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Abstract— In this paper, we present a family of probabilistic latter as scaled histograms rather than vectors. Spebjfioad
latent variable models that can be used for analysis of non- show that the algorithms used for estimating the parameters
negative data. We show that there are strong ties between ot 5 |atent class model are numerically equivalent to the
non-negative matrix factorization and this family, and provide
some straightforward extensions which can help in dealing update ru!es for one form Of_NMF' We also prop9§e alternate
with shift-invariances, higher order decompositions and parsity  latent variable models for histogram decomposition that ar
constraints. We argue through these extensions that the usef similar to those commonly employed in the analysis of text,
this approach allows for rapid development of complex stasitical to decompose point data and show that these too are identical
models for analyzing non-negative data. to the update rules for NMF. We will generically refer to the

Index Terms—Non-Negative Matrix Factorization, Latent application of histogram-decomposition techniques tonpoi

Variable Models data as probabilistic decompositidns

Beyond simple equivalences to NMF, the probabilistic de-

I. INTRODUCTION " .
) ) ~composition approach has several advantages, as we explain
Techniques to analyze non-negative data are required\gn-negative PCA/ICA and NMF are primarily intended for

several applications such as analysis of images, text @rpgatrix-like two-dimensional characterizations of datahe t
and audio spectra to name a few. A variety of techniquggalysis is obtained for matrices that are formed by laying
have been proposed for the analysis of such data, suchqggs vectors side-by-side. They do not naturally extend to
non-negative PCA [1], non-negative ICA [2], non-negativgigher-dimensional tensorial representations, this hesnb
matrix factorization (NMF) [3] etc. The goal of all of thesepften accomplished by implicit unwrapping the tensors into
techniques is to explain the given non-negative data asyanatrix. However, the probabilistic decomposition natyra

guaranteed non-negative linear combination of a set of NQ&ktends from matrices to tensors of arbitrary dimensions.
negative “bases” that represent realistic “building bkjctor

the data. Of these, probably the most developed is nom’nega} It |sdof;en deswgdﬂzo. contrpl tt_he f°rsm or frt]ructure gf thef
matrix factorization, with much recent research devoteth& earned bases an €Il projections. since the procecure 1o

topic [4], [5], [6]. All of these approaches view each dat!aeslr_n'tng (;he bases_chat rgprgsent tthel data 'tShSt?t'S“mé t%
vector as a point in aV-dimensional space and attempt t tistic decomposition aftords control over the torm o

identify the bases that best explain the distribution ofdag ca/"€d bases through the impositionagfriori probabilties,

within this space. For the sake of clarity, we will refer taala as we will show. Constraints such as sparsity can also be

that represent vectors in any spacepast data. incorporated through these priors.

A somewhat related, but separate topic that has garneredVe also describe extensions to the basic probabilistic de-
much research over the years is the analysis of histogra@®nposition framework that permits shift-invariance game
of multi-variate data. Histogram data represent the coahts or more of the dimensions (of the data tensor) that can afstra
occurrences of a set of events in a given data set. The aim heggvolutively combined bases from the data.

is to identify the statistical factors that affect the ocemce  The rest of the paper is organised as follows. Since, the
of data through the analysis of these counts and approprigfgbabilistic decomposition approach we promote in this pa
modeling of the distributions underlying them. Such anialysper is most analogous to Non-negative Matrix Factorization
is often required in the analysis of text, behavioral patestc. (NMF) among all techniques that analyse non-negative point
A variety of techniques, such as probabilistic latent sefftandata, we begin with a brief discussion of NMF. We present
analysis [7], latent Dirichlet allocation [8], etc. and ithe the family of latent variable models in Section 1l that wellwi
derivatives have lately become quite popular. Most, if tiladfa  employ for probabilistic decompositions. We present tenso
them can be related to a class of probabilistic models, knoyBneralizations in Section IV-A and convolutive factotiaas

in the behavioral sciences communitylztent Class Models i Section IV-B. In Section IV-C we discuss extensions such
[9], [10], [11], that attempt to explain the observed histigs as incorporation of sparsity and in Section IV-D we present

