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We investigate the problem of ranking the answers to a database query when many tuples are returned. In 
particular, we present methodologies to tackle the problem for conjunctive and range queries, by adapting and 
applying principles of probabilistic models from Information Retrieval for structured data. Our solution 
is domain independent and leverages data and workload statistics and correlations. We evaluate the quality of 
our approach with a user survey on a real database. Furthermore, we present and experimentally evaluate 
algorithms to efficiently retrieve the top ranked results, which demonstrate the feasibility of our ranking system. 
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1. INTRODUCTION 

Database systems support a simple Boolean query retrieval model, where a selection 

query on a SQL database returns all tuples that satisfy the conditions in the query. This 

often leads to the Many-Answers Problem: when the query is not very selective, too many 

tuples may be in the answer. We use the following running example throughout the 

paper: 
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Example: Consider a realtor database consisting of a single table with attributes such as 

(TID, Price, City, Bedrooms, Bathrooms, LivingArea, SchoolDistrict, View, Pool, 

Garage, BoatDock …). Each tuple represents a home for sale in the US. 

Consider a potential home buyer searching for homes in this database. A query with a 

not very selective condition such as “City=Seattle and View=Waterfront” may result in 

too many tuples in the answer, since there are many homes with waterfront views in 

Seattle.  

The Many-Answers Problem has also been investigated in Information Retrieval (IR), 

where many documents often satisfy a given keyword-based query. Approaches to 

overcome this problem range from query reformulation techniques (e.g., the user is 

prompted to refine the query to make it more selective), to automatic ranking of the 

query results by their degree of “relevance” to the query (though the user may not have 

explicitly specified how) and returning only the top-k subset.   

It is evident that automated ranking can have compelling applications in the database 

context. For instance, in the earlier example of  a homebuyer searching for homes in 

Seattle with waterfront views, it may be preferable to first return homes that have other 

desirable attributes, such as good school districts, boat docks, etc. In general, customers 

browsing product catalogs will find such functionality attractive. 

In this paper we propose an automated ranking approach for the Many-Answers 

Problem for database queries. Our solution is principled, comprehensive, and efficient. 

We summarize our contributions below. 

Any ranking function for the Many-Answers Problem has to look beyond the 

attributes specified in the query, because all answer tuples satisfy the specified 

conditions1. However, investigating unspecified attributes is particularly tricky since we 

need to determine what the user’s preferences for these unspecified attributes are. In this 

paper we propose that the ranking function of a tuple depends on two factors: (a) a global 

score which captures the global importance of unspecified attribute values, and (b) a 

conditional score which captures the strengths of dependencies (or correlations) between 

specified and unspecified attribute values. For example, for the query “City = Seattle and 

View = Waterfront” (we also consider IN queries, e.g., City IN (Seattle, Redmond)), a 

home that is also located in a “SchoolDistrict = Excellent” gets high rank because good 

                                                           
1 In the case of document retrieval, ranking functions are often based on the frequency of occurrence of query 
values in documents (term frequency, or TF). However, in the database context, especially in the case of 
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school districts are globally desirable. A home with also “BoatDock = Yes” gets high 

rank because people desiring a waterfront are likely to want a boat dock.  While these 

scores may be estimated by the help of domain expertise or through user feedback, we 

propose an automatic estimation of these scores via workload as well as data analysis. 

For example, past workload may reveal that a large fraction of users seeking homes with 

a waterfront view have also requested for boat docks. We extend our framework to also 

support numeric attributes (e.g., age), in addition to categorical, by exploiting state-of-

the-art bucketing methods based on histograms. 

The next challenge is how do we translate these basic intuitions into principled and 

quantitatively describable ranking functions?  To achieve this, we develop ranking 

functions that are based on Probabilistic Information Retrieval (PIR) ranking models. We 

chose PIR models because we could extend them to model data dependencies and 

correlations (the critical ingredients of our approach) in a more principled manner than if 

we had worked with alternate IR ranking models such as the Vector-Space model.  We 

note that correlations are sometimes ignored in IR data – important exceptions are 

relevance feedback-based IR systems – because they are very difficult to capture in the 

very high-dimensional and sparsely populated feature spaces of text whereas there are 

often strong correlations between attribute values in relational data (with functional 

dependencies being extreme cases), which is a much lower-dimensional, more explicitly 

structured and densely populated space that our ranking functions can effectively work 

on. Furthermore, we exploit possible functional dependencies in the database to improve 

the quality of the ranking. 

The architecture of our ranking has a pre-processing component that collects database 

as well as workload statistics to determine the appropriate ranking function. The 

extracted ranking function is materialized in an intermediate knowledge representation 

layer, to be used later by a query processing component for ranking the results of queries. 

The ranking functions are encoded in the intermediate layer via intuitive, easy-to-

understand “atomic” numerical quantities that describe (a) the global importance of a data 

value in the ranking process, and (b) the strengths of correlations between pairs of values 

(e.g., “if a user requests tuples containing value y of attribute Y, how likely is she to be 

also interested in value x of attribute X?”). Although our ranking approach derives these 

quantities automatically, our architecture allows users and/or domain experts to tune 

                                                                                                                                                
categorical data, TF is irrelevant as tuples either contain or do not contain a query value. Hence ranking 
functions need to also consider values of unspecified attributes. 
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these quantities further, thereby customizing the ranking functions for different 

applications. 

We report on a comprehensive set of experimental results. We first demonstrate 

through user studies on real datasets that our rankings are superior in quality to previous 

efforts on this problem. We also demonstrate the efficiency of our ranking system. Our 

implementation is especially tricky because our ranking functions are relatively complex, 

involving dependencies/correlations between data values. We use interesting pre-

computation techniques which reduce this complex problem to a problem efficiently 

solvable using top-k algorithms. 

The rest of this paper is organized as follows. In Section 2 we discuss related work. In 

Section 3 we define the problem. In Section 4 we discuss our approach to ranking based 

on probabilistic models from information retrieval, along with various extensions and 

special cases. In Section 5 we describe an efficient implementation of our ranking 

system. In Section 6 we discuss the results of our experiments, and we conclude in 

Section 7. 

 

2. RELATED WORK 

A preliminary version of this paper appeared in [CHAUDHURI, S., DAS, G., 

HRISTIDIS, V., AND WEIKUM, G. 2004] where we presented the basic principles of 

using probabilistic information retrieval models to answer database queries. However, 

our earlier paper only handled point queries (see Section 3). In this work we show how 

IN and range queries can be handled and how this makes the algorithms to produce 

efficiently the top results more challenging (Sections 4.4.1 and 5.4). Furthermore 

[CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND WEIKUM, G. 2004] focuses on 

only categorical attributes, whereas we have a complete study of numerical attributes as 

well (Section 4.4.2). [CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND WEIKUM, G. 

2004] also ignores functional dependencies, which as we show can improve the quality of 

the results (Section 4.2.2). In this work, we also present specialized solutions for cases 

where no workload is available (Section 4.3.1), no dependencies exist between attributes 

(Section 4.3.2). We also generalize to the case where the data resides on multiple tables 

(Section 4.4.3). Finally, we extend [CHAUDHURI, S., DAS, G., HRISTIDIS, V., AND 

WEIKUM, G. 2004] with a richer set of quality and performance experiments. On the 

quality level, we show results for IN queries and also compare to the results of a 
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“random” algorithm. On the performance level, we included experiments on how the 

number k of requested results affects the performance of the algorithms. 

Ranking functions have been extensively investigated in Information Retrieval. The 

vector space model as well as probabilistic information retrieval (PIR) models [BAEZA-

YATES, R., AND RIBEIRO-NETO, B. 1999, GROSSMAN, D.A. , FRIEDER, O., 2004, 

SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000, SPARCK 

JONES, K., WALKER, S., ROBERTSON, S.E. 2000] and statistical language models 

[CROFT, W.B. , AND LAFFERTY, J. 2003, GROSSMAN, D.A. , FRIEDER, O., 2004] 

are very successful in practice. Feedback-based IR systems (e.g., relevance feedback 

[HARPER, D., AND VAN RIJSBERGEN, C. J. 1978], pseudo relevance feedback [XU, 

J., AND CROFT, W. B. 1996]) are based on inferring term correlations and modelling 

term dependencies, which are related to our approach of inferring correlations within 

workloads and data. While our approach has been inspired by PIR models, we have 

adapted and extended them in ways unique to our situation, e.g., by leveraging the 

structure as well as correlations present in the structured data and the database workload. 

In database research, there has been significant work on ranked retrieval from a 

database. The early work of [MOTRO, A. 1988] considered vague/imprecise similarity-

based querying of databases. Probabilistic databases have been addressed in 

[BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992, CAVALLO, R., 

AND PITTARELLI, M. 1987, DALVI, N.N, AND SUCIU, D. 2005, LAKSHMANAN, 

L.V.S. , LEONE, N., ROSS, R., AND SUBRAHMANIAN, V.S. 1997]. Recently, a 

broader view of the needs for managing uncertain data has been evolving (see, e.g., 

[WIDOM, J. 2005]). 

The challenging problem of integrating databases and information retrieval systems 

has been addressed in a number of seminal papers [COHEN, W. 1998, COHEN, W. 

1998b, FUHR, N. 1990, FUHR, N. 1993, FUHR, N., ROELLEKE, T. 1997, FUHR, N., 

AND ROELLEKE, T. 1998] and has gained much attention lately [AMER-YAHIA, S., 

CASE, P., ROELLEKE, T., SHANMUGASUNDARAM, J., AND  WEIKUM. G. 2005]. 

