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Abstract

Many current face recognition algorithms perform badly
when the lighting or pose of the probe and gallery images
differ. In this paper we present a novel algorithm designed
for these conditions. We describe face data as resulting
from a generative model which incorporates both within-
individual and between-individual variation. In recognition
we calculate the likelihood that the differences between face
images are entirely due to within-individual variability. We
extend this to the non-linear case where an arbitrary face
manifold can be described and noise is position-dependent.
We also develop a “tied” version of the algorithm that al-
lows explicit comparison across quite different viewing con-
ditions. We demonstrate that our model produces state of
the art results for (i) frontal face recognition (ii) face recog-
nition under varying pose.

1. Introduction

In current face recognition systems, the subject is re-
quired to cooperate with the system: they must stand in a
certain place, face the camera and maintain a neutral expres-
sion. Under these controlled imaging conditions, recogni-
tion algorithms perform well. One of the greatest remaining
challenges is to recognize faces in uncontrolled conditions.
Now the subject may be entirely unaware of the system,
and consequently the position, pose, illumination and ex-
pression of their face exhibit considerable variation. The
ability to cope with this variation would permit recognition
from surveillance footage, face search in archived images
and more transparent access control. Unfortunately, in such
uncontrolled conditions, most current commercial and aca-
demic face recognition systems flounder.

Many face recognition algorithms use a “distance-based”
approach. (e.g. [18]). The probe and gallery images are
linearly projected to a lower dimensional representation to
form probe and gallery feature vectors. A match is assigned
based on the distances between these vectors. A notable
sub-category of these methods consists of approaches based

Figure 1. Components of PLDA Model. (A) Mean face (B) Three
directions in between-individual subspace. Each image looks like
a different person. (C) Per-pixel noise covariance (D) Three di-
rections in within-individual subspace. Each images looks like the
same person under minor pose and lighting changes.

on linear discriminant analysis (LDA). The Fisherfaces al-
gorithm [1] projected face data to a space where the ratio
of between-individual variation to within-individual varia-
tion was maximized. Fisherfaces is limited to directions
in which at least some within-individual variance has been
observed (the small-sample problem). The null-space LDA
approach [5] exploited the signal in the remaining subspace.
The Dual-Space LDA approach [19] combined these two
approaches. These methods produce high-quality results
but cannot always cope with large pose and illumination
changes. In these cases, most of the signal lies in part of
the subspace where the noise is also great. These directions
are downweighted or discarded by linear LDA approaches.

Many alternative approaches have been suggested for
recognition with variable pose and illumination. Important
categories include algorithms which (i) require more than
one input image of each face [8] (ii) create a 3D model
from the 2D image and estimate pose and lighting explic-
itly [3, 2] and (iii) learn a statistical relation between faces
viewed under different conditions [9, 12].

In recent work, Prince et al. [14, 15] proposed an novel
method for recognition across large pose changes. They
proposed a generative model to explain variation in the face
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data. Some of the variables in the model represented iden-
tity and others represented pose. Rather than basing recog-
nition on distance comparisons, they calculated the likeli-
hood that the underlying identity component was the same,
regardless of the pose value. This method produced good
results despite only using an impoverished per-pixel model
of within-individual noise.

In this paper, we develop a probabilistic approach sim-
ilar to that of [14] to support three main contributions: (i)
In Section 2 we introduce a probabilistic version of Fish-
erfaces [1], which we term probabilistic LDA (or PLDA).
Similarly to [14] we explain the observed face images as
the result of a generative model. We show that this approach
sidesteps the small sample problem and produces superior
results for frontal faces. (ii) In Section 3 we introduce a
non-linear generalization of this approach. (iii) In Section
4 we introduce “Tied PLDA” which allows us to compare
faces captured at very different poses.

2. Probabilistic LDA (PLDA)
Linear discriminant analysis (LDA) is a technique that

models both intra-class and inter-class variance as multi-
dimensional Gaussians. It seeks directions in space that
have maximum discriminability and are hence most suit-
able for supporting class recognition tasks. In this section
we present a probabilistic approach to the same problem
which we term probabilistic LDA or PLDA. The relation-
ship between PLDA and standard LDA is analagous to that
between factor analysis and principal components analysis.

