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Abstract— In this paper, we present a family of probabilistic
latent variable models that can be used for analysis of non-
negative data. We show that there are strong ties between
non-negative matrix factorization and this family, and provide
some straightforward extensions which can help in dealing
with shift-invariances, higher order decompositions and sparsity
constraints. We argue through these extensions that the useof
this approach allows for rapid development of complex statistical
models for analyzing non-negative data.

Index Terms— Non-Negative Matrix Factorization, Latent
Variable Models

I. I NTRODUCTION

Techniques to analyze non-negative data are required in
several applications such as analysis of images, text corpora
and audio spectra to name a few. A variety of techniques
have been proposed for the analysis of such data, such as
non-negative PCA [1], non-negative ICA [2], non-negative
matrix factorization (NMF) [3] etc. The goal of all of these
techniques is to explain the given non-negative data as a
guaranteed non-negative linear combination of a set of non-
negative “bases” that represent realistic “building blocks” for
the data. Of these, probably the most developed is non-negative
matrix factorization, with much recent research devoted tothe
topic [4], [5], [6]. All of these approaches view each data
vector as a point in anN -dimensional space and attempt to
identify the bases that best explain the distribution of thedata
within this space. For the sake of clarity, we will refer to data
that represent vectors in any space aspoint data.

A somewhat related, but separate topic that has garnered
much research over the years is the analysis of histograms
of multi-variate data. Histogram data represent the countsof
occurrences of a set of events in a given data set. The aim here
is to identify the statistical factors that affect the occurrence
of data through the analysis of these counts and appropriate
modeling of the distributions underlying them. Such analysis
is often required in the analysis of text, behavioral patterns etc.
A variety of techniques, such as probabilistic latent semantic
analysis [7], latent Dirichlet allocation [8], etc. and their
derivatives have lately become quite popular. Most, if not all of
them can be related to a class of probabilistic models, known
in the behavioral sciences community atLatent Class Models
[9], [10], [11], that attempt to explain the observed histograms
as having been drawn from a set of latent classes, each with
its own distribution. For clarity, we will refer to histograms
and collections of histograms ashistogram data.

In this paper, we argue that techniques meant for analysis of
histogram data can be equally effectively employed for decom-
position of non-negative point data as well, by interpreting the

latter as scaled histograms rather than vectors. Specifically, we
show that the algorithms used for estimating the parameters
of a latent class model are numerically equivalent to the
update rules for one form of NMF. We also propose alternate
latent variable models for histogram decomposition that are
similar to those commonly employed in the analysis of text,
to decompose point data and show that these too are identical
to the update rules for NMF. We will generically refer to the
application of histogram-decomposition techniques to point
data as probabilistic decompositions1.

Beyond simple equivalences to NMF, the probabilistic de-
composition approach has several advantages, as we explain.
Non-negative PCA/ICA and NMF are primarily intended for
matrix-like two-dimensional characterizations of data – the
analysis is obtained for matrices that are formed by laying
data vectors side-by-side. They do not naturally extend to
higher-dimensional tensorial representations, this has been
often accomplished by implicit unwrapping the tensors into
a matrix. However, the probabilistic decomposition naturally
extends from matrices to tensors of arbitrary dimensions.

It is often desired to control the form or structure of the
learned bases and their projections. Since the procedure for
learning the bases that represent the data is statistical, prob-
abilistic decomposition affords control over the form of the
learned bases through the imposition ofa priori probabilities,
as we will show. Constraints such as sparsity can also be
incorporated through these priors.

We also describe extensions to the basic probabilistic de-
composition framework that permits shift-invariance along one
or more of the dimensions (of the data tensor) that can abstract
convolutively combined bases from the data.

The rest of the paper is organised as follows. Since, the
probabilistic decomposition approach we promote in this pa-
per is most analogous to Non-negative Matrix Factorization
(NMF) among all techniques that analyse non-negative point
data, we begin with a brief discussion of NMF. We present
the family of latent variable models in Section III that we will
employ for probabilistic decompositions. We present tensor
generalizations in Section IV-A and convolutive factorizations
in Section IV-B. In Section IV-C we discuss extensions such
as incorporation of sparsity and in Section IV-D we present
aspects of geometric interpretation of these decompositions.