as having been drawn from a set of latent classes, each vifpects of geometric interpretation of these decompasitio
its own distribution. For clarity, we will refer to histogres
and collections of histograms #sstogram data.
In this paper, we argue that techniques meant for analysis of _ _ e
hist data can be equallv effectively emploved for o This must not be confused with approaches that model thetdison of
IS Qgram a - qu ’ y vely p .y d. BCO the set of vectors. In our approach the vectors themselhehistograms, or,
position of non-negative point data as well, by interprgtine alternately, scaled probability distributions.
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Non-negative Matrix Factorization was introduced by [3] | P@,22) | = = Dnéaq] N
to find non-negative parts-based representation of datenGi P(zs)2)
an M x N matrix V. where each column corresponds to a
data vector, NMF approximates it as a product of non-negati@g' L
matricesW andH, i.e. V ~ WH, whereW is aM x K
matrix andH is a K x N matrix. The above approximation
can be written column by column as, ~ Wh,,, wherev,, A, Symmetric Factorization
and h,, are then-th columns ofV and H respectively. In
other words, each data vectey, is approximated by a linear
combination of the columns oW, weighted by the entries
of h,,. The columns ofW can be thought of akasis vectors
that, when combined with appropriatéxture weights (entries
of the columns oftl), provide a linear approximation d¥.

The optimal choice of matrice8Vv and H are defined by
those non-negative matrices that minimize the reconstrct
error betweenV and WH. Different error functions have
been proposed which lead to different update rules (eg, [lgL
[3]). Shown below are multiplicative update rules derived b

Latent variable model of equation (2) as matrix fezadion.

Latent class models enable one to attribute the obsengation
as being due to hidden or latent factors. The main charaeteri
tic of these models is conditional independence - multateri
data are modeled as belonging to latent classes such that
the random variables within a latent class are independent o
one another. The model expresses a multivariate distoibuti
such asP(z1,xz2) as a mixture where each component of the
mixture is a product of one-dimensional marginal distridos.
the case of two dimensional data suchVgsthe model can
written mathematically as

53_,] using a.n error measure similar to the Kullback-Leibler P(a1,20) = Z P(2)P(21]2)P(x]2). ?)
ivergence:
z€{1,2,...,.K}
Wik — me — " Hin, Wmr «— —=————, In the above equatior;, is a latent variable that indexes the
n (WH)mn 2om Wink hidden components and takes values from the{ set. ., K'}.
Vinn This equation assumes thgeinciple of local independence,
Hyn  — H ’“”Z Wnk (WH )’ (1) whereby the latent variablerenders the observed variables

m

andzs independent. This model was presented independently

whereA;; represents the value ath row and thej-th column  as Probabilistic Latent Component Analysis (PLCA) by [14].

of matrix A. The aim of the model is to characterize the distribution

underlying the data as shown above by learning the parameter

so that hidden structure present in the data becomes dxplici
The model can be expressed as a matrix factorization.
In its simplest form, NMF expresses ati x N data matrix Representing the paramete{z,|z), P(x2|z) and P(z) as

V as the product of non-negative matriddsandH. The idea entries of matrice3¥, G andS respectively where

is to express the data vectors (columnd/Qfas a combination , W is a M x K matrix such that¥,,; corresponds to the

of a set ofbasis components or latent factors (columns ofW). probability P(z, = m|z = k),

Below, we show that a class of probabilistic models employin , G is a K x N matrix such thatG},, corresponds to the

latent variables, known in the field of social and behavioral  probability P(z; = n|z = k), and

sciences ad atent Class Models (eg., [11], [9], [13]), are , Sis a Kk x K diagonal matrix such thaf;;, corresponds

equivalent to NMF. to the probabilityP(z = k),

Letus repre;ent the two d|meq3|ons of the maVDt_)y T1 " one can write the model of equation (2) in matrix form as
andz, respectively. We can consider the non-negative entries

