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ABSTRACT

In the Netherlands, probabilistic life cycle cash flow forecasting for infrastructures has gained attention
in the past decennium. Frequencies, volume and unit prices of life cycle activities are treated as uncer-
tainty variables for which an expert-based triangular distribution is assumed. The current research
observes the absence of time-variant variables typical for infrastructure life cycles among which price
(de-)escalation. Moreover, previous research has shown that price (de-)escalation and its uncertainty
should not be ignored as it may lead to over or underestimation of costs, especially for public sector
organisations which use low discount rates. For that reason, the current research has searched for a
more data-driven approach to include price (de-)escalation and its uncertainty by adopting a price
forecasting method from the financial domain, a Geometric Brownian Motion. The uncertainty varia-
bles drift and volatility are obtained from publicly available price indices. This approach is easily
included in the current practice for probabilistic cost forecasting which is demonstrated on a case
study. The case study shows that ignoring price increases may lead to an underestimation of total dis-
counted costs of 13%. From an academic perspective, the current research advocates inclusion of price
uncertainty in multi-objective optimisation modelling of infrastructure life cycle activities.
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1. Introduction

Cash flow forecasting is essential in construction and life

cycle management of infrastructures (Bakker, Frangopol, &

Tsompanakis, 2018; Mirzadeh, Butt, Toller, & Birgisson,

2014). Unfortunate examples exist in construction manage-

ment and engineering, where contractors lose business

because of inadequate cash flow forecasting. A recent Dutch

case is the bankruptcy of a contractor with a turnover of 40

million Euros in 2018. Price increases of material and labour

costs put this contractor out of business (Cobouw, 2019).

Moreover, governmental agencies may underestimate future

budgets and financing needs as real future costs are over-

looked (Treiture et al., 2018).
Annamalaisami and Kuppuswamy (2019) conducted a

meta-survey to investigate causes of cost-overruns in infra-

structure projects. Seven main factors were identified:

‘quantity, price, scope, resource utilisation, quality non-

acceptance, delay in the construction and other external

environmental factors’. Probabilistic forecasting acknowl-

edges the uncertain nature of such factors and becomes

more important when projects stretch over longer time

frames where infrastructure life cycles are considered. For

life cycle activities, the factors identified by Annamalaisami

and Kuppuswamy (2019) can be grouped as quantity, price,

scope (activities) and timing (frequencies).
In the Netherlands, probabilistic costing has been intro-

duced in construction and engineering since approximately

2010. From its origin, emphasis has been given to construc-

tion and project costs. National guidelines and tooling are

available to assist cost engineers in estimating probabilistic

project costs (CROW, 2013, 2018b). Inclusion of project

uncertainties leads to probabilistic cost estimates which are

generally visualised as a bandwidth of possible costs around

a constant expected value. The Dutch standard follows a

Monte Carlo Simulation approach well described by Wang,

Chang, and El-Sheikh (2012) and Singh (2017). The Dutch

standard is in line with international standards such as pro-

vided by Commonwealth of Australia (2018), UK

Department for Transport (2017) and NASA (2015).
Just recently probabilistic life cycle costing has been

added to these Dutch standards which were originally devel-

oped for construction and engineering projects (CROW,

2018b). The current research observes that the same princi-

ples for quantifying uncertainty of construction and project

costs are applied to life cycle costs. Frequencies, quantities

and unit prices are assumed to be stochastically distributed.

In the absence of data, a triangular distribution is generally
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assumed as it only requires experts’ estimates of minimum,

mean and maximum values of each frequency, quantity and

unit cost. Table 1 shows a few publicly available infrastruc-

ture cost forecasts where upper and lower bounds for unit

prices are provided for the triangular distributions.

Currently, limited information on cost forecasts is publicly

available because of their generally confidential nature.

Therefore, it is difficult to draw generic conclusions, but

Table 1 indicates that unit prices for municipal works have

upper and lower bounds in a range of 10% and 20%

whereas innovative concepts or large investments may reach

levels of ±35% to 40% or more. Currently there are no

standards for establishing upper and lower bounds of unit

prices. In contrast to construction costs, data are even more

scarce for life cycle costs. Based on professional experience,

the authors observe approximately ± 15% as common values

for estimating upper and lower bounds of unit prices of

infrastructure life cycle costs.
Figure 1 visualises an example of a triangular distribution

with mean costs of 100 and upper and lower bounds of

±15%. This is a simplified representation for illustrative pur-

poses. The Dutch standard for probabilistic cash flow fore-

casting additionally accounts for 5% and 95% confidence

levels on the upper and lower bounds. Sampling from the

distributions and running a Monte Carlo Analysis provides

numerous cost scenarios which are discounted, counted and

presented as a frequency distribution graph.
This approach, however, does not acknowledge time-vari-

ant uncertainties. Anticipating on the conclusions of the lit-

erature review, which are presented in the following section,

the current research observes that especially price (de-)esca-

lations are often overlooked. The triangular distribution

accounts for uncertainty but the expected value of the mean

unit price remains constant over time. Price (de-)escalations

are important for adequate life cycle cost forecasting. This is

especially valid for public sector organisations which use

low discount rates (Treiture et al., 2018).
The aim of the current research is investigating how

price (de-)escalation and its uncertainty may impact the

conventional approach to probabilistic cash flow forecasting.

As a first step towards more accurate probabilistic cash flow

forecasting, the current research explores how currently

available time-series of prices can be used to estimate uncer-

tainty variables of a fundamental financial forecasting

method. In doing so, the current research adopts a generally

accepted method for price forecasting from the financial

domain, a so-called Geometric Brownian Motion (GBM),

which removes the necessity for choosing an arbitrary distri-

bution for price uncertainty. The application of this method

can partially remove the current subjectivity in estimating

confidence bounds. As such, the current research proposes a

more data-driven approach to probabilistic life cycle cash

flow forecasting and further research into price (de-)escal-

ation and long-term price predictions.
The outline of this paper is as follows. First a literature

review is presented about the current state of literature on

uncertainty modelling in life cycle costing analysis and price

(de-)escalation. The next section explains the GBM-based

method for a more data-driven probabilistic cash flow fore-

casting. Public data on price (de-)escalation is investigated

and used to derive uncertainty bounds. Hereafter, the

method is applied to a case study and compared with the

current approach to probabilistic cash flow forecasting.

Results are discussed and conclusions presented.

2. Literature review

Probabilistic life cycle cash flow forecasting has gained atten-

tion in the past decennium both in scholarly research and in

practice, but scientific results only slowly percolate to prac-

tice. An interesting and recent overview of uncertainties and

uncertainty quantification approaches in scholarly research is

provided by Larsson Ivanov, Honfi, Santandrea, and Stripple

(2019). Although the authors focus on Life Cycle Analysis

(LCA) and not on Life Cycle Cost Analysis (LCCA), the con-

clusions are valid for both domains. As many, the authors

classify uncertainties in aleatory and epistemic uncertainties.