More recently, information retrieval based approaches have been extended to XML 

retrieval [AMER-YAHIA, S., KOUDAS, N., MARIAN, A., SRIVASTAVA, D., AND 

TOMAN, D. 2005, CHINENYANGA, T.T., AND KUSHMERICK, N. 2002, CARMEL, 

D, MAAREK, Y.S. , MANDELBROD, M., MASS, Y., AND SOFFER, A. 2003, FUHR, 

N., AND GROSSJOHANN, K. 2004, GUO, L., SHAO, F., BOTEV, C., AND 

SHANMUGASUNDARAM. J. 2003, HRISTIDIS, V., PAPAKONSTANTINOU, Y., 
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BALMIN, A. 2003, LALMAS, M., AND ROELLEKE, T. 2004, THEOBALD, A., 

WEIKUM, G. 2002, THEOBALD, M., SCHENKEL, R., WEIKUM, G. 2005]. The 

papers [CHAKRABARTI, K., PORKAEW, K., AND MEHROTRA, S. 2000, ORTEGA-

BINDERBERGER, M., CHAKRABARTI, K., AND MEHROTRA, S. 2002, RUI, Y., 

HUANG, T. S. ,AND MEHROTRA, S. 1997, WU, L., FALOUTSOS, C., SYCARA, K., 

AND PAYNE, T. 2000] employ relevance-feedback techniques for learning similarity in 

multimedia and relational databases. Our approach of leveraging workloads is motivated 

by and related to IR models that aim to leverage query-log information (e.g., see 

[RADLINSKI, F., JOACHIMS, T. 2005, SHEN, X., TAN, B., AND ZHAI, C. 2005]). 

Keyword-query based retrieval systems over databases have been proposed in 

[AGRAWAL, S. , CHAUDHURI, AND S., DAS, G. 2002, BHALOTIA, G., NAKHE, 

C., HULGERI, A., CHAKRABARTI, S., AND SUDARSHAN, S. 2002, HRISTIDIS, V., 

AND PAPAKONSTANTINOU, Y. 2002, HRISTIDIS, V., GRAVANO, L., 

PAPAKONSTANTINOU, Y. 2003]. In [KIEßLING, W. 2002, NAZERI, Z., 

BLOEDORN, E., AND OSTWALD, P. 2001] the authors propose SQL extensions in 

which users can specify ranking functions via soft constraints in the form of preferences. 

The distinguishing aspect of our work from the above is that we espouse automatic 

extraction of PIR-based ranking functions through data and workload statistics. 

The work most closely related to our paper is [AGRAWAL, S., CHAUDHURI, S., 

DAS, G., AND GIONIS, A. 2003] which briefly considered the Many-Answers Problem 

(although its main focus was on the Empty-Answers Problem, which occurs when a query 

is too selective, resulting in an empty answer set). It too proposed automatic ranking 

methods that rely on workload as well as data analysis. In contrast, however, our paper 

has the following novel strengths: (a) we use more principled probabilistic PIR 

techniques rather than ad-hoc techniques “loosely based” on the vector-space model, and 

(b) we take into account dependencies and correlations between data values, whereas 

[AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003] only proposed a 

form of global score for ranking. 

Ranking is also an important component in collaborative filtering research [BREESE, 

J., HECKERMAN, D., AND KADIE, C. 1998]. These methods require training data 

using queries as well as their ranked results. In contrast, we require workloads containing 

queries only.  

A major concern of this paper is the query processing techniques for supporting 

ranking. Several techniques have been previously developed in database research for the 
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top-k problem [BRUNO, N., GRAVANO, L., AND CHAUDHURI, S. 2002, BRUNO, 

N., GRAVANO, L., AND MARIAN, A. 2002, FAGIN, R. 1998, FAGIN, R., LOTEM, 

A., AND NAOR, M. 2001, WIMMERS, L., HAAS, L. M. , ROTH, M T., AND 

BRAENDLI, C. 1999]. We adopt the Threshold Algorithm of [FAGIN, R., LOTEM, A., 

AND NAOR, M. 2001, GÜNTZER, U., BALKE, W.-T., AND KIEßLING, W. 2000, 

NEPAL, S., AND RAMAKRISHNA, M. V. 1999] for our purposes, and develop 

interesting pre-computation techniques to produce a very efficient implementation of the 

Many-Answers Problem. In contrast, an efficient implementation for the Many-Answers 

Problem was left open in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, 

A. 2003]. 

 

3. PROBLEM DEFINITION 

In this section, we formally define the Many-Answers Problem in ranking database query 

results and its different variants. We start by defining the simplest problem instance, 

which we later extend to more complex scenarios.  

3.1 The Many-Answers Problem 

Consider a database table D with n tuples {t1, …, tn} over a set of m categorical attributes 

A = {A1, …, Am}. Consider a “SELECT * FROM D” query Q with a conjunctive 

selection condition of the form “WHERE X1=x1 AND … AND Xs=xs”, where each Xi is 

an attribute from A and xi is a value in its domain. The set of attributes X ={X1, …, Xs}⊆ 

A is known as the set of attributes specified by the query, while the set Y = A – X is 

known as the set of unspecified attributes. Let S ⊆ {t1, …, tn} be the answer set of Q. The 

Many-Answers Problem occurs when the query is not too selective, resulting in a large S. 

The focus in this paper is on automatically deriving an appropriate ranking function such 

that only a few (say top-k) tuples can be efficiently retrieved. 

3.2 The Empty-Answers Problem 

If the selection condition of a query is very restrictive, it may happen that very few 

tuples, or even no tuples, will satisfy the condition – i.e.,  S is empty or very small. This 

is known as the Empty-Answers Problem. In such cases, it is of interest to derive an 

appropriate ranking function that can also retrieve tuples that closely (though not 

completely) match the query condition. We do not consider the Empty-Answers Problem 

any further in this paper.  

3.3 Point Queries versus Range/IN Queries and other Generalizations 
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The scenario in Section 3.1 only represents the simplest problem instance. For example, 

the type of queries described above are fairly restrictive; we refer to them as point queries 

because they specify single-valued equality conditions on each of the specified attributes.  

In a more general setting, queries may contain range/IN conditions. IN queries contain 

selection conditions of the form “X1 IN (x1,1 … x1,r1) AND … AND Xs IN (xs,1 … xs,rs)”. 

Such queries are a very convenient way of expressing alternatives in desired attribute 

values which are not possible to express using point queries.  

Also, databases may be multi-tabled, and may contain a mix of categorical and 

numeric data.  In this paper we develop techniques to handle the ranking problem for all 

these generalizations, though for the sake of simplicity of exposition, our focus in the 

earlier part of the paper is on point queries over a single categorical table. 

3.4 Evaluation Measures 

We evaluate our ranking functions both in terms of quality as well as performance. 

Quality of the results produced is measured using the standard IR measures of Precision 

and Recall. We also evaluate the performance of our ranking functions, especially what 

time and space is necessary for pre-processing as well as query processing. 

 

4.  RANKING FUNCTIONS: ADAPTATION OF PIR MODELS FOR 
STRUCTURED DATA 

In this section we first review Probabilistic Information Retrieval (PIR) techniques in IR 

(Section 4.1). We then show in Section 4.2 how they can be adapted for structured data 

for the special case of ranking the results of point queries over a single categorical table. 

We present two interesting special cases of these ranking functions in Section 4.3, while 

in Section 4.4 we extend our techniques to handle IN queries, numeric attributes, and 

other generalizations. 

4.1 Review of Probabilistic Information Retrieval  

Much of the material of this subsection can be found in textbooks on Information 

Retrieval, such as [BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999] (see also 

[SPARCK JONES, K., WALKER, S., AND ROBERTSON, S. E. 2000, SPARCK 

JONES, K., WALKER, S., ROBERTSON, S.E. 2000]). Probabilistic Information 

Retrieval (PIR) makes use of the following basic formulae from probability theory: 

 

Bayes’ Rule:                                                           

Product Rule: 
)(

)()|()|(
bp

apabpbap =

),|()|()|,( cabpcapcbap =
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Consider a document collection D. For a (fixed) query Q, let R represent the set of 

relevant documents, and R =D –R be the set of irrelevant documents. In order to rank 

any document t in D, we need to find the probability of the relevance of t for the query 

given the text features of t (e.g., the word/term frequencies in t), i.e., p(R|t). More 

formally, in probabilistic information retrieval, documents are ranked by decreasing order 

of their odds of relevance, defined as the following score: 

 

 

 

 

 

The final simplification in the above equation follows from the fact that )(Rp and 

)(Rp are the same for every document t and thus mere constants that do not influence 

the ranking of documents. The main issue now is, how are these probabilities computed, 

given that R and R are unknown at query time? The usual techniques in IR are to make 

some simplifying assumptions, such as estimating R through user feedback, 

approximating R  as D (since R is usually small compared to D), and assuming some 

form of independence between query terms (e.g., the Binary Independence Model,   the 

Linked Dependence Model, or the Tree Dependence Model [YU, C.T. AND MENG, W. 

1998,BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999,GROSSMAN, D.A. , 

FRIEDER, O., 2004]). 

In the next subsection we show how we adapt PIR models for structured databases, in 

particular for conjunctive queries over a single categorical table. Whereas the Binary 

Independence Model makes an independence assumption over all terms, we apply in the 

following a limited independence assumption, i.e. we consider two dependent conjuncts, 

and view the atomic events of each conjunction to be independent. 

4.2 Adaptation of  PIR Models for Structured Data 

In our adaptation of PIR models for structured databases, each tuple in a single database 

table D is effectively treated as a “document”. For a (fixed) query Q, our objective is to 

derive Score(t) for any tuple t, and use this score to rank the tuples. Since we focus on the 

Many-Answers problem, we only need to concern ourselves with tuples that satisfy the 

query conditions. Recall the notation from Section 3, where X is the set of attributes 

)|(
)|(

)(
)()|(

)(
)()|(

)|(
)|()(

Rtp
Rtp

tp
RpRtp

tp
RpRtp

tRp
tRptScore ∝==
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specified in the query, and Y is the remaining set of unspecified attributes. We denote any 

tuple t as partitioned into two parts, t(X) and t(Y), where t(X) is the subset of values 

corresponding to the attributes in X, and t(Y) is the remaining subset of values 

corresponding to the attributes in Y. Often, when the tuple t is clear from the context, we 

overload notation and simply write t as consisting of two parts, X and Y (in this context, X 

and Y are thus sets of values rather than sets of attributes).  

