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Abstract

An important problem in molecular biology is to build a complete understanding of transcriptional regulatory processes in
the cell. We have developed a flexible, probabilistic framework to predict TF binding from multiple data sources that differs
from the standard hypothesis testing (scanning) methods in several ways. Our probabilistic modeling framework estimates
the probability of binding and, thus, naturally reflects our degree of belief in binding. Probabilistic modeling also allows for
easy and systematic integration of our binding predictions into other probabilistic modeling methods, such as expression-
based gene network inference. The method answers the question of whether the whole analyzed promoter has a binding
site, but can also be extended to estimate the binding probability at each nucleotide position. Further, we introduce an
extension to model combinatorial regulation by several TFs. Most importantly, the proposed methods can make principled
probabilistic inference from multiple evidence sources, such as, multiple statistical models (motifs) of the TFs, evolutionary
conservation, regulatory potential, CpG islands, nucleosome positioning, DNase hypersensitive sites, ChIP-chip binding
segments and other (prior) sequence-based biological knowledge. We developed both a likelihood and a Bayesian method,
where the latter is implemented with a Markov chain Monte Carlo algorithm. Results on a carefully constructed test set from
the mouse genome demonstrate that principled data fusion can significantly improve the performance of TF binding
prediction methods. We also applied the probabilistic modeling framework to all promoters in the mouse genome and the
results indicate a sparse connectivity between transcriptional regulators and their target promoters. To facilitate analysis of
other sequences and additional data, we have developed an on-line web tool, ProbTF, which implements our probabilistic
TF binding prediction method using multiple data sources. Test data set, a web tool, source codes and supplementary data
are available at: http://www.probtf.org.
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Introduction

Transcriptional regulation is a central control mechanism for

many biological processes. Transcriptional regulation generally

involves DNA-binding proteins, transcription factors (TFs), that

control gene expression by binding to short regulatory sequence

motifs in gene promoters [1]. DNA-binding specificities of TFs are

encoded in their DNA-binding domains that specialize them to

recognize and bind specific types of binding sites. This mechanism

is the basis of control in complex transcriptional regulatory

networks. Revealing these regulatory mechanisms is one of the key

problems in understanding genome-wide transcriptional regula-

tion. Although experimental studies and computational approach-

es are extending our knowledge of TF binding specificities,

relatively little is known about genome-wide binding of TFs to

gene promoters. Thus, TF binding prediction remains an

important problem in computational biology.

Computational approaches to TF binding site analysis can be

divided into two categories, discovery and prediction. Motif discovery

focuses on searching for novel binding motifs from a collection of

short sequences that are assumed to contain a common regulatory

motif. Several algorithms have been proposed for motif discovery

(for a recent review and comparison, see [2,3]). Accurate motif

discovery is difficult in general, but incorporating additional

information to guide the search for novel sequence signals can
improve performance. Such additional data sources include,
among others, information about co-regulated genes [4], evolu-
tionary conservation [5,6], physical binding locations as measured
by chromatin immunoprecipitation on chip (ChIP-chip) [7–9],
information on the structural class of TFs [10], and nucleosome
occupancies [11,12].

TF binding prediction, in turn, makes use of given DNA-binding

specificities to predict putative TF binding sites. The binding

preferences can either be the output of a motif discovery algorithm

or they can be experimentally measured, such as those reported in

curated databases (TRANSFAC [13] and JASPAR [14]).

Regardless of the data source, binding site prediction typically

requires some information about binding specificities and is

therefore dependent on previous analysis. Current knowledge of

binding preferences already allows useful predictions to be made

genome-wide. Moreover, several novel measurement techniques to

measure DNA-binding specificities have recently been developed

[15–19]. For example, Berger et al. [16] have developed a protein

binding microarray (PBM) technology to measure binding

preferences to all k-mers, k currently being 10 base pairs. These

new techniques are rapidly expanding currently available

databases by providing estimates of binding specificities of virtually

any TF in a high-throughput manner. Consequently, they also
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offer an approach for rapid and sensitive identification of all TF

binding sites genome-wide. In particular, high-throughput screen-

ing of TF binding specificities combined with accurate TF binding

prediction provides a viable, condition independent, alternative to

somewhat complex ChIP-chip experiments [20]. At the same time,

however, there is a growing need for accurate TF binding

prediction methods.

Although motif discovery methods are relatively well-developed,

the TF binding prediction problem has attracted less attention.

Most of the previous binding site prediction tools have been

formulated as hypothesis testing methods, where a significance

value of TF binding at a specific sequence position is obtained by

comparing a test statistic to a null distribution [21–28], and

possibly correcting the significance level for multiple testing.

Traditional scanning methods for TF binding site prediction are

known to perform relatively poorly in that they typically have an

excessively high false positive rate (see [29]). This reported poor

performance is not directly a shortcoming of previous prediction

methods but has more to do with the fact that models to represent

binding motifs and background sequences alone do not contain

sufficient information for accurate binding site detection. This

suggests that one possible approach to improve binding site

prediction is to develop better motif (and background) models than

the currently used position specific frequency model (PSFM) for

binding sites and Markovian models for background. For example,

observed dependencies between binding site nucleotides [30,16]

can be incorporated into motif models [31]. However, the use of

more complex models, such as general Bayesian networks, is found

to be challenging [32]. While developing better motif and

background models is important, another more general direction

aims at making use of several additional information sources, in a

similar manner as has been done in the context of motif discovery

(see above) to improve TF binding prediction.

Here, we formulate a probabilistic framework for TF binding

prediction that differs from the standard hypothesis testing

approaches in three important ways. First, the proposed

framework is probabilistic in nature and thus outputs a probability

of binding (as opposed to a p-value), which directly reflects our

belief of gene’s promoter having a binding site. We introduce both

likelihood and Bayesian inference methods that naturally allow

regularization via various prior distributions. Secondly, the

proposed method answers the question of whether the whole

promoter has a binding site, as opposed to reporting a p-value for

every possible position in the sequence. But it is also straightfor-

ward to modify our methods to estimate TF binding separately for

each base pair position as well, which we also consider. Since we

process each promoter as a whole, in addition to assessing physical

TF binding at the individual locations, our computational

predictions provide insights into the functional role of a TF in

the regulatory program of a target gene. The rationale for this is

the fact that the higher binding probability anywhere on the

promoter (not just in a particular location) implies higher

probability of a regulatory relationship. Thirdly, and most

importantly, we propose a principled way of combining multiple

data sources, such as evolutionary conservation, regulatory

potential, CpG islands, nucleosome positioning, DNase hypersen-

sitive sites, ChIP-chip, and other prior knowledge, into a unified

probabilistic framework. Moreover, the proposed data fusion

framework is extremely versatile and thus, allows incorporating

practically any additional (future) information sources that are

indicative of TF binding sites at the genome level.

To validate our computational methods, we constructed a test

set of annotated binding sites in mouse promoters from existing

databases [13,33–35]. We demonstrate that our probabilistic

inference framework significantly improves TF binding predic-

tions. We also test our probabilistic inference method by applying

it to all known mouse promoters. These genome-wide results,

which are made publicly available, indicate a sparse connectivity

between transcriptional regulators and their target promoters. To

provide easy access to this method, we have also implemented a

web tool, ProbTF, which allows users to analyze their own

promoter sequences and additional data sources.

Because our proposed computational framework is based on

probabilistic modeling, it provides an intuitive interpretation (i.e.,

probabilities, not p-values). Our probabilistic formulation also

provides regularization to the inference problem via several

informative prior distributions, hence further improving perfor-

mance. Results on a carefully constructed test set show that the

proposed computational methods significantly improve perfor-

mance when compared to previous binding site prediction

methods. This is partly due to the fact that each promoter

sequence is analyzed as a whole (i.e., TF binding is not assessed

independently at each nucleotide position), taking advantage of

multiple binding sites. The most important ingredient, however, is

the principled incorporation of multiple additional data sources.

We construct our basic probabilistic framework using common-

ly used models for binding and non-binding sites, although

generalizations to more complex models are straightforward.

Consequently, our initial formulation is similar to other previously

proposed TF binding prediction methods [36–38] and has perhaps

even more in common with general motif discovery methods

[6,39–45]. Notably, the differences are that we further extend our

basic TF binding prediction method into a Bayesian setting,

incorporate multiple motif models, consider combinatorial regu-

lation with multiple TFs, combine both forward and reverse

strands into the modeling framework, provide a way to

simultaneously estimate binding probabilities to the whole

promoter and at single nucleotide resolution and, most impor-

tantly, provide a principled statistical integration of multiple data

sources.

Although applications that combine binding site prediction with

other data sources, especially ‘‘phylogenetic footprinting,’’ are

plentiful (see e.g [46,47], or [29,48] for review), we are not aware

of other probabilistic frameworks for TF binding modeling that

can combine several additional data sources at the genome level.

Related probabilistic data fusion approaches to TF binding

prediction are introduced in [49,50]. For example, the method

of Beyer et al. [49] provides a general, higher-level, naive Bayes

approach to integrate ChIP-chip data with several additional

evidence sources. Our approach is different in that we integrate

multiple data sources at the genome level, which is indeed

necessary for incorporating nucleosome information, regulatory

potentials, etc. We also note that our probabilistic predictions can

be further used in other methods, such as the one of [49]. Other

related previous methods include, among others, probabilistic

methods for combining sequences and microarray data [51,52],

general frameworks for data integration (see [53]), and a

supervised method for binding site prediction [54,55]. The most

closely related previous method is that by Thijs et al. [42], although

that was originally introduced in the context of motif discovery

and without an option for data fusion. Note that depending on

what additional data sources are available, our method can be

applied with either zero or any number of additional information

sources.

Although our general aim is to integrate as many lines of

evidence as possible into TF binding prediction, we restrict our

focus to those data sources that contain useful information for TF

binding at the genome level. For example, we do not consider
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functional data sources, such as gene expression or protein level

measurements, or descriptive higher-level information, such as

gene ontology. Despite the fact that gene or protein expression

measurements alone can be informative of transcriptional

regulatory relationships and, therefore, indirectly informative of

TF binding as well, we will not include those data sources into our

modeling framework. For example, proper modeling of gene

expression or protein level measurements does inevitably require

the use of a predictive network model, such as a (dynamic)

Bayesian network [56–58], a system of ordinary differential

equations or a stochastic kinetic model [59–61]. However, even

more comprehensive modeling approaches that integrate all

sequence level data sources with functional measurements and

gene ontology information become much easier to tackle because

our TF binding prediction are probabilistic. Probabilistic methods

similar to those presented in [62–64] are practically straightfor-

ward to apply using our sequence level predictions as a building

block (see ‘Discussion’ Section for more discussion). From a more

general point of view, our approach has much in common with

general strategies to infer transcriptional regulation from multiple

data sources (see [62–65] for representative examples). We expect

that the method described herein will also prove to be a useful

building block in comprehensive transcriptional regulatory

modeling.

