA-seq data. PIMs entail a large class of semi-parametric models that can

generate many of the traditional rank tests, such as the Wilcoxon-Mann-Whitney test and the

Kruskal-Wallis test [17, 18]. These models can be seen as the rank-equivalent of the generalized

linear models (GLM). PIM methods do not rely on strong distributional assumptions and they

inherit the robustness of rank methods. Moreover, PIMs come with parameters that possess an

informative interpretation as effect sizes. PIMs can be used for complex experimental designs in-

volving multiple groups of cells, and multiple discrete or continuous factors. PIMs form a regression

framework and enable accounting for confounding factors that drive unwanted variations such as

library size difference, batch, and cell cycle stage. Consequently, PIMs can be applied on the raw

count data without the need for a normalization preprocessing step. Of note, it is also possible

to integrate PIMs with other data preprocessing methods, such as normalization, imputation, and

removal of unwanted variation.

2 METHODS

Let (Yi, Xi), i = 1, 2, . . . , n, be a set of n sample observations with Y the outcome variable and X

the corresponding p-dimensional covariate. In a GLM, the conditional mean E(Y |X) is modelled

as a function of covariates through an appropriate link function. In contrast, a PIM models the

conditional probability

P(Yi 4 Yj |Xi, Xj) = P(Yi < Yj |Xi, Xj) +
1

2
P(Yi = Yj |Xi, Xj), (1)

where Yi | Xi and Yj | Xj have conditional distribution functions F (·;Xi) and F (·;Xj), respec-

tively, with F further unspecified. The probability in (1) is known as the probabilistic index (PI)

[17]. For a link function g(.), PIM is defined as

P(Yi 4 Yj |Xi, Xj) = g−1(ZT
ijβ), (2)

where β is the regression parameter and Zij is a function of the pair of covariates Xi and Xj .

The latter is very often Zij = Xj −Xi. Similar to a GLM, the systematic component is restricted

to g−1(ZT
ijβ) with an appropriate link function g(.). Throughout this paper, we use the logit link

function (i.e. g(x) = log x
1−x

). To obtain the parameter estimates, say β̂, the estimation method

uses pseudo observations Iij = I(Yi < Yj) + 0.5I(Yi = Yj), where I(.) is the 0/1 indicator function.

The pseudo-observations Iij take values in {0, 0.5, 1}, and, like rank-based methods, they depend
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only on the ordering of the outcomes. It is also shown that the estimator β̂ is asymptotically

normally distributed and a consistent estimator of its variance is available. We refer readers to

[17], [18] and the supplementary file for further details about PIMs.

2.1 PIMs for testing differential gene expression

We propose PIMs for testing DE across experimental/biological conditions in scRNA-seq data. To

illustrate how PIMs can be implemented for testing DE in scRNA-seq data, we first focus on a

simple scenario with two groups of cells. Let Ygi denote the normalized gene expression of gene

g = 1, 2, . . . , G in cell i = 1, 2, . . . , n. Later, we extend the model so that it can work directly on

the raw counts. Let covariate X = A be the group indicator, such that Ai = 1 if cell i is in one

group and Ai = 0 if the cell is in the other group. We specify a PIM using the logit link function

as

logit {P(Ygi 4 Ygj |Ai, Aj)} = βg(Aj −Ai). (3)

where the indices i and j refer cell i and j with associated grouping factorAi andAj , respectively.

The parameter βg ∈ R represents the effect of the factor A on the PI of the outcome. This effect

is expressed as P (Ygi 4 Ygj |Ai = 0, Aj = 1) = exp(βg)/(1 + exp(βg)). Once its estimate (β̂g) is

obtained, the PI can be estimated as

P̂(Ygi 4 Ygj |Ai, Aj) =
eβ̂g(Aj−Ai)

1 + eβ̂g(Aj−Ai)
∈ [0, 1].

If there is a strong evidence that gene g is DE, then the estimated PI (PI= P̂(Ygi 4 Ygj |Ai =

0, Aj = 1)) becomes close to 1 (if the gene expression is higher in the A = 1 group) or 0 (if higher

in the A = 0 group). Under the null hypothesis (no DE), the estimated PI is expected to be 0.5,

indicating that there is a 50% chance that the expression of gene g in a randomly selected cell from

the A = 0 group is lower than that of a randomly selected cell from the A = 1 group (and vice

versa). In other words, the PI indicates to what extent the distributions of the gene expression

in the two groups are well distinguished. Thus, in this simple setting, the PI is equivalent to the

area under the receiver-operating-characteristics curve (AUC) in a classification problem. This is

graphically illustrated in Figure 1.

