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Abstract

Several recent works have developed a new, probabilistic interpretation for numerical algorithms solving linear systems in

which the solution is inferred in a Bayesian framework, either directly or by inferring the unknown action of the matrix inverse.

These approaches have typically focused on replicating the behaviour of the conjugate gradient method as a prototypical

iterative method. In this work, surprisingly general conditions for equivalence of these disparate methods are presented.

We also describe connections between probabilistic linear solvers and projection methods for linear systems, providing a

probabilistic interpretation of a far more general class of iterative methods. In particular, this provides such an interpretation

of the generalised minimum residual method. A probabilistic view of preconditioning is also introduced. These developments

unify the literature on probabilistic linear solvers and provide foundational connections to the literature on iterative solvers

for linear systems.

Keywords Probabilistic linear solvers · Projection methods · Iterative methods · Preconditioning

1 Introduction

Consider the linear system

Ax∗ = b (1)

where A ∈ R
d×d is an invertible matrix, b ∈ R

d is a given

vector, and x∗ ∈ R
d is an unknown to be determined. Recent

work (Hennig 2015; Cockayne et al. 2018) has constructed

iterative solvers for this problem which output probability
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measures, constructed to quantify uncertainty due to termi-

nating the algorithm before the solution has been identified

completely. On the surface the approaches in these two

works appear different: in the matrix-based inference (MBI)

approach of Hennig (2015), a posterior is constructed on

the matrix A−1, while in the solution-based inference (SBI)

method of Cockayne et al. (2018) a posterior is constructed

on the solution vector x∗.

These algorithms are instances of probabilistic numer-

ical methods (PNM) in the sense of Hennig et al. (2015)

and Cockayne et al. (2017). PNM are numerical methods

which output posterior distributions that quantify uncertainty

due to discretisation error. An interesting property of PNM

is that they often result in a posterior distributions whose

mean element coincides with the solution given by a classical

numerical method for the problem at hand. The relationship

between PNM and classical solvers has been explored for

integration (e.g. Karvonen and Sarkka 2017), ODE solvers

(Schober et al. 2014, 2019; Kersting et al. 2018) and PDE

solvers (Cockayne et al. 2016) in some generality. For linear

solvers, attention has thus far been restricted to the conju-

gate gradient (CG) method. Since CG is but a single member

of a larger class of iterative solvers, and applicable only if

the matrix A is symmetric and positive definite, extending

the probabilistic interpretation is an interesting endeavour.

Probabilistic interpretations provide an alternative perspec-
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tive on numerical algorithms and can also provide extensions

such as the ability to exploit noisy or corrupted observations.

The probabilistic view has also been used to the develop

new numerical methods (Xi et al. 2018), and Bayesian PNM

can be incorporated rigorously into pipelines of computation

(Cockayne et al. 2017).

Preconditioning—mapping Eq. (1) to a better conditioned

system with the same solution—is key to the fast conver-

gence of iterative linear solvers, particularly those based upon

Krylov methods (Liesen and Strakos 2012). The design of

preconditioners has been referred to as “a combination of art

and science” (Saad 2003, p. 283). In this work, we also pro-

vide a new, probabilistic interpretation of preconditioning as

a form of prior information.

1.1 Contribution

This text contributes three primary insights:

1. It is shown that, for particular choices of the generative

model, matrix-based inference (MBI) and solution-

based inference (SBI) can be equivalent (Sect. 2).

2. A general probabilistic interpretation of projection

methods (Saad 2003) is described (Sect. 3.1), lead-

ing to a probabilistic interpretation of the generalised

minimum residual method (GMRES; Saad and Schultz

(1986), Sect. 6). The connection to CG is expanded and

made more concise in Sect. 5.

3. A probabilistic interpretation of preconditioning is pre-

sented in Sect. 4.

Most of the proofs are presented inline; lengthier proofs are

deferred to “Appendix B”. While an important consideration,

the predominantly theoretical contributions of this paper will

not consider the impact of finite numerical precision.

1.2 Notation

For a symmetric positive-definite matrix M ∈ R
d×d and two

vectors v,w ∈ R
d , we write 〈v,w〉M = v⊤Mw for the

inner product induced by M , and ‖v‖2
M = 〈v, v〉M for the

corresponding norm.