1This must not be confused with approaches that model the distribution of
the set of vectors. In our approach the vectors themselves are histograms, or,
alternately, scaled probability distributions.
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II. N ON-NEGATIVE MATRIX FACTORIZATION

Non-negative Matrix Factorization was introduced by [3]
to find non-negative parts-based representation of data. Given
an M × N matrix V where each column corresponds to a
data vector, NMF approximates it as a product of non-negative
matricesW and H, i.e. V ≈ WH, whereW is a M × K
matrix andH is a K × N matrix. The above approximation
can be written column by column asvn ≈Whn, wherevn

and hn are then-th columns ofV and H respectively. In
other words, each data vectorvn is approximated by a linear
combination of the columns ofW, weighted by the entries
of hn. The columns ofW can be thought of asbasis vectors
that, when combined with appropriatemixture weights (entries
of the columns ofH), provide a linear approximation ofV.

The optimal choice of matricesW and H are defined by
those non-negative matrices that minimize the reconstruction
error betweenV and WH. Different error functions have
been proposed which lead to different update rules (eg. [12],
[3]). Shown below are multiplicative update rules derived by
[3] using an error measure similar to the Kullback-Leibler
divergence:

Wmk ← Wmk

∑

n

Vmn

(WH)mn

Hkn, Wmk ←
Wmk

∑

m Wmk

,

Hkn ← Hkn

∑

m

Wmk

Vmn

(WH)mn

, (1)

whereAij represents the value ati-th row and thej-th column
of matrix A.

III. L ATENT VARIABLE MODELS

In its simplest form, NMF expresses anM ×N data matrix
V as the product of non-negative matricesW andH. The idea
is to express the data vectors (columns ofV) as a combination
of a set ofbasis components or latent factors (columns ofW).
Below, we show that a class of probabilistic models employing
latent variables, known in the field of social and behavioral
sciences asLatent Class Models (eg., [11], [9], [13]), are
equivalent to NMF.

Let us represent the two dimensions of the matrixV by x1

andx2 respectively. We can consider the non-negative entries
Vx1x2

as having been generated by an underlying probability
distribution P (x1, x2). Variablesx1 and x2 are multinomial
random variables wherex1 can take one out of a set ofM
values in a given draw andx2 can take one out of a set ofN
values in a given draw. In other words, one can modelVmn, the
entry in rowm and columnn, as the number of times features
x1 = m andx2 = n were picked in a set of repeated draws
from the distributionP (x1, x2). Unlike NMF which tries to
characterize the observed data directly, latent class models
characterize the underlying distributionP (x1, x2). This subtle
difference of interpretation preserves all the advantagesof
NMF, while overcoming some of its limitations by providing
a framework that is easy to generalize, extend and interpret.

There are two ways of modelingP (x1, x2) and we consider
them separately below.

Fig. 1. Latent variable model of equation (2) as matrix factorization.

A. Symmetric Factorization

Latent class models enable one to attribute the observations
as being due to hidden or latent factors. The main characteris-
tic of these models is conditional independence - multivariate
data are modeled as belonging to latent classes such that
the random variables within a latent class are independent of
one another. The model expresses a multivariate distribution
such asP (x1, x2) as a mixture where each component of the
mixture is a product of one-dimensional marginal distributions.
In the case of two dimensional data such asV, the model can
be written mathematically as

P (x1, x2) =
∑

z∈{1,2,...,K}

P (z)P (x1|z)P (x2|z). (2)

In the above equation,z is a latent variable that indexes the
hidden components and takes values from the set{1, . . . , K}.
This equation assumes theprinciple of local independence,
whereby the latent variablez renders the observed variablesx1

andx2 independent. This model was presented independently
as Probabilistic Latent Component Analysis (PLCA) by [14].
The aim of the model is to characterize the distribution
underlying the data as shown above by learning the parameters
so that hidden structure present in the data becomes explicit.

The model can be expressed as a matrix factorization.
Representing the parametersP (x1|z), P (x2|z) and P (z) as
entries of matricesW, G andS respectively where

• W is aM×K matrix such thatWmk corresponds to the
probabilityP (x1 = m|z = k),

• G is a K ×N matrix such thatGkn corresponds to the
probabilityP (x2 = n|z = k), and

• S is aK×K diagonal matrix such thatSkk corresponds
to the probabilityP (z = k),

one can write the model of equation (2) in matrix form as

P = WSG, or equivalently, (3)

P = WH, (4)

where the entries of matrixP correspond toP (x1, x2) and
H = SG. Figure 1 illustrates the model schematically.