Results

Probabilistic modeling for binding prediction
To motivate the results presented in this section, we briefly

outline our computational methods—first for the basic probabi-

listic formulation without any additional data sources and then for

general data fusion. A detailed description of the methods is

presented in ‘Materials and Methods’ Section.

The most commonly used probabilistic models for binding sites

and background sequences, on which our methods are also built,

are the position specific frequency matrix (PSFM) model [66,21]

and the Markovian model [67], respectively. Our choice of using

PSFM model for binding sites is arbitrary. The same modeling

framework can be extended to virtually any binding site model.

Although we focus on TF binding prediction, our computational

formulation is perhaps more closely related to probabilistic motif

discovery methods (see e.g [6,39–45]). Note, however, that our

goal is not de novo motif discovery but probabilistic inference of TF

binding, given some a priori information about TF binding

specificities and background sequence properties. Because we

assume to have prior knowledge of TF specificities we can use a

different approach in our computation (compared to motif

discovery methods) to better address our goal of estimating TF

binding. Further, these standard motif and background models are

combined in a probabilistic framework with multiple additional

data sources that are indicative of TF binding or transcriptional

regulation in general.

Motif and background models are denoted by h and w,

respectively. For the cases where a TF is associated with more than

one motif model, we denote multiple motifs by H= (h(1),…,h(m)). A
key (unknown) quantity is the number of binding sites Q in a

promoter sequence S= (s1,…,sN). Instead of fixing Q= c binding

sites to particular positions, we consider (sum over) all possible

non-overlapping motif start positions A={a1,…,ac} and configu-

rations pM{1,…,m}c and weight different combinations according

to their probability. This is illustrated in Figure 1, which shows

four different combinations of the number of binding sites Q,

positions A and configurations p for a TF that is associated with

two motif models (blue and green boxes).

Given S, H and w, we are interested in computing the

probability of having c=0,1,… binding sites

P Q~c S,H,wjð Þ!P S Q~c,H,wjð ÞP Q~c H,wjð Þ,

where the term P(S|Q= c,H,w) involves summing over all motif

positions A and configurations p for c binding sites. The prior

P(Q= c|H,w) reflects our prior belief of having c binding sites. The

probability of binding can be assessed by the probability of having

at least one (or any other higher number, if so decided) binding site

P(Q.0|S,H,w). A computationally efficient recursive algorithm to

compute P(Q.0|S,H,w) is described in ‘Materials and Methods’

Section. Our basic formulation can be viewed as a direct

generalization of that by Thijs et al. [42] who proposed a

practically equivalent framework for a single motif model. Similar

probabilistic modeling frameworks have also been constructed

using hidden Markov models [36–38,44].

Because motif models are typically constructed from a relatively

small number of experimentally verified binding sites (or from an

output of a motif discovery algorithm) they can contain a

considerable amount of uncertainty. Thus, it is also useful to

consider a Bayesian approach where H and w are random

variables. Given S, A and p and applying Bayes’ rule gives

P A,p Sjð Þ!P S A,pjð ÞP A,pð Þ,

where P(S|A,p) is the marginal likelihood obtained by integrating

over parameters H and w. The probability of binding can again be

assessed by the probability of having at least one binding site, i.e.,

12P(A=Ø,p=Ø|S). For the Bayesian approach we develop a

Markov chain Monte Carlo (MCMC) estimation method (see

‘MCMC estimation for Bayesian inference’ Section for details).

Another important benefit of using a Bayesian approach is that

with the proposed MCMC sampling strategy one can solve more

complex inference problems (and with more complex prior

distributions) than with the efficient recursive algorithm for the

likelihood method. In particular, MCMC sampling also makes it

possible to jointly estimate binding probabilities to the whole

promoter and individual base pair locations.

Performance on real sequences
We demonstrate our computational methods on a carefully

constructed test set that contains annotated binding sites in 47

mouse promoters. For the positive cases we use those TF-promoter

pairs that contain an annotated binding site for a TF in a

Figure 1. An illustration of four different binding site
configurations for a TF that is associated with two motif
models (blue and green boxes). The diagram illustrates the
upstream promoter region for a gene, where the direction of
transcription is indicated by the direction of the arrows. The arrows
are located at the transcription start sites.
doi:10.1371/journal.pone.0001820.g001
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promoter. Negative cases consist of TF-promoter pairs that (are

expected to) have no functional binding sites. Although negative

sets in general are likely to contain some true binding sites (those

that are not yet discovered), that does not invalidate our

performance evaluation but merely introduces a degrading bias

in our results. Similarly, some of the annotated binding sites may

have been used to construct the PSFM models that we use in our

analysis and that in turn can introduce an optimistic bias into our

results. The above-mentioned biases are impossible to avoid in

practice. Fortunately, this is not a major issue, especially as long as

we use the same test set and the same PSFM and Markovian

background models for all the new and previously published

methods that we compare. The full details of the test set can be

found in ‘Data’ Section. For the binding specificities, we use

(scaled) motif models from TRANSFAC Professional version 10.3.

We measure performance using standard receiver operating

characteristics (ROC) curves that plot the fraction of true positives

(sensitivity) versus the fraction of false positives (complementary

specificity), see e.g [68]. We also use the area under the curve

(AUC) measure that summarizes and represents the ROC with a

single number. Given the probabilistic nature of our method, we

also found it instructive to visualize the distribution of estimated

binding probabilities for positive and negative test cases.

Comparison of background model orders
Before proceeding to more interesting results, we first test the

effect of some of the parameters in our probabilistic formulation. A

natural parameter to start with is the order of the Markovian

background model. Several authors have reported that the use of

higher-order background models improves motif discovery

[67,69]. Figure 2 shows ROC curves for our test set using the

basic likelihood-based probabilistic method with varying Markov-

ian background model orders, dM{0,1,…,4}. Figure 2 shows

somewhat surprisingly that, overall, TF binding prediction does

not seem to depend greatly on the background model order. The

best overall performance, according to AUC, is achieved with

d=0. For consistency, we use d=0 in all our simulations.

Another useful preliminary test is to vary the prior probability of

having Q=0 binding sites as well as the parameter k, which

specifies how fast the prior probability of having Q.0 binding sites

approaches zero (see ‘Materials and Methods’ Section for more

details). In general, these parameters only affect the overall bias of

the posterior binding probabilities: larger values of P(Q=0|H,w)

and smaller values of k bias probabilities towards small values, and

vice versa (results not shown).

Comparison of likelihood and Bayesian approaches
Adopting a Bayesian approach allows the modeling of

uncertainty in the model parameters as well. Although we use

the Dirichlet prior distribution for both the motif and background

model parameters, we are primarily concerned with the

uncertainty in the motif models, since the background model

parameters are estimated from a much larger data set.

Hyperparameters of the Dirichlet prior control the amount of

uncertainty in the motif model parameters and that can also

provide regularization for the inference problem (see [70] for a

discussion in the context of Bayesian networks). For consistency,

we use the same hyperparameters to obtain the scaled PSFMs for

the likelihood-based approach. Figure 3 shows the ROC results for

the likelihood and Bayesian methods with varying prior strengths

(see ‘Materials and Methods’ Section for more details). In the basic

simulations setting without any additional data sources, the

likelihood and Bayesian methods perform almost identically.

Figure 4 shows histograms of the estimated binding probabilities

for the likelihood and Bayesian methods for prior strengths M=50

and M=100. A general character of the histograms is that the

binding probabilities of annotated sites (red bars) are biased

towards high values whereas the binding probabilities of negative

cases (blue bars) are approximately uniformly distributed. Smaller

prior strengths correspond to more uncertain motif models and

that, in turn, allows the data (i.e., promoter sequence) to have a

stronger effect on the posterior motif model. Typically, smaller

prior strengths also bias overall posterior probabilities towards

higher values, especially for the negative set (compare blue bars in

Figures 4 (a–b) with the ones in (c–d)). In terms of ROC curves and

AUC measures, proposed methods are insensitive to small

deviations in prior strengths (within a range of reasonable values).

Prior strength M=100 seems to provide good results and this

value was used in all our simulations for consistency.

Comparison with traditional promoter scanning
In order to better assess the performance of the proposed

methods, we also compare our basic likelihood method with

traditional promoter scanning (see [21–24]) and a probabilistic

scanning-based method that assesses the probability of binding

[63] (see ‘Comparison with other methods’ Section for more

details). Due to a fundamental problem of hypothesis testing

approaches, they are prone to systematically finding more

significant binding sites in longer promoter sequences just by

chance. This inherent bias could be accounted for to an extent by

correcting for the multiple testing issue. That would be remarkably

challenging because all significance values corresponding to a

PSFM model should be corrected simultaneously and that would

easily result in millions of p-values per PSFM model. An even more

severe issue, however, stems from the fact that exact promoter

regions are unknown practically for all the genes. Thus, a

particular choice of the promoter regions, especially their lengths,

has a potential to impose a significant biasing effect. The easiest

Figure 2. The standard ROC curves for the basic likelihood-
based method with varying Markovian background model
orders, dM{0,1,…,4}.
doi:10.1371/journal.pone.0001820.g002
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and safest way to guarantee a fair and unbiased comparison

between different methods is to shorten all the promoter sequences

in our controlled test set to have approximately the same length

(but we also compare different methods without changing the

promoter lengths for comparison purposes). Figure 5 shows ROC

results for the three methods with two different background model

orders. Overall, the performance of all three methods is similar,

which is to be expected since they are based on the same motif and

background models. However, our probabilistic method performs

better for small values of false positives (about ,0.2). This is

partly due to the fact that our method makes inference using

multiple binding sites together and hence, it is able to assign

higher probability to sequences that have multiple annotated

binding sites. Performance differences become more significant

when we integrate multiple data sources into TF binding

predictions in the next section. In traditional hypothesis testing

based approaches, one has typically been interested in a region of

the ROC curves that corresponds to a remarkably small false

Figure 3. ROC curves for the likelihood and Bayesian probabilistic methods with varying prior strengths. (a) M=50. (b) M= 100. Results
for (c) likelihood-based and (d) Bayesian methods for various values of M.
doi:10.1371/journal.pone.0001820.g003
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positive rate, say ,0.01. This is mainly due to the fact that each

PSFM and nucleotide location pair is assigned its own

significance value and therefore even a tiny false positive rate

makes the results look like each factor binds to practically every

promoter. Fortunately, this issue becomes less severe in our

modeling framework since each promoter is processed as a whole

(i.e., a single binding probability per TF-promoter pair), although

later on we also estimate binding probabilities at a single

nucleotide resolution. Further, and perhaps more importantly,

one of our main goals is full probabilistic modeling, where

different evidence sources are combined in a seemingly

continuous fashion (i.e., without making calls of ‘binding’ or

‘not binding’ at each step of the inference process). For example,

practically all parts of the ROC curve become equally important

when our sequence-based probabilistic modeling is combined

with gene expression data and other information sources.