A set of vectors s1, . . . , sm is called M-orthogonal or M-

conjugate if 〈si , s j 〉M = 0 for i �= j , and M-orthonormal

if, in addition, ‖si‖M = 1 for 1 ≤ i ≤ m.

For a square matrix A =
[

a1 . . . ad

]⊤
∈ R

d×d , the vec-

torisation operator vec : R
d×d → R

d2
stacks the rows1 of

A into one long vector:

1 Stacking the columns is equivalently possible and common. It is asso-

ciated with a permutation in the definition of the Kronecker product,

but the resulting inferences are equivalent.

−→
A ≡ vec(A) =

⎡

⎢

⎣

a1

...

ad

⎤

⎥

⎦
, with

[−→
A

]

(i j)
= [A]i j .

The Kronecker product of two matrices A, B ∈ R
d×d is A ⊗

B with [A ⊗ B](i j),(kℓ) = [A]ik[B] jℓ. A list of its properties

is provided in “Appendix A”.

The Krylov space of order m generated by the matrix A ∈

R
d×d and the vector b ∈ R

d is

Km(A, b) = span
(

b, Ab, A2b, . . . , Am−1b
)

.

We will slightly abuse notation to describe shifted and scaled

subspaces of R
d : let S be an m-dimensional linear subspace

of R
d with basis {s1, . . . , sm}. Then, for a vector v ∈ R

d and

a matrix M ∈ R
d×d , let

v + MS = span(v + M s1, . . . , v + M sm).

2 Probabilistic linear solvers

Several probabilistic frameworks describing the solution of

Eq. (1) have been constructed in recent years. They primar-

ily differ in the subject of inference: SBI approaches such

as Cockayne et al. (2018), of which BayesCG is an exam-

ple, place a prior distribution on the solution x∗ of Eq. (1).

Conversely, the MBI approach of Hennig (2015) and Bartels

and Hennig (2016) places a prior on A−1, treating the action

of the inverse operator as an unknown to be inferred.2 This

section reviews each approach and adds some new insights.

In particular, SBI can be viewed as strict special case of MBI

(Sect. 2.4).

Throughout this section, we will assume that the search

directions Sm in S⊤
m Ax∗ = S⊤

m b are independent of x∗. Gen-

erally speaking, this is not the case for projection methods,

in which the solution space often depends strongly on b, as

described in Sects. 5 and 6. This disconnect is the source

of the poor uncertainty quantification reported in Cockayne

et al. (2018) and shown also to hold for the methods in this

work in Sect. 6.4. This will not be examined in further detail

in this work, though it remains an important area of develop-

ment for probabilistic linear solvers.

2 Hennig (2015) also discusses inference over A. This model class will

not be discussed further in the present work. It has the disadvantage that

the associated marginal on x∗ is nonanalytic, but more easily lends itself

to situations with noisy or otherwise perturbed matrix-vector products

as observations.
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2.1 Background on Gaussian conditioning

The propositions in this section follow from the following

two classic properties of Gaussian distributions.

Lemma 1 Let x ∈ R
d be Gaussian distributed with density

p(x) = N (x; x0,Σ) for x0 ∈ R
d and Σ ∈ R

d×d a positive

semi-definite matrix. Let M ∈ R
n×d and z ∈ R

n . Then,

v = M x + z is also Gaussian, with

p(v) = N (v; M x0 + z, MΣ M⊤).

Lemma 2 Let x ∈ R
d be distributed as in Lemma 1, and

let observations y ∈ R
n be generated from the conditional

density

p( y | x) = N ( y; M x + z,Λ)

with M ∈ R
n×d , z ∈ R

n , and Λ ∈ R
n×n again positive

semi-definite. Then, the associated conditional distribution

on x after observing y is again Gaussian, with

p(x | y) = N (x; x̄, Σ̄) where

x̄ = x0 + Σ M⊤(MΣ M⊤ + Λ)−1( y − M x0 − z)

Σ̄ = Σ − Σ M⊤(MΣ M⊤ + Λ)−1 MΣ).

This formula also applies if Λ = 0, i.e. observations are

made without noise, with the caveat that if MΣ M⊤ is sin-

gular, the inverse should be interpreted as a pseudo-inverse.