Aleatory uncertainties refer to the randomness of uncertainty

variables whereas epistemic uncertainties refer to a lack of

knowledge on uncertainty variables. Moreover, the authors

classify uncertainty quantification approaches in probabilistic

or stochastic methods and qualitative or (semi) expert judge-

ment-based methods. The validity of the method of choice is

strongly tied to the extent of aleatory and epistemic uncer-

tainties. In the probabilistic range, Monte Carlo Simulations

are identified as the most common approach. However, the

authors correctly warn that in the absence of data supporting

distributions of uncertainty variables, the result of Monte

Carlo Simulations should be viewed with extreme care as it

suggests a level of accuracy which does not exist.
In addition, Scope, Ilg, Muench, and Guenther (2016)

and Ilg, Scope, Muench, and Guenther (2017) provide an

extensive literature review on uncertainty and uncertainty

modelling in life cycle costing analysis. The authors identi-

fied parameter, model and scenario uncertainty and meth-

ods to address these. Price escalation is mentioned as an

uncertainty factor out of 33 identified uncertainty sources.

Generic guidance is given for dealing with uncertainty, how-

ever, the choice for an appropriate method remains case

specific and again depends on the extent of aleatory and

Table 1. Upper and lower bounds of triangular distributions in a few Dutch publicly available infrastructure cost forecasts.

Project type Upper/Lower bounds of unit prices Source

Municipal roads reconstruction �10% / þ20% (Kragten, 2019)
Municipal sewer works reconstruction �10%/ þ15% (Kragten, 2019)
Sludge Treatment life cycle costs ± 15% Confidential
New sanitation concept investment & life cycle costs ± 35% (Tauw, 2016)
Investment heavy rail ± 40% (Tauw, 2017)
Replacement wooden bicycle bridge ± 20% (Gemeente Heemstede, 2015)

16 M. (M. )VD. BOOMEN ET AL.



epistemic uncertainties. A main problem is the lack of data
supporting probabilistic approaches. Still, Monte Carlo
Simulation is identified as most commonly used. The
authors also observe the popularity of assuming expert-
judgement based triangular distributions for uncertainty var-
iables in the absence of data. Sun and Carmichael (2018)
present an equally interesting literature review on uncer-
tainty of financial variables within infrastructure life cycle
costing. Focus is put on uncertainty related to cash flows,
interest rates, timing of the cash flows and LCCA duration.
The authors likewise make a distinction in aleatory and epi-
stemic uncertainties. Moreover, they identified a range of
uncertainty quantification methods for each of the four
identified uncertainties which could also be classified as sto-
chastic and (semi) expert-judgement based approaches.

The current research observes that price (de-)escalation
and its uncertainty did not emerge as a specific factor of
interest in this dedicated literature review on financial varia-
bles, indicating that it may not be on the radar of scholarly
research on LCCA. Although cash flow uncertainty is identi-
fied, including various distributions, this uncertainty is
mainly attributed to increasing costs as a consequence of
ageing, timing and volume related uncertainties and not
price escalation. Other researchers indeed observe the lag in
attention for price uncertainty in construction and engineer-
ing. Swei, Gregory, and Kirchain (2015) and Swei, Gregory,
and Kirchain (2017) explicitly state that price variations for
asphalt have been ignored in scholarly research. As a reason
the authors put forward a lack of empirical data and as such
unfamiliarity with the application of econometric forecasting
models. Likewise, Ilbeigi, Castro-Lacouture, and Joukar
(2017) observe a gap in knowledge in the USA on predic-
tion of the uncertainty of asphalt prices and stress the risk
this poses to proper cash flow forecasting.

Similar observations are done by Faghih Sayed Amir and
Kashani (2018) who extend their conclusions from asphalt
to steel and cement prices in the United States. The

volatility of prices of construction materials are identified by

the authors as a main contributor to deviations in cost esti-

mates. Younis, Rehan, Unger, Yu, and Knight (2016) inves-

tigated the impact of inflation and its uncertainty on (waste)

water mains capital works and equally concluded their sig-

nificance for adequate cost estimates. This research resulted

in the development of a dedicated unit cost index database

for these infrastructures (Rehan et al., 2016). Anastasia,

Andrew, and Feargal (2018) investigated the impact of price

uncertainty modelling of electricity on the profitability of

offshore wind parks. As electricity prices are known to be

volatile, adequate predictions are essential for investors.

Also Van den Boomen, Spaan, Shang, and Wolfert (2020)

observed the absence of price uncertainty in infrastructure

decision making and stressed its importance, especially for

public sector organisations which use low discount rates.
Prices change and are subject to uncertainty (Anastasia

et al., 2018; Kowal, Conforti, Hergt, & Sager, 2018). The

current research observes that data on prices are publicly

available at each bureau for labour statistics and specialised

agencies. However, in current probabilistic cash flow fore-

casting, prices are dealt with as an epistemic uncertainty

and its (de-)escalation is often ignored whereas prices to

some extent are aleatory uncertainties for which both data

and forecasting methods exist. The question is why this data

is not mined and used? Ignoring price variations and their

uncertainty may lead to over or underestimation of real

costs. Previous research has indicated that price fluctuations

and price uncertainty may be dominant factors in probabil-

istic life cycle cost forecasting. Important is that estimates

are reproducible and based on objective data.

3. Method development

An approach to data-driven probabilistic price forecasting

needs data and a forecasting method. As stated by the

Figure 1. Example of a triangular distribution.
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previous mentioned researchers, the choice of method for

uncertainty quantification depends on the availability of

data (Larsson Ivanov et al., 2019; Scope et al., 2016; Sun &

Carmichael, 2018). Price data is generally available in the

form of time-series. Each bureau for labour statistics and

specialised agencies provide historic prices for construction,

engineering, manufacturing and services. As such the Dutch

Central Bureau of Statistics presents Producer Price Indices

(PPIs) for both construction of civil engineering works

(CBS, 2020b), manufacturing (CBS, 2020e), engineering

services (CBS, 2020f) and labour price development for con-

struction (CBS, 2020d). Another interesting price index

database in the Netherlands is provided by CROW (2018a).

This database depicts long-term historic price developments

of construction materials, energy and labour and is origin-

ally meant to protect contractors against negative conse-

quences of price fluctuations. Recalculation is done

afterwards, and as such contractors are compensated for a

certain amount of financial project risks. This risk mitiga-

tion regulation for construction works in the Netherlands

originates from 1995 and has as a positive side effect that by

now it has gained a valuable resource of historic prices for

construction works.
The current research proposes to use historic price indi-

ces for future predictions. Although historic prices do not

guarantee the validity of future predictions, it does give

some information about expected developments. For

example, past recessions and their impact on prices may

reflect future recessions although underlying causes such as

technological advancements and global transitions, may dif-

fer. The current research argues that long-term past prices

to some extent reflect future trends which outweigh the cur-

rent practice where price escalation is practically ignored,

and uncertainty bounds are often based on estimated values

of ± 15%. Long-term past prices provide additional informa-

tion which is available and easily accessible.
The second ingredient is a method for price forecasting.

The current research proposes a Geometric Brownian

Motion (GBM) for predicting future prices and their uncer-

tainty. A GBM is a well-known and broadly accepted statis-

tical method originating from the financial domain

(Anastasia et al., 2018; Davison, 2014; Francis & Kim, 2013).