Replacing t with X and Y (and R  as D as mentioned in Section 4.1 is commonly done 

in IR), we get 

),|(
),|(

)|(
)|(

)|,(
)|,(

)|(
)|()(

DYXp
RYXp

DYp
RYp

DYXp
RYXp

dtp
RtptScore ⋅==∝  

where the last equality is obtained by applying Bayes’ Theorem. Then, because 

XR ⊆ (i.e., all relevant tuples have the same X values specified in the query), we obtain 

1),|( =RYXP  which leads to 

),|(
1

)|(
)|()(

DYXpDYp
RYptScore ⋅∝                                                (1)  

Let us illustrate Equation 1 with an example. Consider a query with condition 

“City=Kirkland and Price=High” (Kirkland is an upper class suburb of Seattle close to a 

lake). Such buyers may also ideally desire homes with waterfront or greenbelt views, but 

homes with views looking out into streets may be somewhat less desirable. Thus, 

p(View=Greenbelt | R) and p(View=Waterfront | R) may both be high, but p(View=Street 

| R) may be relatively low. Furthermore, if in general there is an abundance of selected 

homes with greenbelt views as compared to waterfront views, (i.e., the denominator 

p(View=Greenbelt | City=Kirkland, Price=High, D) is larger than p(View=Waterfront | 

City=Kirkland, Price=High, D), our final rankings would be homes with waterfront 

views, followed by homes with greenbelt views, followed by homes with street views. 

For simplicity, we have ignored the remaining unspecified attributes in this example.  

4.2.1 Limited Independence Assumptions 

One possible way of continuing the derivation of Score(t) would be to make 

independence assumptions between values of different attributes, like in the Binary 

Independence Model in IR. However, while this is reasonable with text data (because 

estimating model parameters like the conditional probabilities p(Y | X) poses major 

accuracy and efficiency problems with sparse and high-dimensional data such as text), 

we have earlier argued that with structured data, dependencies between data values can 
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be better captured and would more significantly impact the result ranking. An extreme 

alternative to making sweeping independence assumptions would be to construct 

comprehensive dependency models of the data (e.g. probabilistic graphical models such 

as Markov Random Fields or Bayesian Networks [WHITTAKER, J. 1990]), and derive 

ranking functions based on these models. However, our preliminary investigations 

suggested that such approaches have unacceptable pre-processing and query processing 

costs.  

Consequently, in this paper we espouse an approach that strikes a middle ground. We 

only make limited forms of independence assumptions – given a query Q and a tuple t, 

the X (and Y) values within themselves are assumed to be independent, though 

dependencies between the X and Y values are allowed. More precisely, we assume 

limited conditional independence, i.e., )|( CXp  (resp. )|( CYp ) may be written as  

(∏
∈Xx

Cxp )|( resp. ∏
∈Yy

Cyp )|( ) where C is any condition that only involves Y 

values (resp. X values), R, or D.  

While this assumption is patently false in many cases (for instance, in the example 

early in Section 4.2 this assumes that there is no dependency between homes in Kirkland 

and high-priced homes), nevertheless the remaining dependencies that we do leverage, 

i.e., between the specified and unspecified values, prove to be significant for ranking. 

Moreover, as we shall show in Section 5, the resulting simplified functional form of the 

ranking function enables the efficient adaptation of known top-k algorithms through 

novel data structuring techniques.  

We continue the derivation of a tuple’s score under the above assumptions and obtain: 

),|(
1

)|(
)|()(

DYXpDYp
RYptScore ⋅∝  

∏ ∏∏
∈ ∈ ∈

⋅=
Yy Xx Yy DyxpDyp

Ryp
),|(

1
)|(
)|(

                (2) 

4.2.2 Presence of Functional Dependencies 

To reach Equation 2 we had assumed limited conditional independence. In certain special 

cases such as for attributes related through functional dependencies, we can derive the 

equation without having to make this assumption. In the realtor database, an example of a 

functional dependency may be “Zipcode → City”. Note that functional dependencies 

only apply to the data, since the workload does not have to satisfy them. For example, a 
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query Q of the workload that specifies a requested zipcode may not have specified the 

city, and vice versa. Thus functional dependencies affect the denominator and not the 

numerator of Equation 2. The key property used to remove the independence assumption 

between attributes connected through functional dependencies is the following.  

We first consider functional dependencies between attributes in Y. Assume that yi→yj 

is a functional dependency between a pair of attributes yi, yj in Y. This means that {t | t. yi 

=ai ∧ t. yj =aj} = {t | t. yi =ai} for all attribute values ai, aj. In this case an expression such 

as p(yi, yj | D) can be simplified as p(yi | D) p(yj|yi, D) = p(yi |D). More generally, the 

expression 
)|(

1
DYp

  in Equation 1 may be simplified as ∏
∈ ' )|(

1
Yy Dyp

 where 

}':,'|{' yyFDYyYyY →∈¬∃∈= . 

Functional dependencies may also exist between attributes in X. Thus, the expression 

),|(
1

DYXp
 in Equation 1 may be simplified as ∏∏

∈ ∈' ' ),|(
1

Yy Xx Dyxp
 where 

}':,'|{' xxFDXxXxX →∈¬∃∈= . 

Applying these derivations to Equation 1, we get the following modification to 

Equation 2 (where X′ and Y′ are defined as above): 

 

 

 

 

Notice that before applying the above formula, we need to first compute the transitive 

closure of functional dependencies, for the following reason. Assume there are functional 

dependencies x′→y and y→x where x,x′∈X and y∈Y. Then, if we do not calculate the 

closure of functional dependencies there would be no x′∈X with functional dependency 

x′→x, and hence Equation 3 would be the same as Equation 2. Notice that Equations 2 

and 3 are equivalent if there are no functional dependencies or the only functional 

dependencies (in the closure) are of the form x→y or y→x, where x∈X and y∈Y. 

Although Equations 2 and 3 represent simplifications over Equation 1, they are still 

not directly computable, as R is unknown.  We discuss how to estimate the quantities 

)|( Ryp  next.  
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4.2.3 Workload-Based Estimation of p(y|R) 

Estimating the quantities )|( Ryp  requires knowledge of R, which is unknown at query 

time. The usual technique for estimating R in IR is through user feedback (relevance 

feedback) at query time, or through other forms of training. In our case, we provide an 

automated approach that leverages available workload information for 

estimating )|( Ryp . Our approach is motivated by and related to IR models that aim to 

leverage query-log information (e.g., see [RADLINSKI, F., JOACHIMS, T. 2005, 

SHEN, X., TAN, B., AND ZHAI, C. 2005]). For example, if the multi-keyword queries 

“a b c d”, “a b”, and “a b c” constitute a (short) query log, then we could estimate p(a | c, 

queries) = 2/3.  

We assume that we have at our disposal a workload W, i.e., a collection of ranking 

queries that have been executed on our system in the past. We first provide some intuition 

of how we intend to use the workload in ranking. Consider the example in Section 4.2 

where a user has requested for high-priced homes in Kirkland. The workload may 

perhaps reveal that, in the past a large fraction of users that had requested for high-priced 

homes in Kirkland had also requested for waterfront views. Thus for such users, it is 

desirable to rank homes with waterfront views over homes without such views. The IR 

equivalent would be to have many past queries including all of the terms “Kirkland”, 

“high-priced” and “waterfront view”, and a new query “Kirkland high-priced” arrives.  

We note that this dependency information may not be derivable from the data alone, 

as a majority of such homes may not have waterfront views (i.e., data dependencies do 

not indicate user preferences as workload dependencies do). Of course, the other option is 

for a domain expert (or even the user) to provide this information (and in fact, as we shall 

discuss later, our ranking architecture is generic enough to allow further customization by 

human experts).  

More generally, the workload W is represented as a set of “tuples”, where each tuple 

represents a query and is a vector containing the corresponding values of the specified 

attributes. Consider an incoming query Q which specifies a set X of attribute values. We 

approximate R as all query “tuples” in W that also request for X. This approximation is 

novel to this paper, i.e., that all properties of the set of relevant tuples R can be obtained 

by only examining the subset of the workload that contains queries that also request for 

X. So for a query such as “City=Kirkland and Price=High”, we look at the workload in 

determining what such users have also requested for often in the past.  



 14

We can thus write, for query Q, with specified attribute set X, 

)|( Ryp as ),|( WXyp . Making this substitution in Equation 2, we get 

),|(
1
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Applying Bayes’ rule for ),|( WXYP  we get 
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Equation 4 is the final ranking formula, assuming no functional dependencies. If we also 

consider functional dependencies then we have 

 

 

 

 

where X′, Y′ are defined as in Equation 3. 

Note that unlike Equations 2 and 3, we have effectively eliminated R from the 

formulas in Equations 4 and 5, and are only left with having to compute quantities such 

as )|( Wyp , ),|( Wyxp , )|( Dyp , and ),|( Dyxp . In fact, these are the “atomic” 

numerical quantities referred to at various places earlier in the paper. Also, note that 

Equations 4 and 5 have been derived for point queries; the formulas get more involved 

when we allow IN/range conditions, as discussed in Section 4.4.1. 

Also note that the score in Equations 4 and 5 is composed of two large factors. The 

first factor (first product in Equations 4 and two first products in Equation 5) may be 

considered as the global part of the score, while the second factor may be considered as 

the conditional part of the score. Thus, in the example in Section 4.2, the first part 

measures the global importance of unspecified values such as waterfront, greenbelt and 

street views, while the second part measures the dependencies between these values and 

specified values  “City=Kirkland” and “Price=High”. 
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4.2.4 Computing the Atomic Probabilities  

This section explains how to calculate the atomic probabilities for categorical attributes. 

