
 1

Probabilistic Information Retrieval Approach for
Ranking of Database Query Results
SURAJIT CHAUDHURI
Microsoft Research
and
GAUTAM DAS
University of Texas at Arlington
and
VAGELIS HRISTIDIS
Florida International University
and
GERHARD WEIKUM
Max Planck Institut fur Informatik

__

We investigate the problem of ranking the answers to a database query when many tuples are returned. In
particular, we present methodologies to tackle the problem for conjunctive and range queries, by adapting and
applying principles of probabilistic models from Information Retrieval for structured data. Our solution
is domain independent and leverages data and workload statistics and correlations. We evaluate the quality of
our approach with a user survey on a real database. Furthermore, we present and experimentally evaluate
algorithms to efficiently retrieve the top ranked results, which demonstrate the feasibility of our ranking system.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval - H.2.4 [Database Management]: Systems
General Terms: Automatic Ranking, Relational Queries, Workload
Additional Key Words and Phrases: Probabilistic Information Retrieval, User Survey, Experimentation,
Indexing
__

1. INTRODUCTION

Database systems support a simple Boolean query retrieval model, where a selection

query on a SQL database returns all tuples that satisfy the conditions in the query. This

often leads to the Many-Answers Problem: when the query is not very selective, too many

tuples may be in the answer. We use the following running example throughout the

paper:

Authors' addresses: Author 1, Microsoft Research, One Microsoft Way, Redmond WA 98052,
surajitc@microsoft.com; Author 2, Department of Computer Science and Engineering, The University of
Texas at Arlington., Arlington TX 76019, gdas@cse.uta.edu; Author 3, School of Computing and Information
Sciences, Florida International University, Miami, FL 33199, vageli@cis.fiu.edu; Author 4, Max Planck Institut
fur Informatik, Saarbruken, Germany, weikum@mpi-sb.mpg.de. Part of this work was performed while Author
2 was a researcher, Author 3 was an intern, and Author 4 was a visitor at Microsoft Research. Author 3 has been
partially supported by NSF grant IIS-0534530. A conference version of this paper titled “Probabilistic Ranking
of Database Query Results.” appeared in VLDB 2004.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

 2

© 2001 ACM 1073-0516/01/0300-0034 $5.00
Example: Consider a realtor database consisting of a single table with attributes such as

(TID, Price, City, Bedrooms, Bathrooms, LivingArea, SchoolDistrict, View, Pool,

Garage, BoatDock …). Each tuple represents a home for sale in the US.

Consider a potential home buyer searching for homes in this database. A query with a

not very selective condition such as “City=Seattle and View=Waterfront” may result in

too many tuples in the answer, since there are many homes with waterfront views in

Seattle.

The Many-Answers Problem has also been investigated in Information Retrieval (IR),

where many documents often satisfy a given keyword-based query. Approaches to

overcome this problem range from query reformulation techniques (e.g., the user is

prompted to refine the query to make it more selective), to automatic ranking of the

query results by their degree of “relevance” to the query (though the user may not have

explicitly specified how) and returning only the top-k subset.

It is evident that automated ranking can have compelling applications in the database

context. For instance, in the earlier example of a homebuyer searching for homes in

Seattle with waterfront views, it may be preferable to first return homes that have other

desirable attributes, such as good school districts, boat docks, etc. In general, customers

browsing product catalogs will find such functionality attractive.

In this paper we propose an automated ranking approach for the Many-Answers

Problem for database queries. Our solution is principled, comprehensive, and efficient.

We summarize our contributions below.

Any ranking function for the Many-Answers Problem has to look beyond the

attributes specified in the query, because all answer tuples satisfy the specified

conditions1. However, investigating unspecified attributes is particularly tricky since we

need to determine what the user’s preferences for these unspecified attributes are. In this

paper we propose that the ranking function of a tuple depends on two factors: (a) a global

score which captures the global importance of unspecified attribute values, and (b) a

conditional score which captures the strengths of dependencies (or correlations) between

specified and unspecified attribute values. For example, for the query “City = Seattle and

View = Waterfront” (we also consider IN queries, e.g., City IN (Seattle, Redmond)), a

home that is also located in a “SchoolDistrict = Excellent” gets high rank because good

1 In the case of document retrieval, ranking functions are often based on the frequency of occurrence of query
values in documents (term frequency, or TF). However, in the database context, especially in the case of

 3

school districts are globally desirable. A home with also “BoatDock = Yes” gets high

rank because people desiring a waterfront are likely to want a boat dock. While these

scores may be estimated by the help of domain expertise or through user feedback, we

propose an automatic estimation of these scores via workload as well as data analysis.

For example, past workload may reveal that a large fraction of users seeking homes with

a waterfront view have also requested for boat docks. We extend our framework to also

support numeric attributes (e.g., age), in addition to categorical, by exploiting state-of-

the-art bucketing methods based on histograms.

The next challenge is how do we translate these basic intuitions into principled and

quantitatively describable ranking functions? To achieve this, we develop ranking

functions that are based on Probabilistic Information Retrieval (PIR) ranking models. We

chose PIR models because we could extend them to model data dependencies and

correlations (the critical ingredients of our approach) in a more principled manner than if

we had worked with alternate IR ranking models such as the Vector-Space model. We

note that correlations are sometimes ignored in IR data – important exceptions are

relevance feedback-based IR systems – because they are very difficult to capture in the

very high-dimensional and sparsely populated feature spaces of text whereas there are

often strong correlations between attribute values in relational data (with functional

dependencies being extreme cases), which is a much lower-dimensional, more explicitly

structured and densely populated space that our ranking functions can effectively work

on. Furthermore, we exploit possible functional dependencies in the database to improve

the quality of the ranking.

The architecture of our ranking has a pre-processing component that collects database

as well as workload statistics to determine the appropriate ranking function. The

extracted ranking function is materialized in an intermediate knowledge representation

layer, to be used later by a query processing component for ranking the results of queries.

The ranking functions are encoded in the intermediate layer via intuitive, easy-to-

understand “atomic” numerical quantities that describe (a) the global importance of a data

value in the ranking process, and (b) the strengths of correlations between pairs of values

(e.g., “if a user requests tuples containing value y of attribute Y, how likely is she to be

also interested in value x of attribute X?”). Although our ranking approach derives these

quantities automatically, our architecture allows users and/or domain experts to tune

categorical data, TF is irrelevant as tuples either contain or do not contain a query value. Hence ranking
functions need to also consider values of unspecified attributes.

 4

these quantities further, thereby customizing the ranking functions for different

applications.

We report on a comprehensive set of experimental results. We first demonstrate

through user studies on real datasets that our rankings are superior in quality to previous

efforts on this problem. We also demonstrate the efficiency of our ranking system. Our

implementation is especially tricky because our ranking functions are relatively complex,

involving dependencies/correlations between data values. We use interesting pre-

computation techniques which reduce this complex problem to a problem efficiently

solvable using top-k algorithms.

The rest of this paper is organized as follows. In Section 2 we discuss related work. In

Section 3 we define the problem. In Section 4 we discuss our approach to ranking based

on probabilistic models from information retrieval, along with various extensions and

special cases. In Section 5 we describe an efficient implementation of our ranking

system. In Section 6 we discuss the results of our experiments, and we conclude in

Section 7.

2. RELATED WORK

A preliminary version of this paper appeared in [CHAUDHURI, S., DAS, G.,

HRISTIDIS, V., AND WEIKUM, G. 2004] where we presented the basic principles of

using probabilistic information retrieval models to answer database queries. However,

our earlier paper only handled point queries (see Section 3). In this work we show how

IN and range queries can be handled and how this makes the algorithms to produce

efficiently the top results more challenging (Sections 4.4.1 and 5.4). Furthermore

[CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND WEIKUM, G. 2004] focuses on

only categorical attributes, whereas we have a complete study of numerical attributes as

well (Section 4.4.2). [CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND WEIKUM, G.

2004] also ignores functional dependencies, which as we show can improve the quality of

the results (Section 4.2.2). In this work, we also present specialized solutions for cases

where no workload is available (Section 4.3.1), no dependencies exist between attributes

(Section 4.3.2). We also generalize to the case where the data resides on multiple tables

(Section 4.4.3). Finally, we extend [CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND

WEIKUM, G. 2004] with a richer set of quality and performance experiments. On the

quality level, we show results for IN queries and also compare to the results of a

 5

“random” algorithm. On the performance level, we included experiments on how the

number k of requested results affects the performance of the algorithms.

Ranking functions have been extensively investigated in Information Retrieval. The

vector space model as well as probabilistic information retrieval (PIR) models [BAEZA-

YATES, R., AND RIBEIRO-NETO, B. 1999, GROSSMAN, D.A. , FRIEDER, O., 2004,

SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000, SPARCK

JONES, K., WALKER, S., ROBERTSON, S.E. 2000] and statistical language models

[CROFT, W.B. , AND LAFFERTY, J. 2003, GROSSMAN, D.A. , FRIEDER, O., 2004]

are very successful in practice. Feedback-based IR systems (e.g., relevance feedback

[HARPER, D., AND VAN RIJSBERGEN, C. J. 1978], pseudo relevance feedback [XU,

J., AND CROFT, W. B. 1996]) are based on inferring term correlations and modelling

term dependencies, which are related to our approach of inferring correlations within

workloads and data. While our approach has been inspired by PIR models, we have

adapted and extended them in ways unique to our situation, e.g., by leveraging the

structure as well as correlations present in the structured data and the database workload.

In database research, there has been significant work on ranked retrieval from a

database. The early work of [MOTRO, A. 1988] considered vague/imprecise similarity-

based querying of databases. Probabilistic databases have been addressed in

[BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992, CAVALLO, R.,

AND PITTARELLI, M. 1987, DALVI, N.N, AND SUCIU, D. 2005, LAKSHMANAN,

L.V.S. , LEONE, N., ROSS, R., AND SUBRAHMANIAN, V.S. 1997]. Recently, a

broader view of the needs for managing uncertain data has been evolving (see, e.g.,

[WIDOM, J. 2005]).

The challenging problem of integrating databases and information retrieval systems

has been addressed in a number of seminal papers [COHEN, W. 1998, COHEN, W.

1998b, FUHR, N. 1990, FUHR, N. 1993, FUHR, N., ROELLEKE, T. 1997, FUHR, N.,

AND ROELLEKE, T. 1998] and has gained much attention lately [AMER-YAHIA, S.,

CASE, P., ROELLEKE, T., SHANMUGASUNDARAM, J., AND WEIKUM. G. 2005].