In the discussion section of this research some other finan-

cial forecasting methods are considered as well. The choice

for a GBM is motivated from a pragmatic point of view. It

only needs past prices to predict future prices and, as is

demonstrated later on, supports the general approach to

dealing with compounded inflation or deflation. Therefore

the results of a GMB are easily explained in contrast to

more advanced methods which often build on the principles

of a GBM but regress on more variables (i.e. polynomial

regression of historic data, adding regression on prediction

errors, adding regression on explanatory variables). These

advanced methods prove value when sufficient and accurate

data are available for a specific context, as many of these

methods provide unique prediction equations for unique

data sets (black box). As such these advanced methods are

considered less suitable for the general case, than a GBM.

A GBM describes a random walk defined by a drift and

volatility. Each time step a price changes based on a con-

stant (drift) and a random shock (volatility). Because returns

on prices are compounded, a GBM takes the natural loga-

rithm of prices when describing a random walk according

to:

ln ðPjÞ� ln ðPj�1Þ ¼ lþ rej, (1)

where lnðPjÞ is the natural logarithm of the price at time j;

lnðPj�1Þ is the natural logarithm of the price at time j� 1; l

is a drift obtained from past prices; r is a volatility obtained

from past prices and ej � Nð0, 1Þ is a shock following a nor-

mal standard distribution with a mean of 0 and a standard

deviation of 1. The drift l and volatility r are obtained

from past price data. An example is provided in the appen-

dix (Table A1). The drift and the volatility are the mean

and the standard deviation of the natural logarithms of the

returns, respectively. If drifts and volatilities are obtained

from i.e. quarterly data, they can be annualised according to

(Francis & Kim, 2013):

lannual¼

lquarter

1=4
(2)

rannual¼
rquarter

ffiffiffiffiffiffiffiffi

1=4
p (3)

Equation (1) can be rearranged to Equation (4) which

provides a direct relationship for the next price simulation

based on its previous forecast:

Pj ¼ Pj�1 � EXP ðlþ rejÞ (4)

while, if preferred, Equation (4) can be rearranged in a dir-

ect relationship between the price at time j and the price at

time zero:

Pj ¼ P0 EXP jlð Þ þ r e1 þ e2 þ :::þ ejð Þð Þ
� �

(5)

When ignoring the shock, that is when rej ¼ 0,

Equations (4) and (5) follow the general notion of com-

pounding inflation as by approximation Pj�1 exp lð Þ �
Pj�1 1þ lð Þ: In this relationship the left term is the continu-

ous form and the right term the discrete form of com-

pounding. Therefore the drift l can be seen as a periodic

overall inflation rate. As such a GBM is not exotic. It just

represents common practice when dealing with inflation but

adds a shock at each time step which acknowledges price

uncertainty. Equation (4) or Equation (5) with shocks can

now be used to simulate future prices. This is shown in

Figure 2 for the asphalt prices in the appendix. The solid

black line upto year 2020 represents the fluctuating historic

prices. From 2020 onwards, the solid black line represents

the expected value of the future prices and the grey lines

each represent a possible price path around this

expected value.
In the absence of explanory data on mechanisms explain-

ing prices, the GBM as a first method of choice for price

prediction is motivated by its closeness to the traditional

way of dealing with compounded inflation or deflation. The

expected value of price increases following a GBM is pre-

sented by the solid black line from 2020 onwards in Figure

18 M. (M. )VD. BOOMEN ET AL.



2. This trend can alternatively be explained with the tradito-

nal approach for dealing with compounded inflation. In the

first 20 years, from 2000 to 2020, Figure 2 shows that the

price index for asphalt increases from approximately 95 to

175. The annual total inflation rate i can be derived by solv-

ing 95ð1þ iÞ20 ¼ 175 for i and results into 3.1% per year

over the past 20 years. Using this inflation rate as a pre-

dictor for the next 20 years results in an expected price

index of 175ð1þ 0:031Þ20 ¼ 322 which corresponds with the

expected value obtained by the application of a GBM in

Figure 2. The uncertainty of this value is reflected by the

possible price paths between 2000 and 2020 as shown in

Figure 2.
However, as for all predicion models, there is no guaran-

tee that past trends reflect future trends. Technology change,

climate change, scarcity of fossile resources, pandemics, tran-

sition to a circular economy and energy transition will all

impact future prices. In this example it is just observed that

asphalt prices have on average increased by 3.1% per year

over the past 20 years. Therefore, in the absense of more

explanatory data on mechanisms explaining prices, the cur-

rent research suggests to assume that this average annual

increase will continue, while keeping in mind that many fac-

tors may alter this expected price escalation in the future.
The interesting concept about a GBM is that it reflects

both price (de-)escalation and its uncertainty which fluctu-

ates over time. Current prices have less uncertainty than

future prices. The width of the cone of uncertainty reflects

the volatility of prices experienced in the past. Steady histor-

ical prices will have a small cone of future uncertainty

whereas strong fluctuating historical prices will have a wide

cone of future uncertainty. Moreover, prices will not

become negative.
Theoretically, there is no upperlimit on a GBM. However,

in practice this upperlimit is surpressed by the volatility

obtained from past price data. Hence, upper paths are

extremes and have low probabilities of occurrence when run-

ning a Monte Carlo Simulation. Using GBMs to forecast pri-

ces and their uncertainty based on PPIs removes part of the

current biases in choosing a distribution and uncertainty

bounds. In the Netherlands, open price data are provided by

CROW (2018a) and CBS Statline (CBS, 2020a). From these

databases, the current research selected several categories rele-

vant for construction and engineering and derived the drifts

and volatilities for GBMs from the price indices. These gen-

eric results are presented in Table 2. The drifts and volatilities

move around average values of 0.021 and 0.041 respectively,

for these selected prices. This order of magnitude is represen-

tative for price development of construction and engineering

in the Netherlands. From this table values will be selected for

the case study of this research.
The drifts and volatilities obtained from the CROW data-

base are slightly higher than those obtained from the CBS

database. The CROW database builds on CBS data, includes

additional information and is dedicated to construction and

engineering. As an example, differences are seen for labour

prices in Table 2. The drift and volatility of labour in the

CROW database are 0.027 and 0.020, respectively. In

contrast, the drift and volatility of labour in the CBS data-

base are 0.015 and 0.016, respectively. Differences are moti-

vated by aggregation and potential risk mark-ups. For

example, the CROW values may consider labour with flex-
ible contracts whereas the CBS database may consider

labour with permanent contracts.
GBMs can be forecasted with a Monte Carlo Simulation

using their drifts and volatilities. The strength of a Monte
Carlo Simulation is that it allows for combining multiple

uncertainties with distinct distributions in probabilistic cash

flow forecasting. A cash flow forecast is founded on multiple

prices and multiple quantities each with their own uncer-
tainty distributions. This approach to a more data-driven

cash flow forecast is demonstrated in the case study but first

the discount rate is discussed in the following section.