Parameters can be estimated using EM algorithm. The
update equations for the parameters can be written as

P (z|x1, x2) =
P (z)P (x1|z)P (x2|z)

∑

z P (z)P (x1|z)P (x2|z)
,

P (xi|z) =

∑

j∈{1,2},j 6=i Vx1x2
P (z|x1, x2)

∑

x1,x2
Vx1x2

P (z|x1, x2)
,

P (z) =

∑

x1,x2
Vx1x2

P (z|x1, x2)
∑

z,x1,x2
Vx1x2

P (z|x1, x2)
. (5)
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Fig. 2. Latent variable model of equation (7) as matrix factorization.

Writing the above update equations in matrix form using
W andH from equation (3), we obtain

Wmk ← Wmk

∑

n

Vmn

(WH)mn

Hkn, Wmk ←
Wmk

∑

m Wmk

,

Hkn ← Hkn

∑

m

Wmk

Vmn

(WH)mn

, Hkn ←
Hkn

∑

k,n Hkn

.(6)

The above equations are identical to the NMF update equations
of equation (1) upto a scaling factor inH. This is due to
the fact that the probabilistic model decomposesP which is
equivalent to a normalized version of the dataV. [14] presents
detailed derivation of the update algorithms and comparison
with NMF update equations. This model has been used in
analyzing image and audio data among other applications (eg.,
[14], [15], [16]).

B. Asymmetric Factorization

The latent class model of equation (2) considers each
dimension symmetrically for factorization. The two dimen-
sional distributionP (x1, x2) is expressed as a mixture of
two-dimensional latent factors where each factor is a product
of one-dimensional marginal distributions. Now, considerthe
following factorization ofP (x1, x2):

P (x1, x2) = P (xi)P (xj |xi),

P (xj |xi) =
∑

z

P (xj |z)P (z|xi), (7)

where i, j ∈ {1, 2}, i 6= j and z is a latent variable.
This version of the model with asymmetric factorization is
popularly known asProbabilistic Latent Semantic Analysis
(PLSA) in the topic-modeling literature [7].

Without loss of generality, letj = 1 and i = 2. We can
write the above model in matrix form asqn = Wgn, where
qn is a column vector indicatingP (x1|x2), gn is a column
vector indicatingP (z|x2), andW is a matrix with the(m, k)-
th element corresponding toP (x1 = m|z = k). If z takes
K values,W is a M ×K matrix. Concatenating all column
vectorsqn andgn as matricesQ andG respectively, one can
write the model as

Q = WG, or equivalently

V = WGS = WH, (8)

whereS is a N × N diagonal matrix whosen-th diagonal
element is the sum of the entries ofvn (the n-th column of
V), andH = GS. Figure 2 provides a schematic illustration
of the model.

Given data matrixV, parametersP (x1|z) andP (z|x2) are
estimated by iterations of equations derived using the EM

algorithm:

P (z|x1, x2) =
P (z|x2)P (x1|z)

∑

z P (z|x2)P (x1|z)

P (x1|z) =

∑

x2
Vx1x2

P (z|x1, x2)
∑

x1,x2
Vx1x2

P (z|x1, x2)

P (z|x2) =

∑

x1
Vx1x2

P (z|x1, x2)
∑

x1
Vx1x2

. (9)

Writing the above equations in matrix form usingW andH

from equation (8), we obtain

Wmk ← Wmk

∑

n

Vmn

(WH)mn

Hkn, Wmk ←
Wmk

∑

m Wmk

,

Hkn ← Hkn

∑

m

Wmk

Vmn

(WH)mn

. (10)

The above set of equations is exactly identical to the NMF
update equations of equation (1). See [17], [18] for detailed
derivation of the update equations. The equivalence between
NMF and PLSA has also been pointed out by [19]. The model
has been used for the analysis of audio spectra (eg., [20]),
images (eg., [17], [21]) and text corpora (eg., [7]).