More recently, information retrieval based approaches have been extended to XML

retrieval [AMER-YAHIA, S., KOUDAS, N., MARIAN, A., SRIVASTAVA, D., AND

TOMAN, D. 2005, CHINENYANGA, T.T., AND KUSHMERICK, N. 2002, CARMEL,

D, MAAREK, Y.S. , MANDELBROD, M., MASS, Y., AND SOFFER, A. 2003, FUHR,

N., AND GROSSJOHANN, K. 2004, GUO, L., SHAO, F., BOTEV, C., AND

SHANMUGASUNDARAM. J. 2003, HRISTIDIS, V., PAPAKONSTANTINOU, Y.,

 6

BALMIN, A. 2003, LALMAS, M., AND ROELLEKE, T. 2004, THEOBALD, A.,

WEIKUM, G. 2002, THEOBALD, M., SCHENKEL, R., WEIKUM, G. 2005]. The

papers [CHAKRABARTI, K., PORKAEW, K., AND MEHROTRA, S. 2000, ORTEGA-

BINDERBERGER, M., CHAKRABARTI, K., AND MEHROTRA, S. 2002, RUI, Y.,

HUANG, T. S. ,AND MEHROTRA, S. 1997, WU, L., FALOUTSOS, C., SYCARA, K.,

AND PAYNE, T. 2000] employ relevance-feedback techniques for learning similarity in

multimedia and relational databases. Our approach of leveraging workloads is motivated

by and related to IR models that aim to leverage query-log information (e.g., see

[RADLINSKI, F., JOACHIMS, T. 2005, SHEN, X., TAN, B., AND ZHAI, C. 2005]).

Keyword-query based retrieval systems over databases have been proposed in

[AGRAWAL, S. , CHAUDHURI, AND S., DAS, G. 2002, BHALOTIA, G., NAKHE,

C., HULGERI, A., CHAKRABARTI, S., AND SUDARSHAN, S. 2002, HRISTIDIS, V.,

AND PAPAKONSTANTINOU, Y. 2002, HRISTIDIS, V., GRAVANO, L.,

PAPAKONSTANTINOU, Y. 2003]. In [KIEßLING, W. 2002, NAZERI, Z.,

BLOEDORN, E., AND OSTWALD, P. 2001] the authors propose SQL extensions in

which users can specify ranking functions via soft constraints in the form of preferences.

The distinguishing aspect of our work from the above is that we espouse automatic

extraction of PIR-based ranking functions through data and workload statistics.

The work most closely related to our paper is [AGRAWAL, S., CHAUDHURI, S.,

DAS, G., AND GIONIS, A. 2003] which briefly considered the Many-Answers Problem

(although its main focus was on the Empty-Answers Problem, which occurs when a query

is too selective, resulting in an empty answer set). It too proposed automatic ranking

methods that rely on workload as well as data analysis. In contrast, however, our paper

has the following novel strengths: (a) we use more principled probabilistic PIR

techniques rather than ad-hoc techniques “loosely based” on the vector-space model, and

(b) we take into account dependencies and correlations between data values, whereas

[AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003] only proposed a

form of global score for ranking.

Ranking is also an important component in collaborative filtering research [BREESE,

J., HECKERMAN, D., AND KADIE, C. 1998]. These methods require training data

using queries as well as their ranked results. In contrast, we require workloads containing

queries only.

A major concern of this paper is the query processing techniques for supporting

ranking. Several techniques have been previously developed in database research for the

 7

top-k problem [BRUNO, N., GRAVANO, L., AND CHAUDHURI, S. 2002, BRUNO,

N., GRAVANO, L., AND MARIAN, A. 2002, FAGIN, R. 1998, FAGIN, R., LOTEM,

A., AND NAOR, M. 2001, WIMMERS, L., HAAS, L. M. , ROTH, M T., AND

BRAENDLI, C. 1999]. We adopt the Threshold Algorithm of [FAGIN, R., LOTEM, A.,

AND NAOR, M. 2001, GÜNTZER, U., BALKE, W.-T., AND KIEßLING, W. 2000,

NEPAL, S., AND RAMAKRISHNA, M. V. 1999] for our purposes, and develop

interesting pre-computation techniques to produce a very efficient implementation of the

Many-Answers Problem. In contrast, an efficient implementation for the Many-Answers

Problem was left open in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS,

A. 2003].

3. PROBLEM DEFINITION

In this section, we formally define the Many-Answers Problem in ranking database query

results and its different variants. We start by defining the simplest problem instance,

which we later extend to more complex scenarios.

3.1 The Many-Answers Problem

Consider a database table D with n tuples {t1, …, tn} over a set of m categorical attributes

A = {A1, …, Am}. Consider a “SELECT * FROM D” query Q with a conjunctive

selection condition of the form “WHERE X1=x1 AND … AND Xs=xs”, where each Xi is

an attribute from A and xi is a value in its domain. The set of attributes X ={X1, …, Xs}⊆

A is known as the set of attributes specified by the query, while the set Y = A – X is

known as the set of unspecified attributes. Let S ⊆ {t1, …, tn} be the answer set of Q. The

Many-Answers Problem occurs when the query is not too selective, resulting in a large S.

The focus in this paper is on automatically deriving an appropriate ranking function such

that only a few (say top-k) tuples can be efficiently retrieved.

3.2 The Empty-Answers Problem

If the selection condition of a query is very restrictive, it may happen that very few

tuples, or even no tuples, will satisfy the condition – i.e., S is empty or very small. This

is known as the Empty-Answers Problem. In such cases, it is of interest to derive an

appropriate ranking function that can also retrieve tuples that closely (though not

completely) match the query condition. We do not consider the Empty-Answers Problem

any further in this paper.

3.3 Point Queries versus Range/IN Queries and other Generalizations

 8

The scenario in Section 3.1 only represents the simplest problem instance. For example,

the type of queries described above are fairly restrictive; we refer to them as point queries

because they specify single-valued equality conditions on each of the specified attributes.

In a more general setting, queries may contain range/IN conditions. IN queries contain

selection conditions of the form “X1 IN (x1,1 … x1,r1) AND … AND Xs IN (xs,1 … xs,rs)”.

Such queries are a very convenient way of expressing alternatives in desired attribute

values which are not possible to express using point queries.

Also, databases may be multi-tabled, and may contain a mix of categorical and

numeric data. In this paper we develop techniques to handle the ranking problem for all

these generalizations, though for the sake of simplicity of exposition, our focus in the

earlier part of the paper is on point queries over a single categorical table.

3.4 Evaluation Measures

We evaluate our ranking functions both in terms of quality as well as performance.

Quality of the results produced is measured using the standard IR measures of Precision

and Recall. We also evaluate the performance of our ranking functions, especially what

time and space is necessary for pre-processing as well as query processing.

4. RANKING FUNCTIONS: ADAPTATION OF PIR MODELS FOR
STRUCTURED DATA

In this section we first review Probabilistic Information Retrieval (PIR) techniques in IR

(Section 4.1). We then show in Section 4.2 how they can be adapted for structured data

for the special case of ranking the results of point queries over a single categorical table.

We present two interesting special cases of these ranking functions in Section 4.3, while

in Section 4.4 we extend our techniques to handle IN queries, numeric attributes, and

other generalizations.

4.1 Review of Probabilistic Information Retrieval

Much of the material of this subsection can be found in textbooks on Information

Retrieval, such as [BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999] (see also

[SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000, SPARCK

JONES, K., WALKER, S., ROBERTSON, S.E. 2000]). Probabilistic Information

Retrieval (PIR) makes use of the following basic formulae from probability theory:

Bayes’ Rule:

Product Rule:
)(

)()|()|(
bp

apabpbap =

),|()|()|,(cabpcapcbap =

 9

Consider a document collection D. For a (fixed) query Q, let R represent the set of

relevant documents, and R =D –R be the set of irrelevant documents. In order to rank

any document t in D, we need to find the probability of the relevance of t for the query

given the text features of t (e.g., the word/term frequencies in t), i.e., p(R|t). More

formally, in probabilistic information retrieval, documents are ranked by decreasing order

of their odds of relevance, defined as the following score:

The final simplification in the above equation follows from the fact that)(Rp and

)(Rp are the same for every document t and thus mere constants that do not influence

the ranking of documents. The main issue now is, how are these probabilities computed,

given that R and R are unknown at query time? The usual techniques in IR are to make

some simplifying assumptions, such as estimating R through user feedback,

approximating R as D (since R is usually small compared to D), and assuming some

form of independence between query terms (e.g., the Binary Independence Model, the

Linked Dependence Model, or the Tree Dependence Model [YU, C.T. AND MENG, W.

1998,BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999,GROSSMAN, D.A. ,

FRIEDER, O., 2004]).

In the next subsection we show how we adapt PIR models for structured databases, in

particular for conjunctive queries over a single categorical table. Whereas the Binary

Independence Model makes an independence assumption over all terms, we apply in the

following a limited independence assumption, i.e. we consider two dependent conjuncts,

and view the atomic events of each conjunction to be independent.

4.2 Adaptation of PIR Models for Structured Data

In our adaptation of PIR models for structured databases, each tuple in a single database

table D is effectively treated as a “document”. For a (fixed) query Q, our objective is to

derive Score(t) for any tuple t, and use this score to rank the tuples. Since we focus on the

Many-Answers problem, we only need to concern ourselves with tuples that satisfy the

query conditions. Recall the notation from Section 3, where X is the set of attributes

)|(
)|(

)(
)()|(

)(
)()|(

)|(
)|()(

Rtp
Rtp

tp
RpRtp

tp
RpRtp

tRp
tRptScore ∝==

 10

specified in the query, and Y is the remaining set of unspecified attributes. We denote any

tuple t as partitioned into two parts, t(X) and t(Y), where t(X) is the subset of values

corresponding to the attributes in X, and t(Y) is the remaining subset of values

corresponding to the attributes in Y. Often, when the tuple t is clear from the context, we

overload notation and simply write t as consisting of two parts, X and Y (in this context, X

and Y are thus sets of values rather than sets of attributes).

Replacing t with X and Y (and R as D as mentioned in Section 4.1 is commonly done

in IR), we get

),|(
),|(

)|(
)|(

)|,(
)|,(

)|(
)|()(

DYXp
RYXp

DYp
RYp

DYXp
RYXp

dtp
RtptScore ⋅==∝

where the last equality is obtained by applying Bayes’ Theorem. Then, because

XR ⊆ (i.e., all relevant tuples have the same X values specified in the query), we obtain

1),|(=RYXP which leads to

),|(
1

)|(
)|()(

DYXpDYp
RYptScore ⋅∝ (1)

Let us illustrate Equation 1 with an example. Consider a query with condition

“City=Kirkland and Price=High” (Kirkland is an upper class suburb of Seattle close to a

lake). Such buyers may also ideally desire homes with waterfront or greenbelt views, but

homes with views looking out into streets may be somewhat less desirable. Thus,

p(View=Greenbelt | R) and p(View=Waterfront | R) may both be high, but p(View=Street

| R) may be relatively low. Furthermore, if in general there is an abundance of selected

homes with greenbelt views as compared to waterfront views, (i.e., the denominator

p(View=Greenbelt | City=Kirkland, Price=High, D) is larger than p(View=Waterfront |

City=Kirkland, Price=High, D), our final rankings would be homes with waterfront

views, followed by homes with greenbelt views, followed by homes with street views.

For simplicity, we have ignored the remaining unspecified attributes in this example.

4.2.1 Limited Independence Assumptions

One possible way of continuing the derivation of Score(t) would be to make

independence assumptions between values of different attributes, like in the Binary

Independence Model in IR. However, while this is reasonable with text data (because

estimating model parameters like the conditional probabilities p(Y | X) poses major

accuracy and efficiency problems with sparse and high-dimensional data such as text),

we have earlier argued that with structured data, dependencies between data values can

 11

be better captured and would more significantly impact the result ranking. An extreme

alternative to making sweeping independence assumptions would be to construct

comprehensive dependency models of the data (e.g. probabilistic graphical models such

as Markov Random Fields or Bayesian Networks [WHITTAKER, J. 1990]), and derive

ranking functions based on these models. However, our preliminary investigations

suggested that such approaches have unacceptable pre-processing and query processing

costs.