We assume that the training data consists of J images
each of I individuals. We denote the j’th image of the i’th
individual by xij . We model data generation by the process:

xij = µ + Fhi + Gwij + εij (1)

This model comprises two parts: (i) the signal component
µ + Fhi which depends only on the identity of the person
but not the particular image (there is no dependence on j).
This describes between-individual variation. (ii) the noise
component Gwij + εij which is different for every image
of the individual and represents within-individual noise.

The term µ represents the overall mean of the training
dataset. The columns of the matrix F contain a basis for the
between-individual subspace and the term hi represents the
position in that subspace. The matrix G contains a basis for
the within-individual subspace and wij represents the posi-
tion in this subspace. Remaining unexplained data variation
is explained by the residual noise term εij which is defined
to be Gaussian with diagonal covariance Σ. The parameters
θ = {µ,F,G,Σ} are depicted in Figure 1.

In the parlance of factor analysis, the matrices F and G
contain factors and the latent variables hi and wij are fac-
tor loadings. For readers familiar with LDA, the columns

of F are roughly equivalent to the eigenvectors of the
between-individual covariance matrix, and the columns of
G are roughly equivalent to the eigenvectors of the within-
individual covariance matrix. The term hi is particularly
important as this represents the identity of individual i. We
term this a latent identity variable: in recognition we will
consider the likelihood that two face images were generated
from the same underlying hi.

More formally, we can describe the model in Equation 1
in terms of conditional probabilities:

Pr(xij |hi,wij , θ) = Gx [µ + Fhi + Gwij , Σ] (2)
Pr(hi) = Gh [0, I] (3)

Pr(wij) = Gw [0, I] (4)

where Ga [b,C] represents a Gaussian in a with mean b and
covariance C. In Equations 3 and 4 we have defined simple
priors on the latent variables hi and wij .

There are two phases to using this model. In the training
phase, we aim to learn the parameters θ = {µ,F,G, Σ}
from a set of training data xij . These remain fixed during
the recognition phase in which we make inferences about
whether faces match. We treat each of these in turn.

2.1. Training

We aim to take a set of data points xij , and find the pa-
rameters, θ = {µ,F,G, Σ} under which the data is most
likely. This would be easy if we knew the values of the
latent variables hi and wij . Likewise it would be easy to
estimate hi and wij given θ. Unfortunately, none of the
terms on the right hand side of Equation 1 are known.

Luckily, there is a well-known solution to this chicken-
and-egg problem. The Expectation Maximization (EM) al-
gorithm [6] alternately estimates the two sets of parameters
in such a way that the likelihood is guaranteed to increase
at each iteration. More specifically, in the Expectation- or
E-Step, we calculate a full posterior distribution over the la-
tent variables hi and wij for fixed parameter values. In the
Maximization- or M-Step, we optimize point estimates of
the parameters θ = {µ,F,G, Σ}. The details of this are
rather involved and are presented in Appendix A.

2.2. Recognition

In recognition, we compare the likelihood of the data un-
der R different models M1...R. We define a model M as
representing a relationship between the underlying identity
variables, hi and the data (see Figure 2). If two or more
faces belong to the same person, then they must have the
same identity variable hi. If two faces belong to differ-
ent people they will have different identity variables. For
the q’th model we calculate a likelihood term Pr(X|Mq)



Figure 2. Recognition by comparing the likelihood of the data un-
der different models. Each model represents a different relation-
ship between the hidden identity variables h and observations x.
(A) Face identification with gallery of two faces. In Model M1

the probe xp matches gallery face x1. In model M2 the probe xp

matches x2. (B) Face verification. In model M0 the faces xp and
x1 do not match. In model M1 they match.

where X is all of the observed data. We calculate a posterior
probability for which model is correct using Bayes’ rule:

Pr(Mq|x) =
Pr(x|Mq)Pr(Mq)∑R

r=0 Pr(x|Mr)Pr(Mr)
(5)

To make these ideas concrete, we will consider the case
of face identification with two gallery faces x1 and x2 and
a probe face xp. In this case, there are two models (see Fig-
ure 2A): in model M1 the probe image xp matches gallery
image x1 and hence shares the latent identity variable h1.
Gallery image x2 has its own identity variable. In model
M2 the probe image xp matches x2 and now these images
share the identity variable h2. By way of example we will
demonstrate how to calculate the likelihood of the data un-
der model M1, which can be broken down into:

Pr(x1,2,p|M1) = Pr(x1,p|M1)Pr(x2|M1) (6)

since the random variables associated with x1,p and x2 are
independent (as evidenced by that lack of connections in
Figure 2A). We treat each term separately. In each case, we
aim to calculate the likelihood of the observed data. Un-
fortunately, we don’t know the values of the associated la-
tent variables h and w. We proceed by writing the joint
likelihood of all observed and hidden variables, and then
marginalizing over the unknown hidden variables. Hence,
the first term in Equation 6 becomes:

Pr(x1,p|M1) =
∫ ∫ ∫

Pr(x1,xp,h1,w1,wp)dh1dw1dwp

(7)
This can be rewritten as:

Pr(x1,p|M1) =
∫ [∫

Pr(x1|h1,w1)Pr(w1)dw1 (8)
∫

Pr(xp|h1,wp)Pr(wp)dwp

]
.P r(h1)dh1

where we have rewritten the joint probability in terms of
conditional probabilities in the second line. Likewise the
second term in Equation 6 becomes:

Pr(x2|M1)=
∫ ∫

Pr(x2|h2,w2)Pr(w2)dw2Pr(h2)dh2

(9)
Notice that all of the conditional probabilities in these

expressions were defined in the initial description of the
model in Equations 2, 3 and 4. The probability of the data
under model M2 can be decomposed in a similar way.

The process of integrating out, or marginalizing the hid-
den variables, h and w has the following interpretation: we
are interested in finding the probability that faces have the
same identity. However, we recognize that we have ob-
served this identity under noisy conditions, and do not cal-
culate a point estimate ĥ of identity. Rather, we calculate
the probability that the two faces had the same identity,
regardless of what this actual identity was. We simulta-
neously consider all possible instantiations of the within-
individual noise.

An interesting side-effect of the marginalization is that it
is valid to compare models with different numbers of iden-
tity variables h. Consider the case of face verification (Fig-
ure 2B). We compare model M1 where two faces match
(have the same underlying identity variable) to model M0

where they do not (different underlying identity variables.)
This is an example of Bayesian model selection.

The PLDA model is linear with Gaussian noise, so it is
possible to compute the integrals that comprise Equations
8 and 9 exactly: in general the problem is to evaluate the
the likelihood that N images x1...N share the same identity
variable, h, regardless of the noise variables w1 . . .wN . We
can achieve this by combining the generative equations for
all of these N images to form a composite system:


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x1

x2

...
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
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h
w1

w2
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
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
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ε1
ε2
...

εN




(10)
or, giving names to these composite matrices:

x′ = µ′ + Ay + ε′ (11)

We can rewrite this compound model in terms of probabili-
ties to give:

Pr(x′|y) = Gx′ [Ay,Σ′] (12)
Pr(y) = Gy [0, I] (13)



where

Σ′ =




Σ 0 . . . 0
0 Σ . . . 0
...

...
. . .

...
0 0 . . . Σ


 (14)

This now has the form of a standard factor analyzer,
whose likelihood is well known to be:

Pr(x1...N ) = Pr(x′) = Gx′
[
µ′,AAT + Σ′

]
(15)

In practice, the known structure of the matrix A can be
exploited to compute this efficiently.

2.3. Datasets

Throughout this paper, we present results for the
XM2VTS database using two different types of data rep-
resentation. In Experiments 1,3 and 4 we use minimally
pre-processed data. Raw pixel values form the input vector.
There has been no photometric normalization. Image reg-
istration is only affine. Moreover, the training and test im-
ages are non-overlapping and the probe and gallery images
are from different sessions. These characteristics mean that
recognition performance will never be high, but it is easy to
compare the relative inferential power of algorithms. In Ex-
periments 2, and 5 we use elaborately pre-processed data to
yield state of the art results and compare to published data.
Minimal Preprocessing: Each image was segmented with
an iterative graph-cuts procedure. Three points were
marked by hand. Faces were normalized to a standard tem-
plate using an affine transform. Final size was 70× 70× 3.
The unprocessed pixels from these images were used as in-
put to the PLDA algorithm. In each experiment we trained
the system using 4 images each of the first 195 people in
the database. The test set comprises 1 gallery and 1 probe
image from each of the remaining 100 people. These were
taken from the first and last recording sessions respectively.
Elaborate Preprocessing: Eight keypoints on each face
were identified by hand. The images were registered to a
standard template using a piecewise triangular warp. The
final image size was 400× 400. We extract a feature vector
consisting of image gradients at 8 orientations and 3 scales
at points in a 6 × 6 grid around each keypoint. A sepa-
rate PLDA model was built for each keypoint. The likeli-
hoods from the 21 submodels are assumed to be indepen-
dent. Hence, we take the product to calculate the overall
likelihood in Equation 5.