Statistical hypothesis testing can be performed with asymptotic Wald-type test of Thas et

al. [17]. For example, for the model in (3), the null hypothesis of no DE can be formulated as
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Figure 1: Interpretation of the Probabilistic Index (PI). The PI indicates to what extent the
gene expression level distributions of two groups are different. In other words, the PI is equivalent
to the area under the receiver-operating-characteristics curve (AUC) in a classification problem.
Let Yi1 and Yi2 be the gene expression levels in group 1 and 2 with F1 and F2 their corresponding
distribution functions, and f1 and f2 their density functions. Assume we want to classify cells into
two groups based on the expression level of a given gene (high or low expression at a particular
threshold t). Thus, the PI =P(Ygi 4 Ygj) is equivalent to AUC for classifying a cell into group 2
(if expression> t) and group 1 (if expression< t) for all possible values of t. If the gene expression
level is higher in group 2 than in group 1, then PI and AUC will be close to 1. Conversely, if the
gene expression is higher in group 1 than in group 2, then PI and AUC will be close to 0. If there
is no difference in expression, then both PI and AUC will be approximately 0.5

H0 : βg = 0. This is equivalent to testing P(Ygi 4 Ygj |Ai = 0, Aj = 1) = 0.5. Applying this test to

every candidate gene results in a vector of raw p-values, to which the usual FDR control procedures,

such as the Benjamin and Hochberg [19] approach, can be applied. In the subsequent sections we

will demonstrate that the p-values satisfy the assumptions required by such procedures.
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2.2 Normalization and removal of unwanted variation

In the previous section, we assumed that the gene expression data were normalized per cell, using

e.g. simple methods, such as transcripts per kilobase million (TPM) or counts per millions of reads

(CPM) [20], or other (bulk RNA-seq) normalization methods that involve the calculation of a global

scaling factor to normalize gene expression levels in each sample by a single constant. Importantly,

typical scRNA-seq data are often confounded by several sources of unwanted variation among cells,

such as library size, batch, cell size, cell cycle, and cell quality level that make cells not directly

comparable [4]. Consequently, normalization of scRNA-seq data at best requires accounting for

these nuisance factors, and the meaning of this scaling factor is broader than in bulk RNA-seq data

in which normalization is generally needed to remove library size differences [4, 21]. Moreover, the

effect of such factors (e.g. cell cycle and batch) can be gene dependent [6]. Cole et al. [4] and Risso

et al. [22] demonstrated that regression-based normalization is effective in addressing the technical

factors in scRNA-seq data. PIMs allow for the incorporation of such known sources of variation.

In this way, we can test for DE, while controlling for various technical factors at a gene level. In

particular, let W be an n × q matrix of q cell level technical factors, then the PIM in (3) can be

expressed as

logit {P(Ygi 4 Ygj |Ai, Aj ,wi,wj)} = βg(Aj −Ai) + (wj −wi)
T
γg, (4)

where wi and wj are q-dimensional vectors of technical factors for cells i and j, respectively,

and γg is a q-dimensional parameter vector. In this model, Ygi is the observed expression of gene

g in cell i. In particular, the adjusted effect of the group factor A on the PI becomes

expit(βg) = P (Ygi 4 Ygj |Ai = 0, Aj = 1,wj = wi),

where expit(x) = exp(x)/(1 + exp(x)). Thus, testing for DE between A = 0 and A = 1 is adjusted

for the effect of the known nuisance factors W.

PIMs are flexible to be used for testing DE in a scenario with a multi-class factor or multiple

discrete or continuous factors. For multiple factor studies, PIMs also allow for testing for interaction

effects in which case one can test for the global effect or selected contrasts.
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2.3 Cox proportional hazard model approximation of PIM

The standard parameter estimation methods for PIMs involve comparison of all outcome pairs,

increasing the computation time quadratically with the sample size. To improve scalability and

computational efficiency for datasets with large number of cells (for example, n > 500), we propose

the Cox-proportional hazard (Cox-PH) model [23] translation of PIMs. The Cox-PH model implies

a PIM with logit link function and the covariates specification as Zij = Xj −Xi [17, 18, 24] (see

Supplementary File for the details). While the Cox-PH model comes at the cost of the assumption

of proportional hazard (PH), PIMs are less restrictive than the Cox-PH models, and results from

PIM are still valid when the PH assumption does not hold [24]. Our empirical assessment of the

PH assumption in scRNA-seq data for the model in (4) shows that the PH assumption holds for

at least 91% of the genes in dataset B, and for 82.5% of genes in dataset A (Supplementary Table

S1, see the next section for the description of the datasets).

