
1

Probabilistic Integrity for Low-Overhead Secure Memories
Gururaj Saileshwar (Student) and Moinuddin K. Qureshi (Advisor)

Georgia Institute of Technology

F

1 INTRODUCTION AND MOTIVATION

Main-memories are prone to attacks [1], [4], [12] that allow
an adversary to take control of the system by reading
and tampering memory-contents. Commercial solutions like
Intel’s Software Guard Extensions (SGX) [3] and AMD’s Se-
cure Memory Encryption (SME) [5] attempt to secure mem-
ory against attacks. However, providing security requires
accessing metadata, resulting in storage and performance
overheads. In navigating this performance-security trade-
off, SGX and SME end up at different ends of the spectrum
as shown in Fig 1.

Probabilistic	 Integrity-Tree
(Detects	~99%	 replay-attacks	 in	7	attempts,	

14%	speedup	 vs	 state-of-the-art)

Pe
rf
or
m
an
ce

Security

AMD-SME
(no-integrity)

Intel-SGX
(Detects	~100%	 replay-attacks;	 poor	 performance)

Fig. 1. Performance vs Security Trade-off in Secure-Memory Designs.

To avoid performance overheads, AMD-SME only pro-
vides encryption for the entire memory, which has been
shown broken under fault-injection attacks [2]. On the other
hand, Intel-SGX provides encryption, integrity-check, and
replay-attack protection and is robust against such attacks,
but incurs considerable performance overhead [6], [9] and
hence only provides 96MB of secure memory. In this work,
we explore a compromise that provides a probabilistic
guarantee of memory-integrity for the entire memory with
minimal performance impact.

All existing works detect a replay-attack within single-
cacheline replay. However, for majority of data in memory,
it may be sufficient to detect replay-attempts probabilisti-
cally, especially when an attack requires multiple attempts
before being successful (e.g. fault injection attack on en-
crypted memory [2] has a probability of success between
10-50%). Such an attack can be thwarted if any one of
the attempts is detected. Therefore, in this work, we ex-
plore the performance-benefits achievable with probabilis-
tic detection of replay-attacks. We describe a Probabilistic
Integrity Tree (ProbTree) that detects a replay-attack with
99% probability within replay of 7 cachelines, and show
it improves performance by 14% while requiring 16x less
storage compared to state-of-the-art VAULT [10].

2 BACKGROUND: COMPACT INTEGRITY-TREES

State-of-the-art integrity-trees are constructed over the en-
cryption counter footprint, to prevent the replay of encryp-
tion counters and subsequently replay of the {data, counter}
tuple. The tree consists of many levels, with a node at each
level containing n-entries – each entry in a node prevents
the replay of a lower-level node. Prior works have proposed
packing more entries per node (higher tree-arity or fan-in
per node) to achieve a shorter tree, with fewer levels that
do not fit in the on-chip cache. VAULT [10] is a tree with
variable-arity, 32-ary at the base-level and 16-ary above,
whereas MorphTree [8] is 128-ary tree. More details about
these trees may be obtained from the respective papers. In
the next section, we demonstrate a 512-ary integrity-tree.

3 KEY IDEA: PROBABILISTIC INTEGRITY-TREE

The insight behind ProbTree is an integrity-tree with 1-
bit hashes (e.g. truncated-SHA) constructed over the base
of encryption-counters (bonsai-style [7]), that allows 512-
signatures per tree-node as shown in Fig.2. This results in
a 2-level tree – level-1 signatures protecting the encryp-
tion counters have a footprint of 512KB and are stored
in-memory. Whereas level-2 signatures protecting level-1
nodes have a footprint of 1KB and are stored on-chip, safe
from replay. Level-1 is stored after encryption.

(b)	Probabalistic Integrity-Tree	(512-ary	tree)(a)	VAULT	(16/32-ary	tree)

Counter	Cacheline

512	x	1-bit	signatures	
(encrypted)

2GB	Counters	for	a	128GB	Memory

(Cached	On-Chip)
(8KB)

Tree	Level-1
(4MB)

512-arity

Tree	Level-2

Tree	Level-1
(64MB)

Counter	Cacheline

16-arity

Tree	Level-2
(4MB)

Hash	

Hash

32-arity

Tree	Level-3
(256KB)

16-arity

2GB	Counters	for	a	128GB	Memory

Hash

Hash

Tree	Level-4
(16KB)

16-arity

Fig. 2. For a 128GB memory, (a) VAULT has 16-32 arity, resulting in tree
size of 68MB. (b) ProbTree has 512-arity (with 512 x 1-bit hashes/tree-
node) resulting in 4MB tree-size.

Security Analysis: We assume the attacker is only capable
of taking periodic snapshots of memory and replaying
arbitrary cachelines from a past snapshot. If an attacker
replays a single counter-cacheline without changing level-
1 node (similar analysis follows for level-1 replay), the
probability of level-1 signature-mismatch on a subsequent
read is 50% (p). Subsequent n-replay-attempts causes the
cumulative probability of attack-success to drop to pn. Thus,



2

the probability of detection (1 − pn) surpasses 99% within
7 replay attempts. Between two snapshots, there may be
counter-cachelines that changed but their level-1 nodes are
unchanged. However, the probability of such an event for a
level-1 node is (1 − px), where x is sum of writes received
to its child-counter cachelines. This is small-enough if the
attacker is limited to taking snapshots sufficiently spaced
out in time.