Consequently, in this paper we espouse an approach that strikes a middle ground. We

only make limited forms of independence assumptions – given a query Q and a tuple t,

the X (and Y) values within themselves are assumed to be independent, though

dependencies between the X and Y values are allowed. More precisely, we assume

limited conditional independence, i.e.,)|(CXp (resp.)|(CYp) may be written as

(∏
∈Xx

Cxp)|(resp. ∏
∈Yy

Cyp)|() where C is any condition that only involves Y

values (resp. X values), R, or D.

While this assumption is patently false in many cases (for instance, in the example

early in Section 4.2 this assumes that there is no dependency between homes in Kirkland

and high-priced homes), nevertheless the remaining dependencies that we do leverage,

i.e., between the specified and unspecified values, prove to be significant for ranking.

Moreover, as we shall show in Section 5, the resulting simplified functional form of the

ranking function enables the efficient adaptation of known top-k algorithms through

novel data structuring techniques.

We continue the derivation of a tuple’s score under the above assumptions and obtain:

),|(
1

)|(
)|()(

DYXpDYp
RYptScore ⋅∝

∏ ∏∏
∈ ∈ ∈

⋅=
Yy Xx Yy DyxpDyp

Ryp
),|(

1
)|(
)|(

 (2)

4.2.2 Presence of Functional Dependencies

To reach Equation 2 we had assumed limited conditional independence. In certain special

cases such as for attributes related through functional dependencies, we can derive the

equation without having to make this assumption. In the realtor database, an example of a

functional dependency may be “Zipcode → City”. Note that functional dependencies

only apply to the data, since the workload does not have to satisfy them. For example, a

 12

query Q of the workload that specifies a requested zipcode may not have specified the

city, and vice versa. Thus functional dependencies affect the denominator and not the

numerator of Equation 2. The key property used to remove the independence assumption

between attributes connected through functional dependencies is the following.

We first consider functional dependencies between attributes in Y. Assume that yi→yj

is a functional dependency between a pair of attributes yi, yj in Y. This means that {t | t. yi

=ai ∧ t. yj =aj} = {t | t. yi =ai} for all attribute values ai, aj. In this case an expression such

as p(yi, yj | D) can be simplified as p(yi | D) p(yj|yi, D) = p(yi |D). More generally, the

expression
)|(

1
DYp

 in Equation 1 may be simplified as ∏
∈ ')|(

1
Yy Dyp

 where

}':,'|{' yyFDYyYyY →∈¬∃∈= .

Functional dependencies may also exist between attributes in X. Thus, the expression

),|(
1

DYXp
 in Equation 1 may be simplified as ∏∏

∈ ∈' '),|(
1

Yy Xx Dyxp
 where

}':,'|{' xxFDXxXxX →∈¬∃∈= .

Applying these derivations to Equation 1, we get the following modification to

Equation 2 (where X′ and Y′ are defined as above):

Notice that before applying the above formula, we need to first compute the transitive

closure of functional dependencies, for the following reason. Assume there are functional

dependencies x′→y and y→x where x,x′∈X and y∈Y. Then, if we do not calculate the

closure of functional dependencies there would be no x′∈X with functional dependency

x′→x, and hence Equation 3 would be the same as Equation 2. Notice that Equations 2

and 3 are equivalent if there are no functional dependencies or the only functional

dependencies (in the closure) are of the form x→y or y→x, where x∈X and y∈Y.

Although Equations 2 and 3 represent simplifications over Equation 1, they are still

not directly computable, as R is unknown. We discuss how to estimate the quantities

)|(Ryp next.

∏∏∏∏
∈ ∈∈∈

∝
' ''),|(

1
)|(

1)|()(
Yy XxYyYy DyxpDyp

RyptScore (3)

 13

4.2.3 Workload-Based Estimation of p(y|R)

Estimating the quantities)|(Ryp requires knowledge of R, which is unknown at query

time. The usual technique for estimating R in IR is through user feedback (relevance

feedback) at query time, or through other forms of training. In our case, we provide an

automated approach that leverages available workload information for

estimating)|(Ryp . Our approach is motivated by and related to IR models that aim to

leverage query-log information (e.g., see [RADLINSKI, F., JOACHIMS, T. 2005,

SHEN, X., TAN, B., AND ZHAI, C. 2005]). For example, if the multi-keyword queries

“a b c d”, “a b”, and “a b c” constitute a (short) query log, then we could estimate p(a | c,

queries) = 2/3.

We assume that we have at our disposal a workload W, i.e., a collection of ranking

queries that have been executed on our system in the past. We first provide some intuition

of how we intend to use the workload in ranking. Consider the example in Section 4.2

where a user has requested for high-priced homes in Kirkland. The workload may

perhaps reveal that, in the past a large fraction of users that had requested for high-priced

homes in Kirkland had also requested for waterfront views. Thus for such users, it is

desirable to rank homes with waterfront views over homes without such views. The IR

equivalent would be to have many past queries including all of the terms “Kirkland”,

“high-priced” and “waterfront view”, and a new query “Kirkland high-priced” arrives.

We note that this dependency information may not be derivable from the data alone,

as a majority of such homes may not have waterfront views (i.e., data dependencies do

not indicate user preferences as workload dependencies do). Of course, the other option is

for a domain expert (or even the user) to provide this information (and in fact, as we shall

discuss later, our ranking architecture is generic enough to allow further customization by

human experts).

More generally, the workload W is represented as a set of “tuples”, where each tuple

represents a query and is a vector containing the corresponding values of the specified

attributes. Consider an incoming query Q which specifies a set X of attribute values. We

approximate R as all query “tuples” in W that also request for X. This approximation is

novel to this paper, i.e., that all properties of the set of relevant tuples R can be obtained

by only examining the subset of the workload that contains queries that also request for

X. So for a query such as “City=Kirkland and Price=High”, we look at the workload in

determining what such users have also requested for often in the past.

 14

We can thus write, for query Q, with specified attribute set X,

)|(Ryp as),|(WXyp . Making this substitution in Equation 2, we get

),|(
1

)|(
),|(),(

DYXPDYP
WXYPYXScore ⋅∝

Applying Bayes’ rule for),|(WXYP we get

),(
),|()|()(

),(
),,(),|(

WXP
WYXPWYPWP

WXP
YWXPWXYP ⋅⋅

==

Then by dropping the constant
),(

)(
WXP

WP
 we get

Equation 4 is the final ranking formula, assuming no functional dependencies. If we also

consider functional dependencies then we have

where X′, Y′ are defined as in Equation 3.

Note that unlike Equations 2 and 3, we have effectively eliminated R from the

formulas in Equations 4 and 5, and are only left with having to compute quantities such

as)|(Wyp ,),|(Wyxp ,)|(Dyp , and),|(Dyxp . In fact, these are the “atomic”

numerical quantities referred to at various places earlier in the paper. Also, note that

Equations 4 and 5 have been derived for point queries; the formulas get more involved

when we allow IN/range conditions, as discussed in Section 4.4.1.

Also note that the score in Equations 4 and 5 is composed of two large factors. The

first factor (first product in Equations 4 and two first products in Equation 5) may be

considered as the global part of the score, while the second factor may be considered as

the conditional part of the score. Thus, in the example in Section 4.2, the first part

measures the global importance of unspecified values such as waterfront, greenbelt and

street views, while the second part measures the dependencies between these values and

specified values “City=Kirkland” and “Price=High”.

∏∏∏
∈ ∈∈

=⋅∝
Yy XxYy Dyxp

Wyxp
Dyp
Wyp

DYXP
WYXP

DYP
WYPYXScore

),|(
),|(

)|(
)|(

),|(
),|(

)|(
)|(),((4)

∏∏∏∏∏∏
∈ ∈∈ ∈∈∈

∝
' ''),|(

1),|(
)|(

1)|(),(
Yy XxYy XxYyYy Dyxp

Wyxp
Dyp

WypYXScore (5)

 15

4.2.4 Computing the Atomic Probabilities

This section explains how to calculate the atomic probabilities for categorical attributes.

Section 4.4.2 explains how numerical attributes can be split into ranges which are then

effectively treated as categorical attributes. Our strategy is to pre-compute each of the

atomic quantities for all distinct values in the database. The quantities)|(Wyp and

)|(Dyp are simply the relative frequencies of each distinct value y in the workload and

database, respectively (the latter is similar to IDF, or the inverse document frequency

concept in IR), while the quantities),|(Wyxp and),|(Dyxp may be estimated by

computing the confidences of pair-wise association rules [AGRAWAL, R., MANNILA,

H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1995] in the workload and

database, respectively. Once this pre-computation has been completed, we store these

quantities as auxiliary tables in the intermediate knowledge representation layer. At

query time, the necessary quantities may be retrieved and appropriately composed for

performing the rankings. Further details of the implementation are discussed in Section 5.

While the above is an automated approach based on workload analysis, it is possible

that sometimes the workload may be insufficient and/or unreliable. In such instances, it

may be necessary for domain experts to be able to tune the ranking function to make it

more suitable for the application at hand. That is, our framework allows both informative

(e.g., set by domain expert) as well as non informative (e.g., inferred by query workload)

prior probability distributions to be used in the preference function. In this paper we

focus on non informative priors, which are inferred by the query workload and the data.

4.3 Special Cases

In this subsection we present two important special cases for which our ranking function

can be further simplified: (a) ranking in the absence of workloads, and (b) ranking

assuming no dependencies between attributes.

4.3.1 Ranking Function in the Absence of a Workload

We first consider Equation 4, which describes our ranking function assuming no

functional dependencies – we shall consider Equation 5 later. So far we assumed that

there exists a workload, which is used to approximate the set R of relevant tuples. If no

workload is available, then we can assume that p(x | W) is the same for all distinct values

x, and correspondingly p(x | y, W) is the same for all pairs of distinct values x and y.

Hence, as constants they do not affect the ranking. Thus, Equation 4 reduces to:

∏∏∏
∈ ∈∈

=⋅∝
Yy XxYy DyxpDypDYXpDYp

tScore
),|(

1
)|(

1
),|(

1
)|(

1)((6)

 16

The intuitive explanation of Equation 6 is similar to the idea of inverse document

frequency (IDF) in Information Retrieval. In particular, the first product assigns a higher

score to tuples whose unspecified attribute values y are infrequent in the database. The

second product is similar to a “conditional” version of the IDF concept. That is, tuples

with low correlations between the specified and the unspecified attribute values are

ranked higher. This means, that tuples with infrequent combinations of values are ranked

higher. For example, if the user searches for low priced houses, then a house with high

square footage is ranked high since this combination of values (low price and high square

footage) is infrequent. Of course this ranking can potentially also lead to unintuitive

results, e.g., looking for high price houses may return low square footage ones.

Equation 6 can be extended in a straightforward manner to account for the presence of

functional dependencies (similar to the way Equation 4 was extended to Equation 5).

4.3.2 Ranking Function Assuming no Dependencies Between Attributes

As mentioned in Section 4.2.1, a simpler approach to the ranking problem would be to

make independence assumptions between all attributes (e.g., as is done in the binary

independence model in IR). Whereas in Section 4.2, we viewed X and Y as dependent

events, we show here the special case of viewing X and Y as independent events. Then,

the linked independence assumption holds for both, the workload W and the database D.