2.4. Experiments 1 and 2

In experiment 1 we investigate face identification using
the minimally preprocessed frontal dataset. We applied 6

Figure 3. (A) Experiment 1 results. PLDA outperforms PCA [18],
LDA [1], the Bayesian approach [13] and Dual-Space (DS) LDA
[19] (B) Experiment 2 results. With one probe image, PLDA
acheives a peak of 294/295 correct matches. With three probe im-
ages all images are matched correctly.

iterations of the EM algorithm, initializing the model pa-
rameters θ to random values. The results of this learning
process are shown in Figure 1. Notice that as we move
along the axes of the signal subspace F the resulting im-
ages look like different people. As we move along the axes
of the noise subspace G, the resulting images look like the
same person with slightly different poses and illuminations.

On each trial, the algorithm selects the matching gallery
image, by choosing the maximum a posteriori (MAP)
model from Equation 5 with uniform priors. In Figure 3A
we plot % correct first match results as a function of the
subspace dimension: the signal and noise parameters are
the only two free parameters in our model, and we set these
to be identical in all experiments. We also plot results from
our implementations of five other algorithms. The PLDA
method outperforms all methods on this task. The closest
competing method is dual-space LDA [19].

In Experiment 2 we test the same method using the elab-
orate pre-processing method. We employed a protocol that
matches published results to facilitate quantitative compari-
son. We trained our system using images from the first three
sessions from all 295 individuals in the XM2VTS database.
We use 295 images from the fourth session to form a probe
set. The gallery set comprised either (i) one image from the
first session or (ii) three images of each person, one each
from the first three sessions.

The % first match correct results are plotted as a func-
tion of the subspace dimension in Figure 3B. With a single
probe, the peak performance is 99.4%: we only mis-classify
one face. Examining this face (No. 169.4.1) reveals that the
pose deviates significantly from frontal. In Section 4 we
present an algorithm to cope with significant pose changes.
With three probes we easily achieve 100% performance.

These results compete with the best modern algorithms.
In Table 1 we show results of other algorithms tested with
the same protocol. Our algorithm compares favorably, al-
though it is unwise to draw strong conclusions where the



Figure 4. (A) Mixtures of PLDA model. Top two rows show ele-
ments of mixture component 1. Bottom two rows show component
2. Interestingly, the two clusters correspond to the two sexes. The
mean of cluster 1 and images representing directions in the sig-
nal subspace all look like women (top row). Similarly, for cluster
2 (row three) images all look like men. As before, different po-
sitions in the within-individual subspace (2nd and 4th row) look
like different images of the same person. (B) Identification results
from MixPLDA model as a function of subspace dimension.

difference in performance may be only a single classified
face. We believe that Figure 3A provides more information
about the relative strengths of these algorithms.

METHOD N Error Rate
PCA [18] 1 33.9
LDA [1] 1 11.9

Bayesian [13] 1 11.5
Unified Subspace (US)[20] 1 6.8

Adaptive Clustering US SVM [11] 1 1.0
Our Approach 1 0.3

Bayesian Gabor [21] 3 2.9
Our Approach 3 0.0

Table 1 - Results for XM2VTS database with N probe images
PCA, LDA, Bayesian and Unified Subspace results from [11].

It is easy to understand why our technique outperforms
other LDA methods: the inclusion of the per-pixel noise
term Σ means we have a more sophisticated model of
within-individual variation. Our method handles the signal
subspace F and noise subspace G in a unified way without
the need for two separate procedures. Unlike [19] we are
not required to estimate the values of unobserved eigenval-
ues. In addition the method has certain other advantages: it
provides a posterior probability over matches and incorpo-
rating priors is straightforward. Moreover, the probabilis-
tic formulation paves the way for the non-linear approaches
presented in Sections 3 and 4.