Vz.2, @s having been generated by an underlying probability P = WSG,or equivalently (3)
distribution P(z1, z2). Variablesz; and z» are multinomial P - WH )
random variables where; can take one out of a set d@ff ’

values in a given draw ang, can take one outof a set &  \yhere the entries of matri® correspond toP(zy, x2) and
values in a given draw. In other words, one can madgl, the ¢ _ g Figure 1 illustrates the model schematically.

entry in rowm and columm, as the number of times features p,ameters can be estimated using EM algorithm. The

1 =m andz; = n were picked in a set of repeated drawg,ja1e equations for the parameters can be written as
from the distributionP(z1, z2). Unlike NMF which tries to
P(2)P(x1]z)P(x2|2)

characterize the observed data directly, latent class mode

IIl. L ATENT VARIABLE MODELS

characterize the underlying distributid®(z1, z). This subtle P(z|r1,22) = S, P(2)P(x1]2) P(xa]2)’
differenC(_e of interprgtation preserves _all .the advantqgfgs Zje{l.Q} i Voiws P(2]21, 22)
NMF, while overcoming some of its limitations by providing P(xz;|2) = > — Voo (e )
a framework that is easy to generalize, extend and interpret z1,0p V12t (ZITL, T2
There are two ways of modeling(z1, z;) and we consider P(z) = D Veroa P(2|21, 22) 5)

them separately below. Yy Ve P(2lT1, w0)
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Fig. 2. Latent variable model of equation (7) as matrix fegation.

Writing the above update equations in matrix form using

W andH from equation (3), we obtain

an ka
Wm m 71{ 7 Wm ~ 11
B kzn: (WH)'rrm F B Zm ka
H - H ZW Vi . &(6)
kn kn mk (WH)mnv kn o Hkn

m

The above equations are identical to the NMF update equsati
of equation (1) upto a scaling factor iH. This is due to
the fact that the probabilistic model decompo®esvhich is
equivalent to a normalized version of the d&ta[14] presents

detailed derivation of the update algorithms and comparis
with NMF update equations. This model has been used '

analyzing image and audio data among other applications (
[14], [15], [16)).

B. Asymmetric Factorization

algorithm:
P(z|z2)P(x1]2)

|
P =
(z|z1, x2) S PClea) i)
Plarfs) = Vo Pl z2)
' 233173«‘2 ‘éleP(Z|m17x2)
o Voo, P ,
P(Zl(L‘Q) = ZJ"l (Z|I1 $2). (9)

Z{L‘l Vx112

Writing the above equations in matrix form usiy and H
from equation (8), we obtain

V'vrnn ka
Wm m ———H 9y W’r ~ 11
kK k%: (WH)mn k nk < Zm Woor
V:, n
Hkn — Hknz ka W . (10)

on
The above set of equations is exactly identical to the NMF

update equations of equation (1). See [17], [18] for dedaile
derivation of the update equations. The equivalence betwee
NMF and PLSA has also been pointed out by [19]. The model
has been used for the analysis of audio spectra (eg., [20]),
é@ages (eg., [17], [21]) and text corpora (eg., [7]).

IV. M ODEL EXTENSIONS

The popularity of NMF comes mainly from its empirical
success in finding “useful components” from the data. As

‘The latent class model of equation (2) considers eagRinted out by several researchers, NMF has certain impbrta
dimension symmetrically for factorization. The two dimenfmitations despite the success. We have presented piistiabi

sional distribution P(x1,z2) is expressed as a mixture o
two-dimensional latent factors where each factor is a pcbd
of one-dimensional marginal distributions. Now, consithex
following factorization of P(z1, z2):

P($1,$2>
P(ajlz:)

P(xi)P(xj]zi),
> P(x;]2)P(z]xs),

= (7)

wherei,j € {1,2}, i« # j and z is a latent variable.
This version of the model with asymmetric factorization
popularly known asProbabilistic Latent Semantic Analysis

(PLSA) in the topic-modeling literature [7].