We obtain:

)|(
)|(

)|(
)|(

),|(
),|(

)|(
)|()(

DXp
WXp

DYp
WYp

DYXp
WYXp

DYp
WYptscore ⋅=⋅=

Here, the fraction p(X|W) / p(X|D) is constant for all query result tuples, hence:

∏
∈

=∝
Yy Dyp

Wyp
DYp
WYptscore

)|(
)|(

)|(
)|()((7)

Intuitively, the numerator describes the absolute importance of the unspecified

attribute values in the workload, while the denominator resembles the IDF concept in IR.

This formula is similar to the ranking formula for the Many-Answers problem developed

in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003] based on the

vector-space model. The main difference between this formula and the corresponding

formula in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003] is that

the latter did not have the denominator quantities, and also expressed the score in terms

 17

of logarithms. This provides formal credibility to the intuition behind the development of

the algorithm in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003].

4.4 Generalizations

In this subsection we present several important generalizations of our ranking techniques.

In particular, we show how our techniques can be extended to handle IN queries, numeric

attributes, and multi-table databases.

4.4.1 IN Queries

IN queries are a generalization of point queries, in which selection conditions have the

form “X1 IN (x1,1 … x1,r1) AND … AND Xs IN (xs,1 … xs,rs)”. As an example, consider a

query with a selection condition such as “City IN (Kirkland, Redmond) AND Price IN

(High, Moderate)”. This might represent the desire of a homebuyer who is interested in

either moderate or high priced homes in either Kirkland or Redmond. Such queries are a

very convenient way of expressing alternatives in desired attribute values which are not

possible to express using point queries.

Accommodating IN queries in our ranking infrastructure presents the challenge of

automatically determining which of the alternatives are more relevant to the user – this

knowledge can then be incorporated into a suitable ranking function. (This concept is

related to work on vague/fuzzy predicates [FUHR, N. 1990, FUHR, N. 1993, FUHR, N.,

ROELLEKE, T. 1997, FUHR, N., AND ROELLEKE, T. 1998]. In our case, the objective

is essentially to determine the probability function that can assign different weights to the

different alternative values).

Firstly the ranking function derived in Equation 4 (and Equation 5) have to be

modified to allow IN conditions in the specified attributes. The complication stems from

the fact that two tuples that satisfy the query condition may differ in their specific X

values. In the above example, a moderate priced home in Redmond will satisfy the query,

as will an expensive home in Kirkland. However, since the specific X values of the two

homes are different, this prevents us from factoring out the X as we so successfully did in

the derivation of Equation 4. This requires nontrivial extensions to the execution

algorithms as shown in Section 5. Second, the existence of IN queries complicates the

generation of the association rules in the workload, as we discuss later in this subsection.

 18

IN Conditions in the Query

For simplicity, let us assume the case where there are no functional dependencies and the

workload has point queries, but the query may have IN conditions. Later we will extend

to the case where the workload also has IN conditions.

Consider a query that specifies conditions C, where C is a conjunction of IN

conditions such as “City IN (Bellevue, Carnation) AND SchoolDistrict IN(Good,

Excellent)”. Note that we distinguish C from X; the latter are atomic values of specified

attributes in a specific tuple, whereas the former refers to the query and contains a set of

values for each specified attribute. Recall from Section 4.2 that

In what follows, we shall assume that R = C, W, that is, R is the set of tuples in W that

specify C. This is in tune with the corresponding assumption in Section 4.2.3 for the case

of point queries, and intuitively means that R is represented by all queries in the workload

that also request for C. Of course, since here we are assuming that the workload only has

point queries, we need to figure out how to evaluate this in a reasonable manner.

Consider the second part of the above formula for Score(t), i.e., p(Y|X, R) / p(Y|X, D).

This can be rewritten as p(Y|X, C, W)/p(Y|X, C, D). Since we are considering the Many-

Answers problem, if X is true, C is also true (recall that X is the set of attribute values of a

result-tuple for the query-specified attributes). Thus this part of the formula can be

simplified as p(Y|X, W)/p(Y|X, D). Consequently, it can be further simplified in exactly

the same way as the derivations described earlier for point queries, i.e., Equations 1

through 4.

Now consider the first part of the formula, p(X|R)/p(X|D). Unlike the point query case

however, we cannot assume p(X|R)/p(X|D) is a constant for all tuples. In what follows,

we shall assume that x is a variable that varies over the set X, and c is a variable that

varies over the set C. When x and c refer to the same attribute, it is clear that if x is true,

then c is also true. We have the following sequence of derivations:

(|) (, |)()
(|) (, |)

(|) (| ,)
(|) (| ,)

p t R p X Y RScore t
p t D p X Y D

p X R p Y X R
p X D p Y X D

∝ =

∝

∏∏∏

∏∏

∈∈∈

∈∈

∝

=∝==

CcXxXx

XxXx

Wxcp
Dxp
Wxp

Dxp
WxCpxpxWp

Dxp
xpxWCp

Dxp
WCxp

DXp
WCXp

DXp
RXp

),|(
)|(
)|(

)|(
),|()()|(

)|(
)()|,(

)|(
),|(

)|(
),|(

)|(
)|(

 19

Recall that we assume limited conditional independence, i.e. that dependency exists only

between the X and Y attributes, and not within the X attributes (recall that X and C specify

the same set of attributes). Let A(x) (resp. A(c)) refer to the attribute of x (resp. c). Then

p(c|x, W) is equal to p(c|W) when A(x) <> A(c), and is equal to 1 otherwise. Let c(x)

represent the IN condition in C corresponding the attribute of x, i.e., A(c(x)) = A(x).

Consequently, we have

)|)((

)|(
),|(

Wxcp

Wcp
Wxcp Cc

Cc

∏
∏ ∈

∈

=

Hence, continuing with the above derivation, we have p(X|R) / p(X|D) proportional to

∏∏
∏

∏∏
∏

∈∈

∈

∈∈

∈ ∝
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

XxXx

Cc

XxXx

Cc

Dxp
Wxp

Wxcp

Wcp

Dxp
Wxp

WxcpDxp

WcpWxp

)|(
)|(

)|)((

)|(

)|(
)|(

)|)(()|(

)|()|(

This is the extra factor that needs to be multiplied to the score derived in Equation 4.

Hence, the equivalent of Equation 4 for IN queries is:

Equation 8 differs from Equation 4 in the global part. In particular, we now need to

consider all attribute values of each result-tuple t, because they may be different, whereas

in Equation 4, only the unspecified values of t were used for the global part. Notice that

Equation 8 can be used for point queries as well since in this case the specified values of t

are common for all result-tuples and hence would only multiply the score by a common

factor. However, as we explain in Section 5.4, it is more complicated to efficiently

∏∏∏
∈ ∈∈

∝
Yy Xxtz Dyxp

Wyxp
Dzp
WzptScore

),|(
),|(

)|(
)|()((8)

 20

evaluate Equation 8 for IN queries than for point queries because of the fact that all

result-tuples share the same specified (X) values in point queries.

We note that Equation 8 can be generalized in a straightforward manner to allow for

the presence of functional dependencies.

IN Conditions in the Workload:

We had assumed above that the query at runtime was allowed to have IN conditions, but

that the workload only had point queries. We now tackle the problem of exploiting IN

queries in the workload as well. This is reduced to the problem of pre-computing atomic

probabilities such as p(z | W) and p(x | y, W) from such a workload. These atomic

probabilities are necessary for computing the ranking function derived in Equation 8.

Our approach is to “conceptually expand” the workload by splitting each IN query

into sets of appropriately weighted point queries. For example, a query with IN

conditions such as “City IN (Bellevue, Redmond, Carnation) AND Price IN (High,

Moderate)” may be split into 3x2 = 6 point queries, each representing specific

combinations of values from the IN conditions. In this example, each such point query is

given a weight of 1/6; this weighting is necessary to make sure that queries with large IN

conditions do not dominate the calculations of the atomic probabilities.

Atomic probabilities may now be computed as follows: p(z | W) is the (weighted)

fraction of the queries in the expanded workload that refer to z, while p(x | y, W) is the

(weighted) fraction of all queries that refer to x from all queries that refer to y in the

expanded workload. Of course, the workload is not literally expanded; these probabilities

can be easily computed from the original workload that contain the IN queries.

4.4.2 Numeric Attributes

Thus far in the paper we have only been considering categorical data. We now extend our

results to the case when the data also has numeric attributes. For example, in the homes

database, we may have numeric attributes such as square footage, age, etc. Queries may

now have range conditions, such as “Age BETWEEN (5, 10) AND Sqft BETWEEN

(2500, 3000)”.

One obvious way of handling numeric data and queries is to simply treat them as

categorical data – i.e. every distinct numerical value in the database is considered as a

categorical value. Queries with range conditions can be then converted to queries with

corresponding IN conditions, and we can then apply the methods outlined in Section

4.4.1. However, the main problem arising with such an approach is that the sheer size of

 21

the numeric domain ensures that many, in fact most distinct values are not adequately

represented in the workload. For example, perhaps numerous workload queries have

requested for homes between 3000 and 4000 sqft. However, there may be one or two

2995 sqft homes in the database, but unfortunately these homes would be considered far

less popular by the ranking algorithm.

A simple strategy for overcoming this problem is to discretize the numerical domain

into buckets, which can then be treated as categorical data. However, most simple

bucketing techniques are error-prone because inappropriate choices of bucket boundaries

may separate two values that are otherwise close to each other. In fact, complex

bucketing techniques for numeric data have been extensively studied in other domains,

such as in the construction of histograms for approximating data distributions (see

[POOSALA, V., IOANNIDIS, Y.E., HAAS, P. J., AND SHEKITA, E. J. 1996,

JAGADISH, H.V., POOSALA, V., KOUDAS, N., SEVCIK, K., MUTHUKRISHNAN,

S., AND SUEL, T. 1998]), in earlier database ranking algorithms (see [AGRAWAL, S.,

CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003]), as well as in discretization

methods in classification studies (see [MARTINEZ, W., MARTINEZ, A., AND

WEGMAN, E. 2004]). In this paper too, we investigate the bucketing problem that arises

in our context in a systematic manner, and present principled solutions that are

adaptations of well-known methods for histogram construction.

Let us consider where exactly the problem of numeric attributes arises in our case.

Given a query Q, the problem arises when we attempt to compute the score of a tuple t

based on the ranking formula in Equation 8. We need accurate estimations of the atomic

probabilities p(z | W), p(z | D), p(x | y, W) and p(x | y, D) when some of these values are

numeric. What is really needed is a way of “smoothening” the computations of these

atomic probabilities, so that for example, if p(z | W) is high for a numeric value (i.e., z has

been referenced many times in the workload), p(z+ε | W) should also be high for nearby

values z+ε. Similar smoothening techniques should be applied to the other types of

atomic probabilities, p(z | D), p(x | y, W) and p(x | y, D). Furthermore, these probabilities

have to be pre-computed earlier, and should only be “looked up” at query time. In the

following we discuss our solutions in more detail.