3. Mixtures of PLDAs
In practice, it is unrealistic to assume that the face mani-

fold is well modelled by a linear subspace. It is also unlikely
that the noise distribution is identical at each point in space.

In this section, we resolve these problems by describing the
face manifold as a weighted additive mixture of K PLDA
distributions (which we term MixPLDA).

There are now two latent identity variables associated
with an individual: the scalar term ci determines which sub-
space cluster the individual belongs to, and the identity vec-
tor hi that determines the position within this cluster. In
order for two faces to belong to the same individual both of
these variables must match. We can write this model as:

Pr(xij) = Gx [µci + Fcihi + Gciwij , Σci ]
Pr(hi) = Gh [0, I]

Pr(wij) = Gw [0, I]
Pr(ci = k) = πk k = {0 . . . K} (16)

All terms have the same interpretation as before, but now
there are k sets of parameters Θk = {µk,Fk,Gk, Σk}. The
term πk is the prior probability of a measurement belonging
to cluster k, where there are K clusters in total.

3.1. Learning and Recognition

To learn the MixPLDA model we apply the standard
recipe for learning mixtures of distributions (e.g. See [7]
and [4] Chap. 9). We embed the PLDA learning algo-
rithm inside a second instance of the EM algorithm. (i)
E-Step: For fixed F1...K ,G1...K ,Σ1...K , calculate the pos-
terior probability Pr(ci = k|xij) that a given individual i
belongs to the k’th cluster using the likelihood term in Equa-
tion facLike. (ii) M-Step: for each cluster k, learn the as-
sociated PLDA model using data weighted by the posterior
probability of belonging to the cluster.

In recognition, we again assess the probability that faces
were generated from common underlying identity variables.
This now includes the choices of cluster ci as well as the po-
sition in that cluster hi. Once more, each of these quantities
is fundamentally uncertain so we marginalize over all pos-
sible values. The analogue of Equation 7 is:

Pr(x1,p|M1) = (17)
k∑

c1=1

∫ ∫ ∫
Pr(x1,xp,h1, c1,w1,wp, )dh1dw1dwp

Note that it would not have been possible to construct
this model in a conventional LDA approach. The represen-
tation of identity consists of one discrete variable ci and
one continuous variable hi and distance measurements are
no longer straightforward.

3.2. Experiment 3

In Experiment 3, we repeat Experiment 1 for the mixture
model. We use 10 iterations of the outer loop of the EM al-
gorithm, and update the PLDA model at each iteration with



Figure 5. Tied PLDA model for face recognition across pose. The
position hi in the identity subspace F is forced to be constant for
both poses: as we move along the dimensions of the signal sub-
space, the basis functions look like the same person, regardless of
pose (top two rows). Position in the noise subspaces G is not tied,
so these basis functions are unrelated (bottom two rows).

6 iterations as before. Examples of the learnt parameters
θ for subspace dimension 8 can be found in Figure 4A for
the case with K=2 clusters. Interstingly, the algorithm has
organized the clusters to separate men from women.

Percent correct performance for the same dataset is plot-
ted in Figure 4B. There is a clear improvement in perfor-
mance as we move from 1 to 2 clusters, but adding a third
cluster does not make much difference. However, these re-
sults should be treated with some caution: the 2 cluster mix-
PLDA model has twice as many parameters as the original
PLDA model. In principal, it is possible for the two clusters
with N/2 dimensions to exactly replicate the PLDA model
with N dimensions. However, the clusters found in Figure
4A suggest that this did not happen in practice.

The case would be clearer if we could investigate higher
dimensional subspaces and demonstrate a clear perfor-
mance benefit from the mixture model. Unfortunately, our
ability to construct the between individual subspace F is
limited by the number of individuals in the database (195).
With three clusters of 64 dimensions, this only leaves 1.01
people per dimension per cluster! Despite these concerns,
we believe that the MixPLDA model is a promising method.
It is fundamentally more expressive than linear methods,
and retains the advantages of the probabilistic approach.