Section 4.4.2 explains how numerical attributes can be split into ranges which are then 

effectively treated as categorical attributes. Our strategy is to pre-compute each of the 

atomic quantities for all distinct values in the database. The quantities )|( Wyp and 

)|( Dyp  are simply the relative frequencies of each distinct value y in the workload and 

database, respectively (the latter is similar to IDF, or the inverse document frequency 

concept in IR), while the quantities  ),|( Wyxp  and ),|( Dyxp  may be estimated by 

computing the confidences of pair-wise association rules [AGRAWAL, R., MANNILA, 

H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1995] in the workload and 

database, respectively. Once this pre-computation has been completed, we store these 

quantities as auxiliary tables in the intermediate knowledge representation layer.  At 

query time, the necessary quantities may be retrieved and appropriately composed for 

performing the rankings. Further details of the implementation are discussed in Section 5. 

While the above is an automated approach based on workload analysis, it is possible 

that sometimes the workload may be insufficient and/or unreliable. In such instances, it 

may be necessary for domain experts to be able to tune the ranking function to make it 

more suitable for the application at hand. That is, our framework allows both informative 

(e.g., set by domain expert) as well as non informative (e.g., inferred by query workload) 

prior probability distributions to be used in the preference function. In this paper we 

focus on non informative priors, which are inferred by the query workload and the data. 

4.3 Special Cases 

In this subsection we present two important special cases for which our ranking function 

can be further simplified: (a) ranking in the absence of workloads, and (b) ranking 

assuming no dependencies between attributes.  

4.3.1 Ranking Function in the Absence of a Workload 

We first consider Equation 4, which describes our ranking function assuming no 

functional dependencies – we shall consider Equation 5 later. So far we assumed that 

there exists a workload, which is used to approximate the set R of relevant tuples. If no 

workload is available, then we can assume that p(x | W) is the same for all distinct values 

x, and correspondingly p(x | y, W) is the same for all pairs of distinct values x and y. 

Hence, as constants they do not affect the ranking. Thus, Equation 4 reduces to:  
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The intuitive explanation of Equation 6 is similar to the idea of inverse document 

frequency (IDF) in Information Retrieval. In particular, the first product assigns a higher 

score to tuples whose unspecified attribute values y are infrequent in the database. The 

second product is similar to a “conditional” version of the IDF concept. That is, tuples 

with low correlations between the specified and the unspecified attribute values are 

ranked higher. This means, that tuples with infrequent combinations of values are ranked 

higher. For example, if the user searches for low priced houses, then a house with high 

square footage is ranked high since this combination of values (low price and high square 

footage) is infrequent. Of course this ranking can potentially also lead to unintuitive 

results, e.g., looking for high price houses may return low square footage ones. 

Equation 6 can be extended in a straightforward manner to account for the presence of 

functional dependencies (similar to the way Equation 4 was extended to Equation 5). 

4.3.2 Ranking Function Assuming no Dependencies Between Attributes 

As mentioned in Section 4.2.1, a simpler approach to the ranking problem would be to 

make independence assumptions between all attributes (e.g., as is done in the binary 

independence model in IR). Whereas in Section 4.2, we viewed X and Y as dependent 

events, we show here the special case of viewing X and Y as independent events. Then, 

the linked independence assumption holds for both, the workload W and the database D. 

We obtain: 
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Here, the fraction p(X|W) / p(X|D) is constant for all query result tuples, hence: 
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Intuitively, the numerator describes the absolute importance of the unspecified 

attribute values in the workload, while the denominator resembles the IDF concept in IR. 

This formula is similar to the ranking formula for the Many-Answers problem developed 

in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003] based on the 

vector-space model. The main difference between this formula and the corresponding 

formula in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003] is that 

the latter did not have the denominator quantities, and also expressed the score in terms 
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of logarithms. This provides formal credibility to the intuition behind the development of 

the algorithm in [AGRAWAL, S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003]. 

4.4 Generalizations 

In this subsection we present several important generalizations of our ranking techniques. 

In particular, we show how our techniques can be extended to handle IN queries, numeric 

attributes, and multi-table databases. 

4.4.1 IN Queries 

IN queries are a generalization of point queries, in which selection conditions have the 

form “X1 IN (x1,1 … x1,r1) AND … AND Xs IN (xs,1 … xs,rs)”. As an example, consider a 

query with a selection condition such as “City IN (Kirkland, Redmond) AND Price IN 

(High, Moderate)”. This might represent the desire of a homebuyer who is interested in 

either moderate or high priced homes in either Kirkland or Redmond. Such queries are a 

very convenient way of expressing alternatives in desired attribute values which are not 

possible to express using point queries.  

Accommodating IN queries in our ranking infrastructure presents the challenge of 

automatically determining which of the alternatives are more relevant to the user – this 

knowledge can then be incorporated into a suitable ranking function. (This concept is 

related to work on vague/fuzzy predicates [FUHR, N. 1990, FUHR, N. 1993, FUHR, N., 

ROELLEKE, T. 1997, FUHR, N., AND ROELLEKE, T. 1998]. In our case, the objective 

is essentially to determine the probability function that can assign different weights to the 

different alternative values). 

Firstly the ranking function derived in Equation 4 (and Equation 5) have to be 

modified to allow IN conditions in the specified attributes. The complication stems from 

the fact that two tuples that satisfy the query condition may differ in their specific X 

values. In the above example, a moderate priced home in Redmond will satisfy the query, 

as will an expensive home in Kirkland. However, since the specific X values of the two 

homes are different, this prevents us from factoring out the X as we so successfully did in 

the derivation of Equation 4. This requires nontrivial extensions to the execution 

algorithms as shown in Section 5. Second, the existence of IN queries complicates the 

generation of the association rules in the workload, as we discuss later in this subsection. 
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IN Conditions in the Query 

For simplicity, let us assume the case where there are no functional dependencies and the 

workload has point queries, but the query may have IN conditions. Later we will extend 

to the case where the workload also has IN conditions.  

Consider a query that specifies conditions C, where C is a conjunction of IN 

conditions such as “City IN (Bellevue, Carnation) AND SchoolDistrict IN(Good, 

Excellent)”. Note that we distinguish C from X; the latter are atomic values of specified 

attributes in a specific tuple, whereas the former refers to the query and contains a set of 

values for each specified attribute. Recall from Section 4.2 that 

 

 

 

 

  

 

In what follows, we shall assume that R =  C, W, that is, R is the set of tuples in W that 

specify C. This is in tune with the corresponding assumption in Section 4.2.3 for the case 

of point queries, and intuitively means that R is represented by all queries in the workload 

that also request for C. Of course, since here we are assuming that the workload only has 

point queries, we need to figure out how to evaluate this in a reasonable manner. 

Consider the second part of the above formula for Score(t), i.e., p(Y|X, R) / p(Y|X, D). 

This can be rewritten as p(Y|X, C, W)/p(Y|X, C, D). Since we are considering the Many-

Answers problem, if X is true, C is also true (recall that X is the set of attribute values of a 

result-tuple for the query-specified attributes). Thus this part of the formula can be 

simplified as p(Y|X, W)/p(Y|X, D). Consequently, it can be further simplified in exactly 

the same way as the derivations described earlier for point queries, i.e., Equations 1 

through 4. 

Now consider the first part of the formula, p(X|R)/p(X|D). Unlike the point query case 

however, we cannot assume p(X|R)/p(X|D) is a constant for all tuples.  In what follows, 

we shall assume that x is a variable that varies over the set X, and c is a variable that 

varies over the set C. When x and c refer to the same attribute, it is clear that if x is true, 

then c is also true. We have the following sequence of derivations: 
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Recall that we assume limited conditional independence, i.e. that dependency exists only 

between the X and Y attributes, and not within the X attributes (recall that X and C specify 

the same set of attributes). Let A(x) (resp. A(c)) refer to the attribute of x (resp. c). Then 

p(c|x, W) is equal to p(c|W) when A(x) <> A(c), and is equal to 1 otherwise. Let c(x) 

represent the IN condition in C corresponding the attribute of x, i.e., A(c(x)) = A(x). 

Consequently, we have  
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Hence, continuing with the above derivation, we have p(X|R) / p(X|D) proportional to 
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This is the extra factor that needs to be multiplied to the score derived in Equation 4. 

Hence, the equivalent of Equation 4 for IN queries is: 

 

 

 

 

 

Equation 8 differs from Equation 4 in the global part. In particular, we now need to 

consider all attribute values of each result-tuple t, because they may be different, whereas 

in Equation 4, only the unspecified values of t were used for the global part. Notice that 

Equation 8 can be used for point queries as well since in this case the specified values of t 

are common for all result-tuples and hence would only multiply the score by a common 

factor. However, as we explain in Section 5.4, it is more complicated to efficiently 
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evaluate Equation 8 for IN queries than for point queries because of the fact that all 

result-tuples share the same specified (X) values in point queries.  

We note that Equation 8 can be generalized in a straightforward manner to allow for 

the presence of functional dependencies.  

IN Conditions in the Workload: 

We had assumed above that the query at runtime was allowed to have IN conditions, but 

that the workload only had point queries. We now tackle the problem of exploiting IN 

queries in the workload as well. This is reduced to the problem of pre-computing atomic 

probabilities such as p(z | W) and p(x | y, W) from such a workload. These atomic 

probabilities are necessary for computing the ranking function derived in Equation 8.     

Our approach is to “conceptually expand” the workload by splitting each IN query 

into sets of appropriately weighted point queries. For example, a query with IN 

conditions such as “City IN (Bellevue, Redmond, Carnation) AND Price IN (High, 

Moderate)” may be split into 3x2 = 6 point queries, each representing specific 

combinations of values from the IN conditions. In this example, each such point query is 

given a weight of 1/6; this weighting is necessary to make sure that queries with large IN 

conditions do not dominate the calculations of the atomic probabilities.  