Estimating p(z | D) and p(x | y, D):

We first discuss how to estimate p(z | D). Let z be a value of some numeric attribute, say

A. As mentioned earlier, the naïve but inaccurate way of estimating p(z |D) would be to

simply treat A as a categorical attribute - thus p(z | D) would be the relative frequency of

 22

the occurrence of z in the database. Instead, our approach is to assume that p(z | D) is the

density, at point z, of a continuous probability density function (pdf) p(z | D) over the

domain of A. We therefore use standard density estimation techniques – in our case,

histograms – to approximate this pdf using the values of A occurring in the database.

There are a wide variety of histogram techniques for density estimation, such as equi-

width histograms, equi-depth histograms, and even “optimal” histograms where bucket

boundaries are set such that the squared error between the actual data distribution and the

distribution represented by the histogram is minimized (see [POOSALA, V.,

IOANNIDIS, Y.E., HAAS, P. J., AND SHEKITA, E. J. 1996, JAGADISH, H.V.,

POOSALA, V., KOUDAS, N., SEVCIK, K., MUTHUKRISHNAN, S., AND SUEL, T.

1998] for relevant results on histogram construction). In our case we use the popular and

efficient technique of equi-depth histograms, where the range is divided into a set of non-

overlapping buckets such that each bucket contains the same number of values.2 Once

this histogram has been pre-computed, the density p(z | D) at any point z is looked up at

runtime by determining the bucket to which z belongs.

We next discuss how to estimate p(x | y, D). Intuitively, our approach is to compute a

two-dimensional histogram that represents the distribution of all (x, y) pairs that occur in

the database. At runtime, we look up this histogram to determine the density, at point x,

of the marginal distribution p(x | y, D).

Consider first the case where the attribute A of x is numeric, but the attribute B of y is

categorical. Our approach for this problem is to compute, for each distinct value y of B,

the histogram over all values of A that co-occur with y in the database. Each such

histogram represents the marginal probability density function p(x | y, D). One issue that

arises is if there are numerous distinct values for B, which may result in too many

histograms. We circumvent this problem by only building histograms for those y values

for which the corresponding number of A values occurring in the database is larger than a

given threshold.

We next consider the case where A is categorical whereas B is numeric. We first

compute the histogram of the distribution p(y | D) as explained above. We then compute

pair-wise association rules of the form b → x where b is any bucket of p(y | D) and x is

any value of A. Then the density p(x | y, D) is approximated as the confidence of the

association rule b → x where b is the bucket to which y belongs.

2 In our approach we set the number of buckets to 50.

 23

Finally, consider the case where A and B are both numeric. As above, we first

compute the histogram for p(y | D). Then for each bucket b of the histogram

corresponding to p(y | D) we compute the histogram over all values of A that co-occur

with b in the database. Each such histogram represents the marginal probability density

function p(x | y, D). As before, if there are numerous buckets of p(y | D), this may result

in too many histograms, so we only build histograms for those buckets for which the

corresponding number of A values occurring in the database is larger than a given

threshold.

Estimating p(z | W) and p(x | y, W):

The estimation of these quantities is similar to the corresponding methods outlined above,

except that the various histograms have to be built using the workload rather than the

database. The further complication is that unlike the database where histograms are built

over sets of point data, the workload contains range queries, thus the histograms have to

be built over sets of ranges. We outline the extensions necessary for the estimation of p(z

| W); the extensions for estimating p(x | y, W) are straightforward and omitted.

Let z be a value of a numeric attribute A. As before, our approach is to assume that p(z

| W) is the density, at point z, of a continuous probability density function p(z | W) over

the domain of A. However, we cannot directly use standard density estimation techniques

such as histograms because unlike the database, the workload specifies a set of ranges

over the domain of A, rather than a set of points over the domain of A.

We extend the concept of equi-depth histograms to sets of ranges as follows. Let

query Qi in the workload specify the range (zLi, zRi). If this was the only query in the

workload, we can view this as a probability density function over the domain of A, where

the density is 1/(zRi – zLi) for all points zLi ≤ z ≤ zRi, and 0 for all other points. The pdf

for the entire workload is computed by averaging these individual distributions at all

points over all queries - thus the pdf for the workload will resemble a histogram with a

potentially large number of buckets (proportional to the number of queries in the

workload).

We now have to approximate this “raw” histogram using an equi-depth histogram

with far fewer buckets. The bucket boundaries of the equi-depth histogram should be

selected such that the probability mass within each bucket is the same. Construction of

this equi-depth histogram is straightforward and is omitted. At runtime, given a value z,

the density can be easily looked up by determining the bucket to which z belongs.

 24

4.4.3 Multi-Table Databases

Another aspect to consider is when the database spans across more than one table.

Important multi-table scenarios are star/snowflake schemas where fact tables are logically

connected to dimension tables via foreign key joins. For example, while the actual homes

for sale may be recorded in a fact table, various properties of each home, such as

demographics of neighborhood, builder characteristics, etc, may be found in

corresponding dimension tables. In this case we create a logical view representing the

join of all these tables, thus this view contains all the attributes of interest, and apply our

ranking methodology on this view. As shall be evident later, if we follow the pre-

computation method of Section 5.2, then there is no need to materialize the logical view,

since the execution is then based on the pre-computed lists and the logical view would

only be accessed at the final stage to output the top results.

5. IMPLEMENTATION

In this section we discuss the architecture and the implementation of our database ranking

system.

5.1 General Architecture of our Approach

Figure 1 shows the architecture of our proposed system for enabling ranking of database

query results. As mentioned in the introduction, the main components are the

preprocessing component, an intermediate knowledge representation layer in which the

ranking functions are encoded and materialized, and a query processing component. The

modular and generic nature of our system allows for easy customization of the ranking

functions for different applications.

 25

5.2 Pre-Processing

This component is divided into several modules. First, the Atomic Probabilities Module

computes the quantities)|(Wyp ,)|(Dyp ,),|(Wyxp , and),|(Dyxp for all

distinct values x and y. These quantities are computed by scanning the workload and data,

respectively. While the latter two quantities for categorical data can be computed by

running a general association rule mining algorithm such as [AGRAWAL, R.,

MANNILA, H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1995] on the

workload and data, we instead chose to directly compute all pair-wise co-occurrence

frequencies by a single scan of the workload and data respectively. The observed

probabilities are then smoothened using the Bayesian m-estimate method [CESTNIK, B.

1990]. (We note that more sophisticated Bayesian methods that use an informative prior

may be employed instead). For numeric attributes we compute)|(Wyp ,)|(Dyp ,

),|(Wyxp , and),|(Dyxp as histograms as described in Section 4.4.2.

These atomic probabilities are stored as database tables in the intermediate knowledge

representation layer, with appropriate indexes to enable easy retrieval. In particular,

)|(Wyp and)|(Dyp are respectively stored in two tables, each with columns

{AttName, AttVal, Prob} and with a composite B+ tree index on (AttName, AttVal),

Query Processing

Workload

Figure 1: Architecture of Ranking System

Data

Atomic Probabilities
Table

(Intermediate Layer

Atomic
Probabilities Scan Algorithm

Top-K
Tuples

Pre-Processing

Customize
Ranking
Function
(optional)

Submit
Ranking
Query

Global and
Conditional Lists

Tables

Index Module
List Merge
Algorithm

 26

while),|(Wyxp and),|(Dyxp respectively are stored in two tables, each with

columns {AttNameLeft, AttValLeft, AttNameRight, AttValRight, Prob} and with a

composite B+ tree index on (AttNameLeft, AttValLeft, AttNameRight, AttValRight). For

numeric quantities attribute values are essentially the ranges of the corresponding

buckets. These atomic quantities can be further customized by human experts if

necessary.

This intermediate layer now contains enough information for computing the ranking

function, and a naïve query processing algorithm (henceforth referred to as the Scan

algorithm) can indeed be designed, which, for any query, first selects the tuples that

satisfy the query condition, then scans and computes the score for each such tuple using

the information in this intermediate layer, and finally returns the top-k tuples. However,

such an approach can be inefficient for the Many-Answers problem, since the number of

tuples satisfying the query condition can be very large. At the other extreme, we could

pre-compute the top-k tuples for all possible queries (i.e., for all possible sets of values

X), and at query time, simply return the appropriate result set. Of course, due to the

combinatorial explosion, this is infeasible in practice.

We thus pose the question: how can we appropriately trade off between pre-

processing and query processing, i.e., what additional yet reasonable pre-computations

are possible that can enable faster query-processing algorithms than Scan? (We note that

tradeoffs between pre-processing and query processing techniques are common in IR

systems [GROSSMAN, D.A. , FRIEDER, O., 2004]).

The high-level intuition behind our approach to the above problem is as follows.

Instead of pre-computing the top-k tuples for all possible queries, we pre-compute ranked

lists of the tuples for all possible atomic queries - each distinct value x in the table defines

an atomic query Qx that specifies the single value {x}. For example, “SELECT * FROM

HOMES WHERE CITY=Kirkland” is an atomic query. Then at query time, given an

actual query that specifies a set of values X, we “merge” the ranked lists corresponding to

each x in X to compute the final top-k tuples.

This high-level idea is conceptually related to the merging of inverted lists in IR.

However, our main challenge is to be able to perform the merging without having to scan

any of the ranked lists in its entirety. One idea would be to try and adapt well-known

top-k algorithms such as the Threshold Algorithm (TA) and its derivatives [BRUNO, N.,

GRAVANO, L., AND MARIAN, A. 2002, FAGIN, R. 1998, FAGIN, R., LOTEM, A.,

AND NAOR, M. 2001, GÜNTZER, U., BALKE, W.-T., AND KIEßLING, W. 2000,

 27

NEPAL, S., AND RAMAKRISHNA, M. V. 1999] for this problem. However, it is not

immediately obvious how a feasible adaptation can be easily accomplished. For example,

it is especially critical to keep the number of sorted streams (an access mechanism

required by TA) small, as it is well-known that TA’s performance rapidly deteriorates as

this number increases. Upon examination of our ranking function in Equation 4 (which

involves all attribute values of the tuple, and not just the specified values), the number of

sorted streams in any naïve adaptation of TA would depend on the total number of

attributes in the database, which would cause major performance problems.

In what follows, we show how to pre-compute data structures that indeed enable us to

efficiently adapt TA for our problem. At query time we do a TA-like merging of several

ranked lists (i.e. sorted streams). However, the required number of sorted streams

depends only on s and not on m (s is the number of specified attribute values in the query

while m is the total number of attributes in the database). We emphasize that such a

merge operation is only made possible due to the specific functional form of our ranking

function resulting from our limited independence assumptions as discussed in Section

4.2.1. It is unlikely that TA can be adapted, at least in a feasible manner, for ranking

functions that rely on more comprehensive dependency models of the data.

We next give the details of these data structures. They are pre-computed by the Index

Module of the pre-processing component. This module (see Figure 2 for the algorithm)

takes as inputs the association rules and the database, and for every distinct value x,

creates two lists Cx and Gx, each containing the tuple-ids of all data tuples that contain x,

ordered in specific ways. These two lists are defined as follows:

1. Conditional List Cx: This list consists of pairs of the form <TID, CondScore>,

ordered by descending CondScore, where TID is the tuple-id of a tuple t that

contains x and

∏
∈

=
tz Dzxp

WzxpCondScore
),|(
),|(

where z ranges over all attribute values of t.