4. Discounting under price (de-)escalation

Cash flow forecasts are discounted to their present values

which allows for comparison between alternative scenarios.

Present values may also be used to indicate the amount of

capital to be reserved for future purposes. Discounting
under price (de-)escalation needs correction of the discount

rate. For clarity, the following explanation builds on price

escalation (inflation). These expressions can be substituted

with price de-escalation (deflation). If cash flows are inflated
with producer price escalation (PPI or total inflation), the

discount rate needs to be inflated with the long-term general

inflation rate (ISO, 2008). This correction is performed

according to Equation (6) (ISO, 2008; Park, 2016; Sullivan,
Wicks, & Koeling, 2012):

rnom ¼ rreal þ ig þ rreal � ig (6)

Equation (6) expresses the relationship between the nom-
inal or inflated discount rate and the real or uninflated dis-

count rate. The real discount rate rreal is inflated with the

general inflation rate ig to arrive at the nominal or inflated

discount rate rnom: The long-term general inflation rate is
derived from the Consumer Price Index (CPI) (CBS, 2020c;

ISO, 2008; Park, 2016) and reflects a general price increase

(or decrease) based on a price basket with common goods.

The long-term general annual inflation rate is derived from

CPI data according to (Park, 2016):

ig ¼
CPIn

CPI0

� �1=n

�1 (7)

where CPIn is the CPI in year n, CPI0 is the CPI in a base

year zero, n is the number of years between the two CPIs.
For the Netherlands the general inflation rate from 1996

to 2020 is calculated as1.87% (CBS, 2020c). Inflating the real
discount rate to a nominal discount rate as in Equation (6)

results in a higher discount rate. However, because the gen-

eral inflation rate is often less than the producer price infla-

tion (Kowal, Conforti, Hergt, & Sager, 2019), this difference,
also expressed as differential inflation, will mostly cause

increased cash flows and therefore increased present values

of discounted life cycle costs. As an illustration, the average

drift for the selected categories in Table 2 is 0.021 which
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exceeds the general inflation rate of 0.0187. Therefore, these

prices on average will increase at a higher rate than the gen-

eral inflation.
Another point of interest is whether the general inflation

rate, real interest rate and derived nominal discount rate

should be treated as GBMs like the current research suggests

for prices of goods and services in probabilistic cash flow fore-

casting. This is not advised because prices of goods and serv-

ices indeed fluctuate on a short-term basis and are realistic

expenditures which pose risks. In contrast, discount rates are

tied to market forces but set by governmental and organisa-

tional policies and based on long-term developments and

larger project portfolios. Discount rates are long-term averages

which reflect a minimum attractive rate of return required by

an organisation and set constant over a longer period.
In the Netherlands, a national taskforce advises the min-

ister of Finance who decides on the discount rate for gov-

ernmental public projects. The last policy dates from 2015

and prescribes a real discount rate for public infrastructure

of 3% (Taskforce discount rate, 2015). Due to decreasing

interest rates in the market the CPB Netherlands Bureau for

Economic Policy Analysis currently advises to review the

policy on the discount rate for public projects. Changes in

discount rate will likely be effectuated in one or two years.

The current research acknowledges that discount rates are

uncertain but to a lesser extent than market prices.

Discount rates are set by policy and therefore do not follow

a GBM in the current application. Their impact could better

be investigated with a sensitivity analysis as will be demon-

strated in the case study.

5. Case study

The case study constructs a probabilistic life cycle forecast

for a concrete bridge in the Netherlands with a design life

of 100 years. The life cycle costs, excluding initial

investments as the focus of this research is on time-variant

price developments, follow from a preliminary design. Life

cycle activities, the design life and data are obtained from a

Dutch government and proportionally indicative for many

similar bridges (Table 3). First a probabilistic cash flow fore-

cast is performed according to the Dutch standard (CROW,

2018b). Second, a probabilistic cash flow forecast is per-

formed with the method where price uncertainty follows a

GBM. Commissions and taxes are left out as the interest lies

in comparison of the conventional method with the GBM-

based method.

5.1. Data and assumptions

The probabilistic cash flow forecast contains three uncertainty

variables: the frequency or corresponding timing of activities,

the volume or quantities used per activity and the unit price

of these volumes. The traditional method uses triangular dis-

tributions and in the absence of data, assumes uncertainty

bounds of ±15% of the expected values (Table 3). Sampling

from the distributions results in scenarios where the timing

of activities can be earlier or later; the volumes can be more

or less and the prices can be more or less than the expected

values. Certain activities are always performed together. The

timing of these activities is sampled from the same distribu-

tions. Moreover, in this conventional approach price uncer-

tainty is a distribution around a constant expected value.
As such, there is no price (de-)escalation taken into

account and therefore life cycle costs are discounted with

the real discount rate as discussed in Section 4. Because of a

long-term forecast and the less volatile nature of the dis-

count rate (Section 4), the discount rate is taken as a

weighted average of the available past real discount rates

during 1995� 2020 and amounts 5% (Taskforce discount

rate, 2015). Although the current real discount rate is lower

(3%) this research assumes that the average real discount

Figure 2. Predicted prices for asphalt in the Netherlands based on a GBM.
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rate over the past 25 years is more representative for the

long-term forecast than the current discount rate. However,

in the sensitivity analysis, the impact of various discount

rates is investigated.
The probabilistic GBM-based method changes the distri-

bution of a price variable in a GBM where drifts and volatil-

ities are obtained from open PPI data. These drifts and

volatilities for the various life cycle activities are presented

in Table 4 and selected from Table 2. There is some subject-

ivity in selecting these values as two different databases

underlie the analysis in Table 2 and the categories depicted

are originally meant for construction and engineering and

not dedicated to maintenance. The drift accounts for price

escalation with a total inflation rate whereas the volatility

accounts for its uncertainty.
As the cash flows are fully inflated when applying a

GBM, discounting should be done with the nominal dis-

count rate as explained in Section 4. The inflated discount

rate (nominal discount rate) follows from the application of

Equation (7) and Equation (6) and amounts 6.96%, given a

long-term real discount rate (non-inflated) of 5% and a

long-term general inflation rate of 1.87% (CBS, 2020c;

Taskforce discount rate, 2015). A Monte Carlo Simulation is

run with 1000 simulations which provides enough basis for

comparison. The Monte Carlo Simulations are performed in

Excel in a few seconds and without plugins but can also be

performed in Excel with plugins (i.e. @risk# or

Crystalball#), in MATLAB or any other program-

ming language.

5.2. Results

The results are visualised for both approaches as a frequency

distribution graph of the discounted life cycle costs while

running 1000 simulations (Figure 3). The left frequency dis-

tribution in Figure 3 belongs to the conventional method

for probabilistic cash flow forecasting. The right frequency

distribution follows from the application of a GBM to

Table 2. Drift and volatilities obtained from public price escalation data for construction and engineering in the Netherlands.