Without loss of generality, lef = 1 and: = 2. We can
write the above model in matrix form ag, = Wg,,, where
d, IS a column vector indicatind®(x1|z2), g, iS @ column
vector indicatingP(z|z2), andW is a matrix with the(m, k)-
th element corresponding tB(z1 = ml|z = k). If =z takes

K values,W is a M x K matrix. Concatenating all column

vectorsq,, andg,, as matrice€Q andG respectively, one can
write the model as

Q
A%

WG, or equivalently
WGS = WH,

(8)

whereS is a N x N diagonal matrix whose:-th diagonal
element is the sum of the entries of, (the n-th column of
V), andH = GS. Figure 2 provides a schematic illustratio
of the model.

Given data matriXV, parameterd(x1|z) and P(z|z2) are

fmodels that are numerically closely related to or identical
Yo one of the widely used NMF update algorithms. Despite
the numerical equivalence, the methodological differeimce
approaches is important. In this section, we outline some
advantages of using this alternate probabilistic view of M
The first and most straightforward implication of using a
probabilistic approach is that it provides a theoreticasiba
for the technique. And more importantly, the probabilistic
underpinning enables one to utilize all the tools and maatyin
iof statistical inference for estimation. This is crucialr fo
extensions and generalizations of the method. Beyond these
obvious advantages, below we discuss some specific examples
where utilizing this approach is more useful.

A. Tensorial Factorization

NMF was introduced to analyze two-dimensional data.
However, there are several domains with non-negative multi
dimensional data where a multi-dimensional correlate offNM
could be very useful. This problem has been termed as Non-
negative Tensor Factorization (NTF). Several extensidns o
NMF have been proposed to handle multi-dimensional data
(eg., [22], [6], [4], [5])- Typically, these methods flattehe
tensor into a matrix representation and proceed furthen wit
analysis. Conceptually, NTF is a natural generalization of
NMF but the estimation algorithms for learning the param-
reters, however, do not lend themselves to extensions easily
Several issues contribute to this difficulty. We do not pn¢se
the reasons here due to lack of space but a detailed disnussio

estimated by iterations of equations derived using the E&&n be found in [6].



Now, consider the symmetric factorization case of the laten P Approximated PG)
variable model presented in Section IlI-A. This model is
naturally suited for generalizations to multiple dimemsio
In its general form, the model expresseskadimensional
distribution as a mixture, where eaéfi-dimensional compo-
nent of the mixture is a product of one-dimensional marginal
distributions. Mathematically, it can be written as

P(x,I2) P(x,l2) P(x,l2)

K
P(x) =3 P(2) [ ] Plal2), (11)

where P(x) is a K-dimensional distribution of the random
variablex = z1, 2, ..., zk. z IS the latent variable indexing
the mixture components an#(z;|z) are one-dimensional
marginal distributions. Parameters are estimated bytiters

of equations derived using the EM algorithm and they are: 5 10 15 20 5 10 15 20 5 10 15 20
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Fig. 3. An example of a higher dimensional positive data dgmusition.
P(Z)H;\[:1P(xj |z) An isosurface of the original input is shown at the top Idig approximation

by the model in eq. 11 is shown in the top right and the extdhatarginals
R(x, z) (12)
’ S P(Z/)H]‘V (P(x]2") (or factors) are shown in the lower plots.
z Jj=
P(z) = g g P(x)R(x, z) (13)
Jjooxj o - . .
model, known as ahift-invariant version of PLCA, can be
oy P(x)R(x, z o . '
P(zjlz) = Z“#J Z”;;(Z)( VR, 2) (14) mathematically written as [23]

In the two-dimensional case, the update equations reduce to Px) =) (P(2) /P(W’T|Z)P(h — 7l2)dr) (15)
equations (5). i

To illustrate the kind of output of this algorithm consideet Where thekernel distribution P(w, 7|z) = 0,V7 ¢ R where
following toy example. The inpuP(x) was the 3 dimensional R defines a local convex region along the dimensions of
distribution shown in the upper left plot in figure 3. This<- Similar to the simple model of equation (2), the model
distribution can also be seen as a rank 3 positive tensBXPresses’(x) as a mixture of latent components. But in-

It is clearly composed out of two components, each beif§¢ad of each component being a simple product of one-
an isotropic Gaussian with means at = 11,11,9 and dimensional distributions, the components are convahstio

pe = 14,14,16 and variancess?> = 1 and 02 = 1/2 between a multi-dimensional “kernel distribution” and altiau

respectively. The bottom row of plots show the derived sefémensional “impulse distribution”. The update equatidms
of P(x;|z) using the estimation procedure we just describethe parameters are:

We can see that each of them is composed out of a Gaussian

at the expected position and with the expected variance. Th?t B P(z)P(w,7|z)P(h — T|z)
approximatedP(x) using this mode is shown in the top right. (x,7,2) = S P(2) [ P(w, 7|2\ P(h — /|2 )d7’
Other examples of applications on more complex data and a - (16)
detailed derivation of the algorithm can be found in [23}¥][1

P(z) = | R(x,z)dx (17)
B. Convolutive Decompositions P(w,T|z) = fP(X)J;((X’)T’Z)dh (18)
z

Given a two-d|_menS|_onaI dataset, NMF flnd_s hidden str_uc- [ P(w,h+ 7)R(w,h + 7,7, z)dwdr
ture along one dimension (column-wise) that is charadieris P(hlz) = ; - y
to the entire dataset. Consider a scenario where there is J P(w, b+ 7)R(w, W + 7,7, 2)dh'dwdT
localized structure present along both dimensions (rows an (19)
columns) that has to be extracted from the data. An exampleDetailed derivation of the algorithm can be found in [14].
dataset would be an acoustic spectrogram of human spe&éle above model is able to deal with tensorial data just ak wel
which has structure along both frequency and time. Trauliio as matrix data. To illustrate this model, consider the péitu
NMF is unable to find structure across both dimensions aind the top left of figure 4. This particular image is a rank-
several extensions have been proposed to handle suchtdata@saensor (x, y, color). We wish to discover the underlying
(eg., [24], [25]). components that make up this image. The components are

The latent variable model can be extended for such dataséis digits 1, 2, 3 and appear in various spatial locations,
and the parameter estimation still follows a simple EM athereby necessitating a “shift-invariant” approach. dsthe
gorithm based on the principle of maximum likelihood. Thaforementioned algorithm we obtain the results shown in




No constraint Sparse impulse constraint Sparse kernel constraint
P(x) Approximated P(x)

22
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P(w,tlzw) P(w,tlzz) P(w,tlza)

Kernels

Impulses

P(hiz,) P(hiz, )

Fig. 5. Example of the effect of the entropic prior on a set efnlel and
impulse distributions. If no constraint is imposed the infation is evenly

distributed among the two distributions (left column), [fassity is imposed
on the impulse distribution, most information lies in there distribution

. . ) ) . . " (middle column), and vice verse if we request a sparse kadistdibution
Fig. 4. An example of a higher dimensional shift-invariarisitive data (right column).

decomposition. The original input is shown at the top léfe approximation
by the model in eq. 11 is shown in the top middle and the exddhkernels
and impulses are shown in the lower plots.

) P(hiz,

can be largely explained by only a few bases from the set, such
] . that the required contribution of the rest of the bases tal¢ia
figure 4. Other examples of such decompositions on MQiGint is minimal;i.e. the entropy of the mixture weights by
complex data are shown in [23]. o _ which the bases are combined to explain the data point is low.
The example above illustrates shift-invariance but it ig sparse code can now be obtained by imposingetitepic

conceivable that “components” that form the input mighfior over the mixture weights. For a given distributiéh
occur with transformations such as rotations and/or sgalif},o entropic prior is defined aB(6) o ¢~ 7"©®) where(8)

in addition to translations (shifts). It is possible to exdethis

model to incorporate invariance to such transformatiom® T, the mixture weights just means that we obtain solutions
derivation follows naturally from the approach outlineca® |, 1are mixture weights with low entropy are more likely to