4. Tied PLDAs
Although the above methods can cope with a consider-

able amount of image variation, there are some cases such
as large pose changes, where viewing conditions are so dis-
parate that a more powerful technique must be applied. In
“tied” models [14], two or more viewing conditions are

compared by assuming that they have a common underlying
variable hi, but different generation processes. For exam-
ple, consider viewing j images each of i individuals, at k
different poses. For pedagogical reasons, we will assume
that the pose k is known for each observed datum xijk and
there is no uncertainty over this variable. The generative
model for this data is:

Pr(xijk|hi,wijk)=Gx [µk+Fkhi+Gkwijk+εijk, Σk]
Pr(hi)=Gh [0, I]

Pr(wijk)=Gw [0, I] (18)

Note that this model is quite different from the Mix-
PLDA model. Both models describe the training data as
a mixture of factor analyzers. However, in the mixPLDA
model, the representation of identity includes the choice of
cluster ci. In the Tied PLDA model, the representation of
identity hi is constant (tied) regardless of the cluster (view-
ing condition). Another way to think about this is that the
data is described as k clusters, but certain positions in each
cluster are “identity-equivalent” to each other.

4.1. Learning and Recognition

Learning is very similar to the original PLDA model,
with one major difference. In the E-Step, we calculate the
posterior distribution over the latent variables given the ob-
served data as before. However, there is now a separate M-
Step for each cluster k, in which the terms µk,Fk,Gk, Σk

are updated using only the data known to come from these
clusters. A more detailed description of the principles be-
hind tied models can be found in [14].

Recognition proceeds exactly as in the PLDA model,
but now likelihood terms in Equation 6 are calculated by
marginalizing the joint probability of data and hidden vari-
ables implicitly defined by Equations 18.

4.2. Experiments 4 & 5

We train using 195 individuals from the XM2VTS
database, with 4 frontal and 4 profile faces of each indi-
vidual. We test using a single frontal gallery image and
right-profile probe image from the remaining 100 individ-
uals in the database. These are taken from the 1st and 4th

recording session respectively. Pose is always assumed to
be known. For these experiments we used 10 iterations of
the EM algorithm.

In Experiment 4, we use the full images with the same
minimal preprocessing as in Experiment 1. In Figure 5 we
present examples of the learnt basis functions Fk and Gk

and noise covariance Σ. The “tied” structure is reflected in
the fact that the columns of F1 and F2 look like images
of the same people. In Figure 6A we plot % correct first
match results as a function of the subspace dimension for



Figure 6. Results for recognition across a 90o pose change. (A)
Minimal pre-processing (B) Full model with and without geome-
try contribution. Results from tied factor analysis model of Prince
and Elder [14] plotted for comparison.

both the tied PLDA and PLDA models. The tied PLDA
model doubles performance but only from roughly 20% to
40%.

However, in Experiment 5, we apply the same prepro-
cessing as in Experiment 2. Three of the original 8 keypoint
positions are occluded in the profile model. We omit these
and add one more feature on the right side of the face to
compensate. Identification performance is plotted in Fig-
ure 6B. Peak performance for our algorithm is now 87%.
In order to improve the results we also build a tied PLDA
model of the face geometry. We align 15 keypoint positions
(eyes,nose,mouth etc.) to a standard template face using a
similarity transformation and a least-squares cost function.
We construct a PLDA model for the (x,y) positions after
this alignment. Combining this into the final likelihood cal-
culation increases the peak performance to 92%. However,
caution should be applied in interpreting this result as these
keypoint positions were hand-localized.

In Table 2 we compare our method to published results.
Our results compare favorably to all previous attempts at
this problem, even without the contribution of geometry.
The FERET database may be easier than the XM2VTS data
as images were collected in the same session.

STUDY DATABASE POSE DIFF(o) %

Gross [9] FERET (100) 30(Ave.) 75
Blanz [2] FRVT (87) 45 86
Kim [10] XM2VTS (125) 30 53

Prince [14] FERET (100) 90 86
Our Approach XM2VTS (100) 90 87

Table 2: Results for % correct face identification across large
pose changes. Number of gallery images given in brackets after

database name.

5. Discussion
In this paper, we have presented a probabilistic approach

to LDA. The key findings are that (i) inference is more pow-
erful in PLDA than LDA as we have a more sophisticated

noise model which also involves a per-pixel noise term. (ii)
the probabilistic approach allows the development of non-
linear extensions that are not obvious in the standard ap-
proach. We have demonstrated that it is possible to achieve
good performance with the PLDA approach, in both frontal
face recognition, and recognition across large pose differ-
ences. In each case, we have endeavoured to compare to
contemporary algorithms in matched conditions.