2. Global List Gx: This list consists of pairs of the form <TID, GlobScore>, ordered by

descending GlobScore, where TID is the tuple-id of a tuple t that contains x and

∏
∈

=
tz Dzp

WzpGlobScore
)|(
)|(

 28

These lists enable efficient computation of the score of a tuple t for any query as

follows: given query Q specifying conditions for a set of attribute values, say X =

{x1,..,xs}, at query time we retrieve and multiply the scores of t in the lists Cx1,…,Cxs and

in one of Gx1,…,Gxs. This requires only s+1multiplications and results in a score3 that is

proportional to the actual score. Clearly this is more efficient than computing the score

“from scratch” by retrieving the relevant atomic probabilities from the intermediate layer

and composing them appropriately.

We need to enable two kinds of access operations efficiently on these lists. First,

given a value x, it should be possible to perform a GetNextTID operation on lists Cx and

Gx in constant time, i.e., the tuple-ids in the lists should be efficiently retrievable one-by-

one in order of decreasing score. This corresponds to the sorted stream access of TA.

Second, it should be possible to perform random access on the lists, i.e., given a TID, the

corresponding score (CondScore or GlobScore) should be retrievable in constant time. To

enable these operations efficiently, we materialize these lists as database tables – all the

conditional lists are maintained in one table called CondList (with columns {AttName,

AttVal, TID, CondScore}) while all the global lists are maintained in another table called

GlobList (with columns {AttName, AttVal, TID, GlobScore}). The table have composite

B+ tree indices on (AttName, AttVal, CondScore) and (AttName, AttVal, GlobScore)

respectively. This enables efficient performance of both access operations. Further details

of how these data structures and their access methods are used in query processing are

discussed in Section 5.3.

Presence of Functional Dependencies: If we consider functional dependencies, then the

content of the conditional and global lists is changed as follows.

⎪
⎩

⎪
⎨

⎧ ∈
=

∏
∏∏

∈

∈∈

otherwiseWzxp

Ax
Dzxp

Wzxp
CondScore

tz

tztz

,),|(

',
),|(

1),|(
'

and ∏∏
∈∈

=
')|(

1)|(
tztz Dzp

WzpGlobScore

where }:,|{' ijji AAFDAAAAA →∈¬∃∈= and t′ is the subset of the attribute

values of t that belong to A′.

3 This score is proportional, but not equal, to the actual score because it contains extra factors of the form

),|(),|(DzxpWzxp where z∈X. However, these extra factors are common to all selected tuples, hence
the rank order is unchanged.

 29

Figure 3: The List Merge Algorithm

List Merge Algorithm
Input: Query, data table, global and conditional lists
Output: top-k tuples

Let Gxb be the shortest list among Gx1,…,Gxs
Let B ={} be a buffer that can hold K tuples ordered by score
Let T be an array of size s+1 storing the last score from each list
Initialize B to empty
REPEAT
 FOR EACH list L in Cx1,…,Cxs, and Gxb DO

TID = GetNextTID(L)
Update T with score of TID in L
Get score of TID from other lists via random access
IF all lists contain TID THEN
 Compute Score(TID) by multiplying retrieved scores

 Insert <TID, Score(TID)> in the correct position in B
 END IF

 END FOR

UNTIL ∏
+

=

≥
1

1

][].[
s

i

iTScoreKB

RETURN B

Index Module
Input: Data table, atomic probabilities tables
Output: Conditional and global lists

FOR EACH distinct value x of database DO
 Cx = Gx = {}
 FOR EACH tuple t containing x with tuple-id = TID DO

∏
∈

=
tz Dzxp

WzxpCondScore
),|(
),|(

Add <TID, CondScore> to Cx

∏
∈

=
tz Dzp

WzpGlobScore
)|(
)|(

Add <TID, GlobScore> to Gx
 END FOR
 Sort Cx and Gx by decreasing CondScore and GlobScore resp.
END FOR

Figure 2: The Index Module

 30

5.3 Query Processing

In this subsection we describe the query processing component. The naïve Scan

algorithm has already been described in Section 5.2, so our focus here is on the alternate

List Merge algorithm (see Figure 3). This is an adaptation of TA, whose efficiency

crucially depends on the data structures pre-computed by the Index Module.

The List Merge algorithm operates as follows. Given a query Q specifying conditions

for a set X = {x1,..,xs}of attributes, we execute TA on the following s+1 lists: Cx1,…,Cxs,

and Gxb, where Gxb is the shortest list among Gx1,…,Gxs (in principle, any list from

Gx1,…,Gxs would do, but the shortest list is likely to be more efficient). During each

iteration, the TID with the next largest score is retrieved from each list using sorted

access. Its score in every other list is retrieved via random access, and all these retrieved

scores are multiplied together, resulting in the final score of the tuple (which, as

mentioned in Section 5.2, is proportional to the actual score derived in Equation 4). The

termination criterion guarantees that no more GetNextTID operations will be needed on

any of the lists. This is accomplished by maintaining an array T which contains the last

scores read from all the lists at any point in time by GetNextTID operations. The product

of the scores in T represents the score of the very best tuple we can hope to find in the

data that is yet to be seen. If this value is no more than the tuple in the top-k buffer with

the smallest score, the algorithm successfully terminates.

Limited Available Space: So far we have assumed that there is enough space available to

build the conditional and global lists. A simple analysis indicates that the space consumed

by these lists is O(mn) bytes (m is the number of attributes and n the number of tuples of

the database table). However, there may be applications where space is an expensive

resource (e.g., when lists should preferably be held in memory and compete for that space

or even for space in the processor cache hierarchy). We show that in such cases, we can

store only a subset of the lists at pre-processing time, at the expense of an increase in the

query processing time.

Determining which lists to retain/omit at pre-processing time may be accomplished by

analyzing the workload. A simple solution is to store the conditional lists Cx and the

corresponding global lists Gx only for those attribute values x that occur most frequently

in the workload. At query time, since the lists of some of the specified attributes may be

missing, the intuitive idea is to probe the intermediate knowledge representation layer

(where the “relatively raw” data is maintained, i.e., the atomic probabilities) and directly

compute the missing information. More specifically, we use a modification of TA

 31

described in [BRUNO, N., GRAVANO, L., AND MARIAN, A. 2002], where not all

sources have sorted stream access.

5.4 Evaluating IN and Range Queries

As mentioned in Section 4.4.1, executing IN queries is more involved because each result

tuple has possibly different specified values. This makes the application of List Merge

algorithm more challenging, since the Scan algorithm computes the score of each result

tuple from the information in this intermediate layer. In particular, List Merge is

complicated in two ways:

(a) We cannot use a single conditional list for a specified attribute with an IN

condition, since a single conditional list only contains tuples containing a single

attribute values. For example, for the query “City IN (Redmond, Bellevue)” we

must merge the conditional lists CRedmond and CBellevue.

(b) More seriously, we can no longer use a single conditional Cx list for a specified

attribute Xi (with or without an IN condition), if there is another specified attribute

Xj with an IN condition. The reason is that the product ∏
∈tz Dzxp

Wzxp
),|(
),|(

 stored in

CX (x is an attribute value for attribute Xi) spans across all attribute values of t and

not only across the unspecified attribute values Y as required by Equation 8. This

was not a problem for the case of point queries (Equations 4 and 5) because the

factors
),|(
),|(

Dzxp
Wzxp

 where z∈X of the above product are common for all result-

tuples and hence the scores are multiplied by a common constant. On the other

hand, if there is an attribute Xj with IN condition, then the factor
),|(
),|(

Dzxp
Wzxp

,

where z is an attribute value for Xj, is not common and hence cannot be ignored.

To overcome these challenges, we split each IN query to a set of point queries, which

are evaluated as usual and then their results are merged. In particular, suppose we have

the IN query Q: “X1 IN (x1,1 … x1,r1) and … and Xs IN (xs,1 … xs,rs)”. First we split Q into

r1⋅r2⋅…⋅rs point queries, one for each combination of selecting a single value from each

specified attribute. Then, these point queries are evaluated separately and their results

(along with their scores) are merged. To see that such a splitting approach yields the

correct results, note that the first (global) part of the ranking function in Equation 8 is the

 32

same for both the point and the IN query and is equal to the scores in the Global Lists.

The conditional part of Equation 8 only depends on the values of the tuple t and the set of

specified attributes but not on the particular conditions of the query. Hence, the point

queries will assign the same scores as the IN query. Finally, it should be clear that the

same set of tuples is returned as results in both cases.

The splitting method is efficient only if a relatively small number of point queries

results from the split, that is, if r1⋅r2⋅…⋅rs is small. The key advantage of this approach is

that no additional conditional lists need to be created to support IN queries. An alternate

approach described next is preferable when the IN conditions frequently involve the same

small set of attributes. We illustrate this idea through an example. Suppose queries

specifying IN condition only on the City attribute are popular. Then, we create a new

conditional list City
xC ¬ for every attribute value x not in City attribute, using the

following formula: ∏
−∈

=
}.{),|(

),|(
Cityttz Dzxp

WzxpCondScore and use these

conditional lists whenever a query with an IN condition only on City is submitted.

Finally, note that range queries - i.e., queries with ranges on numeric attributes -

may be evaluated using techniques similar to queries with IN conditions. For example, if

a condition such as ‘A BETWEEN (x1, x2)’ is specified, then this condition is discretized

into an IN condition by replacing the range with buckets from the pre-computed

histogram p(x | W) that overlap with the range. In case the range only partially overlaps

with the leading/trailing buckets, the retrieved tuples that do not satisfy the query

condition are discarded in a final filtering phase.

6. EXPERIMENTS

In this section we report on the results of an experimental evaluation of our ranking

method as well as some of the competitors. We evaluated both the quality of the rankings

obtained, as well as the performance of the various approaches. We mention at the outset

that preparing an experimental setup for testing ranking quality was extremely

challenging, as unlike IR, there are no standard benchmarks available, and we had to

conduct user studies to evaluate the rankings produced by the various algorithms.

For our evaluation, we use real datasets from two different domains. The first domain

was the MSN HomeAdvisor database (http://houseandhome.msn.com/), from which we

prepared a table of homes for sale in the US, with a mix of categorical as well as numeric

attributes such as Price, Year, City, Bedrooms, Bathrooms, Sqft, Garage, etc. The original

 33

database table also had a text column called Remarks, which contained descriptive

information about the home. From this column, we extracted additional Boolean

attributes such as Fireplace, View, Pool, etc. To evaluate the role of the size of the

database, we also performed experiments on a subset of the HomeAdvisor database,

consisting only of homes sold in the Seattle area.

The second domain was the Internet Movie Database (http://www.imdb.com), from

which we prepared a table of movies, with attributes such as Title, Year, Genre, Director,

FirstActor, SecondActor, Certificate, Sound, Color, etc. We first selected a set of movies

by the 30 most prolific actors for our experiments. From this we removed the 250 most

well-known movies, as we did not wish our users to be biased with information they

already might know about these movies, especially information that is not captured by the

attributes that we had selected for our experiments.

The sizes of the various (single-table) datasets used in our experiments are shown in

Figure 4. The quality experiments were conducted on the Seattle Homes and Movies

tables, while the performance experiments were conducted on the Seattle Homes and the

US Homes tables – we omitted performance experiments on the Movies table on account

of its small size. We used Microsoft SQL Server 2000 RDBMS on a P4 2.8-GHz PC with

1 GB of RAM for our experiments. We implemented all algorithms in C#, and connected

to the RDBMS through DAO. We created single-attribute indices on all table attributes,

to be used during the selection phase of the Scan algorithm. Note that these indices are

not used by the List Merge algorithm.