Atomic probabilities may now be computed as follows: p(z | W) is the (weighted) 

fraction of the queries in the expanded workload that refer to z, while p(x | y, W) is the 

(weighted) fraction of all queries that refer to x from all queries that refer to y in the 

expanded workload. Of course, the workload is not literally expanded; these probabilities 

can be easily computed from the original workload that contain the IN queries. 

4.4.2 Numeric Attributes 

Thus far in the paper we have only been considering categorical data. We now extend our 

results to the case when the data also has numeric attributes. For example, in the homes 

database, we may have numeric attributes such as square footage, age, etc.  Queries may 

now have range conditions, such as “Age BETWEEN (5, 10) AND Sqft BETWEEN 

(2500, 3000)”.  

One obvious way of handling numeric data and queries is to simply treat them as 

categorical data – i.e. every distinct numerical value in the database is considered as a 

categorical value.  Queries with range conditions can be then converted to queries with 

corresponding IN conditions, and we can then apply the methods outlined in Section 

4.4.1. However, the main problem arising with such an approach is that the sheer size of 
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the numeric domain ensures that many, in fact most distinct values are not adequately 

represented in the workload. For example, perhaps numerous workload queries have 

requested for homes between 3000 and 4000 sqft. However, there may be one or two 

2995 sqft homes in the database, but unfortunately these homes would be considered far 

less popular by the ranking algorithm.  

A simple strategy for overcoming this problem is to discretize the numerical domain 

into buckets, which can then be treated as categorical data. However, most simple 

bucketing techniques are error-prone because inappropriate choices of bucket boundaries 

may separate two values that are otherwise close to each other. In fact, complex 

bucketing techniques for numeric data have been extensively studied in other domains, 

such as in the construction of histograms for approximating data distributions (see 

[POOSALA, V., IOANNIDIS, Y.E., HAAS, P. J., AND SHEKITA, E. J. 1996, 

JAGADISH, H.V., POOSALA, V., KOUDAS, N., SEVCIK, K., MUTHUKRISHNAN, 

S., AND SUEL, T. 1998]), in earlier database ranking algorithms (see [AGRAWAL, S., 

CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003]), as well as in discretization 

methods in classification studies (see [MARTINEZ, W., MARTINEZ, A., AND 

WEGMAN, E. 2004]). In this paper too, we investigate the bucketing problem that arises 

in our context in a systematic manner, and present principled solutions that are 

adaptations of well-known methods for histogram construction.  

Let us consider where exactly the problem of numeric attributes arises in our case. 

Given a query Q, the problem arises when we attempt to compute the score of a tuple t 

based on the ranking formula in Equation 8. We need accurate estimations of the atomic 

probabilities p(z | W), p(z | D), p(x | y, W) and p(x | y, D) when some of these values are 

numeric. What is really needed is a way of “smoothening” the computations of these 

atomic probabilities, so that for example, if p(z | W) is high for a numeric value (i.e., z has 

been referenced many times in the workload), p(z+ε | W) should also be high for nearby 

values z+ε. Similar smoothening techniques should be applied to the other types of 

atomic probabilities, p(z | D), p(x | y, W) and p(x | y, D). Furthermore, these probabilities 

have to be pre-computed earlier, and should only be “looked up” at query time. In the 

following we discuss our solutions in more detail. 

Estimating p(z | D) and p(x | y, D): 

We first discuss how to estimate p(z | D). Let z be a value of some numeric attribute, say 

A. As mentioned earlier, the naïve but inaccurate way of estimating p(z |D) would be to 

simply treat A as a categorical attribute - thus p(z | D) would be the relative frequency of 
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the occurrence of z in the database. Instead, our approach is to assume that p(z | D) is the 

density, at point z, of a continuous probability density function (pdf) p(z | D) over the 

domain of A. We therefore use standard density estimation techniques – in our case, 

histograms – to approximate this pdf using the values of A occurring in the database. 

There are a wide variety of histogram techniques for density estimation, such as equi-

width histograms, equi-depth histograms, and even “optimal” histograms where bucket 

boundaries are set such that the squared error between the actual data distribution and the 

distribution represented by the histogram is minimized (see [POOSALA, V., 

IOANNIDIS, Y.E., HAAS, P. J., AND SHEKITA, E. J. 1996, JAGADISH, H.V., 

POOSALA, V., KOUDAS, N., SEVCIK, K., MUTHUKRISHNAN, S., AND SUEL, T. 

1998] for relevant results on histogram construction). In our case we use the popular and 

efficient technique of equi-depth histograms, where the range is divided into a set of non-

overlapping buckets such that each bucket contains the same number of values.2 Once 

this histogram has been pre-computed, the density p(z | D) at any point z is looked up at 

runtime by determining the bucket to which z belongs.  

We next discuss how to estimate p(x | y, D). Intuitively, our approach is to compute a 

two-dimensional histogram that represents the distribution of all (x, y) pairs that occur in 

the database. At runtime, we look up this histogram to determine the density, at point x, 

of the marginal distribution p(x | y, D). 

Consider first the case where the attribute A of x is numeric, but the attribute B of y is 

categorical. Our approach for this problem is to compute, for each distinct value y of B, 

the histogram over all values of A that co-occur with y in the database. Each such 

histogram represents the marginal probability density function p(x | y, D). One issue that 

arises is if there are numerous distinct values for B, which may result in too many 

histograms. We circumvent this problem by only building histograms for those y values 

for which the corresponding number of A values occurring in the database is larger than a 

given threshold.  

We next consider the case where A is categorical whereas B is numeric. We first 

compute the histogram of the distribution p(y | D) as explained above. We then compute 

pair-wise association rules of the form b → x where b is any bucket of p(y | D) and x is 

any value of A. Then the density p(x | y, D) is approximated as the confidence of the 

association rule b → x where b is the bucket to which y belongs.  

                                                           
2 In our approach we set the number of buckets to 50. 
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Finally, consider the case where A and B are both numeric. As above, we first 

compute the histogram for p(y | D). Then for each bucket b of the histogram 

corresponding to p(y | D) we compute the histogram over all values of A that co-occur 

with b in the database. Each such histogram represents the marginal probability density 

function p(x | y, D). As before, if there are numerous buckets of p(y | D), this may result 

in too many histograms, so we only build histograms for those buckets for which the 

corresponding number of A values occurring in the database is larger than a given 

threshold. 

Estimating p(z | W) and p(x | y, W): 

The estimation of these quantities is similar to the corresponding methods outlined above, 

except that the various histograms have to be built using the workload rather than the 

database. The further complication is that unlike the database where histograms are built 

over sets of point data, the workload contains range queries, thus the histograms have to 

be built over sets of ranges. We outline the extensions necessary for the estimation of p(z 

| W); the extensions for estimating p(x | y, W) are straightforward and omitted. 

Let z be a value of a numeric attribute A. As before, our approach is to assume that p(z 

| W) is the density, at point z, of a continuous probability density function p(z | W) over 

the domain of A. However, we cannot directly use standard density estimation techniques 

such as histograms because unlike the database, the workload specifies a set of ranges 

over the domain of A, rather than a set of points over the domain of A.  

We extend the concept of equi-depth histograms to sets of ranges as follows. Let 

query Qi in the workload specify the range (zLi, zRi). If this was the only query in the 

workload, we can view this as a probability density function over the domain of A, where 

the density is 1/(zRi – zLi) for all points zLi ≤ z ≤ zRi, and 0 for all other points. The pdf 

for the entire workload is computed by averaging these individual distributions at all 

points over all queries - thus the pdf for the workload will resemble a histogram with a 

potentially large number of buckets (proportional to the number of queries in the 

workload).  

We now have to approximate this “raw” histogram using an equi-depth histogram 

with far fewer buckets. The bucket boundaries of the equi-depth histogram should be 

selected such that the probability mass within each bucket is the same. Construction of 

this equi-depth histogram is straightforward and is omitted. At runtime, given a value z, 

the density can be easily looked up by determining the bucket to which z belongs. 
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4.4.3 Multi-Table Databases 

Another aspect to consider is when the database spans across more than one table. 

Important multi-table scenarios are star/snowflake schemas where fact tables are logically 

connected to dimension tables via foreign key joins. For example, while the actual homes 

for sale may be recorded in a fact table, various properties of each home, such as 

demographics of neighborhood, builder characteristics, etc, may be found in 

corresponding dimension tables. In this case we create a logical view representing the 

join of all these tables, thus this view contains all the attributes of interest, and apply our 

ranking methodology on this view. As shall be evident later, if we follow the pre-

computation method of Section 5.2, then there is no need to materialize the logical view, 

since the execution is then based on the pre-computed lists and the logical view would 

only be accessed at the final stage to output the top results.  

 

5. IMPLEMENTATION 

In this section we discuss the architecture and the implementation of our database ranking 

system.  

5.1 General Architecture of our Approach 

Figure 1 shows the architecture of our proposed system for enabling ranking of database 

query results. As mentioned in the introduction, the main components are the 

preprocessing component, an intermediate knowledge representation layer in which the 

ranking functions are encoded and materialized, and a query processing component. The 

modular and generic nature of our system allows for easy customization of the ranking 

functions for different applications.  
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5.2 Pre-Processing  

This component is divided into several modules. First, the Atomic Probabilities Module 

computes the quantities )|( Wyp , )|( Dyp , ),|( Wyxp , and ),|( Dyxp  for all 

distinct values x and y. These quantities are computed by scanning the workload and data, 

respectively. While the latter two quantities for categorical data can be computed by 

running a general association rule mining algorithm such as [AGRAWAL, R., 

MANNILA, H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1995] on the 

workload and data, we instead chose to directly compute all pair-wise co-occurrence 

frequencies by a single scan of the workload and data respectively. The observed 

probabilities are then smoothened using the Bayesian m-estimate method [CESTNIK, B. 