2.2 Solution-based inference

To phrase the solution of Eq. (1) as a form of probabilistic

inference, Cockayne et al. (2018) consider a Gaussian prior

over the solution x∗, and condition on observations provided

by a set of search directions s1, . . . , sm , m < d. Let Sm ∈

R
d×m be given by Sm = [s1, . . . , sm], and let information

be given by ym := S⊤
m Ax∗ = S⊤

m b. Since the information

is a linear projection of x∗, the posterior distribution is a

Gaussian distribution on x∗:

Lemma 3 (Cockayne et al. 2018) Assume that the columns

of Sm are linearly independent. Consider the prior

p(x) = N (x; x0,Σ0).

The posterior from SBI is then given by

p(x | ym) = N (x; xm,Σm)

where

xm = x0 + Σ0 A⊤Sm(S⊤
m AΣ0 A⊤Sm)−1S⊤

m r0

Σm = Σ0 − Σ0 A⊤Sm(S⊤
m AΣ0 A⊤Sm)−1S⊤

m Σ0, (2)

and r0 = b − Ax0.

The following proposition establishes an optimality property

of the posterior mean xm . This is a relatively well-known

property of Gaussian inference, which will prove useful in

subsequent sections.

Proposition 4 If Sm = range(Sm), then the posterior mean

in Lemma 3 satisfies the optimality property

xm = arg minx∈x0+Σ0 A⊤Sm
‖x − x∗‖

Σ−1
0

.

Proof With the abbreviations X = Σ0 A⊤Sm and y = x∗ −

x0 the mean in Lemma 3 can be written as

xm = x0 + X cm,

where

cm = (X⊤Σ−1
0 X)−1 X⊤Σ−1

0 y

is the solution of the weighted least squares problem (Golub

and Van Loan 2013, Section 6.1)

cm = arg minc∈Rm ‖X c − y‖
Σ−1

0

= arg minc∈Rm ‖x0 + Σ0 A⊤Sm c − x∗‖
Σ−1

0
.

This is equivalent to the desired statement. ⊓⊔

2.3 Matrix-based inference

In contrast to SBI, the MBI approach of Hennig (2015) treats

the matrix inverse A−1 as the unknown in the inference pro-

cedure. As in the previous section, search directions Sm yield

matrix-vector products Ym ∈ R
d×m . In Hennig (2015), these

arise from right-multiplying3 A with Sm , i.e. Ym = ASm .

Note that

Sm = A−1Ym, or, equivalently
−→
Sm = (I ⊗ Y ⊤

m )
−→
A−1. (3)

Thus, Sm is a linear transformation of A−1 and Lemma 2 can

again be applied:

Lemma 5 (Lemma 2.1 in Hennig (2015))4 Consider the

prior

p

(

−→
A−1

)

= N

(

−→
A−1;

−→
A−1

0 ,Σ0 ⊗ W0

)

. (4)

3 This work also considers a model class that explicitly encodes symme-

try of A, such that the distinction between left multiplication and right

multiplication vanishes. See Sect. 5.2 and Proposition 16 for more.

4 This corrects a printing error in Hennig (2015). The notation has been

adapted to fit the context.
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Then, the posterior given the observations
−→
Sm = A−1Ym is

given by

p

(

−→
A−1

∣

∣

∣

∣

−→
Sm

)

= N

(

−→
A−1;

−→
A−1

m ,Σ0 ⊗ Wm

)

with

A−1
m = A−1

0 + (Sm − A−1
0 Ym)(Y ⊤

m W0Ym)−1Y ⊤
m W0

Wm = W0 − W0Ym(Y ⊤
m W0Ym)−1Y ⊤

m W0.

For linear solvers, the object of interest is x∗ = A−1b.

Writing A−1b = (I ⊗ b⊤)
−→
A−1, and again using Lemma 1,

we see that the associated marginal is also Gaussian and given

by

p(x | S, Y ) = N (x; A−1
m b, b⊤Wm b · Σ0). (5)

In the Kronecker product specification for the prior covari-

ance on A−1 from Eq. (4), the matrix Σ0, describes the

dependence between the columns of A−1. The matrix W0

captures the dependency between the rows of A−1. Note that

in Lemma 5, the posterior covariance has the form Σ0 ⊗Wm .

When compared to the prior covariance, Σ0 ⊗ W0, it is clear

that the observations have conveyed no new information to

the first term of the Kronecker product covariance.