Categoriesa

Annualised

Drift Volatility Interval Period

PPI Civil engineering works (source CROW)
0 Labour 0.027 0.020 Monthly 1995� 2020
3 Gasoline without VAT 0.058 0.240 Monthly 1995� 2020
4 Electricity 0.014 0.148 Monthly 1995� 2020
13 Concrete mortar 0.027 0.033 Monthly 1995� 2020
17 Plastics including PVC 0.033 0.047 Monthly 1995� 2020
19 Steel excluding reinforcing bars 0.021 0.098 Monthly 1995� 2020
20 Road pavement bitumen 0.042 0.178 Monthly 1995� 2020
22 Mineral asphalt mixture including fuel, ex. bitumen 0.025 0.031 Monthly 1995� 2020

PPI Construction (source CBS)
4211a Road construction; brick paving 0.021 0.015 Quarterly 1998� 2020
4211 b Road construction; asphalt paving 0.028 0.074 Quarterly 1998� 2020
4211c Road maintenance 0.030 0.016 Quarterly 1998� 2004
4212 Railways and underground railway 0.027 0.026 Quarterly 2000� 2020
4213 Construction works for bridges and tunnels 0.017 0.025 Quarterly 2000� 2020
4221 Constructions works for utility projects for fluids 0.026 0.019 Quarterly 1998� 2020
4291 Constructions and works for water projects 0.026 0.033 Quarterly 2000� 2020
4312 Site preparation works 0.023 0.024 Quarterly 1998� 2020
4321 Electrical installation works 0.019 0.017 Quarterly 2000� 2020

PPI Manufacturing (source CBS)
2361 Concrete products for construction projects 0.011 0.029 Monthly 2012� 2020
2362 Plaster products for construction purposes 0.014 0.021 Monthly 2014� 2020
2365 Fibre cement 0.030 0.037 Monthly 2012� 2020
251 Structural metal products 0.014 0.018 Monthly 2012� 2020
2511 Metal structures and parts of structures 0.013 0.021 Monthly 2012� 2020
2811 Engines & turbines, ex. aircraft, vehicle & cycle eng. 0.011 0.017 Monthly 2012� 2020
2812 Fluid power equipment 0.021 0.030 Monthly 2012� 2020
2813 Other pumps and compressors 0.011 0.016 Monthly 2012� 2020
2814 Other taps and valves 0.005 0.006 Monthly 2012� 2020
2815 Bearings, gears, gearing and driving elements 0.001 0.011 Monthly 2012� 2020
33 Repair & installation serv. of machinery & equipmentb 0.022 0.017 Monthly 2012� 2020

PI Labour (source CBS)
Labour – construction 0.015 0.016 Yearly 2001� 2019

PPI Services (source CBS)
711212 Engineering; building projects 0.021 0.042 Quarterly 2002� 2019
711213 Engineering; power projects 0.014 0.037 Quarterly 2003� 2019
711214 Engineering; transportation projects 0.012 0.046 Quarterly 2004� 2019
711216 Engineering; water projects 0.011 0.042 Quarterly 2005� 2019
711217 Engineering; manufacturing 0.022 0.025 Quarterly 2006� 2019
711220 Project management services for construction 0.017 0.079 Quarterly 2007� 2019
aRaw data on PPIs are obtained from CROW (2018a) and CBS (2020a)
bRaw data have been adjusted for one extreme outlier
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predict price escalation and uncertainty while leaving the
other variables and their uncertainty distribu-
tions unchanged.

It is seen in the case study that the conventional method
underestimates the total life cycle costs, expressed in present
values. For the case study this underestimation amounts to
approximately 13%. The case study also displays an
increased spread in total discounted costs for the GBM-
based method. This is explained by the volatilities of the
GBMs obtained from data, compared to the expert judge-
ment’s upper and lower bounds of 15%. Increasing these
upper and lower bounds of the conventional method to ±
50% while leaving the other variables unchanged results in
Figure 4. It is seen that the spread of the combined triangu-
lar distribution increases. However, the mean value of the
combined triangular distributions remains unchanged
because the underlying triangular distributions do not take
price escalation into account.

Sensitivity analyses on discount rate and regres-

sion period

Two sensitivity analyses are performed: for the real discount
rate and for the length of the regression period which
impacts the drifts and volatilities of the GBMs. The prob-
abilistic forecasting methods are first investigated for their
sensitivity to discount rates as shown in Table 5. All dis-
count rates pose real scenarios for public sector organisa-
tions. It is seen that lowering the long-term real discount
rate to i.e. 3% will increase the current underestimation to
19% whereas increasing the long-term discount rate to 7%
will lead to an underestimation of 9% for the case study.

Regressing other drifts and volatilities from the time ser-
ies of the prices by changing the length of the time series
will change the present values as well. Lower drifts will
reduce the amount of underestimation and higher drifts will
increase the amount of underestimation when comparing
the conventional probabilistic forecasting method and the
GBM-based method. Consequently, lower volatilities will
reduce the distribution of the probabilistic GBM-based
result and lower drifts will shift the mean of the probabilis-
tic GBM-based result to the left. The volatilities and drifts
in Table 4 represent observed historic fluctuations and

trends during 1995� 2020. The case study aims to forecast

life cycle cash flows over the long life cycle of this infra-

structure (100 years). For that reason, the case study used

the longest available historical time series of pri-

ces (25 years).
However, one could argue that old prices may not be

representative for future forecasts. Moreover, it is interesting

to see how the choice of the analysis period can impact

results. Therefore, a sensitivity analysis is presented based

on variable regression periods. For this analysis 5 periods

are distinguished. The longest historic period is 25 years

(1995� 2020) followed by 20 years (2000� 2020), 15 years

(2005� 2020), 10 years (2010� 2020) and 5 years

(2015� 2020). The distinct variables used as input for the

probabilistic calculation with GBMs are derived from the

time series and presented in Tables 6 and 7.
Monte Carlo Simulations are performed with the finan-

cial variables presented in Tables 6 and 7, combined with

the different activities, distributions on their timing and vol-

umes, and the unit prices conform Table 3. The results of

these simulations for scenarios 1, 2, 3 and 4 are presented

in Figure 5. Scenario 0 is already displayed in Figure 3.

Figure 5 displays for each scenario the present value of the

life cycle cost and its distribution for the conventional and

GBM-based method for probabilistic forecasting.
As expected, regression periods with lower means of unit

prices (less inflation) shift the mean of the GBM-based

probabilistic forecasts to the left as the future becomes

cheaper. This is explained by regression on periods where

fluctuating prices increase at a lower rate than the general

inflation as can be seen while comparing Tables 7 and 6.

The expected cheaper future is partly counterweighted by

the real discount rate which shows a declining trend for the

subsequent scenarios which means that the declining real

discount rate contributes to the expectation of a more

expensive future but to a lesser extent than the inflation

contributes to a cheaper future. In contrast, the conven-

tional probabilistic approach is not influenced by periods

where prices increase or decrease as the expected value

of the conventional approach does not account for price

(de-)escalation. The differences seen in the conventional

probabilistic forecasting method are solely explained by the

Table 3. Life cycle activities and conventional uncertainty bounds for a new concrete bridge.