IV. M ODEL EXTENSIONS

The popularity of NMF comes mainly from its empirical
success in finding “useful components” from the data. As
pointed out by several researchers, NMF has certain important
limitations despite the success. We have presented probabilistic
models that are numerically closely related to or identical
to one of the widely used NMF update algorithms. Despite
the numerical equivalence, the methodological differencein
approaches is important. In this section, we outline some
advantages of using this alternate probabilistic view of NMF.

The first and most straightforward implication of using a
probabilistic approach is that it provides a theoretical basis
for the technique. And more importantly, the probabilistic
underpinning enables one to utilize all the tools and machinery
of statistical inference for estimation. This is crucial for
extensions and generalizations of the method. Beyond these
obvious advantages, below we discuss some specific examples
where utilizing this approach is more useful.

A. Tensorial Factorization

NMF was introduced to analyze two-dimensional data.
However, there are several domains with non-negative multi-
dimensional data where a multi-dimensional correlate of NMF
could be very useful. This problem has been termed as Non-
negative Tensor Factorization (NTF). Several extensions of
NMF have been proposed to handle multi-dimensional data
(eg., [22], [6], [4], [5]). Typically, these methods flattenthe
tensor into a matrix representation and proceed further with
analysis. Conceptually, NTF is a natural generalization of
NMF but the estimation algorithms for learning the param-
eters, however, do not lend themselves to extensions easily.
Several issues contribute to this difficulty. We do not present
the reasons here due to lack of space but a detailed discussion
can be found in [6].
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Now, consider the symmetric factorization case of the latent
variable model presented in Section III-A. This model is
naturally suited for generalizations to multiple dimensions.
In its general form, the model expresses aK-dimensional
distribution as a mixture, where eachK-dimensional compo-
nent of the mixture is a product of one-dimensional marginal
distributions. Mathematically, it can be written as

P (x) =
∑

z

P (z)

K
∏

j=1

P (xj |z), (11)

where P (x) is a K-dimensional distribution of the random
variablex = x1, x2, . . . , xK . z is the latent variable indexing
the mixture components andP (xj |z) are one-dimensional
marginal distributions. Parameters are estimated by iterations
of equations derived using the EM algorithm and they are:

R(x, z) =
P (z)

∏N

j=1P (xj |z)
∑

z′ P (z′)
∏N

j=1P (xj |z
′)

(12)

P (z) =
∑

j

∑

xj

P (x)R(x, z) (13)

P (xj |z) =

∑

i:i6=j

∑

xi
P (x)R(x, z)

P (z)
(14)

In the two-dimensional case, the update equations reduce to
equations (5).

To illustrate the kind of output of this algorithm consider the
following toy example. The inputP (x) was the 3 dimensional
distribution shown in the upper left plot in figure 3. This
distribution can also be seen as a rank 3 positive tensor.
It is clearly composed out of two components, each being
an isotropic Gaussian with means atµ1 = 11, 11, 9 and
µ2 = 14, 14, 16 and variancesσ2

1 = 1 and σ2
2 = 1/2

respectively. The bottom row of plots show the derived sets
of P (xj |z) using the estimation procedure we just described.
We can see that each of them is composed out of a Gaussian
at the expected position and with the expected variance. The
approximatedP (x) using this mode is shown in the top right.
Other examples of applications on more complex data and a
detailed derivation of the algorithm can be found in [23], [14].

B. Convolutive Decompositions

Given a two-dimensional dataset, NMF finds hidden struc-
ture along one dimension (column-wise) that is characteristic
to the entire dataset. Consider a scenario where there is
localized structure present along both dimensions (rows and
columns) that has to be extracted from the data. An example
dataset would be an acoustic spectrogram of human speech
which has structure along both frequency and time. Traditional
NMF is unable to find structure across both dimensions and
several extensions have been proposed to handle such datasets
(eg., [24], [25]).