1990]. (We note that more sophisticated Bayesian methods that use an informative prior 

may be employed instead). For numeric attributes we compute )|( Wyp , )|( Dyp , 

),|( Wyxp , and ),|( Dyxp  as histograms as described in Section 4.4.2. 

These atomic probabilities are stored as database tables in the intermediate knowledge 

representation layer, with appropriate indexes to enable easy retrieval. In particular, 

)|( Wyp  and )|( Dyp  are respectively stored in two tables, each with columns 

{AttName, AttVal, Prob} and with a composite B+ tree index on (AttName, AttVal), 
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while ),|( Wyxp and ),|( Dyxp  respectively are stored in two tables, each with 

columns {AttNameLeft, AttValLeft, AttNameRight, AttValRight, Prob} and with a 

composite B+ tree index on (AttNameLeft, AttValLeft, AttNameRight, AttValRight). For 

numeric quantities attribute values are essentially the ranges of the corresponding 

buckets. These atomic quantities can be further customized by human experts if 

necessary. 

This intermediate layer now contains enough information for computing the ranking 

function, and a naïve query processing algorithm (henceforth referred to as the Scan 

algorithm) can indeed be designed, which, for any query, first selects the tuples that 

satisfy the query condition, then scans and computes the score for each such tuple using 

the information in this intermediate layer, and finally returns the top-k tuples. However, 

such an approach can be inefficient for the Many-Answers problem, since the number of 

tuples satisfying the query condition can be very large. At the other extreme, we could 

pre-compute the top-k tuples for all possible queries (i.e., for all possible sets of values 

X), and at query time, simply return the appropriate result set. Of course, due to the 

combinatorial explosion, this is infeasible in practice.  

We thus pose the question: how can we appropriately trade off between pre-

processing and query processing, i.e., what additional yet reasonable pre-computations 

are possible that can enable faster query-processing algorithms than Scan? (We note that 

tradeoffs between pre-processing and query processing techniques are common in IR 

systems [GROSSMAN, D.A. , FRIEDER, O., 2004]). 

The high-level intuition behind our approach to the above problem is as follows. 

Instead of pre-computing the top-k tuples for all possible queries, we pre-compute ranked 

lists of the tuples for all possible atomic queries - each distinct value x in the table defines 

an atomic query Qx that specifies the single value {x}. For example, “SELECT * FROM 

HOMES WHERE CITY=Kirkland” is an atomic query. Then at query time, given an 

actual query that specifies a set of values X, we “merge” the ranked lists corresponding to 

each x in X to compute the final top-k tuples.  

This high-level idea is conceptually related to the merging of inverted lists in IR. 

However, our main challenge is to be able to perform the merging without having to scan 

any of the ranked lists in its entirety.  One idea would be to try and adapt well-known 

top-k algorithms such as the Threshold Algorithm (TA) and its derivatives [BRUNO, N., 

GRAVANO, L., AND MARIAN, A. 2002, FAGIN, R. 1998, FAGIN, R., LOTEM, A., 

AND NAOR, M. 2001, GÜNTZER, U., BALKE, W.-T., AND KIEßLING, W. 2000, 
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NEPAL, S., AND RAMAKRISHNA, M. V. 1999] for this problem. However, it is not 

immediately obvious how a feasible adaptation can be easily accomplished. For example, 

it is especially critical to keep the number of sorted streams (an access mechanism 

required by TA) small, as it is well-known that TA’s performance rapidly deteriorates as 

this number increases. Upon examination of our ranking function in Equation 4 (which 

involves all attribute values of the tuple, and not just the specified values), the number of 

sorted streams in any naïve adaptation of TA would depend on the total number of 

attributes in the database, which would cause major performance problems.  

In what follows, we show how to pre-compute data structures that indeed enable us to 

efficiently adapt TA for our problem. At query time we do a TA-like merging of several 

ranked lists (i.e. sorted streams). However, the required number of sorted streams 

depends only on s and not on m (s is the number of specified attribute values in the query 

while m is the total number of attributes in the database). We emphasize that such a 

merge operation is only made possible due to the specific functional form of our ranking 

function resulting from our limited independence assumptions as discussed in Section 

4.2.1. It is unlikely that TA can be adapted, at least in a feasible manner, for ranking 

functions that rely on more comprehensive dependency models of the data.  

We next give the details of these data structures. They are pre-computed by the Index 

Module of the pre-processing component. This module (see Figure 2 for the algorithm) 

takes as inputs the association rules and the database, and for every distinct value x, 

creates two lists Cx and Gx, each containing the tuple-ids of all data tuples that contain x, 

ordered in specific ways. These two lists are defined as follows:  

1. Conditional List Cx:  This list consists of pairs of the form <TID, CondScore>, 

ordered by descending CondScore, where TID is the tuple-id of a tuple t that 

contains x and 

∏
∈

=
tz Dzxp

WzxpCondScore
),|(
),|(

 

where z ranges over all attribute values of t. 

2. Global List Gx: This list consists of pairs of the form <TID, GlobScore>, ordered by 

descending GlobScore, where TID is the tuple-id of a tuple t that contains x and  

∏
∈

=
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WzpGlobScore
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These lists enable efficient computation of the score of a tuple t for any query as 

follows: given query Q specifying conditions for a set of attribute values, say X = 

{x1,..,xs}, at query time we retrieve and multiply the scores of t in the lists Cx1,…,Cxs and 

in one of Gx1,…,Gxs. This requires only s+1multiplications and results in a score3 that is 

proportional to the actual score. Clearly this is more efficient than computing the score 

“from scratch” by retrieving the relevant atomic probabilities from the intermediate layer 

and composing them appropriately. 

We need to enable two kinds of access operations efficiently on these lists.  First, 

given a value x, it should be possible to perform a GetNextTID operation on lists Cx and 

Gx in constant time, i.e., the tuple-ids in the lists should be efficiently retrievable one-by-

one in order of decreasing score. This corresponds to the sorted stream access of TA. 

Second, it should be possible to perform random access on the lists, i.e., given a TID, the 

corresponding score (CondScore or GlobScore) should be retrievable in constant time. To 

enable these operations efficiently, we materialize these lists as database tables – all the 

conditional lists are maintained in one table called CondList (with columns {AttName, 

AttVal, TID, CondScore}) while all the global lists are maintained in another table called 

GlobList (with columns {AttName, AttVal, TID, GlobScore}).  The table have composite 

B+ tree indices on (AttName, AttVal, CondScore) and (AttName, AttVal, GlobScore) 

respectively. This enables efficient performance of both access operations. Further details 

of how these data structures and their access methods are used in query processing are 

discussed in Section 5.3. 

Presence of Functional Dependencies: If we consider functional dependencies, then the 

content of the conditional and global lists is changed as follows. 

⎪
⎩
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where }:,|{' ijji AAFDAAAAA →∈¬∃∈= and t′ is the subset of the attribute 

values of t that belong to A′. 

                                                           
3 This score is proportional, but not equal, to the actual score because it contains extra factors of the form 

),|(),|( DzxpWzxp  where z∈X. However, these extra factors are common to all selected tuples, hence 
the rank order is unchanged.  
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Figure 3:  The List Merge Algorithm 

 

 

List Merge Algorithm 
Input:  Query, data table, global and conditional lists 
Output:  top-k tuples 
 
Let Gxb be the shortest list among Gx1,…,Gxs 
Let B ={} be a buffer that can hold K tuples ordered by score 
Let T be an array of size s+1 storing the last score from each list 
Initialize B to empty 
REPEAT 
   FOR EACH list L in Cx1,…,Cxs, and Gxb DO 

TID  = GetNextTID(L) 
Update T with score of TID in L 
Get score of TID from other lists via random access 
IF all lists contain TID THEN 
    Compute Score(TID) by multiplying retrieved scores 

      Insert <TID, Score(TID)> in the correct position in B 
 END IF 

   END FOR  

UNTIL ∏
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RETURN B 

Index Module 
Input: Data table, atomic probabilities tables 
Output:  Conditional and global lists 
 
FOR EACH distinct value x of database DO 
  Cx = Gx  = {} 
  FOR EACH tuple t containing x with tuple-id = TID DO 

∏
∈

=
tz Dzxp

WzxpCondScore
),|(
),|(  

Add <TID, CondScore> to Cx 

∏
∈

=
tz Dzp

WzpGlobScore
)|(
)|(  

Add <TID, GlobScore> to Gx 
  END FOR 
  Sort Cx and Gx  by decreasing CondScore and GlobScore resp. 
END FOR 

Figure 2:  The Index Module  
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5.3 Query Processing  

In this subsection we describe the query processing component. The naïve Scan 

algorithm has already been described in Section 5.2, so our focus here is on the alternate 

List Merge algorithm (see Figure 3). This is an adaptation of TA, whose efficiency 

crucially depends on the data structures pre-computed by the Index Module. 

The List Merge algorithm operates as follows. Given a query Q specifying conditions 

for a set X = {x1,..,xs}of attributes, we execute TA on the following s+1 lists: Cx1,…,Cxs, 

and Gxb, where Gxb is the shortest list among Gx1,…,Gxs (in principle, any list from 

Gx1,…,Gxs would do, but the shortest list is likely to be more efficient). During each 

iteration, the TID with the next largest score is retrieved from each list using sorted 

access. Its score in every other list is retrieved via random access, and all these retrieved 

scores are multiplied together, resulting in the final score of the tuple (which, as 

mentioned in Section 5.2, is proportional to the actual score derived in Equation 4). The 

termination criterion guarantees that no more GetNextTID operations will be needed on 

any of the lists. This is accomplished by maintaining an array T which contains the last 

scores read from all the lists at any point in time by GetNextTID operations. The product 

of the scores in T represents the score of the very best tuple we can hope to find in the 

data that is yet to be seen. If this value is no more than the tuple in the top-k buffer with 

the smallest score, the algorithm successfully terminates.  