Performance Analysis: We evaluate ProbTree using split
counters [11] for encryption (64-counters/cacheline), 64-
bit MAC-like SYNERGY [9], 128KB dedicated metadata-
cache (for 4 cores) [6], [10], 8MB Shared-LLC and 128GB
DRAM. We compare performance of our ProbTree, a 512-
ary integrity-tree against a baseline using 16-32-ary VAULT
(as shown in Fig.2), a 8-ary SGX-like Tree design, a 128-
ary MorphTree [8] and an ideal NoTree design. We assume
optimistic models for VAULT and MorphTree without any
counter-overflows. In reality, these designs would have
lower performance due to overheads of memory accesses
for servicing the overflows. We evaluate our designs with
28 memory intensive workloads from SPEC2006 and GAP.

0.90

1.00

1.09
1.14

1.22

0.80

0.90

1.00

1.10

1.20

1.30

1.40

Sp
ee
du
p

(a)	Performance

Non-Secure - 1.35

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Ex
tra

	A
cc
es
se
s	/
	D
at
a	
Ac
ce
ss

(b)	Metadata	Accesses	/	Data	Access

Encr-Counter

Tree-1

Tree-2

Tree-3

Tree-4

Tree-5

Fig. 3. (a) Performance – ProbTree has 14% speedup vs VAULT and is
within 8% of ideal-NoTree. (b) Metadata accesses per data access –
ProbTree halves it compared to VAULT.

As shown in Fig.3(a), ProbTree has 14% speedup com-
pared to VAULT and bridges two-thirds of the gap between
VAULT and ideal-NoTree. This is because the integrity-tree
traversal in ProbTree accesses one level of the integrity-tree
from memory as shown in Fig.3(b), as compared to VAULT
that accesses 3 levels. SGXTree suffers a 10% slowdown
compared to VAULT as it accesses upto 5 levels. In com-
parison, MorphTree would access 2 levels of the tree and
hence provide 9% speedup. It is important to note that the
performance difference between MorphTree and ProbTree
becomes imperceptible at smaller memory sizes (e.g. 16 GB),
where both designs have only 1-level of the tree that does
not fit in cache and requires memory accesses.

4 CONCLUSION

Current secure memory designs are at two extremes: they
provide either no replay-attack protection (AMD-SME) or
strong replay-attack protection but with significant perfor-
mance overheads (Intel-SGX). In comparison, our Probabilis-
tic Integrity-Tree provides strong detection of replay attacks
(within an attack to few lines) while significantly reducing
performance overheads. This is an initial study and we
continue to explore the performance-security trade-off.

REFERENCES

[1] BECHER, M., DORNSEIF, M., AND KLEIN, C. N. Firewire: all your
memory are belong to us. Proceedings of CanSecWest (2005).

[2] BUHREN, R., GUERON, S., NORDHOLZ, J., SEIFERT, J.-P., AND
VETTER, J. Fault attacks on encrypted general purpose compute
platforms. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy (2017), ACM, pp. 197–204.

[3] GUERON, S. A memory encryption engine suitable for general
purpose processors. Cryptology ePrint Archive, Report 2016/204,
2016. http://eprint.iacr.org/2016/204.

[4] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARKSON,
W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J., APPELBAUM,
J., AND FELTEN, E. W. Lest we remember: cold-boot attacks on
encryption keys. Communications of the ACM 52, 5 (2009), 91–98.

[5] KAPLAN, D., POWELL, J., AND WOLLER, T. Amd memory encryp-
tion. White paper.

[6] LEHMAN, T. S., HILTON, A. D., AND LEE, B. C. Poisonivy: Safe
speculation for secure memory. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (Oct 2016),
pp. 1–13.

[7] ROGERS, B., CHHABRA, S., PRVULOVIC, M., AND SOLIHIN, Y.
Using address independent seed encryption and bonsai merkle
trees to make secure processors os- and performance-friendly. In
40th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2007) (Dec 2007), pp. 183–196.

[8] SAILESHWAR, G., NAIR, P. J., RAMRAKHYANI, P., ELSASSER, W.,
JOAO, J. A., AND QURESHI, M. K. Morphable counters: Enabling
compact integrity trees for low-overhead secure memories. In Mi-
croarchitecture (MICRO), 2018 51st Annual IEEE/ACM International
Symposium on (2018).

[9] SAILESHWAR, G., NAIR, P. J., RAMRAKHYANI, P., ELSASSER, W.,
AND QURESHI, M. K. Synergy: Rethinking secure-memory design
for error-correcting memories. In High Performance Computer Archi-
tecture (HPCA), 2018 IEEE International Symposium on (2018), IEEE,
pp. 454–465.

[10] TAASSORI, M., SHAFIEE, A., AND BALASUBRAMONIAN, R. Vault:
Reducing paging overheads in sgx with efficient integrity verifi-
cation structures. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2018), ASPLOS ’18, ACM,
pp. 665–678.

[11] YAN, C., ENGLENDER, D., PRVULOVIC, M., ROGERS, B., AND
SOLIHIN, Y. Improving cost, performance, and security of memory
encryption and authentication. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture (Washington, DC,
USA, 2006), ISCA ’06, IEEE Computer Society, pp. 179–190.

[12] YITBAREK, S. F., AGA, M. T., DAS, R., AND AUSTIN, T. Cold boot
attacks are still hot: Security analysis of memory scramblers in
modern processors. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (Feb 2017), pp. 313–324.