Maintenance activities Freq. (yr) Volume Unit price

Frequency Volume Cost

Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%)

Main load bearing construction –

concrete deck repair
25 9,200 m2 e 5 15 15 15 15 15 15

Replacement bearings 50 16 pc. e 35,000 15 15 15 15 15 15
Piles – restore concrete damages 25 410 m2 e 18 15 15 15 15 15 15
Pavement – replacement supporting

construction
20 9,200 m2 e 35 15 15 15 15 15 15

Pavement – replacement deck 20 9,200 m2 e 15 15 15 15 15 15 15
Replacement expansion joints 25 30 m e 1,250 15 15 15 15 15 15
Kerb side – restore concrete damages 10 1,600 m2 e 18 15 15 15 15 15 15
Safety barrier – maintenance 20 1,450 m e 18 15 15 15 15 15 15
Safety barrier– replacement 20 1,450 m e 115 15 15 15 15 15 15
Railing – replacement 40 730 m e 300 15 15 15 15 15 15
Railing – conservation 10 730 m e 75 15 15 15 15 15 15
Other yearly maintenance 1 1 pc. e 25,000 15 15 15 15 15 15
Traffic measures 1 1 pc. e 4,000 15 15 15 15 15 15
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variability in real discount rate for each period. Lower
expected discount rates make the future more expensive.

This raises an important question on what the length of
a regression period for forward prediction should be? The
current research displayed Figure 3 as main result but a sen-
sitivity analysis on the regression period of historic prices
reveals two scenarios (3 and 4) where the GBM-based fore-
casting leads to a lower present value of life cycle costs than
the conventional probabilistic method. What analysis period
should be used to regress on drift and volatility?

For the case study, the current research chose the longest
available time series. That is because cash flows are forecasted
for a life cycle of 100 years. Regressing historic data over 5 to
10 years will not capture historic trends and cyclic behaviour
(seasonality) of prices for a long-term. There are for example
5-years’ periods were some prices decrease but this will not
mean that these prices will remain decreasing for the full life
cycle. Just as the declining real discount rate will not

necessarily imply that the future real discount rate will not rise
again. The historic time series show that in the Netherlands,
over the long-term prices in general increase. However, if the
purpose of the current research would have been the forecast-
ing of a shorter period, for example a construction project
stretching over 5 to 10 years, regression would have been done
over 5 to 10 years as these recent historic prices are assumed
to be more representative for short and mid-term forecasts.

The question of the length of a regression period is a
very important one. The generic answer is that a regression
period should sufficiently capture trends and seasonality or
cyclic behaviour (Chatfield & Xing, 2019). The choice is
case and purpose specific and also depends on the amount
of data available. The case study is based on the data cur-
rently available and indicates that price escalation and
uncertainty may lead to underestimation of costs. The add-
itional uncertainty induced by insufficient data adds to the
importance of a dedicated registration of price developments

Table 4. Life cycle activities and selected uncertainty parameters for prices following a GBM.

Maintenance activities

GBM
Reference Table 1

drift volatility Code (source)

Main load bearing construction – concrete deck repair 0.017 0.025 4213 (CBS)
Replacement bearings 0.021 0.098 19 (CROW)
Piles – restore concrete damages 0.017 0.025 4213 (CBS)
Pavement – replacement supporting construction 0.028 0.074 4211b (CBS)
Pavement – replacement deck 0.028 0.074 4211b (CBS)
Replacement expansion joints 0.033 0.047 17 (CROW)
Kerb side – restore concrete damages 0.017 0.025 4213 (CBS)
Safety barrier – maintenance 0.015 0.016 Labour (CBS)
Safety barrier– replacement 0.021 0.098 19 (CROW)
Railing – replacement 0.021 0.098 19 (CROW)
Railing – conservation 0.015 0.016 Labour (CBS)
Other yearly maintenance 0.015 0.016 Labour (CBS)
Traffic measures 0.015 0.016 Labour (CBS)

Figure 3. Probabilistic present values of the life cycle cash flows for the conventional method and the GBM-based method with input values of Table 3 and Table
4 and a real discount rate of 5%.
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for life cycle activities and improvement of price predic-

tion methods.

5.3. Verification of the probabilistic calculations

A good habit is a deterministic calculation as a reference.
Because of the skewness induced by combining uncertainty

distributions, a probabilistic cash flow forecast with price
escalation (price escalation with uncertainty) tends to give

higher present values than its deterministic counterpart
(price escalation without uncertainty). However, a determin-

istic cash flow forecast with price escalation will generally
yield higher results than a probabilistic forecast without

price escalation (uncertainty but no price escalation).
Therefore it is expected that a deterministic calculation for

the cash flows of the case study will yield a total present
value between the value of the current probabilistic method

(e1.22 million without price escalation) and the GBM-based

method (e1.38 million with price escalation). If this is true
it is reasonably assumed that the probabilistic calculations

are performed without calculation errors.

Using the mathematics of a geometric series a determin-

istic calculation including price escalation is quickly per-

formed. Let

K ¼
ð1þ lÞ

ð1þ rnomÞ
, (8)

where l is the drift or total price escalation and rnom is the

nominal discount rate conform Equation (6). Now the pre-

sent value of annual maintenance costs starting in year 1,

increasing with l % per year and ending in year Tend, can

be calculated with (Park, 2016):

P 0,Tend½ �annuity ¼ A0ð1þ lÞ �
1�KTend

rnom � l
(9)

In the case of periodic maintenance or major overhauls with

an interval n, the present value over the life cycle is calculated as:

P 0,Tend½ �periodic ¼ M0 �
KTstart�KTend

1� Kn
: (10)

where M0 are the major maintenance costs as it would be in

base year zero; Tstart is the year in which the first activity

takes place; Tend is the year in which this major maintenance

Figure 4. Probabilistic present values of the life cycle cash flows for the conventional method and the GBM-based method as in Figure 3 but with ± 50% upper
and lower bounds for the triangular distribution of prices of the conventional method.

Table 5. Sensitivity analysis for the discount rate in the case study.

Real discount rate
(general inflation
rate 1.87%)

Mean of discounted life cycle costs
in e millions (rounded)

Underestimation of
conventional
method (%)

Conventional
method

Proposed
method

1% 4.63 5.90 27
2% 3.08 3.79 23
3% 2.16 2.58 19
4% 1.59 1.84 16
5% 1.22 1.38 13
6% 0.96 1.07 11
7% 0.79 0.86 9

Table 6. Average general inflation rates and real discount rates for distinct
time periods.

Scenario Period
Real discount
rate (%)a

General inflation
rate (CPI)b

0 1995� 2020 5.00 1.87
1 2000� 2020 4.70 1.84
2 2005� 2020 4.70 1.59
3 2010� 2020 4.25 1.64
4 2015� 2020 3.00 1.54
aDerived from Taskforce discount rate (2015)
bDerived from CBS (2020c)
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activity should not occur and n is the interval between the

activities. Often, Tstart ¼ n: If for example activities take place

each 25 years over a life cycle of 100 years. Equation (10) calcu-

lates the present value of occurrence of this activity in years

25, 50 and 75. The validity of Equation (10) is verified for this

example with the well-known alternative:

P 0, 100½ �periodic ¼ M0 �
1þ l

1þ rnom

� �25

þM0 �
1þ l

1þ rnom

� �50

þM0 �
1þ l

1þ rnom

� �75

(11)

The deterministic calculation including price escalation

but excluding uncertainty is presented in Table 8.