Table NumTuples Database Size (MB)

Seattle Homes 17463 1.936

US Homes 1380762 140.432

Movies 1446 Less than 1

Figure 4: Sizes of Datasets

6.1 Quality Experiments

We evaluated the quality of three different ranking methods: (a) our ranking method,

henceforth referred to as Conditional, (b) the ranking method described in [AGRAWAL,

S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003], henceforth known as Global,

and (c) a baseline Random algorithm, which simply ranks and returns the top-k tuples in

 34

arbitrary order. This evaluation was accomplished using surveys involving 14 employees

of Microsoft Research.

For the Seattle Homes table, we first created several different profiles of home buyers,

e.g., young dual-income couples, singles, middle-class family who like to live in the

suburbs, rich retirees, etc. Then, we collected a workload from our users by requesting

them to behave like these home buyers and post queries against the database - e.g., a

middle-class homebuyer with children looking for a suburban home would post a typical

query such as “Bedrooms=4 and Price=Moderate and SchoolDistrict=Excellent”. We

collected several hundred queries by this process, each typically specifying 2-4 attributes.

We then trained our ranking algorithm on this workload.

We prepared a similar experimental setup for the Movies table. We first created

several different profiles of moviegoers, e.g., teenage males wishing to see action

thrillers, people interested in comedies from the 80s, etc. We disallowed users from

specifying the movie title in the queries, as the title is a key of the table. As with homes,

here too we collected several hundred workload queries, and trained our ranking

algorithm on this workload.

We first describe a few sample results informally, and then present a more formal

evaluation of our rankings.

6.1.1 Examples of Ranking Results

For the Seattle Homes dataset, both Conditional as well as Global produced rankings that

were intuitive and reasonable. There were interesting examples where Conditional

produced rankings that were superior to Global. For example, for a query with condition

“City=Seattle and Bedroom=1”, Conditional ranked condos with garages the highest.

Intuitively, this is because private parking in downtown is usually very scarce, and

condos with garages are highly sought after. However, Global was unable to recognize

the importance of garages for this class of homebuyers, because most users (i.e., over the

entire workload) do not explicitly request for garages since most homes have garages. As

another example, for a query such as “Bedrooms=4 and City=Kirkland and

Price=Expensive”, Conditional ranked homes with waterfront views the highest, whereas

Global ranked homes in good school districts the highest. This is as expected, because for

very rich homebuyers a waterfront view is perhaps a more desirable feature than a good

school district, even though the latter may be globally more popular across all

homebuyers.

 35

Likewise, for the Movies dataset, Conditional often produced rankings that were

superior to Global. For example, for a query such as “Year=1980s and Genre=Thriller”,

Conditional ranked movies such as “Indiana Jones and the Temple of Doom” higher than

“Commando”, because the workload indicated that Harrison Ford was a better known

actor than Arnold Schwarzenegger during that era, although the latter actor was globally

more popular over the entire workload.

As for Random, it produced quite irrelevant results in most cases.

6.1.2 Ranking Evaluation

We now present a more formal evaluation of the ranking quality produced by the ranking

algorithms. We conducted two surveys; the first compared the rankings against user

rankings using standard precision/recall metrics, while the second was a simpler survey

that asked users to rate which algorithm’s rankings they preferred.

First Survey: Since requiring users to rank the entire database for each query for the first

survey would have been extremely tedious, we used the following strategy. For each

dataset, for each test query Qi we generated a set Hi of 30 tuples likely to contain a good

mix of relevant and irrelevant tuples to the query. We did this by mixing the Top-10

results of both the Conditional and Global ranking algorithms, removing ties, and adding

a few randomly selected tuples. Finally, we presented the queries along with their

corresponding Hi’s (with tuples randomly permuted) to each user in our study. Each

user’s responsibility was to mark 10 tuples in Hi as most relevant to the query Qi. We

then measured how closely the 10 tuples marked as relevant by the user (i.e., the “ground

truth”) matched the 10 tuples returned by each algorithm.

We used the formal Precision/Recall metrics to measure this overlap. Precision is the

ratio of the number of retrieved tuples that are relevant, to the total number of retrieved

tuples, while Recall is the fraction of the number of retrieved tuples that are relevant, to

the total number of relevant tuples (see [BAEZA-YATES, R., AND RIBEIRO-NETO, B.

1999]). In our case, the total number of relevant tuples is 10, so Precision and Recall are

equal. (We reiterate that this is only an artefact of our experimental setup - the “true”

Recall can be measured only if the user was able to mark the entire dataset, which was

unfeasible in our case).

We experimented with several sets of queries in this survey. We first present the

results for the following four IN/Range queries for the Seattle Homes dataset:

Q1: Bedrooms=4 AND City IN{Redmond, Kirkland, Bellevue}

Q2: City IN {Redmond, Kirkland, Bellevue} AND Price BETWEEN ($700K, $1000K)

 36

Q3: Price BETWEEN ($700K, $1000K)

Q4: School=1 AND Price BETWEEN ($100K, $200K)

The precision (averaged over these queries) of the different ranking methods is shown

in Figure 5 (a). As can be seen, the quality of Conditional ranking was superior to Global,

while Random was significantly worse than either.

We next present our survey results for the following five point queries for the Movies

dataset (where precision was measured as described above for the Seattle Homes dataset):

Q1: Genre=thriller AND Certificate=PG-13

Q2: YearMade=1980 AND Certificate=PG-13

Q3: Certificate=G AND Sound=Mono

Q4: Actor1=Dreyfuss, Richard

Q5: Genre=Sci-Fi

The results are shown in Figure 5 (b). The quality of Conditional ranking was

superior to Global, while Random was worse than either.

Avg Precision for Homes Dataset

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

COND GLOB RANDOM

A
vg

 P
re

ci
si

on

Avg Precision for Movies Dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

COND GLOB RAND

Av
g

Pr
ec

is
io

n

(a) Homes dataset (b) Movies dataset

Figure 5: Average Precision

Second Survey: In addition to the above precision/recall experiments, we also conducted

a simpler survey in which users were given the Top-5 results of the three ranking

methods for 5 queries (different from the previous survey), and were asked to choose

which rankings they preferred.

We used the following IN/Range queries for the Seattle Homes dataset:

Q1: Bedrooms=4 AND City IN (Redmond, Kirkland, Bellevue)

Q2: City IN (Bellevue, Kirkland) AND Price BETWEEN ($700K, $1000K)

Q3: Price BETWEEN ($500K, $700K) AND Bedrooms=4 AND Year > 1990

 37

Q4: City=Seattle AND Year > 1990

Q5: City=Seattle AND Bedrooms=2 AND Price=500K

We also used the following point queries for the Movies dataset:

Q1: YearMade=1980 AND Genre=Thriller

Q2: Actor1=De Niro, Robert

Q3: YearMade=1990 AND Genre=Thriller

Q4: YearMade=1995 AND Genre=Comedy

Q5: YearMade=1970 AND Genre=Western

Figure 6 shows the percent of users that prefer the results of each algorithm:

Percent Users Prefering Each Algorithm -
Homes Dataset

0
10
20
30
40
50
60
70
80

COND GLOB RAND

P
er

ce
nt

 U
se

rs

Percent Users Prefering Each Algorithm -
Movies Dataset

0
10
20
30
40
50
60
70

COND GLOB RAND

P
er

ce
nt

 U
se

rs

(a) Homes dataset (b) Movies dataset

Figure 6: Percent of users preferring each algorithm

The results of the above experiments show that Conditional generally produces

rankings of higher quality compared to Global, especially for the Seattle Homes dataset.

While these experiments indicate that our ranking approach has promise, we caution that

much larger-scale user studies are necessary to conclusively establish findings of this

nature.

6.2 Performance Experiments

In this subsection we report on experiments that compared the performance of the various

implementations of the Conditional algorithm: List Merge, its space-saving variants, and

Scan. We do not report on the corresponding implementations of Global as they had

similar performance. We used the Seattle Homes and US Homes datasets for these

experiments. We report performance results of our algorithms on point queries - we do

not report results for IN/range queries, as each such query are split into a collection of

point queries whose results are then merged in a straightforward manner as described in

Section 5.4.

 38

Preprocessing Time and Space: Since the preprocessing performance of the List Merge

algorithm is dominated by the Index Module, we omit reporting results for the Atomic

Probabilities Module. Figure 7 shows the space and time required to build all the

conditional and global lists. The time and space scale linearly with table size, which is

expected. Notice that the space consumed by the lists is three times the size of the data

table. While this may seemingly appear excessive, note that a fair comparison would be

against a Scan algorithm that has B+ tree indices built on all attributes (so that all kinds

of selections can be performed efficiently). In such a case, the total space consumed by

these B+ tree indices would rival the space consumed by these lists.

Datasets Lists Building Time Lists Size

Seattle Homes 1500 msec 7.8 MB

US Homes 80000 msec 457.6 MB

Figure 7: Time and Space Consumed by Index Module

If space is a critical issue, we can adopt the space saving variation of the List Merge

algorithm as discussed in Section 5.3. We report on this next.

Space Saving Variations: In this experiment we show how the performance of the

algorithms changes when only a subset of the set of global and conditional lists are

stored. Recall from Section 5.3 that we only retain lists for the values of the frequently

occurring attributes in the workload. For this experiment we consider Top-10 queries

with selection conditions that specify two attributes (queries generated by randomly

picking a pair of attributes and a domain value for each attribute), and measure their

execution times. The compared algorithms are:

• LM: List Merge with all lists available

• LMM: List Merge where lists for one of the two specified attributes are missing,

halving space

• Scan

Figure 8 shows the execution times of the queries over the Seattle Homes database as

a function of the total number of tuples that satisfy the selection condition. The times are

averaged over 10 queries.

We first note that LM is extremely fast when compared to the other algorithms (its

times are less than one second for each run, consequently its graph is almost along the x-

axis). This is to be expected as most of the computations have been accomplished at pre-

 39

processing time. The performance of Scan degrades when the total number of selected

tuples increases, because the scores of more tuples need to be calculated at runtime. In

contrast, the performance of LM and LMM actually improves slightly. This interesting

phenomenon occurs because if more tuples satisfy the selection condition, smaller

prefixes of the lists need to be read and merged before the stopping condition is reached.

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000

NumSelectedTuples

Ti
m

e
(m

se
c)

LM
LMM
Scan

Figure 8: Execution Times of Different Variations of List Merge and Scan for Seattle Homes Dataset

Thus, List Merge and its variations are preferable if the number of tuples satisfying

the query condition is large (which is exactly the situation we are interested in, i.e., the

Many-Answers problem). This conclusion was reconfirmed when we repeated the

experiment with LM and Scan on the much larger US Homes dataset with queries

satisfying many more tuples (see Figure 9).