The Kronecker structure of the prior covariance matrix in

Eq. (4) is by no means the only option that facilitates tractable

inference.5 However, in the absence of the literature explor-

ing other approaches within MBI, we will assume throughout

that MBI refers to the use of the Kronecker produce prior

covariance.

2.4 Equivalence of MBI and SBI

In practice, Hennig (2015) notes that inference on A−1 should

be performed only implicitly, avoiding the d2 storage cost and

the mathematical complexity of the operations involved in

Lemma 5. This raises the question of when MBI is equivalent

to SBI. Although, based on Lemma 1, one might suspect SBI

and MBI to be equivalent, in fact the posterior from Lemma 5

is structurally different to the posterior in Lemma 3: after

projecting into solution space, the posterior covariance in

Lemma 5 is a scalar multiple of the matrix Σ0, which is not

the case in general in Lemma 3.

However, the implied posterior over the solution vector

can be made to coincide with the posterior from SBI if one

considers observations in MBI as

S⊤
m = Y ⊤

m A−1. (6)

5 A diagonal covariance matrix would allow efficient inference, as well.

That is, as left-multiplications of A. We will refer to the

observation model of Eq. (3) as right-multiplied information,

and to Eq. (6) as left-multiplied information.

Proposition 6 Consider a Gaussian MBI prior

p(A−1) = N

(

A−1;
−−→
A−1

0 ,Σ0 ⊗ W0

)

,

conditioned on the left-multiplied information of Eq. (6). The

associated marginal on x is identical to the posterior on x

arising in Lemma 3 from p(x) = N (x; x0,Σ0) under the

conditions

A−1
0 b = x0 and b⊤W0b = 1.

Proof See “Appendix B”. ⊓⊔

The first of the two conditions requires that the prior mean on

the matrix inverse be consistent with the prior mean on the

solution, which is natural. The second condition demands

that, after projection into solution space, the relationship

between the rows of A−1 modelled by W0 does not inflate the

covariance Σ0. Note that this condition is trivial to enforce for

an arbitrary covariance W̄0 by setting W0 = (b⊤W̄0b)−1W̄0.

2.5 Remarks

The result in Proposition 6 shows that any result proven for

SBI applies immediately to MBI with left-multiplied obser-

vations. Though MBI has more model parameters than SBI,

there are situations in which this point of view is more appro-

priate. Unlike in SBI, the information obtained in MBI need

not be specific to a particular solution vector x∗ and thus

can be propagated and recycled over several linear prob-

lems, similar to the notion of subspace recycling (Soodhalter

et al. 2014). Secondly, MBI is able to utilise both left- and

right-multiplied information, while SBI is restricted to left-

multiplied information. This additional generality may prove

useful in some applications.

3 Projectionmethods as inference

This section discusses a connection between probabilistic

numerical methods for linear systems and the classic frame-

work of projection methods for the iterative solution of

linear problems. Section 3.1 reviews this established class

of solvers, while Sect. 3.2 presents the novel results.

3.1 Background

Many iterative methods for linear systems, including CG

and GMRES, belong to the class of projection methods
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(Saad 2003, p. 130f.). Saad describes a projection method

as an iterative scheme in which, at each iteration, a solu-

tion vector xm is constructed by projecting x∗ into a solution

space Xm ⊂ R
d , subject to the restriction that the residual

rm = b− Axm is orthogonal to a constraint space Um ⊂ R
d .

More formally, each iteration of a projection method is

defined by two matrices Xm, Um ∈ R
d×m , and by a start-

ing point x0. The matrices Xm and Um each encode the

solution and constraint spaces as Xm = range(Xm) and

Um = range(Um). The projection method then constructs

xm as xm = x0 + Xmαm with αm ∈ R
m determined by the

constraint U⊤
m rm = 0. This is possible only if U⊤

m AXm is

nonsingular, in which case one obtains

αm = (U⊤
m AXm)−1U⊤

m r0, and thus (7)

xm = x0 + Xm(U⊤
m AXm)−1U⊤

m r0. (8)

From this perspective, CG and GMRES perform only a single

step with the number of iterations m fixed and determined

in advance. For CG, the spaces are Um = Xm = Km(A, b),

while for GMRES they are Xm = Km(A, b) and Um =

AKm(A, b) (Saad 2003, Proposition 5.1).