Limited Available Space: So far we have assumed that there is enough space available to 

build the conditional and global lists. A simple analysis indicates that the space consumed 

by these lists is O(mn) bytes (m is the number of attributes and n the number of tuples of 

the database table). However, there may be applications where space is an expensive 

resource (e.g., when lists should preferably be held in memory and compete for that space 

or even for space in the processor cache hierarchy). We show that in such cases, we can 

store only a subset of the lists at pre-processing time, at the expense of an increase in the 

query processing time.  

Determining which lists to retain/omit at pre-processing time may be accomplished by 

analyzing the workload. A simple solution is to store the conditional lists Cx and the 

corresponding global lists Gx only for those attribute values x that occur most frequently 

in the workload. At query time, since the lists of some of the specified attributes may be 

missing, the intuitive idea is to probe the intermediate knowledge representation layer 

(where the “relatively raw” data is maintained, i.e., the atomic probabilities) and directly 

compute the missing information.  More specifically, we use a modification of TA 
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described in [BRUNO, N., GRAVANO, L., AND MARIAN, A. 2002], where not all 

sources have sorted stream access.  

5.4 Evaluating IN and Range Queries 

As mentioned in Section 4.4.1, executing IN queries is more involved because each result 

tuple has possibly different specified values. This makes the application of List Merge 

algorithm more challenging, since the Scan algorithm computes the score of each result 

tuple from the information in this intermediate layer. In particular, List Merge is 

complicated in two ways:  

(a) We cannot use a single conditional list for a specified attribute with an IN 

condition, since a single conditional list only contains tuples containing a single 

attribute values. For example, for the query “City IN (Redmond, Bellevue)” we 

must merge the conditional lists CRedmond and CBellevue.  

(b) More seriously, we can no longer use a single conditional Cx list for a specified 

attribute Xi (with or without an IN condition), if there is another specified attribute 

Xj with an IN condition. The reason is that the product ∏
∈tz Dzxp

Wzxp
),|(
),|(

 stored in 

CX (x is an attribute value for attribute Xi) spans across all attribute values of t and 

not only across the unspecified attribute values Y as required by Equation 8. This 

was not a problem for the case of point queries (Equations 4 and 5) because the 

factors  
),|(
),|(

Dzxp
Wzxp

 where z∈X of the above product are common for all result-

tuples and hence the scores are multiplied by a common constant. On the other 

hand, if there is an attribute Xj with IN condition, then the factor 
),|(
),|(

Dzxp
Wzxp

, 

where z  is an attribute value for Xj, is not common and hence cannot be ignored. 

 

To overcome these challenges, we split each IN query to a set of point queries, which 

are evaluated as usual and then their results are merged. In particular, suppose we have 

the IN query Q: “X1 IN (x1,1 … x1,r1) and … and Xs IN (xs,1 … xs,rs)”. First we split Q into 

r1⋅r2⋅…⋅rs point queries, one for each combination of selecting a single value from each 

specified attribute. Then, these point queries are evaluated separately and their results 

(along with their scores) are merged. To see that such a splitting approach yields the 

correct results, note that the first (global) part of the ranking function in Equation 8 is the 
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same for both the point and the IN query and is equal to the scores in the Global Lists. 

The conditional part of Equation 8 only depends on the values of the tuple t and the set of 

specified attributes but not on the particular conditions of the query. Hence, the point 

queries will assign the same scores as the IN query. Finally, it should be clear that the 

same set of tuples is returned as results in both cases.   

The splitting method is efficient only if a relatively small number of point queries 

results from the split, that is, if r1⋅r2⋅…⋅rs is small. The key advantage of this approach is 

that no additional conditional lists need to be created to support IN queries. An alternate 

approach described next is preferable when the IN conditions frequently involve the same 

small set of attributes. We illustrate this idea through an example. Suppose queries 

specifying IN condition only on the City attribute are popular. Then, we create a new 

conditional list City
xC ¬  for every attribute value x not in City attribute, using the 

following formula: ∏
−∈

=
}.{ ),|(

),|(
Cityttz Dzxp

WzxpCondScore and use these 

conditional lists whenever a query with an IN condition only on City is submitted. 

Finally, note that range queries - i.e., queries with ranges on numeric attributes - 

may be evaluated using techniques similar to queries with IN conditions. For example, if 

a condition such as ‘A BETWEEN (x1, x2)’ is specified, then this condition is discretized 

into an IN condition by replacing the range with buckets from the pre-computed 

histogram p(x | W) that overlap with the range. In case the range only partially overlaps 

with the leading/trailing buckets, the retrieved tuples that do not satisfy the query 

condition are discarded in a final filtering phase.  

 
6. EXPERIMENTS 

In this section we report on the results of an experimental evaluation of our ranking 

method as well as some of the competitors. We evaluated both the quality of the rankings 

obtained, as well as the performance of the various approaches. We mention at the outset 

that preparing an experimental setup for testing ranking quality was extremely 

challenging, as unlike IR, there are no standard benchmarks available, and we had to 

conduct user studies to evaluate the rankings produced by the various algorithms.  

For our evaluation, we use real datasets from two different domains. The first domain 

was the MSN HomeAdvisor database (http://houseandhome.msn.com/), from which we 

prepared a table of homes for sale in the US, with a mix of categorical as well as numeric 

attributes such as Price, Year, City, Bedrooms, Bathrooms, Sqft, Garage, etc. The original 
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database table also had a text column called Remarks, which contained descriptive 

information about the home. From this column, we extracted additional Boolean 

attributes such as Fireplace, View, Pool, etc. To evaluate the role of the size of the 

database, we also performed experiments on a subset of the HomeAdvisor database, 

consisting only of homes sold in the Seattle area.  

The second domain was the Internet Movie Database (http://www.imdb.com), from 

which we prepared a table of movies, with attributes such as Title, Year, Genre, Director, 

FirstActor, SecondActor, Certificate, Sound, Color, etc. We first selected a set of movies 

by the 30 most prolific actors for our experiments. From this we removed the 250 most 

well-known movies, as we did not wish our users to be biased with information they 

already might know about these movies, especially information that is not captured by the 

attributes that we had selected for our experiments. 

The sizes of the various (single-table) datasets used in our experiments are shown in 

Figure 4. The quality experiments were conducted on the Seattle Homes and Movies 

tables, while the performance experiments were conducted on the Seattle Homes and the 

US Homes tables – we omitted performance experiments on the Movies table on account 

of its small size. We used Microsoft SQL Server 2000 RDBMS on a P4 2.8-GHz PC with 

1 GB of RAM for our experiments. We implemented all algorithms in C#, and connected 

to the RDBMS through DAO. We created single-attribute indices on all table attributes, 

to be used during the selection phase of the Scan algorithm. Note that these indices are 

not used by the List Merge algorithm. 

 

Table NumTuples Database Size (MB) 

Seattle Homes  17463 1.936 

US Homes 1380762 140.432 

Movies 1446 Less than 1 

Figure 4: Sizes of Datasets 

6.1 Quality Experiments 

We evaluated the quality of three different ranking methods: (a) our ranking method, 

henceforth referred to as Conditional, (b) the ranking method described in [AGRAWAL, 

S., CHAUDHURI, S., DAS, G., AND GIONIS, A. 2003], henceforth known as Global, 

and (c) a baseline Random algorithm, which simply ranks and returns the top-k tuples in 
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arbitrary order. This evaluation was accomplished using surveys involving 14 employees 

of Microsoft Research.  

For the Seattle Homes table, we first created several different profiles of home buyers, 

e.g., young dual-income couples, singles, middle-class family who like to live in the 

suburbs, rich retirees, etc. Then, we collected a workload from our users by requesting 

them to behave like these home buyers and  post queries against the database - e.g., a 

middle-class homebuyer with children looking for a suburban home would post a typical 

query such as “Bedrooms=4 and Price=Moderate and SchoolDistrict=Excellent”.  We 

collected several hundred queries by this process, each typically specifying 2-4 attributes. 

We then trained our ranking algorithm on this workload.  

We prepared a similar experimental setup for the Movies table. We first created 

several different profiles of moviegoers, e.g., teenage males wishing to see action 

thrillers, people interested in comedies from the 80s, etc. We disallowed users from 

specifying the movie title in the queries, as the title is a key of the table. As with homes, 

here too we collected several hundred workload queries, and trained our ranking 

algorithm on this workload. 

We first describe a few sample results informally, and then present a more formal 

evaluation of our rankings.  

6.1.1 Examples of Ranking Results 

For the Seattle Homes dataset, both Conditional as well as Global produced rankings that 

were intuitive and reasonable. There were interesting examples where Conditional 

produced rankings that were superior to Global. For example, for a query with condition 

“City=Seattle and Bedroom=1”, Conditional ranked condos with garages the highest. 

Intuitively, this is because private parking in downtown is usually very scarce, and 

condos with garages are highly sought after. However, Global was unable to recognize 

the importance of garages for this class of homebuyers, because most users (i.e., over the 

entire workload) do not explicitly request for garages since most homes have garages.  As 

another example, for a query such as “Bedrooms=4 and City=Kirkland and 

Price=Expensive”, Conditional ranked homes with waterfront views the highest, whereas 

Global ranked homes in good school districts the highest. This is as expected, because for 

very rich homebuyers a waterfront view is perhaps a more desirable feature than a good 

school district, even though the latter may be globally more popular across all 

homebuyers. 
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Likewise, for the Movies dataset, Conditional often produced rankings that were 

superior to Global. For example, for a query such as “Year=1980s and Genre=Thriller”, 

Conditional ranked movies such as “Indiana Jones and the Temple of Doom” higher than 

“Commando”, because the workload indicated that Harrison Ford was a better known 

actor than Arnold Schwarzenegger during that era, although the latter actor was globally 

more popular over the entire workload. 

As for Random, it produced quite irrelevant results in most cases. 