Equations (9) and (10) are used, as well as the data in

Tables 3 and 4.
Comparison of the deterministic calculation with the

probabilistic calculations shows a present value (e1.28 mil-

lion) between both probabilistic values in Table 5 for a real

discount rate of 5%. This is conforming to the expectation.

The conventional probabilistic method does not account for

price escalation. Therefore, it is expected that a deterministic

calculation with price escalation yields higher expected pre-

sent values of the life cycle costs. In contrast, the GBM-

based probabilistic calculation including price escalation

yields higher expected present values of the life cycle costs

than its deterministic counterpart. These increased costs are

caused by the skewness or the longer tail as can been seen

in Figure 3. The deterministic calculation provides validity

that the probabilistic calculations are performed properly.

Figure 5. Sensitivity analysis on the regression period for the conventional method and GBM-based method.

Table 7. Drifts (m) and volatilities (r) for the GBMs of the unit prices of the case study for distinct time periods.

Scenario Period

17 (CROW)a 19 (CROW)a 4211b (CBS)a 4213 (CBS)a Labour (CBS)a

m r m r m r m r m r

0 1995� 2020 0.033 0.047 0.021 0.098 0.028 0.074 0.017b 0.025b 0.015b 0.016b

1 2000� 2020 0.038 0.047 0.033 0.081 0.027 0.077 0.017 0.025 0.015 0.016
2 2005� 2020 0.032 0.042 0.016 0.082 0.029 0.088 0.017 0.027 0.012 0.015
3 2010� 2020 0.034 0.029 0.019 0.063 0.011 0.054 0.014 0.015 0.008 0.016
4 2015� 2020 0.044 0.032 0.016 0.034 0.007 0.066 0.019 0.013 0.016 0.011
aRaw data on PPIs is obtained from CROW (2018a) and CBS (2020a)
bValues non available and assumed to be the same as 2000– 2020
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6. Discussion

The current research proposes to include market price escal-
ation and its uncertainty in conventional practice for prob-
abilistic life cycle cost forecasting of infrastructures with
long service lives. The method of choice for uncertainty
modelling of market prices is a Geometric Brownian
Motion because it follows the general notion of compound-
ing inflation or deflation for prices, additionally accounts
for uncertainty and is easily applicable in practice. The
uncertainty parameters representing the drift and volatility
are obtained from registered historic price indices. This
approach removes some subjectivity from the current prac-
tice for probabilistic cash flow forecasting in which uncer-
tainty distributions are based on the assumption of a
triangular distribution and its upper bound, mean and lower
bound are estimated based on expert-judgement. The advan-
tage of choosing a GBM for uncertainty modelling of mar-
ket prices instead of a triangular distribution is that it builds
on real data and accounts for time-variability. The cone of
uncertainty widens in time. Moreover, multiple GBMs for
prices are easily included in the current Monte Carlo
Simulation which also combines the other uncertainties
among which volume and timing.

The case study demonstrates that inclusion of market
price uncertainty leads to higher total discounted costs
which is not surprisingly because in general market prices
increase over longer time frames. Mostly PPIs exceed gen-
eral inflation, therefore total discounted cost are expected to
increase when long-term horizons are considered. The cur-
rent practice of a triangular distribution for cash flow uncer-
tainty does not account for price escalation. The current
practice will therefore in general underestimate costs especially
for public sector organisations which use low discount rates.
The current study emphasises the importance of a more data-
driven inclusion of price escalation and its uncertainty. This
may lead to improvement of current practice for probabilistic
life cycle cash flow forecasting of infrastructures. As a first
step, the current research proposes a GBM-based probabilistic
forecasting method. However, a GBM-based forecasting
method does not provide final answers.

First, the choice for a GBM is motivated by its simplicity.
It is a fundamental forecasting method for market prices
obtained from the financial domain, but it does not neces-
sarily mean that all prices behave like a GBM. Two other
financial forecasting methods are for example
Autoregressive Integrated Moving Average (ARIMA) and
Mean-Reverting Jump-Diffusion (MRJD) processes
(Anastasia et al., 2018). A GBM is part of the ARIMA fam-
ily and also labelled as ARIMA(0,1,0), but it has many other
family members which could be considered. Moreover,
Ilbeigi et al. (2017) focus on time-series models classified as
ARCH/GARCH, which account for conditional volatilities
in (asphalt) prices whereas a GBM assumes a constant vola-
tility. Khanzadi, Eshtehardian, and Mokhlespour Esfahani
(2017) take it one step further and propose the application
of Bayesian belief networks when both prices and explana-
tory variables are available. Furthermore, Kohrs, M€uhlichen,
Auer, and Schuhmacher (2019) build on a multi-factor price

forecasting method for volatile gas prices. The disadvantage

of a GBM is that it does not take underlying cause-effect

relationships for price fluctuations into account. Moreover,

long-term prices are believed to convert around their mean

whereas a GBM will divert, even though probabilities

are small.
However, the advanced methods mentioned above need

detailed data on specific prices under specific circumstances

to arrive at predictions. In the absence of such data, the

GBM is pragmatically the first method of choice. Public

data on price developments are aggregated data from indus-

tries and sectors. If this data is the best currently available,

the GBM will serve its purpose and its application can help

to build up better databases over time. Instead of waiting

for ideal price data and prediction methods the current

research advocates a bottom-up approach and learning by

doing. Moreover, even the advanced methods for price pre-

diction will currently not be able to foresee the impact of

climate change, energy transition and a circular economy on

price escalations and their uncertainties.
As a direction for future research the current study pro-

poses development of dedicated price forecasting methods

for infrastructure life cycle costs under specific circumstan-

ces. Sector and location specific cost databases such as initi-

ated by Rehan et al. (2016) for waste water pipelines in

Ontario, Canada are an essential prerequisite for validation

of such predictive models. Such dedicated databases can

continually gather evidence about future price developments

and monitor the impact of transitions, like the circular

economy. However, also with the currently available price

data it is interesting to compare the GBM with other time-

series forecast methods as mentioned above.
A second limitation of the current research is its focus on

fundamental cash flow forecasting in an early stage with lim-

ited data available. The current research is targeted at gradually

improving current practice where the timing of life cycle activ-

ities is based on expert judgement and not on condition

assessment. The methods for probabilistic cash flow forecasting

do not optimise the timing of activities. One could argue that

sophisticated methods, like multi-objective optimisation exist

to optimise the timing of these activities while taking condition

deterioration into account. The current case study displays 15

life cycle activities. However, (waste) water treatment installa-

tions quickly display over 600 life cycle activities. Simultaneous

multi-objective optimisations of hundreds of life cycle activities

would be a real challenge as such models will fall prey to

state explosion.
Nevertheless, Markov Decision Process (MDP) is a

method capable of optimising life cycle activities of infra-

structure under uncertainty (Boucherie & Dijk, 2017;