NumSelected Tuples LM Time (msec) Scan Time (msec)

350 800 6515

2000 700 39234

5000 600 115282

30000 550 566516

80000 500 3806531

Figure 9: Execution Times of List Merge for US Homes Dataset

Varying Number of Specified Attributes: Figure 10 shows how the query processing

performance of the algorithms varies with the number of attributes specified in the

 40

selection conditions of the queries over the US Homes database (the results for the other

databases are similar). The times are averaged over 10 Top-10 queries. Note that the

times increase sharply for both algorithms with the number of specified attributes. The

LM algorithm becomes slower because more lists need to be merged, which delays the

termination condition. The Scan algorithm becomes slower because the selection time

increases with the number of specified attributes. This experiment demonstrates the

criticality of keeping the number of sorted streams small in our adaptation of TA.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3

NumSpecifiedAttributes

Ti
m

e
(m

se
c)

LM
Scan

Varying K in top-k: This experiment shows how the performance of the algorithms

decreases with the number K of requested results. The graphs are shown in Figures 11(a)

and 11(b) for the Seattle and the US databases respectively. For both datasets we selected

queries with 2 attributes which return about 500 results. Notice that the performance of

Scan is not affected by K, since it is not a top-k algorithm. In contrast, LM degrades with

K because a longer prefix of the lists needs to be processed. Also notice that Scan takes

about the same time for both datasets because the number of the results returned by the

selection is the same (500).

1

10

100

1000

10000

100000

0 50 100 150 200
K

Ti
m

e
(m

se
c)

LM Scan

1

10

100

1000

10000

100000

0 50 100 150 200K

Ti
m

e
(m

se
c)

LM Scan

(a) Seattle homes dataset (b) US homes dataset

Figure 10. Varying Number of Specified Attributes for US Homes Dataset

 41

Figure 11: Varying Number K of Requested Results

7. CONCLUSIONS AND FUTURE WORK

We proposed a completely automated approach for the Many-Answers Problem which

leverages data and workload statistics and correlations. Our ranking functions are based

upon the probabilistic IR models, judiciously adapted for structured data. We presented

results of preliminary experiments which demonstrate the efficiency as well as the quality

of our ranking system.

Our work brings forth several intriguing open problems. For example, many relational

databases contain text columns in addition to numeric and categorical columns. It would

be interesting to see whether correlations between text and non-text data can be leveraged

in a meaningful way for ranking. Secondly, rather than just query strings present in the

workload, can more comprehensive user interactions be leveraged in ranking algorithms–

e.g., tracking the actual tuples that the users selected in response to query results? Finally,

comprehensive quality benchmarks for database ranking need to be established. This

would provide future researchers with a more unified and systematic basis for evaluating

their retrieval algorithms.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their extremely useful comments on an earlier draft

of this paper.

REFERENCES
AGRAWAL, S., CHAUDHURI, AND S., DAS, G. 2002. DBXplorer: A System for Keyword Based Search

over Relational Databases. ICDE.
AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003. Automated Ranking of Database Query

Results. CIDR.
AMER-YAHIA, S., CASE, P., ROELLEKE, T., SHANMUGASUNDARAM, J., AND WEIKUM. G. 2005.

Report on the DB/IR Panel at SIGMOD 2005. ACM SIGMOD Record 34(4), pp. 71-74.
AMER-YAHIA, S., KOUDAS, N., MARIAN, A., SRIVASTAVA, D., AND TOMAN, D. 2005. Structure and

Content Scoring for XML. VLDB.
AGRAWAL, R., MANNILA, H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1995. Fast

Discovery of Association Rules. Advances in Knowledge Discovery and Data Mining.
BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The Management of Probabilistic Data.

IEEE TKDE 4(5), pp. 487-502.
BRUNO, N., GRAVANO, L., AND CHAUDHURI, S. 2002. Top-k Selection Queries over Relational

Databases: Mapping Strategies and Performance Evaluation. ACM TODS.
BRUNO, N., GRAVANO, L., AND MARIAN, A. 2002. Evaluating top-k Queries over Web-Accessible

Databases. ICDE.
BREESE, J., HECKERMAN, D., AND KADIE, C. 1998. Empirical Analysis of Predictive Algorithms for

Collaborative Filtering. 14th Conference on Uncertainty in Artificial Intelligence.

 42

BHALOTIA, G., NAKHE, C., HULGERI, A., CHAKRABARTI, S., AND SUDARSHAN, S. 2002. Keyword
Searching and Browsing in Databases using BANKS. ICDE.

BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. ACM Press.
CESTNIK, B. 1990. Estimating Probabilities: A Crucial Task in Machine Learning, European Conf. in AI.
CAVALLO, R., AND PITTARELLI, M. 1987: The Theory of Probabilistic Databases. VLDB.
CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND WEIKUM, G. 2004. Probabilistic Ranking of Database

Query Results. VLDB.
CHINENYANGA, T.T., AND KUSHMERICK, N. 2002. An Expressive and Efficient Language for XML

Information Retrieval. JASIST 53(6), pp. 438-453.
CROFT, W.B. , AND LAFFERTY, J. 2003. Language Modeling for Information Retrieval. Kluwer.
CARMEL, D, MAAREK, Y.S. , MANDELBROD, M., MASS, Y., AND SOFFER, A. 2003. Searching XML

Documents via XML Fragments. SIGIR.
COHEN, W. 1998. Integration of Heterogeneous Databases Without Common Domains Using Queries Based

on Textual Similarity. SIGMOD.
COHEN, W. 1998b. Providing Database-like Access to the Web Using Queries Based on Textual Similarity.

SIGMOD.
CHAKRABARTI, K., PORKAEW, K., AND MEHROTRA, S. 2000. Efficient Query Ref. in Multimedia

Databases. ICDE.
DALVI, N.N, AND SUCIU, D. 2005. Answering Queries from Statistics and Probabilistic Views. VLDB.
FAGIN, R. 1998. Fuzzy Queries in Multimedia Database Systems. PODS 1998.
FAGIN, R., LOTEM, A., AND NAOR, M. 2001. Optimal Aggregation Algorithms for Middleware. PODS.
FUHR, N. 1990. A Probabilistic Framework for Vague Queries and Imprecise Information in Databases. VLDB.
FUHR, N. 1993. A Probabilistic Relational Model for the Integration of IR and Databases. ACM SIGIR

Conference on Research and Development in Information Retrieval.
FUHR, N., AND GROSSJOHANN, K. 2004. XIRQL: an XML Query Language based on Information

Retrieval Concepts. ACM TOIS 22(2), pp. 313-356.
FUHR, N., ROELLEKE, T. 1997. A Probabilistic Relational Algebra for the Integration of Information

Retrieval and Database Systems. ACM TOIS 15(1), pp. 32-66.
FUHR, N., AND ROELLEKE, T. 1998. HySpirit – a Probabilistic Inference Engine for Hypermedia Retrieval

in Large Databases. EDBT.
GROSSMAN, D.A. , FRIEDER, O., 2004. Information Retrieval - Algorithms and Heuristics. Springer.
GÜNTZER, U., BALKE, W.-T., AND KIEßLING, W. 2000. Optimizing Multi-Feature Queries for Image

Databases. VLDB.
GUO, L., SHAO, F., BOTEV, C., AND SHANMUGASUNDARAM. J. 2003. XRANK: Ranked Keyword

Search over XML Documents. SIGMOD.
HARPER, D., AND VAN RIJSBERGEN, C. J. 1978. An evaluation of feedback in document retrieval using

co-occurrence data. Journal of Documentation, 34(3):189-216.
HRISTIDIS, V., AND PAPAKONSTANTINOU, Y. 2002. DISCOVER: Keyword Search in Relational

Databases. VLDB.
HRISTIDIS, V., GRAVANO, L., PAPAKONSTANTINOU, Y. 2003. Efficient IR-style Keyword Search over

Relational Databases. VLDB.
HRISTIDIS, V., PAPAKONSTANTINOU, Y., BALMIN, A. 2003. Keyword Proximity Search on XML

Graphs. ICDE.
JAGADISH, H.V., POOSALA, V., KOUDAS, N., SEVCIK, K., MUTHUKRISHNAN, S., AND SUEL, T.

1998. Optimal Histograms with Quality Guarantees. VLDB.
KIEßLING, W. 2002. Foundations of Preferences in Database Systems. VLDB.
LAKSHMANAN, L.V.S. , LEONE, N., ROSS, R., AND SUBRAHMANIAN, V.S. 1997. ProbView: a Flexible

Probabilistic Database System. ACM TODS 22(3), pp. 419-469.
LALMAS, M., AND ROELLEKE, T. 2004. Modeling Vague Content and Structure Querying in XML

Retrieval with a Probabilistic Object-Relational Framework. FQAS.
MARTINEZ, W., MARTINEZ, A., AND WEGMAN, E. 2004. Document Classification and Clustering Using

Weighted Text Proximity Matrices. Interface.
MOTRO, A. 1988. VAGUE: A User Interface to Relational Databases that Permits Vague Queries. TOIS, 187-

214.
NAZERI, Z., BLOEDORN, E., AND OSTWALD, P. 2001. Experiences in Mining Aviation Safety Data.

SIGMOD.

 43

NEPAL, S., AND RAMAKRISHNA, M. V. 1999. Query Processing Issues in Image (Multimedia) Databases.
ICDE.

ORTEGA-BINDERBERGER, M., CHAKRABARTI, K., AND MEHROTRA, S. 2002. An Approach to
Integrating Query Refinement in SQL, EDBT, 15-33.

POOSALA, V., IOANNIDIS, Y.E., HAAS, P. J., AND SHEKITA, E. J. 1996. Improved Histograms for
Selectivity Estimation of Range Predicates. SIGMOD, pp 294-305.

RADLINSKI, F., JOACHIMS, T. 2005. Query Chains: Learning to Rank from Implicit Feedback. KDD.
RUI, Y., HUANG, T. S. ,AND MEHROTRA, S. 1997. Content-Based Image Retrieval with Relevance

Feedback in MARS. IEEE Conf. on Image Processing.
SHEN, X., TAN, B., AND ZHAI, C. 2005. Context-sensitive Information Retrieval using Implicit Feedback.

SIGIR.
SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000. A Probabilistic Model of Information

Retrieval: Development and Comparative Experiments - Part 1. Inf. Process. Manage. 36(6): 779-808.
SPARCK JONES, K., WALKER, S., ROBERTSON, S.E. 2000. A Probabilistic Model of Information

Retrieval: Development and Comparative Experiments - Part 2. Inf. Process. Manage. 36(6): 809-840.
THEOBALD, A., WEIKUM, G. 2002. The Index-based XXL Search Engine for Querying XML Data with

Relevance Ranking. EDBT.
THEOBALD, M., SCHENKEL, R., WEIKUM, G. 2005. An Efficient and Versatile Query Engine for TopX

Search. VLDB.
WU, L., FALOUTSOS, C., SYCARA, K., AND PAYNE, T. 2000. FALCON: Feedback Adaptive Loop for

Content-Based Retrieval. VLDB.
WHITTAKER, J. 1990. Graphical Models in Applied Multivariate Statistics. Wiley.
WIDOM, J. 2005. Trio: A System for Integrated Management of Data, Accuracy, and Lineage. CIDR.
WIMMERS, L., HAAS, L. M. , ROTH, M T., AND BRAENDLI, C. 1999. Using Fagin's Algorithm for

Merging Ranked Results in Multimedia Middleware. CoopIS.
Xu, J., AND Croft, W. B. 1996. Query Expansion Using Local and Global Document Analysis, SIGIR, pp 4-11.
YU, C.T. AND MENG, W. 1998. Principles of Database Query Processing for Advanced Applications. Morgan

Kaufmann.