2.4 Single cell RNA-seq dataset

To benchmark PIM and demonstrate its application, we used two scRNA-seq datasets, from two

different experimental protocols (see Table 1).

Table 1: Summary of the scRNA-seq datasets

data protocol gene number number library size∗

expression of cells of genes (min-max)
measure type in 105

A SMARTer/C1 read counts 83 22,078 3.21 - 12.36
B Chromium UMI∗∗ 7149 18,639 0.04 - 0.21
∗ library size per cell
∗∗ UMI=uique molecular identifier

The first dataset (A) is a cellular perturbation experiment on the C1 instrument [25] (GEO

accession GSE119984). This total RNA seq dataset contains 83 NGP neuroblastoma cells of which

31 were treated with nutlin-3 and the other 52 cells were treated with vehicle (controls). The

second scRNA-seq dataset (B) contains the same neuroblastoma cells under nutlin-3 treatment and

control, except that the data are generated using the Chromium (10X Genomics) instrument with

3’ end sequencing (GEO accession GSE144931). We applied PIM and other competitor tools for

testing DE between the treatment and control groups of cells in these two datasets.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2020. ; https://doi.org/10.1101/718668doi: bioRxiv preprint 

https://doi.org/10.1101/718668
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5 Simulation methods

We implemented three simulation methods, each starting from other underlying assumptions. In

the simulation study, the PIM specification in (4) with wi the log-library size of cell i was compared

with the competitor tools.

Mock comparison: This simulation involves random assignment of cells from a single condi-

tion/population to two mock groups. Since we do not expect DE between mock groups, it enables

the evaluation of controlling the type-I error rate (also known as false positive rate). In particular,

cells within the control group (vehicle) in the two scRNA-seq datasets are randomly split into two

mock groups between which no DE is expected. Any rejection of the null hypothesis at the 5%

nominal per-comparison error rate (PCER) level is considered as false positive. From running 100

independent simulations, the actual type-I error rate for each gene is approximated as the fraction

of tests with un-adjusted p-value less than 5%.

Splat simulation – gamma-Poisson hierarchical model: This simulation algorithm makes

use of a gamma-Poisson hierarchical model [26]. In particular, the mean expression level of gene

g in cell i, λgi, is sampled from a gamma distribution (i.e. λgi ∼ Γ (αgi, βgi)). Subsequently,

the read counts Ygi for gene g in cell i are sampled from a Poisson distribution (i.e. Ygi|λgi ∼

Poisson(λgi). The hyper-parameters αgi and βgi are chosen accounting for the desired library size

in cell i and the mean-variance trend across genes. Afterwards, Splat uses the logistic function

for the observed relationship between the mean expression of a gene and the proportion of zero

counts to add excess zeros representing technical noise (also called dropouts). It is implemented

using the splatter R Bioconductor package (version 1.6.1)[26]. The gamma-Poisson distribution is

a particular parametrization of the negative binomial (NB) model, and hence the Splat simulation

is equivalent to simulation from a NB model. Splat uses model parameters estimated from a real

single cell RNA-seq data set. To add a set of DE genes, the mean expression of randomly selected

genes are multiplied by a factor, known as the fold-change.

SPsimSeq simulation: Since the (zero inflated) NB distributional assumption for scRNA-seq

data is debatable [11, 27], the results of the parametric simulations should be interpreted with care.

SPsimSeq [15] is a semi-parametric simulation method for bulk and scRNA-seq data. It makes use

of no specific parametric distribution for the gene expression levels. Instead, it generates data from

a more realistic distribution, which is estimated from a real source dataset by the semi-parametric

method of [28] and [29]. In a first step, the log-CPM values from a given real data set are used for

semi-parametrically estimating gene-wise distributions. It models the probability of zero counts as

a function of the mean expression of the gene and the library size (read depth) of the cell (both in
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log scale). Zero counts are then added to the simulated data such that the observed relationship

(zero probability to mean expression and library size) is maintained. It simulates DE by separately

estimating the distributions of the gene expression from the different populations (for example

treatment groups) in the source data, and subsequently sampling a new dataset from each group.

It is implemented using the SPsimSeq R package (version 2.0.0)[15].