6.1.2 Ranking Evaluation 

We now present a more formal evaluation of the ranking quality produced by the ranking 

algorithms. We conducted two surveys; the first compared the rankings against user 

rankings using standard precision/recall metrics, while the second was a simpler survey 

that asked users to rate which algorithm’s rankings they preferred.    

First Survey: Since requiring users to rank the entire database for each query for the first 

survey would have been extremely tedious, we used the following strategy. For each 

dataset, for each test query Qi we generated a set Hi of 30 tuples likely to contain a good 

mix of relevant and irrelevant tuples to the query. We did this by mixing the Top-10 

results of both the Conditional and Global ranking algorithms, removing ties, and adding 

a few randomly selected tuples. Finally, we presented the queries along with their 

corresponding Hi’s (with tuples randomly permuted) to each user in our study. Each 

user’s responsibility was to mark 10 tuples in Hi as most relevant to the query Qi. We 

then measured how closely the 10 tuples marked as relevant by the user (i.e., the “ground 

truth”) matched the 10 tuples returned by each algorithm.             

We used the formal Precision/Recall metrics to measure this overlap. Precision is the 

ratio of the number of retrieved tuples that are relevant, to the total number of retrieved 

tuples, while Recall is the fraction of the number of retrieved tuples that are relevant, to 

the total number of relevant tuples (see [BAEZA-YATES, R., AND RIBEIRO-NETO, B. 

1999]). In our case, the total number of relevant tuples is 10, so Precision and Recall are 

equal.  (We reiterate that this is only an artefact of our experimental setup - the “true” 

Recall can be measured only if the user was able to mark the entire dataset, which was 

unfeasible in our case). 

We experimented with several sets of queries in this survey. We first present the 

results for the following four IN/Range queries for the Seattle Homes dataset:  

Q1:  Bedrooms=4 AND City IN{Redmond, Kirkland, Bellevue}    

Q2: City IN {Redmond, Kirkland, Bellevue} AND Price BETWEEN ($700K, $1000K) 
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Q3:  Price BETWEEN ($700K, $1000K)      

Q4:  School=1 AND Price BETWEEN ($100K, $200K)   

The precision (averaged over these queries) of the different ranking methods is shown 

in Figure 5 (a). As can be seen, the quality of Conditional ranking was superior to Global, 

while Random was significantly worse than either. 

We next present our survey results for the following five point queries for the Movies 

dataset (where precision was measured as described above for the Seattle Homes dataset): 

Q1: Genre=thriller AND Certificate=PG-13 

Q2: YearMade=1980 AND Certificate=PG-13 

Q3: Certificate=G AND Sound=Mono 

Q4: Actor1=Dreyfuss, Richard 

Q5: Genre=Sci-Fi 

The results are shown in Figure 5 (b). The quality of Conditional ranking was 

superior to Global, while Random was worse than either. 
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(a) Homes dataset (b) Movies dataset 

Figure 5: Average Precision  

 

Second Survey: In addition to the above precision/recall experiments, we also conducted 

a simpler survey in which users were given the Top-5 results of the three ranking 

methods for 5 queries (different from the previous survey), and were asked to choose 

which rankings they preferred.  

We used the following IN/Range queries for the Seattle Homes dataset: 

Q1: Bedrooms=4 AND City IN (Redmond, Kirkland, Bellevue)    

Q2: City IN (Bellevue, Kirkland) AND Price BETWEEN ($700K, $1000K)   

Q3: Price BETWEEN ($500K, $700K) AND Bedrooms=4 AND Year > 1990 
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Q4: City=Seattle AND Year > 1990       

Q5: City=Seattle AND Bedrooms=2 AND Price=500K 

We also used the following point queries for the Movies dataset: 

Q1: YearMade=1980 AND Genre=Thriller 

Q2: Actor1=De Niro, Robert 

Q3: YearMade=1990 AND Genre=Thriller 

Q4: YearMade=1995 AND Genre=Comedy 

Q5: YearMade=1970 AND Genre=Western 

Figure 6 shows the percent of users that prefer the results of each algorithm: 
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(a) Homes dataset (b) Movies dataset 

Figure 6: Percent of users preferring each algorithm  

The results of the above experiments show that Conditional generally produces 

rankings of higher quality compared to Global, especially for the Seattle Homes dataset. 

While these experiments indicate that our ranking approach has promise, we caution that 

much larger-scale user studies are necessary to conclusively establish findings of this 

nature. 

6.2 Performance Experiments 

In this subsection we report on experiments that compared the performance of the various 

implementations of the Conditional algorithm: List Merge, its space-saving variants, and 

Scan. We do not report on the corresponding implementations of Global as they had 

similar performance. We used the Seattle Homes and US Homes datasets for these 

experiments. We report performance results of our algorithms on point queries - we do 

not report results for IN/range queries, as each such query are split into a collection of 

point queries whose results are then merged in a straightforward manner as described in 

Section 5.4. 
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Preprocessing Time and Space: Since the preprocessing performance of the List Merge 

algorithm is dominated by the Index Module, we omit reporting results for the Atomic 

Probabilities Module. Figure 7 shows the space and time required to build all the 

conditional and global lists. The time and space scale linearly with table size, which is 

expected. Notice that the space consumed by the lists is three times the size of the data 

table. While this may seemingly appear excessive, note that a fair comparison would be 

against a Scan algorithm that has B+ tree indices built on all attributes (so that all kinds 

of selections can be performed efficiently). In such a case, the total space consumed by 

these B+ tree indices would rival the space consumed by these lists.  

 

Datasets  Lists Building Time Lists Size  

Seattle  Homes 1500 msec 7.8 MB 

US Homes 80000 msec 457.6 MB 

Figure 7: Time and Space Consumed by Index Module 

If space is a critical issue, we can adopt the space saving variation of the List Merge 

algorithm as discussed in Section 5.3. We report on this next.  

Space Saving Variations: In this experiment we show how the performance of the 

algorithms changes when only a subset of the set of global and conditional lists are 

stored. Recall from Section 5.3 that we only retain lists for the values of the frequently 

occurring attributes in the workload. For this experiment we consider Top-10 queries 

with selection conditions that specify two attributes (queries generated by randomly 

picking a pair of attributes and a domain value for each attribute), and measure their 

execution times. The compared algorithms are: 

• LM: List Merge with all lists available  

• LMM: List Merge where lists for one of the two specified attributes are missing, 

halving space 

• Scan  

Figure 8 shows the execution times of the queries over the Seattle Homes database as 

a function of the total number of tuples that satisfy the selection condition. The times are 

averaged over 10 queries.  

We first note that LM is extremely fast when compared to the other algorithms (its 

times are less than one second for each run, consequently its graph is almost along the x-

axis). This is to be expected as most of the computations have been accomplished at pre-
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processing time. The performance of Scan degrades when the total number of selected 

tuples increases, because the scores of more tuples need to be calculated at runtime. In 

contrast, the performance of LM and LMM actually improves slightly. This interesting 

phenomenon occurs because if more tuples satisfy the selection condition, smaller 

prefixes of the lists need to be read and merged before the stopping condition is reached.   
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Figure 8: Execution Times of Different Variations of List Merge and Scan for Seattle Homes Dataset 

Thus, List Merge and its variations are preferable if the number of tuples satisfying 

the query condition is large (which is exactly the situation we are interested in, i.e., the 

Many-Answers problem). This conclusion was reconfirmed when we repeated the 

experiment with LM and Scan on the much larger US Homes dataset with queries 

satisfying many more tuples (see Figure 9). 

 

NumSelected Tuples  LM Time (msec)  Scan Time (msec)  

350 800 6515 

2000 700 39234 

5000 600 115282 

30000 550 566516 

80000 500 3806531 

  
Figure 9: Execution Times of List Merge for US Homes Dataset 

 

Varying Number of Specified Attributes: Figure 10 shows how the query processing 

performance of the algorithms varies with the number of attributes specified in the 
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selection conditions of the queries over the US Homes database (the results for the other 

databases are similar). The times are averaged over 10 Top-10 queries. Note that the 

times increase sharply for both algorithms with the number of specified attributes. The 

LM algorithm becomes slower because more lists need to be merged, which delays the 

termination condition. The Scan algorithm becomes slower because the selection time 

increases with the number of specified attributes. This experiment demonstrates the 

criticality of keeping the number of sorted streams small in our adaptation of TA. 
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Varying K in top-k: This experiment shows how the performance of the algorithms 

decreases with the number K of requested results. The graphs are shown in Figures 11(a) 

and 11(b) for the Seattle and the US databases respectively. For both datasets we selected 

queries with 2 attributes which return about 500 results. Notice that the performance of 

Scan is not affected by K, since it is not a top-k algorithm. In contrast, LM degrades with 

K because a longer prefix of the lists needs to be processed. Also notice that Scan takes 

about the same time for both datasets because the number of the results returned by the 

selection is the same (500). 
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(a) Seattle homes dataset (b) US homes dataset 

Figure 10. Varying Number of Specified Attributes for US Homes Dataset 
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Figure 11: Varying Number K of Requested Results  

 

7. CONCLUSIONS AND FUTURE WORK 

We proposed a completely automated approach for the Many-Answers Problem which 

leverages data and workload statistics and correlations. Our ranking functions are based 

upon the probabilistic IR models, judiciously adapted for structured data. We presented 

results of preliminary experiments which demonstrate the efficiency as well as the quality 

of our ranking system. 

Our work brings forth several intriguing open problems. For example, many relational 

databases contain text columns in addition to numeric and categorical columns. It would 

be interesting to see whether correlations between text and non-text data can be leveraged 

in a meaningful way for ranking. Secondly, rather than just query strings present in the 

workload, can more comprehensive user interactions be leveraged in ranking algorithms– 

e.g., tracking the actual tuples that the users selected in response to query results? Finally, 

comprehensive quality benchmarks for database ranking need to be established. This 

would provide future researchers with a more unified and systematic basis for evaluating 

their retrieval algorithms.  
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