The degree of image preprocessing and feature extrac-
tion is a key determinant of performance, and it is quite
possible that results might improve given different feature
choices. A second possible avenue for development is sug-
gested by the work of Wang and Tang [22] who improved
LDA performance by using several LDA classifiers trained
on sampled subsets of the data. In the probabilistic con-
text, this corresponds to allowing uncertainty on the sub-
space matrices F and G. This could be achieved using ei-
ther variational Bayes or sampling methods.

Although this paper has examined face recognition, LDA
is a very general technique and this method could find ap-
plication in many other areas of computer vision. Although
implementation is more complex, the performance is su-
perior in every case we have tried. Moreover, the non-
linear extensions provide greater expressiveness than the
original LDA model. Many problems in vision are natu-
rally expressed in generative terms as the forward problem
(graphics) is well understood. Combining problem-specific
generative components with abstract generative models like
PLDA is a promising approach to many vision tasks.
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Appendix 1: Learning PLDA Models
The goal of this section is to present the EM algorithm

updates for learning the PLDA model described in Equation
1. The basic approach is to rewrite both E-Step and M-Step
to resemble the simpler factor analysis model by assimilat-
ing terms. Updates for factor analysis are well known (see
[16, 17]).
E-Step: We simultaneously esti-
mate the joint probability distri-
bution of all J+1 latent variables
hi,wi1...iJ that pertain to each given
individual i (see inset figure). We
can combine together the generative
equations for all of the data xi =
{xi1...iJ} pertaining to individual i as in Equations 10 and
11, resulting in a likelihood and prior terms:

Pr(xi|yiθ) = Gx [Ayi,Σ′] (19)
Pr(yi) = Gy [0, I] (20)

where A, Σ′ and yi are defined as in Equations 11 and 14.
The model defined in Equations 19 and 20 takes the form of
a factor analysis model. Applying Bayes’ rule to calculate
the posterior, we get:

Pr(yi|xi, θ) ∝ Pr(xi|yi, θ)Pr(yi) (21)

Since both terms on the right are Gaussian, the term on the

left must be Gaussian. In fact, it can be shown that the first
two moments of this Gaussian are:

E[yi]= (AT Σ′−1A + I)−1AT Σ′−1(xi − µ′) (22)
E[yiyT

i ]= (AT Σ′−1AT + I)−1 + E[yi]E[yi]T (23)

M-Step: In the M-Step, we aim to update the values of the
parameters θ = {µ,F,G,Σ}. We rewrite Equation 1 as:

xij = µ +
[
F G

] [
hi

wij

]
+ εij (24)

= µ + B zij + εij (25)

where B is a concatenation of the two subspace matrices F
and G and zij is a concatenation of the two factor loading
vectors hi and wij . In the M-Step, we optimize:

Q(θt, θt−1) =
(26)

I∑

i=1

J∑

j=1

∫
Pr(zi|xi1...iJ , θt−1) log[Pr(xij |zi)Pr(zi)]dzi

where t is the iteration index. The first log probability term
in Equation 26 can be written as:

log[Pr(xij |ziθt)] = K−0.5
(
log |Σ−1|+

(27)
(xij − µ−Bzi)T Σ−1(xij − µ−Bzi)

)

where K is an unimportant constant. We substitute this term
into Equation 26 and take derivatives with respect to B and
Σ. The second log term in Equation 26 has no dependence
on these parameters. We equate these derivatives to zero
and re-arrange to provide the following update rules:

µ=
1

IJ

∑

i,j

xij (28)

B=


∑

i,j

(xij−µ)E[zi]T





∑

i,j

E[zizT
i ]



−1

Σ=
1

IJ

∑

i,j

Diag
[
(xij−µ)(xij−µ)T−BE[zi](xij−µ)T

]

where diag represents the operation of retaining only the
diagonal elements from a matrix. The expectation terms
E[zi] and E[zizT

i ] can be extracted from Equations 22and
23 using the equivalence between Equations 10and 11. The
updated values of F and G are retrieved from the new value
of B using the equivalence between Equations 24 and 25.