2.6 Competitor tools for differential expression analysis

We compared the PIM method with six other tools for testing DE. We briefly discuss each method

in the subsequent paragraphs.

MAST uses a hurdle model in which the zero counts are modelled by logistic regression, and

the log TPM (or CPM) of the non-zero counts are modelled by normal linear regression [12]. Both

models include the cellular detection rate (fraction of detected genes per cell) as a covariate. MAST

is implemented using the MAST R biocondictor package (version 1.8.1)[12].

edgeR is a very common tool for testing DE in bulk RNA-seq data. It fits NB regression

models with moderated estimation of the gene-specific over-dispersion parameters [30]. edgeR is

implemented using the edgeR [20] R bioconductor package (version 3.22.5).

DESeq2 relies on the NB distribution for testing DE in bulk RNA-seq data like edgeR. It uses

an empirical Bayes moderation for estimating the over-dispersion parameters. It is implemented

using the DESeq2 R bioconductor package (version 1.20.0) [31].

Zinger calculates weights that can be used by edgeR and DESeq2 to account for the zero

inflation in scRNA-seq data. In particular, Zinger fits zero-inflated negative binomial models for

calculating weights that indicate the probability that the observed zero expression belongs to the NB

component [10]. In this study, Zinger is used in conjunction with edgeR and DESeq2 (edgeR+Zinger

and DESeq2+Zinger). It is implemented using the Zinger [10] R package (version 0.1.0).

SAMSeq is a non-parametric method which was originally developed for testing DE in bulk

RNA-seq data. It uses the Wilcoxon statistic in conjunction with a permutation method to estimate

the false discovery rate to infer DE [13]. It is implemented using the samr R software package

(version 3.0) [32].
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2.7 Real data analysis

We applied the seven DE tools for testing DE between nutlin-3 treated and control cells from two

datasets. The datasets first went through pre-processing steps using the scatter R bioconductor

package (version 1.6.3, [3]), which involves filtering cells with low quality metrics and genes with

insufficient expression. The cell cycle stage is estimated using the cyclone function in the scran [33]

R bioconductor package (version 1.10.1). In particular, we compared the number of detected DE

genes at the 5% nominal FDR among the competitor tools. We also looked at the distribution of

the log2(CPM+1) as well as the distribution of zero counts within the set of DE genes detected by

each tool. We also explored the cross data agreement of all tools in detecting DE genes. In addition

to DE testing, we performed gene set enrichment analysis (GSEA) using the fgsea R bioconductor

package (version 1.8.0, [34]). In particular, we used a set of TP53 pathway genes obtained from

[35]. Genes were ranked based on their test statistic as in [10].

2.8 Software implementation for PIM

An R software package for DE analysis using PIM is accessible from a GitHub repository with

the name PIMseq (https://github.com/CenterForStatistics-UGent/PIMseq). Additionally,

R codes used for all analyses reported in this manuscript are available in a GitHub repository

(https://github.com/CenterForStatistics-UGent/PIMseq-paper).

3 RESULTS

3.1 Performance evaluation through simulation study

The ability to control the FDR without compromising the sensitivity to detect truly DE genes is an

important requirement. This capability is evaluated in simulation studies in which gene expression

data are generated with a built-in truth while retaining the characteristics of real data. Using three

simulation procedures (Splat, SPsimSeq, and mock comparison), we evaluated the performance of

PIM compared to edgeR, edgeR with Zinger, DESeq2, DESeq2 with Zinger, MAST and SAMSeq.

The simulation methods vary with respect to the data generating model (see Methods section). In

general, two sets of simulations were conducted, each starting from other source data (see Table 1).

Each simulation set involves the three simulation methods. The performance of the DE methods is

evaluated by calculating the actual FDR and true discovery rate (TPR) over the simulation runs.
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Figure 2: Results from the simulation study starting from source dataset A. Dataset
A is neuroblastoma scRNA-seq data generated with the SMARTer/C1 protocol. Each simulated
dataset includes 2500 genes among which 10% DE, and 2 experimental groups with each 50 cells.
For the SPsimSeq simulation, the DE genes have LFC ≥ 1 in the source data, whereas for the Splat
simulation the FC for DE genes is sampled from a log-Normal(location=1.5, scale=0.4), such that
more than 97.5% of the DE genes have a LFC of at least 1. The performance measures (actual
FDR and TPR) are averaged over a total of 50 independent simulation runs. The curves represent
actual FDR and TPR evaluated at nominal FDR levels ranging from 0 to 0.3, and the solid dots
show the performances at the 5% nominal FDR level.