The latent variable model can be extended for such datasets
and the parameter estimation still follows a simple EM al-
gorithm based on the principle of maximum likelihood. The

Fig. 3. An example of a higher dimensional positive data decomposition.
An isosurface of the original input is shown at the top left, the approximation
by the model in eq. 11 is shown in the top right and the extracted marginals
(or factors) are shown in the lower plots.

model, known as ashift-invariant version of PLCA, can be
mathematically written as [23]

P (x) =
∑

z

(

P (z)

∫

P (w, τ |z)P (h− τ |z)dτ
)

(15)

where thekernel distribution P (w, τ |z) = 0, ∀τ /∈ R where
R defines a local convex region along the dimensions of
x. Similar to the simple model of equation (2), the model
expressesP (x) as a mixture of latent components. But in-
stead of each component being a simple product of one-
dimensional distributions, the components are convolutions
between a multi-dimensional “kernel distribution” and a multi-
dimensional “impulse distribution”. The update equationsfor
the parameters are:

R(x, τ , z) =
P (z)P (w, τ |z)P (h− τ |z)

∑

z′ P (z′)
∫

P (w, τ ′|z′)P (h− τ ′|z′)dτ ′

(16)

P (z) =

∫

R(x, z)dx (17)

P (w, τ |z) =

∫

P (x)R(x, τ , z)dh

P (z)
(18)

P (h|z) =

∫

P (w,h + τ )R(w,h + τ , τ , z)dwdτ
∫

P (w,h′ + τ )R(w,h′ + τ , τ , z)dh′dwdτ

(19)

Detailed derivation of the algorithm can be found in [14].
The above model is able to deal with tensorial data just as well
as matrix data. To illustrate this model, consider the picture
in the top left of figure 4. This particular image is a rank-
3 tensor (x, y, color). We wish to discover the underlying
components that make up this image. The components are
the digits 1, 2, 3 and appear in various spatial locations,
thereby necessitating a “shift-invariant” approach. Using the
aforementioned algorithm we obtain the results shown in
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Fig. 4. An example of a higher dimensional shift-invariant positive data
decomposition. The original input is shown at the top left, the approximation
by the model in eq. 11 is shown in the top middle and the extracted kernels
and impulses are shown in the lower plots.

figure 4. Other examples of such decompositions on more
complex data are shown in [23].

The example above illustrates shift-invariance but it is
conceivable that “components” that form the input might
occur with transformations such as rotations and/or scaling
in addition to translations (shifts). It is possible to extend this
model to incorporate invariance to such transformations. The
derivation follows naturally from the approach outlined above
but we omit further discussion here due to space constraints.

C. Extensions in the form of Priors

One of the more apparent limitations of NMF is related to
the quality of components that are extracted. Researchers have
pointed out that NMF, as introduced by Lee and Seung, does
not have an explicit way to control the “sparsity” of the desired
components [26]. In fact, the inability to impose sparsity is just
a specific example of a more general limitation. NMF does
not provide a way to impose known or hypothesized structure
about the data during estimation.

To elaborate, let us consider the example of sparsity. Several
extensions have been proposed to NMF to incorporate sparsity
(eg., [26], [27], [28]). The general idea in these methods is
to impose a cost function during estimation that incorporates
an additional constraint that quantifies the sparsity of the
obtained factors. While sparsity is usually specified as theL0
norm of the derived factors [29], the actual constraints used
consider anL1 norm, since theL0 norm is not amenable
to optimization within a procedure that primarily attempts
to minimize theL2 norm of the error between the original
data and the approximation given by the estimated factors. In
the probabilistic formulation the relationship of the sparsity
constraint to the actual objective function optimized is more
direct. We characterize sparsity through the entropy of the
derived factors, as originally specified in [30]. A sparse code is
defined as a set of basis vectors such that any given data point

Fig. 5. Example of the effect of the entropic prior on a set of kernel and
impulse distributions. If no constraint is imposed the information is evenly
distributed among the two distributions (left column), if sparsity is imposed
on the impulse distribution, most information lies in the kernel distribution
(middle column), and vice verse if we request a sparse kerneldistribution
(right column).

can be largely explained by only a few bases from the set, such
that the required contribution of the rest of the bases to thedata
point is minimal; i.e. the entropy of the mixture weights by
which the bases are combined to explain the data point is low.
A sparse code can now be obtained by imposing theentropic
prior over the mixture weights. For a given distributionθ,
the entropic prior is defined asP (θ) ∝ e−βH(θ) whereH(θ)
is the entropy. Imposition of this prior (with a positiveβ)
on the mixture weights just means that we obtain solutions
where mixture weights with low entropy are more likely to
occur - a low entropy ensures that few entries of the vector
are significant. Sparsity has been imposed in latent variable
models by utilizing the entropic prior and has been shown
to provide a better characterization of the data [17], [18],
[23], [31]. Detailed derivation and estimation algorithmscan
be found in [17], [18]. Notice that priors can be imposed on
any set of parameters during estimation.