Supplemental Figure S1 shows the same comparison results as

in Figure 5, but without forcing the promoter lengths to be equal.

These results show that when promoters have varying lengths,

our probabilistic method that processes each promoter as a whole

performs even better when compared to scanning-based ap-

proaches.

Probabilistic integration of multiple data sources
Many TF binding sequences are relatively short and non-unique

and hence, the expected number of their occurrences in a genome

by chance is high. These presumably non-functional binding sites

cause traditional TF binding site prediction methods to have

unacceptably high false positive rates. Although the above

probabilistic formulation provides a principled framework for TF

binding inference and allows regularization via a Bayesian

approach, being built on the same modeling framework as other

Figure 4. Histograms of the estimated binding probabilities for the likelihood and Bayesian methods with varying prior strengths.
(a) Likelihood M= 50. (b) Bayesian M= 50. (c) Likelihood M= 100. (d) Bayesian M= 100. x-axes correspond to the estimated binding probability and y-
axes show the fraction of negative (blue) and positive (red) test cases. Histogram bin edges are located at i

10
, i=0,1,…,10, although the two

histograms are shown side by side.
doi:10.1371/journal.pone.0001820.g004
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methods (PSFM motif and Markovian background models), it is

also vulnerable to identifying non-functional sites.

A natural way to improve specificity of TF binding site

predictions is to make use of additional biological information in

the inference. This idea has been proposed in several articles

where, for example, promoter scanning with PSFMs has been

constrained to only those parts of the genome that are highly

conserved, i.e., conservation scores exceed a threshold (see reviews

in [29,48]). However, not all binding sites are conserved [29].

Therefore, using additional data in such a binary fashion, is likely

to miss some binding sites and does not provide the most efficient

use of the data. A key advantage of our formulation is that it

provides a principled, probabilistic framework for incorporating

multiple data sources.

A number of additional information sources can be useful for

predicting TF binding. First, functional binding sites are typically

evolutionarily conserved [71], albeit with the caveat described in

the previous paragraph. Alignments of interspecies genomes

combined with other modeling efforts can be used to assess the

probability that a certain genomic location is under evolutionary

selection, and thus more likely to be a functional binding site. We

use PhastCons [72] to assess the probability of conservation.

PhastCons uses genome alignments of 17 species and a

continuous-time Markov model for nucleotide substitutions and

a two state phylo-HMM model to compute posterior conservation

probabilities.

Second, in addition to evolutionary conservation, methods

exist to assess whether a conserved sequence is neutral or

functional. This more detailed information, often called regula-

tory potential, has a potential to distinguish neutral sequence

regions from the functional ones, even within conserved parts of

sequences. Regulatory potential scores (log-likelihoods) are

obtained using ESPERR [73] that also makes use of multiple

genome alignments. After appropriate dimension reduction and

alphabet selection, ESPERR applies two variable order Markov

models to estimate likelihoods of regulatory and neutral sites. The

two Markov models are trained from a set of known regulatory

and neutral sites which makes ESPERR essentially a discrimina-

tory method.

Third, while evolutionary conservation can help in discriminat-

ing functional binding sites that are more prevalently located on

conserved parts of the genome from presumably non-functional

sites on non-conserved regions, it does not explain the mechanism

by which a TF is guided to its functional site. A hypothesis is that

this process is controlled by the intrinsic nucleosome organization

of genomes [74,75]. The likelihood of binding to a non-functional

binding site can be decreased by locating a stable nucleosome over

those genomic regions while keeping functional sites accessible for

TFs, i.e., free of (stable) nucleosomes. The nucleosome occupancy

probabilities can be computed using a method by Segal et al. [74],

which uses a Markov model whose parameters are estimated from

a set of known nucleosome locations.

Although we primarily focus on the three additional evidence

sources mentioned above, other information sources can also be

directly included into our modeling framework. For example, a

general sequence feature of many promoters, and thereby a

feature of binding sites within promoters as well, is that they

typically have a high CpG dinucleotide content [75]. Binding sites

are also commonly found to be organized into clusters (for a

review, see [76]). Furthermore, other more important, direct

evidence sources include experimental measures of TF binding as

measured by chromatin immunoprecipitation on chip [77,9] and

DNase hypersensitive sites [78].

From a computational point of view, we assume that each

additional data source is in the form D= (P(1),…,P(N)), where P(i)

denotes the probability that the ith nucleotide has one of the above

sources of evidence. Although not all data sources are in the form

of probabilities they can often be interpreted or transformed such

that they conform to this format. Additional data D is assumed to

be conditionally independent of the sequence S (given A, p, H and

Figure 5. ROC curves for the likelihood-based probabilistic method (red), traditional scanning (blue), and a probabilistic scanning-
based method that outputs a probability of binding (green). The background model order is (a) d= 0 and (b) d= 1.
doi:10.1371/journal.pone.0001820.g005
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w) and independent of the motif and background models, i.e.,

P S,D A,p,H,wjð Þ~P S A,p,H,wjð ÞP D A,pjð Þ: ð1Þ

The intuitive rationale for defining the term that captures the

additional data, P(D|A,p), is to assign higher probabilities for those

configurations (A,p) that are located in regions that are more likely (in

light of additional data D) to contain functional binding sites. A

similar data fusion technique works in a Bayesian framework as well

P A,p S,Djð Þ!P S A,pjð ÞP D A,pjð ÞP A,pð Þ: ð2Þ

We extend the above framework to multiple data sources Di,

1#i#ND, by combining them using a standard weighting scheme

prior to applying Equations (1–2). The details of the computa-

tional methods for incorporating multiple data sources are

described in ‘Combining multiple information sources’ Section.

Performance on real multiple data sources
The data fusion problem is illustrated in Figure 6 for four TF-

promoter pairs. The first row in each subplot shows the annotated

binding site(s). For illustration purposes, the next rows show the

log-likelihood scores of motif model(s) h(i) to the background model

w, logW
pjð Þ

aj (see Equation (11) for details). The last three rows

show the probabilities of conservation, nucleosome occupancy and

the regulatory potential. Figure 6 illustrates some general

characteristics of the data. First, the highest log-likelihood score

logW
pjð Þ

aj is not always obtained at the annotated site but on other,

possibly non-functional, positions. Second, for some TFs, such as

SRF, motif models h(i) are highly correlated whereas for other TFs,

such as SP1, motif models produce ‘‘scores’’ which are distinct

from each other. Finally, many of the annotated sites are also

associated with a high probability of conservation and regulatory

potential and with a low probability of nucleosome occupancy.

This correlation is not expected to be perfect though since only

about 50% of the functional binding sites are assessed to be

conserved (see [29]). Our goal here is to make principled

probabilistic inference from these numbers and to output a single

probability of binding for the promoter as a whole (i.e.,

transcriptional regulation). We will also compute the probability

of having a binding site at each nucleotide position later on.

Comparisons between different additional data sources
Figure 7 (a) shows ROC curves for the likelihood-based method

(blue) when combined with a single additional information source.

The use of regulatory potential scores (red) already gives a

marginal improvement for the TF binding prediction, but

evolutionary conservation (green) significantly improves the

detection performance. Although nucleosome occupancy proba-

bilities seem to be low at annotated sites in Figure 6, static

predictions of nucleosome positions are not sufficiently informative

to help binding prediction. Perhaps the main difficulty in using the

predicted nucleosome locations is that the nucleosome model is

constructed for yeast (only models for yeast, chicken and human

are available in [74]). However, as Narlikar et al. [11] have

demonstrated in the case of motif discovery in yeast, nucleosome

information can be informative, especially if combined with ChIP-

chip data in a discriminatory setting. We also found out that

information of CpG-islands does not improve binding predictions.

Figures 7 (b) and (c) show the corresponding histograms of the

estimated binding probabilities. Combining the probabilistic

method with evolutionary conservation produces the most

discriminatory histogram (Figure 7 (c)) whereas regulatory

potential data (Figure 7 (b)) assign higher probabilities to some

of the negative case. This can also indicate that the negative

sequences may indeed contain unannotated binding sites.

In these simulations, the scaling parameter for each additional

data source (see ‘Combining multiple information sources’ Section

for details) is chosen using a grid search over values dM{0, 0.01,…,

0.5} and taking the one that produces the best AUC measure. We

found d=0.04 for conservation and d=0.05 for the regulatory

potential data, but the results are not sensitive to small deviations

in the values of the scaling parameters. To verify that choosing

scaling parameters by maximizing the AUC measure does not

introduce an optimistic bias, we repeated the same simulation

using stratified cross-validation. For conservation scores, the results

remained virtually the same and for the regulatory potential the

results are also similar (see supplemental Figure S2). ESPERR [73]

is trained on a set of human genes, which is further expanded by

mapping the set of human genes to orthologous mouse genes,

amongst others. This extended data set partly overlaps with our

test set. We verified that this overlap does not introduce any bias in

our results by removing the overlapping genes from our test set

and repeating the simulation (see supplemental material Text S1

and Figure S4).

Given the above promising results with a single additional data

source, a natural question then is to study whether combinations of

additional data sources further improve TF binding prediction.

We consider the combination of conservation and regulatory

potential for which the ROC curve as well as the corresponding

histogram of the estimated binding probabilities are shown in

Figure 8. Combining conservation and regulatory potential gives a

minor improvement relative to using these data sources alone.