We compared the simulated datasets with the real datasets with respect to various character-

istics proposed by [9, 26], such as the distribution of mean and variance expression levels, mean-

variance trend, distribution of zero fraction per gene, and variability among cells (Supplementary

Figures S1 and S2). Although the Splat simulation is flexible in simulating various scenarios, the

simulated data showed the least resemblance with the real datasets. The SPsimSeq procedure

generated more realistic scRNA-seq data (Supplementary Figures S1 and S2).

Results from the simulation studies starting from source data A show that PIM succeeds in

controlling the actual FDR below the nominal level (nominal FDR ranging from 0 to 0.3) for both

Splat and SPsimSeq simulation procedures (Figure 2). This result is confirmed by simulations
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Figure 3: Results from the simulation study starting from source dataset B. Dataset
B is neuroblastoma scRNA-seq data generated with the Chromium protocol (UMI counts). Each
simulated dataset includes 2500 genes among which 10% DE, and 2 experimental groups with
each 100 cells. For the SPsimSeq simulation, the DE genes have LFC ≥ 0.5 in the source data,
whereas for the Splat simulation the FC for DE genes is sampled from a log-Normal(location=1.25,
scale=0.4), such that more than 97.5% of the DE genes have a LFC of at least 0.5. The performance
measures (actual FDR and TPR) are averaged over a total of 50 independent simulation runs. The
curves represent actual FDR and TPR evaluated at nominal FDR levels ranging from 0 to 0.5, and
the solid dots show the performances at the 5% nominal FDR level.

with different numbers of cells (Supplementary Figure S3) and with different magnitudes of the

LFC of DE genes (Supplementary Figure S4). The actual TPR for PIM, SAMSeq and MAST

are comparable and considerably higher (up to 20% increase) than the actual FDR for edgeR and

DESeq2 (both with and without Zinger) for the SPsimSeq simulation when the LFC of DE genes

is greater than 1 (Figure 2 and Supplementary Figure S3). For the SPsimSeq simulations, when

the LFC of DE genes is low, PIM and SAMSeq outperform all the other tools with respect to

TPR (Supplementary Figure S4). With the Splat simulation, edgeR and DESeq2 (both with and

without Zinger) show better TPR (up to 10% increase) with the actual FDR below the nominal

level. However, edgeR (with and without Zinger) loose control of the actual FDR for the SPsimSeq
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simulations, which do not make use of parametric distributional assumptions for the gene expression

data (Figure 2 and Supplementary Figure S3). The good results for edgeR and DESeq2 are generally

expected because the Splat method generates data from the negative binomial distribution, which

is also the working model for both edgeR and DESeq2. However, the gap reduces to less than 5%

when the number of cells per group is more than 100 (Supplementary Figure S3). In addition, for

the Splat simulation, edgeR and DESeq2 show improved TPR when they are used with Zinger,

especially when the LFC of DE genes is low (Supplementary Figure S4 and Figure 2).

The results starting from dataset B showed that all tools have rather small TPR, even though

the number of cells is double of that of dataset A (Figure 3). This may be explained by the fact that

scRNA-seq data with UMI-counts contain a large fraction of zero counts, low expression magnitude

and large variability of the library sizes [11]. However, with LFC ≥ 1 for DE genes and 100 cells

per group (Supplementary Figure S5) or with LFC ≥ 0.5 for DE genes and 200 cells per group

(Supplementary Figure S6), all tools showed better performance than the performance in Figure

3 (for LFC ≥ 0.5 and 100 cells per group). With the SPsimSeq simulations, PIM shows better

performance than all other tools for both simulation settings (Figure 3, Supplementary Figure

S5 and S6). With the Splat simulations, PIM shows comparable performance to edgeR (with and

without Zinger) and MAST when the LFC of DE genes is ≥ 0.5 (Figure 3 and Supplementary Figure

S6). With the Splat simulations, when the LFC of DE genes is ≥ 1 PIM achieved the highest TPR

while controlling the FDR slightly below the nominal level (Supplementary Figure S5). With the

SPsimSeq simulations, SAMSeq and MAST and DESeq2 (with and without Zinger) generally show

inferior performance, whereas with the Splat simulations, SAMSeq and DESeq2 (with and without

Zinger) show relatively poor performance with respect to TPR (Figure 3, Supplementary Figure

S5 and S6).

In order to demonstrate that PIMs can be applied to other settings than comparing gene

expression between two groups, we simulated a single cell RNA-seq data with three biological

groups. In this setting, PIM remains applicable along with edgeR, DESeq2 and MAST, with

comparable performance (Supplementary Figure S7).