but we omit further discussion here due to space constrainfi.c.r - a low entropy ensures that few entries of the vector
are significant. Sparsity has been imposed in latent variabl
C. Extensionsin the form of Priors models by utilizing the entropic prior and has been shown
One of the more apparent limitations of NMF is related tto provide a better characterization of the data [17], [18],
the quality of components that are extracted. Researclages h[23], [31]. Detailed derivation and estimation algorithicen
pointed out that NMF, as introduced by Lee and Seung, ddes found in [17], [18]. Notice that priors can be imposed on
not have an explicit way to control the “sparsity” of the dedi any set of parameters during estimation.
components [26]. In fact, the inability to impose sparsityuist Information theoretically, entropy is a measure of informa
a specific example of a more general limitation. NMF dod®n content. One can consider the entropic prior as progidi
not provide a way to impose known or hypothesized structuae explicit way to control the amount of “information conten
about the data during estimation. desired on the components. We illustrate this idea using a
To elaborate, let us consider the example of sparsity. 8evesimple shift-invariance case. Consider an image which is
extensions have been proposed to NMF to incorporate spargsibmposed out of scattered plus sign characters. Upon amalys
(eg., [26], [27], [28]). The general idea in these methods &f that image we would expect the kernel distribution to be a
to impose a cost function during estimation that incorpesat“+”, and the impulse distribution to be a set of delta funato
an additional constraint that quantifies the sparsity of th@acing it appropriately in space. However using the eritrop
obtained factors. While sparsity is usually specified asithe prior we can distribute the amount of information from the
norm of the derived factors [29], the actual constraintsdus&ernel distribution to the impulse distribution or vicersa.
consider anL1 norm, since theL.0 norm is not amenable We show the results from this analysis in figure 5 in terms
to optimization within a procedure that primarily attemptsf three cases - where no entropic prior is used (left panels)
to minimize the L2 norm of the error between the originalwhere it is used to make the impulse sparse (mid panels), and
data and the approximation given by the estimated factars.where it is used to make the kernel sparse (right panels). In
the probabilistic formulation the relationship of the spr the left panels, information about the data is distributethb
constraint to the actual objective function optimized isrenoin the kernel (top) and in the impulse distribution (bottom)
direct. We characterize sparsity through the entropy of the the other two cases, we were able to concentrate all the
derived factors, as originally specified in [30]. A sparsdec information either in the kernel or in the impulse distriouat
defined as a set of basis vectors such that any given data pbintmaking use of the entropic prior.

is the entropy. Imposition of this prior (with a positive)



3 Basis Vectors

(010) 3 . . . ..
numerically identical to the NMF algorithm that optimizes a

Kullback Leibler metric. Unlike previously reported retsul
[34], the proof of equivalence requires no assumption about
the distribution of the data, or indeed any assumption about
the data besides non-negativity. The algorithms preseinted
this paper primarily compute a probabilistic factorizatiof
non-negative data that optimizes the KL distance between th
factored approximation and the actual dataVe argue that
the use of this approach presents a much more straightfdrwar

(100)™

" [--simplex Boundary]
Data Points

EBasis Vectors

—Convex Hull

©01)

Fig. 6. lllustration of the latent variable model. Panel who 3-

o onal qareton o ' B e o 198 way to make easily extensible models.
imensional data distributions as points within ®tendard 2-Smplex given . :
by {(001), (010), (100)}. The model approximates data distributions as To demonstrate this we presented extensions that deal

points lying within the convex hull formed by the componefitasis vectors). With tensorial data, shift-invariances and use priors oa th
Also shown are two data points (marked #yand x) and their approxima- estimation. The purpose of this paper is not to highlight
tions by the model (respectively shown Byand L). the use of these approaches nor to present them thoroughly,
but rather demonstrate a methodology which allows easier
experimentation with non-negative data analysis and opens
Other prior distributions that have been used in variousp possibilities for more stringent and probabilistic midulp
contexts include the Dirichlet [8], [32] and log-normal disthan before. A rich variety of real-world applications and
tributions [33] among others. The ability to utilize priorderivations of these and other models can be found in the
distributions during estimation provides a way to incogier references.
information known about the problem. More importantly, the
probabilistic framework provides proven methods of stiatis
cal inference techniques that one can employ for parameter
estimation. We point out that these extensions can work wittMadhusudana Shashanka acknowledges the support and
all the generalizations that were presented in the previo'ﬂn%'pfm feedback received from Michael Giering at Mars,.Inc
sections.
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