We used the same scaling parameters as above and tried a set of

different weighting schemes and again chose the weighting

parameter that gives the best AUC measure over grid w2M{0.5,

0.52,…, 1}. We found w1=0.14 and w2=12w1=0.86 for

regulatory potential and conservation, respectively (see ‘Combin-

ing multiple information sources’ Section for details). Similarly to

scaling, weighting is not sensitive to small deviations in the values

of the weighting parameters. Weighting some of the data sources

more heavily just biases the results towards those obtained using

the particular single data source alone.

The standard practice has been to constrain the scanning with

PSFMs to only those regions of the genome whose conservation

probability (or score) is sufficiently high [29]. For comparison

purposes, we applied the same strategy to our test set using a

similar grid search for the optimal threshold as above. Figure 9

shows ROC curves for the traditional scanning with and without

conservation data as well as our probabilistic method when

combined with conservation information. These results demon-

strate the fact that thresholding-based methods cannot achieve

optimal performance since not all functional binding sites are

conserved. This issue becomes more prevalent when more than

one data source is integrated. Supplemental Figure S3 shows the

same results as in Figure 9 but without forcing the promoter

sequence lengths to be equal, in which case, our probabilistic

method performs again even better than the traditional scanning.

These results again demonstrate the potential bias of hypothesis

testing based approaches.

Evolutionary conservation and regulatory potential are the most

informative additional data source in our simulations, whereas

estimated nucleosome locations or CpG-islands do not improve

TF binding predictions. As mentioned above, the particular

estimated nucleosome data that we use might not be optimal for
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our mouse test set. Once a mouse nucleosome model or high-

throughput nucleosome data become available, they can be used

in the same framework as well, likely improving TF binding

predictions. For example, Narlikar et al. [12] have found that even

low resolution measurements of nucleosome locations give a

marginal improvement for motif discovery methods in yeast.

Similarly, once more abundant ChIP-chip data becomes available,

it can be incorporated into our modeling framework as well. This

Figure 6. An illustration of the data fusion for TF binding prediction. (a) Annotated binding sites for SRF on Actc1 promoter. (b) Annotated
binding site for SRF on M23768 promoter. (c) Annotated binding site for SP1 on Myod1 promoter. (d) Annotated binding site for TEAD1 on Myh6
promoter. Figure keys are as follows. h(i): motif models for each TF, Conserv.: sequence conservation probabilities computed by PhastCons [72], Nuc.
pos.: nucleosome occupancy probabilities estimated by a yeast nucleosome model from [74], and Reg. pot.: regulatory potential log-likelihood scores
from [73]. The additional evidences range between 0 and 1. Promoters sequence lengths are 2000 base pairs in (a), (c) and (d), and 500 base pairs in
(b). See text for more details.
doi:10.1371/journal.pone.0001820.g006
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data fusion step can be performed in two ways: either use an

approach where binding probabilities are estimated separately

from ChIP-chip and sequence data and then combined (see [49]),

or incorporate high-resolution ChIP-chip binding data (see [9])

directly into our model.

Modeling combinatorial regulation
Gene regulation in higher organisms commonly requires

multiple TFs. Thus, combinatorial regulation by several TFs is

another important problem to study. The main difference between

a single TF and multiple TFs regulating a gene is that

combinatorial regulation requires all TFs to have at least one

binding site for (at least) one of their motif models. Although

multiple regulatory proteins can also form a complex and the

complex can regulate a target gene via a single binding site, we

only consider regulation via multiple binding sites, the single

binding site case being similar with our previous analysis.

Statistical inference for combinatorial regulation can be naturally

addressed in our probabilistic framework. For that purpose, we

propose to use both the likelihood and Bayesian methods (see

‘Combinatorial regulation’ Section for more computational

details).

Combinatorial regulation by multiple TFs is less well-known

and fewer combinatorial annotated binding sites are reported in

databases or even in the literature (see [79]). We construct a

sufficiently large test set for computational simulations from our

Figure 7. (a) ROC curves for the likelihood-based method (blue) when combined with a single additional information source:
regulatory potential (red), and evolutionary conservation (green). Histograms of the estimated binding probabilities for the likelihood-
based method when combined with (b) regulatory potential and (c) evolutionary conservation.
doi:10.1371/journal.pone.0001820.g007
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test set of annotated binding sites. For each promoter sequence, we

pair different TFs that have annotated binding sites on it and

consider these TF pairs to jointly regulate a given gene. We add a

further constraint that, for each pair of TFs, at least one annotated

binding site pair is within a cluster, i.e., sufficiently close to each

other, as is typically the case in real promoters as well [76]. We

construct a negative set such that approximately half of the TF

pairs have no annotated binding sites and half of the TF pairs have

an annotated binding site for one TF but not for the other.

The problem of inferring combinatorial regulation among many

TFs becomes computationally expensive because there are
n

k

� �

~O nk
� �

ways to choose k TFs from the set of n TFs.

Inference for combinatorial regulation can only be done exactly

using an MCMC sampler. This can become a problem since

Bayesian inference is considerably slower than the likelihood-

based inference. Therefore, in addition to Bayesian inference for

combinatorial regulation, we also consider here a naive approx-

imation that estimates the probability of combinatorial regulation

by the product of individual TF binding probabilities. Figure 10

shows ROC results and the corresponding histograms for the two

different methods. Surprisingly, the approximative method

performs slightly better than the Bayesian method. Figures 10 (b)

and (c) seem to suggest that the Bayesian method assigns higher

probabilities to some of the negative cases and, thereby, results in

slightly worse ROC curve than the likelihood method. Note that,

given the more difficult problem of finding multiple weak sequence

signals, histograms of combinatorial regulation probabilities for the

positive set (red bars) now span the whole range from 0 to 1.

As suggested by previous simulations, the detection of

combinatorial regulation can be improved by incorporating

additional data sources. We consider using evolutionary conser-

vation for which the results are shown in Figure 11. Comparison of

Figures 10 and 11 shows that additional data improves

performance significantly. As in the case of no additional

information, the naive likelihood approximation performs better

than the Bayesian alternative. These results suggest that our

proposed methods are well suited for inferring combinatorial

regulation as well. Further, the naive likelihood approximation

provides a computationally efficient alternative.

Figure 8. (a) ROC curve for the likelihood-based method (blue) when combined with evolutionary conservation (green), regulatory
potential (cyan), and a combination of evolutionary conservation and regulatory potential (red). (b) Histogram of the estimated binding
probabilities for a combination of conservation and regulatory potential.
doi:10.1371/journal.pone.0001820.g008

Figure 9. ROC curves for the traditional scanning (green),
traditional scanning combined with thresholded conservation
information (blue), probabilistic method combined with con-
servation information (red), and probabilistic method (cyan).
doi:10.1371/journal.pone.0001820.g009
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Extensions to double-stranded DNA and single
nucleotide resolution
Single vs. both strands
So far we have assumed that the direction of transcription is

known and we have focused on analyzing only a single strand of

the DNA. This is not always the case and, therefore, it is useful to

generalize TF binding prediction methods such that they use both

strands of the DNA. Our probabilistic methods generalize

naturally to handle double-stranded DNA. This can be achieved

simply by applying the aforementioned methods to both strands,

either independently or simultaneously (computational details are

described in ‘Single vs. both strands’ Section). To demonstrate

performance of our methods on double-stranded DNA, we re-

compute the results shown in Figure 7. Here we use a variant of

the likelihood method that processes different strands indepen-

dently. Figure 12 shows the resulting ROC curves. Results in

Figures 7 and 12 are virtually identical which suggests that our

proposed methods perform equally well on both single and double-

stranded DNA.

Predicting binding site positions
Our final simulation concerns inferring the probability of

having a binding site at a single nucleotide position. Although

our proposed methods are primarily designed to process each

promoter sequence as a whole, it is also useful to be able to infer

binding probabilities at a higher resolution, in particular, at

each nucleotide position. Inferring the binding probabilities at

each base pair location is more challenging from the

Figure 10. (a) ROC curves for combinatorial regulation using the Bayesian method (blue) and a naive likelihood approximation
(green). Histogram of combinatorial regulation probabilities for (b) the Bayesian method and (c) naive likelihood approximation.
doi:10.1371/journal.pone.0001820.g010
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computational point of view. In particular, the efficient

recursive algorithm developed for the likelihood method cannot

be applied. The inference can, however, be easily performed in

our Bayesian framework using our MCMC sampler. The

binding probability at each base pair location is achieved by

integrating out all other locations (see ‘Binding probabilities at

single nucleotide resolution’ Section more details). Figure 13

shows a representative result of binding probabilities for SRF on

the Actc1 and M23768 promoters, SP1 on the Myod1

promoter, and TEAD1 on the Myh6 promoter, with and

without evolutionary conservation as an additional data source.

These results correspond to the data shown in Figure 6. The

Bayesian inference (left column) is able to find and assign a high

probability to all the annotated sites, although some presumably

non-functional (i.e., non-annotated) sites are identified as well.

The use of evolutionary conservation improves the performance

of the Bayesian inference by ‘‘biasing’’ the binding sites towards

conserved regions. In particular, all the annotated (resp. non-

annotated) binding sites are assigned a higher (resp. lower)

binding probability than without conservation data. It is also

worth noting that our probabilistic inference method does not

assign a zero probability to any of the possible binding sites.

This is useful because the motif models are known to contain

uncertainty and particularly because the binding prediction is

based on noisy data. Hence, a probabilistic approach is more

flexible and principled.

Figure 11. (a) ROC curves for combinatorial regulation using the Bayesian method with evolutionary conservation (blue) and a
naive likelihood approximation with evolutionary conservation (green). Histogram of combinatorial regulation probabilities for (b) the
Bayesian method with evolutionary conservation and (c) a naive likelihood approximation with evolutionary conservation.
doi:10.1371/journal.pone.0001820.g011
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Genome-wide Analysis
Encouraged by the above performance evaluations, we applied

the proposed likelihood-based binding prediction method to the

2K base pair upstream promoter regions of all 20397 mouse genes,

where the genomic locations of the promoters are based on RefSeq

gene annotations. Evolutionary conservation was used as an

additional data sources as explained above and binding specific-

ities for 266 TFs were again taken from TRANSFAC Professional

version 10.3. Prior to analyzing the promoter sequences, DNA

repeats were found using RepeatMasker [80] and ignored from

further analysis. While we mainly focus on general summary

results here, the full binding probability results for all mouse TF-

gene pairs (203976266 table) are available on the supplementary

web page.