We also evaluated the capability of PIM in controlling the type-I error rate using mock com-

parisons. Since SAMSeq does not return un-adjusted p-values, it is excluded from this comparison.

Results from the mock comparison are presented in two ways. First, the observed average false

positive proportions (FPP) is nearly equal to the nominal 5% per-comparison error rate (PCER) for

all tools (Supplementary Figure S8). As the subsequent results show, the parametric tools are rel-

atively conservative, leading to smaller numbers of false positives. Second, since mock comparison

simulates gene expression data under the null hypothesis (no DE), the distribution of raw p-values
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is expected to be uniform between 0 and 1. The distribution of raw p-values for PIM and all other

considered DE tools are uniform except for DESeq2 (and to same degree also not for MAST), which

shows a substantial deviation with higher probability mass near p-value=1 (also known as a con-

servative distribution; Figure S8). This result is in line with the smallest observed average FPP for

DESeq2 compared to all other tools (Supplementary Figure S9). For uniform p-value distributions,

as for PIM, it is anticipated that FDR control procedures, such as Benjamini–Hochberg (BH) [19],

can be used for FDR control.

3.2 DE analysis of nutlin-3 treatment of neuroblastoma cells

We applied PIM and the competitor tools for testing DE in two nutlin-3 treated neuroblastoma

scRNA-seq datasets. Nutlin-3 is a selective MDM2 antagonist, releasing TP53 from its targeted

degradation, resulting in cell cycle arrest, followed by apoptotic cell death. The objective is to

identify genes with DE between nutlin-3 treated and vehicle (control) cells. We focus on (i) com-

paring the number of genes detected as DE (at 5% nominal FDR) between PIM and other tools,

(ii) exploring the set of DE genes in terms of the distribution of gene expression and fold change

estimates (PI for PIM), (iii) TP53 gene set enrichment score, and (iv) cross-data agreement.

For dataset A, we fitted the PIM with the treatment group and the log library size in the

model. In this way, we test for DE by accounting for the library size differences. For dataset B,

we extended the PIM model by adding the cell cycle stage (a discrete factor with three levels for

the three cell cycle stages: G1, G2/M, and S) in the model. From dataset A, PIM identified a set

of 355 genes, 225 down-regulated and 130 up-regulated genes in the nutlin-3 treated group (Figure

4-5). Compared to the other tools, PIM ranks second following SAMSeq, which detected over 430

DE genes. The parametric tools MAST, edgeR and DESeq2 identified relatively small numbers of

DE genes (Figure 4). PIM and SAMSeq identified 96 DE genes in common (Figure 4a).

SAMSeq and PIM called the highest number of DE genes from dataset A at the 5% FDR

level (Figure 4a). In particular, these tools identified almost all the DE genes identified by all the

parametric tools. From exploring the distribution of the gene expressions (log-CPM), specifically

for the set of DE genes, we learn that SAMSeq and MAST tend to pick genes with a large difference

in the fraction of zero counts between the two treatment groups (Figure 4b, Supplementary Figure

S10). In contrast, the set of DE genes identified by edgeR+Zinger and DESeq2+Zinger have

the smallest difference in the distribution of zero counts (also compared to edgeR and DESeq2

without Zinger), presumably because Zinger down-weights the contribution of zero counts (Figure

4b). Consequently, edgeR+Zinger and DESeq2+Zinger mostly identify genes with difference only
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Figure 4: Results from DE analysis of dataset A and B. (a) UpSet plot to compare the set of
DE genes detected by the 7 tools at the 5% FDR level. The vertical bars show the number of genes
called DE by all tools indicated by the connected black dots (intersection), whereas the row bars
indicate the number of genes called DE by each tool at the 5% FDR level, (b) the distribution of
the difference (absolute) in the fraction of zero counts between nutlin-3 treated and control groups,
for the set of genes called DE by each tool, (c) the number of genes called DE by each tool in the
two data sets (datasets A and B) and the number of DE genes in both datasets by each tool (cross
data agreement), and (d) the normalized enrichment score for TP53 gene set.

in the distribution of the non-zero expressions (Supplementary Figure S10). PIM detected DE

genes with small to moderate differences in zero count distributions across the groups (Figure 4b,

Supplementary Figure S11). SAMSeq uniquely detected almost 180 DE genes with the majority

of them having a high level of variability (highly expressed genes) and small LFC estimate (< 0.5)