Information theoretically, entropy is a measure of informa-
tion content. One can consider the entropic prior as providing
an explicit way to control the amount of “information content”
desired on the components. We illustrate this idea using a
simple shift-invariance case. Consider an image which is
composed out of scattered plus sign characters. Upon analysis
of that image we would expect the kernel distribution to be a
“+”, and the impulse distribution to be a set of delta functions
placing it appropriately in space. However using the entropic
prior we can distribute the amount of information from the
kernel distribution to the impulse distribution or vice-versa.
We show the results from this analysis in figure 5 in terms
of three cases - where no entropic prior is used (left panels),
where it is used to make the impulse sparse (mid panels), and
where it is used to make the kernel sparse (right panels). In
the left panels, information about the data is distributed both
in the kernel (top) and in the impulse distribution (bottom).
In the other two cases, we were able to concentrate all the
information either in the kernel or in the impulse distribution
by making use of the entropic prior.
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Simplex Boundary
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Basis Vectors
Convex Hull(001)
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3 Basis Vectors

Fig. 6. Illustration of the latent variable model. Panel shows 3-
dimensional data distributions as points within theStandard 2-Simplex given
by {(001), (010), (100)}. The model approximates data distributions as
points lying within the convex hull formed by the components(basis vectors).
Also shown are two data points (marked by+ and×) and their approxima-
tions by the model (respectively shown by♦ and�).

Other prior distributions that have been used in various
contexts include the Dirichlet [8], [32] and log-normal dis-
tributions [33] among others. The ability to utilize prior
distributions during estimation provides a way to incorporate
information known about the problem. More importantly, the
probabilistic framework provides proven methods of statisti-
cal inference techniques that one can employ for parameter
estimation. We point out that these extensions can work with
all the generalizations that were presented in the previous
sections.

D. Geometrical Interpretation

We also want to briefly point out that probabilistic models
can sometimes provide insights that are helpful for an intuitive
understanding of the workings of the model.

Consider the asymmetric factorization case of the latent
variable model as given by equation (7). Let us refer to
the normalized columns of the data matrixV (obtained by
scaling the entries of every column to sum to 1),v̄n, as
data distributions. It can be shown that learning the model
is equivalent to estimating parameters such that the model
P (x1|x2) for any data distribution̄vx2

best approximates it.
Notice that the data distributions̄vx2

, model approximations
P (x1|x2), and componentsP (x1|z) are all M -dimensional
vectors that sum to unity, and hence points in a(M − 1)
simplex. The model expressesP (x1|x2) as points within the
convex hull formed by the componentsP (x1|z). Since it is
constrained to lie within this convex hull,P (x1|x2) can model
v̄x2

accurately only if the latter also lies within the convex
hull. Thus, the objective of the model is to estimateP (x1|z)
as corners of a convex hull such that all the data distributions
lie within. This is illustrated in Figure 6 for a toy dataset of
400 three-dimensional data distributions.

Not all probabilistic formulations provide such a clean
geometric interpretation but in certain cases as outlined above,
it can lead to interpretations that are intuitively helpful.

V. D ISCUSSION ANDCONCLUSIONS

In this paper we presented a family of latent variable models
and shown their utility in the analysis of non-negative data.
We show that the latent variable models decompositions are

numerically identical to the NMF algorithm that optimizes a
Kullback Leibler metric. Unlike previously reported results
[34], the proof of equivalence requires no assumption about
the distribution of the data, or indeed any assumption about
the data besides non-negativity. The algorithms presentedin
this paper primarily compute a probabilistic factorization of
non-negative data that optimizes the KL distance between the
factored approximation and the actual data2. We argue that
the use of this approach presents a much more straightforward
way to make easily extensible models.

To demonstrate this we presented extensions that deal
with tensorial data, shift-invariances and use priors on the
estimation. The purpose of this paper is not to highlight
the use of these approaches nor to present them thoroughly,
but rather demonstrate a methodology which allows easier
experimentation with non-negative data analysis and opens
up possibilities for more stringent and probabilistic modeling
than before. A rich variety of real-world applications and
derivations of these and other models can be found in the
references.
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