Figures 14 (a)–(c) show histograms of the estimated binding

probabilities, maximum a posteriori (MAP) number of binding

sites and the expected number of binding sites, respectively, over

all 5.4 million TF-promoter pairs. A histogram of the estimated

binding probabilities in Figure 14 (a), for example, shows strong

bias towards weak binding probabilities. Similarly, zero binding

sites is by far the most frequent case among the MAP number of

binding sites (Figure 14 (b)) and the expected number of binding

sites are also heavily biased towards small values (Figure 14 (c)).

These findings are consistent with the current view that, on

average, biological interaction networks, such as transcriptional

regulatory networks, are sparsely connected (see [81]). Perhaps

more interestingly, the histogram of binding probabilities is clearly

bi-modal. The second, smaller peak is located at high binding

probabilities, close to the probability value 1. Therefore, the

histogram of binding probabilities can, for example, be considered

as a mixture of two exponentially decreasing (no binding) and

increasing (binding) distributions.

Figures 15 (a) and (b) further summarize the estimated binding

probabilities over different TFs and promoter sequences, respec-

tively. Although most TFs have relatively low average binding

probabilities (Figure 15 (a)), say between 0 and 0.3, average

binding probabilities also possess some degree of variability. For

example, the TF that has the highest average binding probability

(about 0.52) is the well-known Sp1 protein (see [82]) that has been

reported to bind practically everywhere in the human genome

[83]. Figure 15 (b) displays the histogram of the average binding

probability to a promoter sequence. Most of the average binding

probabilities are again relatively small, say between 0 and 0.3, but

there are also a few promoter sequences for which the average

binding probability is higher. This feature is often referred to as

scale-free. Note that by scaling the x-axis of Figure 15 (b) by the

number of TFs (266) one gets an estimate of the number of

regulators per gene.

Discussion

In our analysis, we primarily focused on estimating the binding

probability of a TF to either the whole analyzed promoter or at

single base pair resolution (using the Bayesian method). We also

introduced an extension for inferring combinatorial regulation.

Given the flexibility of our probabilistic (Bayesian) modeling

framework, virtually any question can be answered probabilisti-

cally within it. For example, Beer and Tavazoie [51] introduced a

method for predicting gene expression using positional and

combinatorial constraints for local sequence elements. Similar

questions can also be answered probabilistically in the proposed

framework, e.g., ‘‘what is the probability that two TFs, A and B,

both have binding sites in a given promoter such that binding site

for A is closer to the transcription start site than that of B, binding

sites are within 50 base pairs from each other and within 150 base

pairs from the transcription start site?’’ Alternatively, the above

type of positional and combinatorial constraints that have been

identified in previous studies can be included into the proposed

framework via informative prior distributions.

One popular way of analyzing expression data is based on

clustering similarly behaving genes together or finding groups of

genes that are differentially expressed. The gene sets found are

then typically searched for common (either known or unknown)

sequence motifs. A potentially very useful extension of our

framework will be to develop a method for computing the

probability that a set of genes (or a fraction of them) have a

binding site for a TF or for a set of TFs.

A number of other possible extensions are also easily included in

this probabilistic modeling framework. For example, some

proteins interact to form a heterodimer and bind as a complex,

in which case the potential binding sites of (all or a subset of) the

constituent TFs may be more likely to be physically close to each

other. Incorporation of protein-protein interaction databases may

help in revealing such mechanisms. Evolutionary conservation was

included in the framework by utilizing the conservation scores of

an input promoter. One can also simultaneously analyze the

corresponding promoter in other organisms to check if they have a

binding site for the same TF (in the corresponding location), see

[46]. In addition to this, an interesting extension would be to

modify the proposed framework to take into account the

conservation of TF binding patterns [84]. An alternative future

extension is to incorporate probabilistic evolutionary processes

within the proposed binding prediction framework (see [6]).

Finally, as noted before, our choice of using a PSFM model for

binding sites is arbitrary and the same framework can be easily

extended to other binding site models as well.

Our final note is devoted to the general distinction between

motif discovery and binding site prediction methods. The

proposed Bayesian method interprets binding specificities as

Figure 12. ROC curves for the likelihood-based method (blue)
when both strands of the DNA are used and a single additional
information sources is available: regulatory potential (red) and
evolutionary conservation (green).
doi:10.1371/journal.pone.0001820.g012
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random variables whose prior parameters define the amount of

uncertainty associated with each TF binding model. By gradually

forcing all pseudo counts to be equal (unity), i.e., increasing the

uncertainty, the Bayesian binding prediction method indeed turns

into a pure motif discovery method. Thus, for uncertain binding

specificities, the Bayesian method can also be used as a motif

discoverer.

Our future work includes developing the framework in the

direction of the aforementioned extensions. We are also extending

our genome-wide analysis to yeast. Predicting TF binding in yeast

is interesting not only because it is the most often considered

model organism, but also because yeast has a well-developed

nucleosome model [74] and more abundant ChIP-chip data (see

[65,9]).

A central goal in the described computational analysis is

accurate TF binding prediction from multiple data sources.

However, because TF binding does not necessarily imply

transcriptional regulation, it is also important to further extend

computational methods to incorporate other, functional data, such

as gene expression or protein level (time series) measurements.

Statistical inference of transcriptional regulatory networks from a

combination of gene expression time series, promoter sequence

Figure 13. Estimated binding probabilities on a single base pair resolution for SRF on (a) the Actc1 and (c) M23768 promoters, (e)
SP1 on the Myod1 promoter, and (g) TEAD1 on the Myh6 promoter without any additional information. Subplots (b), (d), (f) and (h)
show the same results but with evolutionary conservation as the additional data source. The blue and red graphs indicate the start of the binding
sites. The annotated binding sites are shown with gray vertical bars. These results correspond to Figure 6.
doi:10.1371/journal.pone.0001820.g013
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and binding specificity data has been studied in [85–87,63].

Probabilistic formulation of TF binding prediction is particularly

useful in such modeling approaches as it naturally allows a

principled fusion of various data sources. In a Bayesian context, it

is both intuitive and simple to integrate diverse data sources via

informative prior distributions. This is similar with what we

proposed for the probabilistic integration of multiple data sources

above. Similar ideas have already been introduced for the

Bayesian inference of transcriptional regulatory networks from

gene expression data where a prior distribution of network models

is estimated from promoter sequences and TF binding specificities

[63] or from ChIP-chip data [62]. We are currently developing

Bayesian learning methods for transcriptional regulatory networks

that can make principled statistical inference from diverse sets of

data sources, such as the ones already discussed in this work and

other functional data.

We have developed a flexible and comprehensive framework for

TF binding prediction from multiple data sources. The proposed

methods are probabilistic in nature and, thus, directly assess our

degree of belief in binding or non-binding in terms of probabilities.

Instead of assessing TF binding at each nucleotide location

separately, we extended the binding prediction methods to analyze

each promoter sequence as a whole. This gives a more complete

view of a TF binding to and possibly regulating a target gene.

Although we primary focused on answering the question of

whether the entire promoter has a binding site for a TF, we also

developed a method for computing binding probabilities at each

nucleotide position by essentially integrating out other locations in

a promoter. Most importantly, the proposed methods can make

principled inference from multiple data sources that can include,

among others, multiple motif models, evolutionary conservation,

regulatory potential, CpG islands, nucleosome positioning, DNase

hypersensitive sites and ChIP-chip. Results on our carefully

constructed test set demonstrate that principled data fusion can

significantly improve the performance of binding prediction

methods. Recent technological developments, such as protein

Figure 14. Histogram of (a) the estimated binding probabilities, (b) maximum a posteriori (MAP) number of binding sites, and (c)
the expected number of binding sites over all 5.4 million TF-promoter pairs. Histogram frequency at bin value 10 in Figure (b) (resp. value
about 5 in Figure (c)) includes all values that exceed 10 (resp. 5).
doi:10.1371/journal.pone.0001820.g014
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binding microarrays, now allow accurate measurements of TF

binding specificities to be gathered in a high-throughput fashion.

Using accurate binding specificity measurements together with

principled TF binding prediction methods can provide a

competitive alternative to traditional condition specific ChIP-

chip experiments, especially when TF binding prediction

incorporates multiple additional data sources. Our genome-wide

TF-DNA binding results for mouse indicate relatively sparse

connectivity between TFs and their target genes, consistent with

previous results. The probabilistic formulation of TF binding

prediction is particularly useful for integrating our results as

building blocks in other computational methods. To that end, we

have also implemented a web tool, ProbTF, which allows users to

analyze their own promoter sequences and additional data

sources.

Materials and Methods

The computational methods are implemented in Matlab and

will be made available as an open-source library upon publication.

The test set, including all sequences and additional information

sources, will also be made available on a supplementary web site.

A preliminary version of the computational methods presented in

Sections ‘Modeling framework’, ‘Likelihood approach: one motif

model h’, and ‘Likelihood approach: multiple motif models H’

have been reported in our previous conference article [88].

Modeling framework
Let S= (s1,…,sL) denote a single strand of a promoter sequence,

where siM{A, C, G, T} and L is the length of the sequence.

(Generalizations to double stranded DNA sequences are given

later on.) Let Q denote the number of (hidden) motif instances in

sequence S. This is one of the key quantities estimated from the

data. Further, let A denote the (unknown) start positions of non-

overlapping motif instances in sequence S. For example, if Q= c,

then A={a1,…,ac}. Thus, a promoter consists of c motif instances

and c+1 background sequence chunks, some of which can be

empty. In the following we assume that A always defines start

positions for non-overlapping motifs.

Non-binding background sequence locations are modeled by

the commonly used dth order Markovian background model w.

That is, let

w sið Þ~Pw si si{d ,si{dz1, . . . ,si{1jð Þ

denote the probability of observing nucleotide si at the ith position

of a promoter sequence S in the background model w given d

previous nucleotides. For simplicity, we assume that for positions

i#d we have access to s2d+1,…,s0. We could alternatively define a

separate probability distribution for the first d nucleotides. The

likelihood of the background model, A=Ø, is thus

P S A~Ø,wjð Þ~P S wjð Þ~PL
i~1w sið Þ.