(Supplementary Figure S11). Soneson and Robinson [9] have also noticed that SAMSeq is biased

towards highly expressed genes and genes with a small number of zero counts. A similar set of DE

genes are commonly detected by both PIM and SAMSeq (Supplementary Figure S11). However,
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among the DE genes uniquely identified by PIM, the number of highly variable genes and genes

with < 0.5 LFC is relatively small (Supplementary Figure S11). In the simulation study starting

from dataset A, PIM, SAMSeq, and MAST showed similar performance when the LFC of DE genes

is at least 1 (Figure 2). However, when the LFC of DE genes is at least 0.5, PIM and SAMSeq

perform similarly and better than all other tools (Supplementary Figure S4). This result is in line

with the empirical result that PIM and SAMSeq have the capability of detecting DE genes with

small to high LFCs.

For dataset B, all tools but SAMSeq called many genes DE at the 5% FDR level because of the

large number of cells in dataset B (Figure 4c). The two datasets are similar in terms of experimental

design, but they resulted from different protocols (SMARTer/C1 and Chromium) and contain

different gene expression units (read counts and UMI counts). In both datasets, we test for DE

between the nutlin-3 and control group. This further allows us to evaluate the cross-data agreement

of the tools. SAMSeq failed for dataset B and was excluded from this assessment. PIM identified

152 common DE genes in the two datasets, whereas MAST, edgeR, edgeR+Zinger, DESeq2 and

DESeq2+Zinger identified 62, 48, 51, 78, and 52 genes, respectively, in both datasets (Figure 4c).

This result suggests that PIM has better consistency across protocols and gene expression units.

SAMSeq fails with no particular error message during the re-sampling step. This issue has also

occurred in the simulation studies starting from dataset B (Supplementary Figure S6).

The model parameters of PIM have an informative interpretation as an effect size in terms of

the PI. We now demonstrate that the estimated PI is a useful metric in addition to the fold-change

used in parametric DE analysis. Fold changes express the biological signal in terms of the difference

in the mean expression between conditions, with unbounded scale. Similarly, the PI quantifies the

degree of difference in the distribution of expression at a scale ranging from 0 to 1 (see Figure 1).

In Figure 5a, we ranked genes according to their estimated PI in such a way that genes with strong

evidence of DE appear near the left edge (if down-regulated in treated group) or near the right edge

(if up-regulated in treated group). The estimated PIs are linearly correlated with the LFC (Figure

5b). Note that we do not suggest that the LFC should not be used. With parametric methods, the

fold-change is still the effect size that correspond to the p-value. In a typical gene expression study,

the majority of the genes are not DE, with estimated LFC close to 0. This also holds for PIM, i.e.

the estimated PI for the majority of the genes is around 0.5 (Figure 5a and reffig:Fig5c).

We also ran GSEA to find out if the DE genes detected by PIM may have a biological meaning.

Nutlin-3 liberates TP53 from MDM2-mediated inhibition and hence activates the TP53 transcrip-

tional response pathway [35]. Therefore, we used a set of 116 TP53 pathway consensus genes [35].

We compared the normalized enrichment score (NES) among the 7 DE tools including PIM (Figure
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Figure 5: PIM results for the DE analysis of dataset A. (a) Gene ranking based on their
estimated PI. The gray region indicates the 95% confidence interval estimate of the PI for each
gene. (b) The relationship between estimated PI and a log2-fold-change (log2FC) estimates. The
log2FC were obtained using DESeq2. (c) The distribution of PI across genes.

4c and Supplementary Figure S12). All the tools scored above 1.7 NES with p-value < 0.001, and

PIM attained the highest NES (NES=3.16, p-value 0.00044) followed by edgeR (NES=3.11, p-value

0.00035). Generally, these results indicate that PIM showed significant enrichment of the TP53

pathway in neuroblastoma cells treated with nutlin-3.

3.3 Computation time

The computation time of PIM in comparison to the other tools is evaluated using five simulated

scRNA-seq datasets each with a different number of cells, ranging from 100 to 10,000 (Table 2).

All the datasets contain 10,000 genes. The computation time for PIM increases quadratically with

the number of cells. For example, for 200 cells, PIM requires less than 2 minutes, whereas for 1000

cells, it requires up to 1 hour (Table 2). However, with the Cox-PH model translation of the PIM,

it requires less than 3 minutes for 10,000 cells. MAST and edgeR are among the fastest methods,
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and DESeq requires more than 5 hours for 2000 cells. Zinger is generally computationally intensive,

especially when coupled with DESeq2.

