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1 Introduction

Estimation of a reservoir’s production potential, well placement and field devel-
opment depends largely on accurate modeling of the existing fracture networks.
However, there is always significant uncertainty associated with the prediction of
spatial location and connectivity of fracture networks due to lack of sufficient data
to model them. Therefore, stochastic characterization of these fractured reservoirs
becomes necessary.

Two-point statistics-based algorithms are inadequate for describing complex spa-
tial patterns such as branching and termination of fractures described by the joint
variability at multiple locations at a time [7]. Constraining the models to multiple
point statistics (MPS) is necessary for producing maps that are able to accurately
predict termination and intersection of the fractures without having to separate the
fracture sets on the basis of their chronological evolution that may be difficult due to
sparse data [5, 7]. In general, MPS is fast and robust, and superior to the traditional
two point statistics while realistically reproducing the complex curvilinear geologic
structures as well as integrating different data sets [6]. Conventional MPS algorithms
depend on a well-defined spatial template to capture multi-scale features. Gridded
domains are inefficient and tend to interrupt the spatial connectivity of the fractures.
The ideas of non-gridded TIs, templates and simulated images put forth by Erzeybek
(2012) are extended in a fast, robust and easily scalable MPS algorithm that utilizes
self-adjusting and automatic template selection based on the configuration of con-
ditioning data around the simulated node [1]. At the initial stages of modeling, the
template identifies the coarse scale pattern and as the modeling progresses, patterns
over fine and finer scales are reproduced.
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Geomechanical modeling of fractures is another widely popular approach to map
fracture networks constrained to the physics of the reservoir such as far field stress
conditions, presence of faults and other geological structures and local stress effects
of nearby fractures. However, development of full reservoir scale physics model
involving material heterogeneities beyond a length scale of 1km involves extensive
computation costs and time. It is also imperative that the uncertainties in reservoir
parameters are accounted for in the prediction of reservoir performance [5]. Inferring
geomechanical rules for fracture propagation in a probabilistic sense is necessary to
represent the uncertainty. This is achieved usingMachine Learning (ML) approaches
trained on high-fidelity small scale FDEM models that predict fracture propagation
pathways given a set of physics-based parameters [2].

A statistics based approach does not consider the physical processes guiding frac-
ture propagation and a geomechanics based approach may not honor the fracture
statistics observed from other auxiliary sources such as outcrop images. Therefore,
amalgamation of the MPS and geomechanics based approaches is ideal for produc-
ing fracture networks, constrained to both reservoir physics and reservoir statistics.
This research presents a paradigm for integration of information obtained from a
stochastic simulation algorithm and geomechanics based algorithm using the Tau
model proposed by Journel [4] that utilizes the concept of permanence of ratios.

2 MPS Algorithm in Classification Framework

A new and improved stochastic simulation technique based on MPS presented by
Chandna (2019) is shown to improve upon the shortcomings of the classical MPS
algorithms [1]. It is able to generate the desired fracture patterns without relying on
any grid, either for the template or simulated image. This algorithm employs self-
manipulating templates to include the specified maximum number of nodes in the
vicinity of the simulation node, thereby eliminating the need to predefine templates
based on visual observation and initial analysis of the training image (TI) that gen-
erally fail to capture either the small or the large-scale features unless multi-grid
simulations are performed. It also circumvents calculating multiple point histograms
since the algorithm operates on the principle of direct sampling [3]. In direct sam-
pling, the pattern identified using the data configuration around the simulation node
(rather than using a fixed spatial template) is searched in the TI and corresponding
to the first instance of a match, the outcome at the simulation location in the TI is
directly extracted and applied to the simulation. This results in more computational
efficiency as the entire TI need not be searched for the calculation of the number of
occurrences of the desired pattern.

The ML based geomechanical simulation algorithm outputs probabilities of the
propagation of a fracture tip in each of 8 angles classes formulated by dividing the
circular region around the fracture tip in 8 equal sectors of angle π/4 centered at the
fracture tip (Fig. 1a). But the MPS algorithm presented by Chandna [1] is regression
based and outputs discrete angles of propagation for each simulated fracture tip. For
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(a) A propagating fracture (b) An existing fracture in a TI showing
conjugate angle classes (for example class
0 and 4)

Fig. 1 Angle classes 0–7, around a fracture denoted by a thick black line [2]

integrating the probability obtained from geomechanical modeling and that from
MPS simulation, multiple angles of propagation are simulated for the same fracture
tip, which can be binned together in these angle classes and their counts can be used to
estimate the probability of simulation of each angle class. The firstmodificationmade
to the algorithm constitutes outputting probabilities of angle classes of propagation
for the node being simulated (P(θi )where i can range from 0 to 7) instead of discrete
angles. Since, the MPS algorithm is based on direct sampling of the propagation
angle from the TI, one option is to sample the same TI multiple times using the
same template pattern to obtainmultiple propagation angle classes. Each propagation
angle could be different due to random order of simulation of initial flaws. These
propagation angles can then be used to calculate the probability of observing a
particular angle class. This can be represented as:

P(θi ) = Number of times θi i s sampled f rom the T I

T otal number of T I samplings
(1)

A better option would be to sample multiple TIs using the same template to account
for the uncertainty in the TI itself i.e.:

P(θi ) = Number of T I s f rom which θi i s sampled

Total number of T I s
(2)

The second approach is adopted in this research.
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3 Combination of Probabilities

The combination of contributions of data events B and C from different sources to
predict the probability of a desired event A is one of the most common issues faced in
data sciences and most importantly in earth sciences. This conditional probability of
an unknown event A occurring given two data events B and C from different sources
can be expressed as P(A|B,C). Commonly, this conditional probability is estimated
assuming some level of independence of the data events B and C. However, such an
assumption leads to non-robust algorithms with questionable prediction accuracy.
Journel (2002) proposed an alternate probability integration paradigm based on the
permanence of ratios which assumes that the relative contribution of any one data
event to the occurrence of an outcome is independent of the relative contributions of
all other data events [4]. This integration algorithm is used in the current research
as a means to combine probabilities of simulated angle classes generated from the
two sources: the MPS algorithm and the geomechanical simulation algorithm. The
underlying assumptions of the probability integration algorithm are that the prior
probability of the outcome data event (P(A)) and the probability of the outcome
data event given the source data event for each of the source data event, (P(A|B)

and P(A|C)) can be evaluated. The permanence of ratio hypothesis breaks down the
information from each source but recombines these elemental probabilities using a
tau (τ ) parameter(s). The tau parameters actually explore the redundancy between
different data.

For every step of propagation of a fracture tip, probabilities of propagation along
all angle classes 0 to 7 are obtained from two different sources: MPS based algorithm
(Sect. 3) and geomechanics based algorithm (Sect. 2). Let P(θ) be the probability of
the data event: simulation of angle class θi where i ranges from 0 to 7. Let P(θi |B) be
the probability of simulation of angle class θi obtained from the MPS simulation and
P(θi |C) be the probability of angle class θi obtained from geomechanical simulation.
The desired probability of occurrence of angle class θi given the probabilities of its
joint occurrence from theMPS and geomechanical simulations, P(θi |B,C) can then
be evaluated using the concept of permanence of ratios:

P(θ |B,C) = 1

1 + b( c
a )

τ
(3)

a = 1 − P(θ)

P(θ)
= P(θ̃)

P(θ)
∈ [0,+∞] (4)

b = 1 − P(θ |B)

P(θ |B)
= P(θ̃ |B)

P(θ |B)
∈ [0,+∞] (5)

c = 1 − P(θ |C)

P(θ |C)
= P(θ̃ |C)

P(θ |C)
∈ [0,+∞] (6)
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(a) Simulated image using geomechanics
algorithm

(b) Simulated image using MPS algo-
rithm

(c) Simulated image using integration al-
gorithm

Fig. 2 Comparison of final simulated images using the geomechanics, MPS and integration algo-
rithms. Blue circles indicate highlighted areas of interest.

The contribution of data event C is manipulated and tuned using the τ parameter.
For τ = 0, the contribution of data event C is completely ignored and the contribution
is increased or decreased depending on if τ > 1 or < 1 respectively.

For demonstrating themodel for integration of probabilities obtained fromMPS in
classification framework and reduced order machine learning based geomechanical
simulation model, for propagation of every node, the integrated probability distribu-
tion over the angle classes is obtained and the node is propagated in the direction of
the angle class with maximum probability of occurrence. The prior uncertainty P(θ)

that results in the ratio a over angle class θi is assumed to be uniform and is updated
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based on the incremental contribution from the MPS and geomechanical simulation
algorithm.

Figure2 shows a comparison of the final simulated fracture maps generated using
the geomechanics, the MPS and the integration algorithm. τ is assumed to be 1 for
this simulation, implying that the relative contributions of the MPS and geomechan-
ics algorithm to the knowledge of final predicted propagation angle, are assumed to
be independent of each other. Few areas are highlighted by blue circles that show
the effect of the integration algorithm on the simulated fracture maps after com-
bining information from the two individual sources: MPS and geomechanics. Most
of these correspond to hooking like pattern of the fractures. In three of the high-
lighted areas, statistics derived from the TIs by the MPS algorithm facilitate hooking
of the fractures. However, due to the stress regimes developed around these frac-
tures, the geomechanics algorithm predicts propagation of these fractures without
any hooking with a high probability. After combining the probabilities over all pos-
sible angle classes that can be simulated, the integration algorithm simulated an
angle propagation class that did not favor hooking of the fractures. Similarly, in one
of the highlighted areas, hooking is favored by the integration algorithm due to a
stress regime caused by possibly significant fracture interactions. In general, due to
the coarse angle classes used in geomechanical simulation, a number of kinks are
observed in geomechanically simulated fractures. These kinks arise as fractures tend
to merge or diverge from other fractures according to the progressively changing
stress states around propagating fracture tips. However, if such phenomena is not
observed in the TIs, the MPS algorithm does not simulate these features. It then
depends on the incremental contribution of the MPS and the geomechanical infor-
mation to the knowledge of the final predicted propagation angle class to determine
if such features would be observed in the final simulated images. In this case, such
features are not simulated by the integration algorithm due to lower contribution of
the geomechanics algorithm towards generation of propagation angle classes that
may describe the development of these features.
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