Motifs are modeled using the standard PSFM model h which is

a product of independent multinomial distributions [21]. Similarly

as above, let

h si,jð Þ~Ph si,jð Þ

denote the probability of observing nucleotide si at the jth

(j=1,…,,) position of a motif model h, where , is the length of the

motif. Note that
P

si[ A,C,G,Tf gh si,jð Þ~1 for all j and that

probabilities for different js are independent. The probability of

sequence S, given non-overlapping motif positions and motif and

background models, is

P S A,h,wjð Þ~ P
a1{1

i1~1
w si1ð Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

background1
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� �
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P
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|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

backgroundcz1

~ P
L

i~1
w sið Þ P

Aj j

j~1
P
‘{1

k~0

h sajzk,kz1
� �

w sajzk

� �

~P S wjð Þ P
Aj j

j~1
Waj ,

ð3Þ

where |A|=Q= c and Waj~P‘{1
k~0

h sajzk ,kz1

� �

w sajzk

� � .

Figure 15. Histogram of the estimated average binding probabilities over (a) different TFs and (b) promoter sequences.
doi:10.1371/journal.pone.0001820.g015
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Likelihood approach: one motif model h
Using Bayes’ rule, the probability of c motif instances, given the

sequence S, is (see [42])

P Q~c S,h,wjð Þ~
P S Q~c,h,wjð ÞP Q~c h,wjð Þ

P S h,wjð Þ
, ð4Þ

where the normalization factor has the following form

P S h,wjð Þ~
X
tL
‘
s

c~0

P S Q~c,h,wjð ÞP Q~c h,wjð Þ ð5Þ

and tL
‘
s is the maximum number of non-overlapping ,-length

motifs in an L-length sequence. Note that since the sum in

Equation (5) has only tL
‘
sz1 terms (instead of infinitely many) the

normalization factor can be computed exactly. The likelihood of

sequence S, given that it contains c motif instances, can be

obtained by summing over all possible positions A of c motif

instances [42]

P S Q~c,h,wjð Þ~
X

A: Aj j~c

P S A,Q~c,h,wjð ÞP A Q~c,h,wjð Þ

~

XL{c‘z1

a1~1

� � �
XL{‘z1

ac~ac{1z‘

P S wjð Þ P
c

j~1
WajP A Q~c,h,wjð Þ,

ð6Þ

where in the last equality we have used P(S|A,Q= c,h,w) =
P(S|A,h,w) and Equation (3). The above probabilistic formulation

(Equations (4)–(6)) is practically identical to the one proposed by

Thijs et al. [42].

As in [42], let us assume for now that, for a fixed value of Q, the

prior over motif positions A is uniform and is inversely

proportional to the number of different motif positions, i.e.,

P A Q~c,h,wjð Þ~Pc
i~1

i
L{c‘zi

. Let R(S|Q= c,h,w) denote the sum

in Equation (6) without the (constant) prior term P(A|Q= c,h,w).
The likelihood in Equation (6) can be computed efficiently using

the following recursion

R S Qj ~c,h,wð Þ~
XL{c‘z1

a1~1

� � �
XL{‘z1

ac~ac{1z‘

P S wjð Þ P
c

j~1
Waj

~

XL{c‘z1

a1~1

Wa1

XL{ c{1ð Þ‘z1

a2~a1z‘

� � �
XL{‘z1

ac~ac{1z‘

P S wjð Þ P
c

j~2
Waj

~

XL{c‘z1

a1~1

Wa1R Sa1z‘ Q~c{1,h,wjð Þ

where Sa1z‘~ sa1z‘, . . . ,sLð Þ denotes a subsequence of S (note that

S1= S). For the prior over the number of motif instances, we use a

probability distribution motivated by previous studies [42]

P Q~c h,wjð Þ*
1

2
,
1

C
,
k

C
,
k2

C
, � � � ,

ktL
‘
{1s

C
�,ð7Þ

"

where C~2
PtL

‘
s{1

i~0 ki. Since P(Q= c|h,w) does not depend on h

or w we also rewrite P(Q= c|h,w) =P(Q= c). One could consider

other priors as well, such as ones that depend on the information

content of the matrix (see [6]).

The probability that a given TF (defined by h) binds to a gene

having promoter sequence S, denoted by hRS, can be computed

as

P h?S S,h,wjð Þ~P Qw0 S,h,wjð Þ ð8Þ

~

X
tL
‘
s

c~1

P Q~c S,h,wjð Þ ð9Þ

~1{P Q~0 S,h,wjð Þ, ð10Þ

where P(Q= c|S,h,w) can be obtained using Equations (4)–(7).

Assuming a single binding position is sufficient for transcriptional

regulation, then the above probability of binding can also be

interpreted as a probability of transcriptional regulation. It is

straightforward to adopt the above probability P(hRS|S,h,w) for

the requirement of having multiple binding sites. Also note that we

have the distribution of having any number (0ƒQƒtL
‘
s) of binding

sites from which we can compute, e.g., the expected (mean) and the

maximum a posteriori (MAP) number of binding sites.

Likelihood approach: multiple motif models H
A TF can recognize several different types of binding sites and is

then characterized by several motif models H= (h(1),…,h(m)) each
having length ,i. Let pM{1,…,m}c denote a configuration of motif

models from H in A. That is, pi specifies the motif model h pið Þ at

location ai. For notational convenience, define

W
pjð Þ

aj ~
P

‘pj{1

k~0

h pjð Þ sajzk,kz1
� �

w sajzk

� � , if 1ƒajƒL{‘jz1

0, otherwise,

8

><

>:

ð11Þ

and note that (see also Equation (3))

P S A,p,H,wjð Þ~P S wjð Þ P
c

j~1
W

pjð Þ
aj : ð12Þ

The probability of c motif instances can be obtained using

Bayes’ rule as in Equations (4)–(5) but h replaced with H. Further,

following Equation (6), the likelihood of sequence S given c motif

instances can be obtained by summing over all possible positions

and configurations

P S Q~c,H,wjð Þ~
X

p[ 1,...,mf gc

X

A: Aj j~c

P S A,p,Qj ~c,H,wð Þ

|P A,p Q~c,H,wjð Þ

~

X

p[ 1,...,mf gc

XL{c‘minz1

a1~1

� � �
XL{‘minz1

ac~ac{1z‘pc{1

P S wjð Þ

| P
c

j~1
W

pjð Þ
aj P A,p Q~c,H,wjð Þ,

ð13Þ

where ,min={,1,…,,m}. Let us again start by assuming a uniform

prior over motif positions A and configurations p (for each fixed

value of Q), and let R(S|Q= c,H,w) denote the sum in Equation (13)

without the (constant) prior term P(A,p|Q= c,H,w). A computa-
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tionally efficient recursive formula can be written as

R S Q~c,H,wjð Þ~
X

p[ 1,...,mf gc

XL{c‘minz1

a1~1

� � �
XL{‘minz1

ac~ac{1z‘pc{1

P S wjð Þ P
c

j~1
W

pjð Þ
aj

~

X

p1[ 1,...,mf g

XL{c‘minz1

a1~1

W p1ð Þ
a1

X

p2 ,...,pcð Þ[ 1,...,mf gc{1

|

XL{ c{1ð Þ‘minz1

a2~a1z‘p1

� � �
XL{‘minz1

ac~ac{1z‘pc{1

P S wjð Þ P
c

j~2
W

pjð Þ
aj

~

X

p1[ 1,...,mf g

XL{c‘minz1

a1~1

W p1ð Þ
a1

R Sa1z‘p1
Q~c{1,H,wj

� �

A closed form formula for uniform P(A,p|Q= c,H,w) is more

difficult to obtain in general, but it can be computed numerically

using a similar recursion as the one above.

The prior P(Q= c|H,w) depends now on H and thus can be

adjusted for multiple motifs. However, it is unrealistic to assume

that different motif models (h(1),…, h(m)) are independent. Indeed,

it is likely that they are strongly dependent. Therefore, we use the

same prior P(Q= c) as in the case of a single motif model as a first

approximation.

Let HRS denote that a TF characterized by H binds to a

promoter S. The probability that at least one of the motif models

in H has a binding site in S, P(HRS|S,H,w), can be computed as

in Equations (8)–(10) but h replaced with H. Under the same

premise as above that a single binding site is sufficient for gene

regulation, P(HRS|S,H,w) can be interpreted as the probability of

regulation.

The above probabilistic modeling framework that incorporates

multiple motif models can be viewed as an extension of a

framework proposed in [42]. Note that the proposed framework is

also similar to hidden Markov models (HMM) that have been

proposed previously [36–38,44]. An HMM is defined by motif and

background models H and w and the transition probabilities

(between the states of the HMM) whereas the modeling framework

described herein is built on motif and background models alone,

with additional information brought into the computation via the

priors P(Q|H,w) and P(A,p|Q,H,w).

Bayesian approach
TF binding specificities are derived from experimental data sets,

some of which have extremely small sample sizes (as low as five

reported binding sequences). PSFM models can therefore contain

a considerable amount of uncertainty. Instead of assuming motif

models h to be known exactly, as above, it is useful to take the

uncertainty in the motif models themselves into account. This can

be done naturally in a Bayesian setting where the parameters/

models are considered as random variables. We describe the

Bayesian methods directly for the case of multiple motifs. The

single motif case can be obtained as a special case by setting m=1

and omitting p.

Using Bayes’ rule, the probability of motif positions A and

configurations p, given the sequence S, is

P A,p Sjð Þ~
P S A,pjð ÞP A,pð Þ

P Sð Þ
: ð14Þ

The marginal likelihood P(S|A,p) is obtained by integrating over

parameters

P S A,pjð Þ~

ð

H,wP S A,p,H,wjð ÞP H,w A,pjð ÞdHdw,

where P(S|A,p,H,w) is the same product of multinomial distribu-

tions as in Equation (12) and P(H,w|A,p) = P(H,w)defines a prior

distribution for the parameters.

TF-DNA binding databases typically provide information in the

form of ‘‘the number of times a TF has been observed to bind a

given sequence.’’ These sequences are also aligned and aligned

counts are summarized in position specific weight matrices

(TRANSFAC, JASPAR), which we denote as aij
(k). Similar counts

can also be obtained for the background model (denoted by aij
(0))

from genomic sequences that do not contain (known) binding sites.

Therefore, it is natural to use a Dirichlet prior for the parameters,

which is defined by so-called pseudo-counts.