Frangopol, Dong, & Sabatino, 2017; Van den Boomen,

2020). MDP models found in infrastructure life cycle man-

agement generally incorporate transition probabilities for

transferral from one condition state to another. Therefore,

MDPs account for uncertainty on condition deterioration

and as such the timing of i.e. maintenance works or partial

replacements. Research on multi-objective optimisation

models for infrastructure life cycle activities is for example

26 M. (M. )VD. BOOMEN ET AL.



provided by Almeida, Teixeira, and Delgado (2015);

Faddoul, Raphael, and Chateauneuf (2011), D. Frangopol

(2011), Oliveira, Santos, Denysiuk, Moreira, and Matos

(2017) and Lin, Yuan, and Tovilla (2019). The challenge of

course, is again accurate condition data to assess transition

probability matrices (Adey, Hackl, & Lethanh, 2017;

Lethanh, Hackl, & Adey Bryan, 2017).
The current research observes that these life cycle activ-

ities optimisation models do not take price escalations and

their uncertainty into account. The current research there-

fore proposes to extend multi-objective optimisation models

with price increases and uncertainty using financial price

forecasting methods. At the same time, the current research

identifies room for improvement of the GBM-based

approach for probabilistic cash flow forecasting. This needs

improvement of the quality of data and development of

more accurate financial prediction models. Another route is

taking ageing or condition deterioration into account. From

a professional point of view, there is also a need for more

objective predictions on increasing life cycle cash flows as a

consequence of ageing of infrastructure.

7. Conclusions

Probabilistic cash flow forecasting supports budgeting and

financing of infrastructure and has grown in interest over

the past decennium. The conventional approach in the

Netherlands builds on three uncertainty variables: timing of

activities, volumes and costs. Generally, a triangular distri-

bution is applied for each of the variables with user defined

upper and lower bounds. In the absence of data, values of

i.e. ±15% from the expected values are used. The expected

values remain constant over time. Sampling from the distri-

butions and discounting the life cycle costs of the various

scenarios, result in a frequency distribution of their present

values. Based on such graph a decision maker can conclude

on the probabilities that life cycle costs will remain between

certain confidence bounds. The strength of this approach is

its applicability in practice while having limited data.

However, there are several limitations. First, results are sub-

jective when the estimated probability distributions are

based on expert judgement instead of data analysis. Second,

time-variance is neglected in this approach which wreaks

havoc on price predictions which are subject to

(de)inflation.
As first step forwards to better price prediction methods,

the current research proposes to model price (de-)escala-

tions and their uncertainties with a fundamental financial

forecasting method, a Geometric Brownian Motion (GBM).

A GBM describes a random walk around a time-variant

expected value. Numerous random walks represent a cone

of uncertainty which widens further in time around increas-

ing or decreasing expected price values. This reflects a gen-

eral notion of price (de-)escalation with more uncertainty in

the far future. A GBM also reflects a general notion that

volatile prices experience more uncertainty than less vola-

tile prices.
The parameters describing GBMs are derived from pub-

licly available Producer Price Indices (PPIs) which introdu-

ces less subjectivity in the conventional approach for

probabilistic cash flow forecasting. Moreover, as PPIs are

often known to exceed general inflation rates, realistic costs

which are currently forgotten, are included in cash flow

forecasts. A case study for a concrete bridge demonstrates

that ignoring price escalation may lead to an expected

underestimation of discounted life cycle costs of 13%.

Especially for infrastructures with long life cycles and public

sector organisations using low discount rates, incorporation

of price increases should not be overlooked. The method for

its uncertainty modelling is easily included in the current

approach for probabilistic cash flow forecasting.
Nevertheless, there are limitations. Current publicly avail-

able PPI data is based on sector averages, aggregated and

targeted at construction and engineering. Not all PPI data is

fit for specific infrastructure life cycle purposes such as

operations and maintenance. Besides, discrepancies in price

developments are observed between different databases. The

current research therefore advocates to establish uniform

and dedicated databases for price developments for con-

struction, engineering, operations and maintenance of infra-

structures. Second, a GBM is a fundamental price

forecasting method but it does not necessarily describe the

behaviour of specific prices.
As outlook for further research it is recommended to

investigate price (de-)escalations for specific sectors or infra-

structures and to improve or expand current price

Table 8. Deterministic present value calculation of the life cycle cash flows with price escalation for the case study, long-term real discount rate of 5% and gen-
eral inflation rate of 1.87% (costs in million Euros).

Maintenance activities Freq.(yr) Volume Unit price Drift Present value over life cycle

Main load bearing construction – concrete deck repair 25 9,200 m2 e 5 0.017 17,558
Replacement bearings 50 16 pc. e 35,000 0.021 55,249
Piles – restore concrete damages 25 410 m2 e 18 0.017 2,817
Pavement – replacement supporting construction 20 9,200 m2 e 35 0.028 254,570
Pavement – replacement deck 20 9,200 m2 e 15 0.028 109,101
Replacement expansion joints 25 30 m e 1,250 0.033 24,866
Kerb side – restore concrete damages 10 1,600 m2 e 18 0.017 43,044
Safety barrier – maintenance 20 1,450 m e 18 0.015 13,863
Safety barrier– replacement 20 1,450 m e 115 0.021 106,622
Railing – replacement 40 730 m e 300 0.021 38,193
Railing – conservation 10 730 m e 75 0.015 78,701
Other yearly maintenance 1 1 pc. e 25,000 0.015 461,883
Traffic measures 1 1 pc. e 4,000 0.015 73,901

Total 1,280,368
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registrations for life cycle activities. Further it is recom-

mended to investigate how to improve price predictions for

infrastructure life cycle activities, not just by better regres-

sion of historic time series but also by understanding the

mechanisms which cause price fluctuations. Finally, various

research demonstrates the importance of addressing price

(de-)escalation in infrastructure life cycle management. Price

(de-)escalation and its uncertainty should therefore be inte-

grated in life cycle costing models based on condition

deterioration and vice versa.
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Appendix

Table A1. Example for obtaining drift and volatility from past prices.

Price indices for asphalt closed construction

Year PPI¼ P ln(P) ln(Pj) - ln(Pj-1)

1998 90.4 4.50
1999 91.3 4.51 0.010
2000 97.8 4.58 0.069
2001 102.9 4.63 0.051
2002 105.7 4.66 0.027
2003 108.2 4.68 0.023
2004 108.7 4.69 0.005
2005 108.2 4.68 �0.005
2006 123.4 4.82 0.131
2007 127.7 4.85 0.034
2008 154.6 5.04 0.191
2009 138.7 4.93 �0.109
2010 149.7 5.01 0.076
2011 159.9 5.07 0.066
2012 169.5 5.13 0.058
2013 175 5.16 0.032
2014 173.4 5.16 �0.009
2015 161.7 5.09 �0.070
2016 152.5 5.03 �0.059
2017 166.8 5.12 0.090
2018 170.4 5.14 0.021
2019 173.7 5.16 0.019
Drift Mean m 0.031
Volatility Stdev r 0.066
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