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1 INTRODUCTION AND MOTIVATION

Main-memories are prone to attacks [1], [4], [12] that allow
an adversary to take control of the system by reading
and tampering memory-contents. Commercial solutions like
Intel’s Software Guard Extensions (SGX) [3] and AMD’s Se-
cure Memory Encryption (SME) [5] attempt to secure mem-
ory against attacks. However, providing security requires
accessing metadata, resulting in storage and performance
overheads. In navigating this performance-security trade-
off, SGX and SME end up at different ends of the spectrum
as shown in Fig 1.
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Fig. 1. Performance vs Security Trade-off in Secure-Memory Designs.

To avoid performance overheads, AMD-SME only pro-
vides encryption for the entire memory, which has been
shown broken under fault-injection attacks [2]. On the other
hand, Intel-SGX provides encryption, integrity-check, and
replay-attack protection and is robust against such attacks,
but incurs considerable performance overhead [6], [9] and
hence only provides 96MB of secure memory. In this work,
we explore a compromise that provides a probabilistic
guarantee of memory-integrity for the entire memory with
minimal performance impact.

All existing works detect a replay-attack within single-
cacheline replay. However, for majority of data in memory,
it may be sufficient to detect replay-attempts probabilisti-
cally, especially when an attack requires multiple attempts
before being successful (e.g. fault injection attack on en-
crypted memory [2] has a probability of success between
10-50%). Such an attack can be thwarted if any one of
the attempts is detected. Therefore, in this work, we ex-
plore the performance-benefits achievable with probabilis-
tic detection of replay-attacks. We describe a Probabilistic
Integrity Tree (ProbTree) that detects a replay-attack with
99% probability within replay of 7 cachelines, and show
it improves performance by 14% while requiring 16x less
storage compared to state-of-the-art VAULT [10].

2 BACKGROUND: COMPACT INTEGRITY-TREES

State-of-the-art integrity-trees are constructed over the en-
cryption counter footprint, to prevent the replay of encryp-
tion counters and subsequently replay of the {data, counter}
tuple. The tree consists of many levels, with a node at each
level containing n-entries – each entry in a node prevents
the replay of a lower-level node. Prior works have proposed
packing more entries per node (higher tree-arity or fan-in
per node) to achieve a shorter tree, with fewer levels that
do not fit in the on-chip cache. VAULT [10] is a tree with
variable-arity, 32-ary at the base-level and 16-ary above,
whereas MorphTree [8] is 128-ary tree. More details about
these trees may be obtained from the respective papers. In
the next section, we demonstrate a 512-ary integrity-tree.

3 KEY IDEA: PROBABILISTIC INTEGRITY-TREE

The insight behind ProbTree is an integrity-tree with 1-
bit hashes (e.g. truncated-SHA) constructed over the base
of encryption-counters (bonsai-style [7]), that allows 512-
signatures per tree-node as shown in Fig.2. This results in
a 2-level tree – level-1 signatures protecting the encryp-
tion counters have a footprint of 512KB and are stored
in-memory. Whereas level-2 signatures protecting level-1
nodes have a footprint of 1KB and are stored on-chip, safe
from replay. Level-1 is stored after encryption.
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Fig. 2. For a 128GB memory, (a) VAULT has 16-32 arity, resulting in tree
size of 68MB. (b) ProbTree has 512-arity (with 512 x 1-bit hashes/tree-
node) resulting in 4MB tree-size.

Security Analysis: We assume the attacker is only capable
of taking periodic snapshots of memory and replaying
arbitrary cachelines from a past snapshot. If an attacker
replays a single counter-cacheline without changing level-
1 node (similar analysis follows for level-1 replay), the
probability of level-1 signature-mismatch on a subsequent
read is 50% (p). Subsequent n-replay-attempts causes the
cumulative probability of attack-success to drop to pn. Thus,
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the probability of detection (1 − pn) surpasses 99% within
7 replay attempts. Between two snapshots, there may be
counter-cachelines that changed but their level-1 nodes are
unchanged. However, the probability of such an event for a
level-1 node is (1 − px), where x is sum of writes received
to its child-counter cachelines. This is small-enough if the
attacker is limited to taking snapshots sufficiently spaced
out in time.

Performance Analysis: We evaluate ProbTree using split
counters [11] for encryption (64-counters/cacheline), 64-
bit MAC-like SYNERGY [9], 128KB dedicated metadata-
cache (for 4 cores) [6], [10], 8MB Shared-LLC and 128GB
DRAM. We compare performance of our ProbTree, a 512-
ary integrity-tree against a baseline using 16-32-ary VAULT
(as shown in Fig.2), a 8-ary SGX-like Tree design, a 128-
ary MorphTree [8] and an ideal NoTree design. We assume
optimistic models for VAULT and MorphTree without any
counter-overflows. In reality, these designs would have
lower performance due to overheads of memory accesses
for servicing the overflows. We evaluate our designs with
28 memory intensive workloads from SPEC2006 and GAP.
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Fig. 3. (a) Performance – ProbTree has 14% speedup vs VAULT and is
within 8% of ideal-NoTree. (b) Metadata accesses per data access –
ProbTree halves it compared to VAULT.

As shown in Fig.3(a), ProbTree has 14% speedup com-
pared to VAULT and bridges two-thirds of the gap between
VAULT and ideal-NoTree. This is because the integrity-tree
traversal in ProbTree accesses one level of the integrity-tree
from memory as shown in Fig.3(b), as compared to VAULT
that accesses 3 levels. SGXTree suffers a 10% slowdown
compared to VAULT as it accesses upto 5 levels. In com-
parison, MorphTree would access 2 levels of the tree and
hence provide 9% speedup. It is important to note that the
performance difference between MorphTree and ProbTree
becomes imperceptible at smaller memory sizes (e.g. 16 GB),
where both designs have only 1-level of the tree that does
not fit in cache and requires memory accesses.

4 CONCLUSION

Current secure memory designs are at two extremes: they
provide either no replay-attack protection (AMD-SME) or
strong replay-attack protection but with significant perfor-
mance overheads (Intel-SGX). In comparison, our Probabilis-
tic Integrity-Tree provides strong detection of replay attacks
(within an attack to few lines) while significantly reducing
performance overheads. This is an initial study and we
continue to explore the performance-security trade-off.
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