Let us rewrite the motif model parameters (independent

multinomial distributions) for now as h(k)(i, j) = hij
(k) which again

defines the probability of seeing nucleotide iM{A, C, G, T} at the

jth (1#j#,k) position in the kth (1#k#m) motif model. Denote

hj
(k)={hij

(k)|iM{A, C, G, T}}. The Dirichlet prior for each hj
(k) with

hyperparameters aij
(k) is defined as

P h
kð Þ
j aj

� �

~

C
P

ia
kð Þ
ij

� �

PiC a
kð Þ
ij

� � P
i

h
kð Þ
ij

� �a
kð Þ
ij

{1

,

where hij
(k)
$0,gihij

(k)=1, aij
(k)
.0, and C(?) is the Gamma function.

Priors for different j and k are assumed to be independent. The

Dirichlet prior for the background model is defined similarly.

The Dirichlet prior is also a conjugate prior for multinomials.

Consequently, the marginal likelihood has a closed-form solution.

Let Nij
(k) denote the number of times nucleotide i is observed at the

jth position in the kth motif model given S, A and p. Denote

aj
(k)=giaij

(k) and Nj
(k)=giNij

(k). The marginal likelihood can be

written as

P S A,pjð Þ~ P
4d

j~1

C a
0ð Þ
j

� �

C a
0ð Þ
j zN

0ð Þ
j

� � P
i[ A,C,G,Tf g

C a
0ð Þ
ij zN

0ð Þ
ij

� �

C a
0ð Þ
ij

� �

| P
m

k~1
P
‘k

j~1

C a
kð Þ
j

� �

C a
kð Þ
j zN

kð Þ
j

� � P
i[ A,C,G,Tf g

C a
kð Þ
ij zN

kð Þ
ij

� �

C a
kð Þ
ij

� � ,

ð15Þ

where the first (resp. the second) part corresponds to the

background model (resp. m motif models).

To keep likelihood-based and Bayesian approaches comparable,

we use the same prior here, i.e.

P A,pð Þ~
X
t L
‘min

s

c~0

P A,p Q~cjð ÞP Q~cð Þ

~P A,p Q~ Aj jjð ÞP Q~ Aj jð Þ,

ð16Þ

where P(A,p|Q=|A|) and P(Q=|A|) are as in Equations (13) and

(7), respectively. Note that we write P(A,p|Q=|A|) instead of

P(A,p|Q=|A|, H,w) because the (uniform) prior depends only on

the widths of the motif models, ,i, and not on the actual

parameters H or w.

Because some of the motif models are remarkably diffuse

(computed from only a few example sequences), we do not use the

PSWMs as pseudo counts directly. We instead use a version that
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incorporates a so-called prior strength term M, i.e.,

a
kð Þ
i,j : ~M:

a
kð Þ
i,j

P

i[ A,C,G,Tf ga
kð Þ
i,j

: ð17Þ

This prevents a (single) sequence to have too strong of an

influence on the posterior parameter values. For simplicity, we use

the same prior strength for all the motif models, although this does

not need to be the case in general. In addition, we add a small

number (one) to each ai,j
(k) to prevent zero entries. Finally, to

preserve comparability between likelihood and Bayesian ap-

proaches, the normalized motif models for the likelihood based

approach are computed from the recomputed pseudo-counts used

in the Bayesian estimation, i.e.,

h kð Þ i,jð Þ~
a

kð Þ
i,j

P

i[ A,C,G,Tf ga
kð Þ
i,j

: ð18Þ

Recall that in the Bayesian framework, the mean of h(k)(i, j)
relative to the prior distribution P(hj

(k)|a) is equal to the quantity in

Equation (18).

MCMC estimation for Bayesian inference
Unfortunately, there is no efficient recursive formula to

compute the probabilities P(A,p|S) for all A and p. However,

one can solve the problem by using stochastic estimation methods.

Here we propose to sample positions A and configurations p
directly from the posterior P(A,p|S) using Markov chain Monte

Carlo (MCMC). We develop a Metropolis-Hastings (MH)

algorithm for this purpose. For an introduction to MCMC

methods, see [89].

The MH algorithm is completely specified by a proposal

distribution G(A9,p9|A,p) which proposes new pairs (A9,p9) given
the current (A,p). We define G as follows.

N Motif addition with probability p: for a uniformly chosen motif

model h(i)MH, propose a new, non-occupied/non-overlapping

motif position uniformly randomly (if a free location exists).

N Motif deletion with probability 12p: delete an existing motif

uniformly randomly (if a motif exists).

We use p=0.5. The proposed pair (A9,p9) is then accepted with

probability

R~min 1,
P A0,p0 Sjð Þ

P A,p Sjð Þ
|

G A,p A0,p0jð Þ

G A0,p0 A,pjð Þ

� 	

which satisfies the detailed balance condition. Convergence in

distribution to the desired posterior (in the limit of infinitely many

samples) is guaranteed if, in addition to satisfying the detailed

balance, the resulting chain is also irreducible and aperiodic.

Irreducibility of the chain follows from the fact that any pair (A9,p9)

can be reached from any pair (A,p) by repeatedly adding or

deleting one motif at a time and each step has a positive selection

probability. Aperiodicity of the chain can be seen similarly. For

example, the probability that the chain first deletes all c=|A|

motifs, then stays at A=Ø any number of steps (by trying to delete

a motif), and finally adds the same c motifs, is non-zero. In other

words, the probability of moving from (A,p) back to (A,p) in 2c or

more steps is non-zero. Therefore, the period (the greatest common

factor of integers that include at least {2c, 2c+1,…}) for all the states

(A,p) is 1 and the chain is aperiodic. Note that computing the above

Bayes factor can be done very efficiently because only a single motif is

added or deleted at a time. In particular, only two parts of the

marginal likelihoods are different, corresponding to the motif that is

added/deleted and the background chunk that is deleted/added. For

integer-valued pseudo-counts, the computation of the Bayes factor

reduces even further because c(n) = (n21)!. After a proper burn-in

period B, a dependent sample ((A(B+1), p(B+1)), (A(B+2), p(B+2)), …,

(A(B+N), p(B+N))) is collected.

Although the chain is ergodic as shown above, it is important to

monitor convergence of the MCMC algorithm for finite samples

to guarantee the desired output. Bayesian inference in this case can

be considered as a model selection problem where the model space

consists of all valid pairs (A,p). Although the model space is discrete

and finite, standard convergence diagnostics over the full model

space are difficult to apply in practice. Better suited diagnostic

methods are the ones that are specifically developed for model

selection problems, such as the ones in the context of reversible

jump MCMC methods (see [90]). A general strategy is to reduce

the model space and monitor the convergence in a lower

dimensional space. Here we consider a method that compares

the marginal probabilities of having 0ƒQƒtL
‘
s binding sites,

P(Q= c|S) =g|A|= c gp P(A,p|S), from two independent chains

(see [91]). Note that P(Q= c|S) is exactly the distribution that we

are interested in when assessing TF binding. As for the

convergence diagnostic, we use a heuristic that reports two chains

as having converged if the L1-distance between two independent

estimates of P(Q|S) is within an accepted error threshold (we use

0.025). We could also use a formal hypothesis testing (e.g. chi-

squared or Kolmogorov-Smirnov) for assessing lack of conver-

gence by sub-sampling the two chains to get (approximately)

independent samples [90]. The less involved heuristic seems to

serve our purposes. We use B=5?105 for the burn-in and N= i?B

for the sample size, where index i=1, 2,… is increased until the

chain pair passes the convergence diagnostic.

As above, the quantities of interest include the probability of

having at least one binding site for at least one of the motif models,

denoted as HRS (or, conversely, having no binding sites),

P H?Sð Þ~
X
t L
‘min

s

c~1

P Q~c Sjð Þ

~1{P A~Ø,p~Ø Sjð Þ

and the posterior probability of having exactly Q= c binding sites,

P(Q= c|S). These quantities can be estimated directly from the

chain

P A~Ø,p~Ø Sjð Þ&
1

N

XBzN

r~Bz1

x A rð Þ








~0

� �

and

P Q~c Sjð Þ&
1

N

XBzN

r~Bz1

x A rð Þ








~c

� �

,
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where x is the indicator function. The sample averages converge to

the true posterior probabilities almost surely. The final estimates

are obtained by averaging estimates from two independent chains

that pass the convergence diagnostic.

Combinatorial regulation
From the point of view of modeling transcriptional regulatory

networks, it is also important to study combinatorial regulation by

several TFs V= (H(1),…, H(p)), each with a set of motif models

H ið Þ
~ h i,1ð Þ, . . . ,h i,mið Þ
� �

, 1ƒiƒp

A key quantity then is the probability that each different TF has at

least one binding site (for at least one of their motif models). Let

the configurations now be defined as

p[ 1,1ð Þ, . . . , 1,m1ð Þ, 2,1ð Þ, . . . , 2,m2ð Þ, . . . , p,1ð Þ, . . . , p,mp

� �� �c

and define a set

C~ p Vi[ 1, . . . ,pf gAji[ 1, . . . ,mif g : i,jið Þ[pjf g: ð19Þ

In other words, the set C says that every TF is presented with

some motif in every configuration p. Note that Equation (19)

implies that if pMC then |p|= c$p. The probability of p TFs

binding a promoter S jointly can be written as

P V?S Sjð Þ~
X
t L
‘min

s

c~p

X

A: Aj j~c

X

p[C

P A,p Sjð Þ:

Probabilities P(A,p|S) are computed as in Equations (14–16)

except that m in Equation (15) is replaced with m1+…+mp and the

prior P(A,p) defined in Equation (16) is adjusted for several TFs.

Let ci$0 denote the number of binding sites for the ith TF.

Assuming that the number of binding sites for different TFs are

independent, then one can model the joint number of binding

sites, QV, as

P QV~cð Þ~P c1z . . .zcp~c
� �

~

X

c1z...zcp~c

P
p

i~1
P Q~cið Þ:

There is no efficient formula to compute P(VRS|S), or even

the analogous likelihood based quantity, so we only formulate

this in the Bayesian context and solve it with MCMC sampling.