Table 2: Computation time in minutes. All tools were implemented on a single core CPU (Core
i7-6820HQ and 16.0 GB RAM) with Windows 10 operating system.

number of cells
tool 100 200 1000 2000 10,000

PIM 0.84 1.63 62.53 > 5h > 5h
PIM (Cox-PH) 0.37 0.38 0.55 0.76 2.57
SAMSeq 0.19 0.34 – – –
MAST 0.92 0.89 1.24 1.53 4.03
edgeR 0.14 0.26 1.18 2.37 12.67
edgeR+Zinger 3.63 4.44 21.50 42.45 > 5h
DESeq2 0.28 0.69 30.52 > 5h > 5h
DESeq2+Zinger 3.06 4.33 71.83 > 5h > 5h

> 5h= more than 5 hours
– SAMSeq fails for datasets with > 200 cells

4 DISCUSSION

Advances in sequencing technology enable profiling of gene expression levels at individual cell level.

ScRNA-seq experiments are used for various applications in the field of biology and medicine, such

as identifying genes whose expression differ under different conditions (also known as DE). Impor-

tantly, scRNA-seq data are characterized by high levels of noise resulting from various technical

sources, such as limited RNA capture efficiency, amplification bias and differences in RNA con-

tent [1, 5]. Furthermore, the diverse biological characteristics of individual cells and the stochastic

nature of gene expression challenge computational tools for testing DE.

Two broad classes of methods exist for testing DE, differing in terms of their underlying as-

sumption for the gene expression data, i.e. parametric and non-parametric. Parametric tools such

as edgeR and DESeq2 have been widely used for bulk and single cell RNA-seq studies. When used

in conjunction with Zinger [10], they account for both the over-dispersion and zero-inflation issues

in scRNA-seq data. MAST fits hurdle-Gaussian models to deal with zero inflation assuming that

all zeroes result from technical factors. The performance of these tools seemed adequate using

simulation studies that make use of their underlying distribution [9]. In contrast, non-parametric

methods require minimal distributional assumptions and are considered useful when the underlying

data generating distribution is unknown, as is the case for scRNA-seq data. Simple non-parametric
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methods like the Wilcoxon rank-sum test shows competitive or better performance relative to many

of the parametric tools specifically developed for scRNA-seq data [9, 14]. Unfortunately, the usual

non-parametric tools have a limited utility for scRNA-seq studies with complex experimental de-

sign. Moreover, they do not provide an informative estimate of the effect size, which is a vital

component of DE analysis. In this paper we have introduced a semi-parametric method for testing

DE in scRNA-seq data based on PIMs, which generalize many of the non-parametric methods and

provides an informative effect size measure.

Using three simulation studies, we have demonstrated that PIMs succeed in controlling the

FDR and that it has reasonable sensitivity to detect true DE genes. The three simulation studies

differ with respect to the underlying data generating mechanism: fully parametric, semi-parametric,

and non-parametric (mock comparison). Unlike the parametric tools, PIMs performs well under

both simulation mechanisms for various magnitudes of the biological effect (LFC) and small to

large numbers of cells. In contrast, edgeR and DESeq2 showed slightly better performance when

the data were generated from negative binomial distributions. MAST and SAMSeq are greatly

affected by the high fraction of zeroes in simulation studies involving UMI counts. We also applied

PIMs and the other tools to two real and novel scRNA-seq datasets. These datasets represent

two different types of experiments with different platforms, numbers of cells and ‘units’ of gene

expression, i.e. raw read counts versus UMI deduplicated reads. The results demonstrate that

PIMs detect large numbers of DE genes with better cross-data agreement. Further, the PI ranked

gene list is significantly positively enriched with genes from a pathway known to be activated in the

cellular model system, demonstrating that PIM allows to attain biological insights from scRNA-seq

experiments.

We have also demonstrated that PIMs can be scalable and computational efficient for exper-

iments with large number of cells with the Cox-proportional hazard model translation of PIMs.

Finally, while we demonstrated the utility of PIMs for testing DE in scRNA-seq data, PIMs could

also be used for bulk RNA-seq and microarray datasets with a sufficient number of replicates. In

principle, PIMs can also be integrated with other data pre-processing pipelines such as normaliza-

tion, batch correction, and imputation, making it a useful and general tool for single cell RNA seq

differential gene expression analysis.

SUPPLEMENTARY DATA

Additional supporting results and discussion are available in Supplementary File.
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