The same MH algorithm as above can be applied except that a

motif h(i,j) is now added uniformly randomly from a list of motif

sets V. Finally, P(VRS|S) can be directly estimated from a chain

as

P V?S Sjð Þ&
1

N

XBzN

r~Bz1

x p rð Þ
[C

� �

: ð20Þ

We also consider a naive (likelihood-based) approximation that

estimates the probability of combinatorial regulation by the

product of individual binding probabilities, i.e.,

P V?S S,V,wjð Þ& P
p

i~1
P H ið Þ

?S S,H ið Þ,w







� �

: ð21Þ

Combining multiple information sources
TF binding predictions can be significantly improved by

incorporating multiple additional data sources, such as evolution-

ary conservation, regulatory potential, CpG islands, nucleosome

positioning, DNase hypersensitive sites or ChIP-chip, into our

probabilistic inference framework. Let D denote a single additional

data source that is indicative of functional binding sites. The data

is assumed to be in the form D= (P(1),…, P(L)), where P(i) is the

probability that the ith base pair location has one of the above

mentioned properties (is conserved, belongs to a regulatory region,

has a low nucleosome occupancy, etc.). Here we explain how such

additional information can be used in a principled way to

significantly improve TF binding inference.

We model the probability of S and D given A, p, H and w as

P S,D A,p,H,wjð Þ~P S A,p,H,wjð ÞP D A,pjð Þ,

where we assume that S and D are conditionally independent and

that the probability of D does not depend on the motif and back-

ground models. Let I={1,…, L} denote base pair indices of a

promoter and IA,p~ a1, . . . ,a1z‘p1{1,a2, . . . ,a2z‘p2{1,f
. . . ,am, . . . ,amz‘pm{1g be indices of binding sites specified by A

and p. The data D can then be modeled as

P D A,pjð Þ~ P
i[I\IA,p

1{P ið Þð Þ P
i[IA,p

P ið Þ

~P
i[I

1{P ið Þð Þ P
i[IA,p

P ið Þ

1{P ið Þð Þ

~ P
L

i~1
1{P ið Þð Þ P

Aj j

j~1
P

‘pj{1

k~0

P ajzk
� �

1{P ajzk
� �

~P D wjð Þ P
Aj j

j~1
D

pjð Þ
aj ,

ð22Þ

where P D wjð Þ~PL
i~1 1{P ið Þð Þ and

D
pjð Þ

aj ~ P

‘pj{1

k~0

P ajzk
� �

1{P ajzk
� � :

The factorization in Equation (22) is useful as it allows us to

write P(S, D|A,p,H,w) in the following compact form

P S,D A,p,H,wjð Þ~P S wjð ÞP D wjð Þ P
Aj j

j~1
W

pjð Þ
aj

:D
pjð Þ

aj

� �

:

In particular, note that in the likelihood based approach the

same efficient recursive formula as in ‘Likelihood approach:

multiple motif models H’ Section can be applied to compute P(S,

D|Q= c,H,w).

In a Bayesian setting, data fusion can be performed similarly

P A,p S,Djð Þ~
P S,D A,pjð ÞP A,pð Þ

P S,Dð Þ
ð23Þ

~
P S A,pjð ÞP D A,pjð ÞP A,pð Þ

P S,Dð Þ
: ð24Þ
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If we have several additional data sources Dk= (Pk(1),…, Pk(L)),

1#k#ND, then we propose to combine them directly using

P ið Þ! P
ND

k~1
Pk ið Þwk ,

where wk$0 and
PND

k~1 wk~1.

Conceptually, the probability P(D|A,p) can be viewed as a

positional prior for binding sites. But we do not combine P(D|A,p)
with P(A,p) since all aforementioned data sources (probabilities P(i))

depend on the sequence S as well.

In practice, we do not use the above probabilities directly but a

scaled version of them. For the kth additional data set we scale

the original probabilities between [dk, 12dk], where 0#dk#0.5.

We resort to fixed parameter values for wks and dks here because

the estimated binding probabilities are not sensitive to small

deviations in the value of wk or dk However, it is also possible to

develop a full Bayesian treatment by introducing priors over wks

and dks. Our simplified strategy also improves computational

efficiency and makes it possible to use the standard MCMC

instead of more computationally demanding trans-dimensional

MCMC methods.

Single vs. both strands
So far we have only considered using a single, either forward or

reverse, strand for inferring TF binding. Extending the above

methods to double-stranded DNA is straightforward. Let a

promoter be denoted now as S= (S9,S0), where S9 and S0 are the

forward and complementary reverse strands. Let us first assume

that binding events on separate strands are independent of each

other. In the case of double-stranded DNA, we need to compute

the probability of an event HRS9 or HRS0. Let us denote

P(HRS9|S,H,w) = PS9 and P(HRS0|S,H,w) = PS0. Now

P H?S S,H,wjð Þ~P H?S0 _H?S00 S,H,wjð Þ

~PS0 1{PS00ð ÞzPS00 1{PS0ð ÞzPS0PS00 :

Due to the OR-type of event (HRS9 or HRS0), the effective

prior probability of having zero binding sites decreases. We

account for this bias by changing P(Q=0|H,w) from 1
2
to 3

4
. The

above formulation can also make use of the correlation between

PS9 and PS0. A similar extension works for the Bayesian case as well

with the exception that S9 and S0 should not be analyzed separately

even if binding on the two strands is assumed to be independent.

Joint analysis of S9 and S0 is easily implemented using the same

MCMC/MH algorithm as above. The only difference is that now

the model should include separate start positions A= (A9,A0) and

configurations p= (p9,p0) for the two strands. This approach also

allows incorporating additional constraints, such as binding sites

on two strands are less likely to occur at the same position due to

physical space constraints.

Binding probabilities at single nucleotide resolution
Our computational methods are primarily designed to answer

the question of whether the whole promoter has a binding site for

a given TF. However, it is also useful to be able to infer binding

probabilities at higher, single nucleotide, resolution. A motif

position and configuration pair (A,p) contains a binding site (start

position) at the ith nucleotide if iMA. In the Bayesian context, the

probability of a binding site at the ith location can be expressed

and estimated simply as

P i[A Sjð Þ~
X

A:i[A

X

p[ 1,...,mf g Aj j

P A,p Sjð Þ

&

1

N

XBzN

r~Bz1

x i[A rð Þ
� �

:

Comparison with other methods
We compare our proposed probabilistic method with traditional

promoter scanning [21–23,26,28] and with a method that assesses

the probability of binding [63]. Traditional scanning methods

output a significance value for each position in a promoter. It is

common practice to use the smallest p-value over a promoter as a

measure of binding to the whole promoter, which we also use here.

We use the same approach to adopt traditional promoter scanning

to handle multiple motif models and report the smallest p-value

over the multiple motif models. The same approach to handle

multiple motif models is used with the method from [63].

Significance values of the traditional scanning method (as well as

intermediate quantities in [63]) are computed relative to the null

distribution derived from the negative promoter sequences.

Data
The data set consists of a merger of annotated TF binding sites

for mouse from the ABS [35] and ORegAnno [34] databases. In

total there are 47 annotated promoter sequences. The sequences

have sets of length of around 500 nucleotides (ABS) and 2K

nucleotides (ORegAnno). The TF binding sites are mapped onto

the mm8 (February 2006) mouse assembly.

The promoters are generally upstream of the genes that they are

associated with. However, some regions stretch over the first exon

into intronic regions. Therefore, some promoters have exons in

their sequence. There were around a dozen overlapping

promoters between the two databases. The TF binding sites for

these promoters were merged onto the longer 2K ORegAnno

sequences. The data set also includes 250 upstream, non-coding

sequences that can be used for generating background models and

statistics.

The test set used in our simulations consists of 47 promoter

sequences, each having a varying number of annotated binding

sites (positive sequences), and 250 promoter sequences that have no

reported binding sites (negative sequences). Additional data sources

(evolutionary conservation [72], regulatory potential [73], nucle-

osome location [74], and CpG islands) are available for all the

positive sequences. Evolutionary conservation, regulatory potential

and CpG island data are downloaded from the UCSC genome

browser [33] and nucleosome location predictions are obtained

using the method and software from [74]. After removing

unknown/unmatched TFs and TFs for which we do not have

prior binding specificities in TRANSFAC, we are left with 70

unique TF-promoter pairs in the positive set, which include 23

unique TFs. As for the negative set, we use all possible pairs of the 23

unique TFs and the 47 promoter sequences that are not in the

positive set. We further filter the negative set and ignore those TF-

promoter pairs where the TF belongs to the same family as a TF in

the positive set (for the same promoter) since their binding

specificities are defined by largely overlapping TRANSFAC motif

models. For example, Mef2c has an annotated binding site in the

Des promoter. Consequently, all other ‘‘Mef-family’’-Des pairs are

ignored from the negative set. This filtering reduces the negative
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set from all possible 23647270= 1011 pairs to 952. Because all

the annotated binding sites for each TF are on the same strand of

DNA, we first use only the strand containing the annotated sites.

This also doubles the size of the negative set. Because the direction

of transcription can be unknown in general, we also extend the

analysis to cover both strands. In some simulations we use only 4

randomly chosen TF-promoter pairs for each promoter from the

negative set, resulting in 4764= 188 unique TF-promoter pairs in

the reduced negative set.

For all the simulations, we use (scaled) motif models from

TRANSFAC. Parameters of the Markovian background models

(model orders 0,1,…, 4 are tested) are estimated from the 250

negative sequences (both strands).

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0001820.s001 (0.03 MB

DOC)

Figure S1 ROC curves for the likelihood-based probabilistic

method (red), traditional scanning (blue), and a probabilistic

scanning-based method that outputs a probability of binding

(green) for the case where promoter sequence lengths have not

been made equal. Background model order is (a) d = 0 and (b)

d = 1.

Found at: doi:10.1371/journal.pone.0001820.s002 (0.49 MB TIF)

Figure S2 ROC curves for the likelihood-based method (blue)

when combined with a single additional information source:

regulatory potential (red), and evolutionary conservation (green).

Solid graphs (resp. dashed graphs) correspond to the optimized

parameters (resp. results obtained with stratified cross-validation).

Found at: doi:10.1371/journal.pone.0001820.s003 (0.33 MB TIF)

Figure S3 ROC curves for the traditional scanning (green),

traditional scanning combined with thresholded conservation

information (blue), probabilistic method combined with conserva-

tion information (red), and probabilistic method (cyan) for the case

where promoter sequence lengths have not been made equal.

Found at: doi:10.1371/journal.pone.0001820.s004 (0.34 MB TIF)

Figure S4 ROC curves for the likelihood-based method (blue)

when combined with a single additional information source:

evolutionary conservation (green) and regulatory potential (red).

Promoter sequences that are used to train the regulatory potential

method and that also overlap with our test set have been removed.

Found at: doi:10.1371/journal.pone.0001820.s005 (0.33 MB TIF)
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