3.2 Probabilistic perspectives

In this section, we first show, in Proposition 7, that the con-

ditional mean from SBI after m steps corresponds to some

projection method. Then, in Proposition 8 we prove the con-

verse: that each projection method is also the posterior mean

of a probabilistic method, for some prior covariance and

choice of information.

Proposition 7 Let the columns of Sm be linearly independent.

Consider SBI under the prior

p(x) = N (x; x0,Σ0),

and with observations ym = S⊤
m b. Then, the posterior

mean xm in Lemma 3 is identical to the iterate from a

projection method defined by the matrices Um = Sm and

Xm = Σ0 A⊤Sm , and the starting vector x0.

Proof Substituting Um = Sm and Xm = Σ0 A⊤Sm into

Lemma 3 gives Eq. (8), as required. ⊓⊔

The converse to this also holds:

Proposition 8 Consider a projection method defined by the

matrices Xm, Um ∈ R
d×m , each with linearly independent

columns, and the starting vector x0 ∈ R
d . Then, the iter-

ate xm in Eq. (8) is identical to the SBI posterior mean in

Lemma 3 under the prior

p(x) = N (x; x0, Xm X⊤
m ) (9)

when search directions Sm = Um are used.

Proof Abbreviate Z = X⊤
m A⊤Um and write the projection

method iterate from Eq. (8) as

xm = x0 + Xm Z−T U⊤
m r0.

Multiply the middle matrix by the identity,

Z−T = Z Z−1 Z−T = Z(Z⊤Z)−1

= X⊤
m A⊤Um(U⊤

m AΣ0 A⊤Um)−1,

and insert this into the expression for x0,

xm = x0 + Σ0 A⊤Um(U⊤
m AΣ0 A⊤Um)−1U⊤

m r0.

Setting Um = Sm gives the mean in Lemma 3. ⊓⊔

A direct way to enforce the posterior occupying the solu-

tion space is by placing a prior on the coefficients α in

x = x0 + Xmα. Under a unit Gaussian prior α ∼ N (0, I ),

the implied prior on x naturally has the form of Eq. (9).

However, this prior is unsatisfying since it requires the

solution space to be specified a priori, precluding adap-

tivity in the algorithm and perhaps more worryingly, the

posterior uncertainty over the solution is a matrix of zeros

even though the solution is not fully identified. Again taking

Z = X⊤
m A⊤Um :

Σm = Σ0 − Σ0 A⊤Um(U⊤
m AΣ0 A⊤Um)−1U⊤

m AΣ0

= Xm X⊤
m − Xm Z(Z⊤Z)−1 Z⊤ X⊤

m

= Xm X⊤
m − Xm X⊤

m

= 0.

Concerning this issue, Hennig (2015) and Bartels and Hennig

(2016) each proposed to adding additional uncertainty in the

null space of Xm . This empirical uncertainty calibration step

has not yet been analysed in detail. Such analysis is left for

future work.

Including the solution space Xm in the prior covariance

matrix requires it to be specified a priori. For solvers like CG

and GMRES which construct Xm adaptively, this assump-

tion may appear problematic—a probabilistic interpretation

should use for inference only quantities that have already

been computed. The computation of Xm could be seen as

part of the initialisation, but this requires that the number

of iterations m to be fixed a priori, whereas typically such

methods choose m adaptively by examining the norm of the

residual.6 Nevertheless, the proposition provides a proba-

bilistic view for arbitrary projection methods and does not

6 Sometimes m is fixed a priori, due to memory or computation time

limits.
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involve A−1, unlike the results presented in Hennig (2015),

Cockayne et al. (2017).

The above prior is not unique. The next proposition estab-

lishes probabilistic interpretations of projection methods

under priors that are independent of solution- and constraint

space, albeit under more restrictive conditions. The benefit

of this is that m need not be fixed a priori.

Proposition 9 Consider a projection method defined by

Xm, Um ∈ R
d×m and the starting vector x0. Further sup-

pose that Um = R Xm for some invertible R ∈ R
d×d , and

that A⊤ R is symmetric positive definite. Then, under the prior

p(x) = N

(

x; x0, (A⊤ R)−1
)

and the search directions Sm = Um = R Xm , the iterate in

the projection method is identical to the posterior mean in

Lemma 3.

Proof First substitute Xm = R−1Um into Eq. (8) to obtain

xm = x0 + R−1Um(U⊤
m AR−1Um)−1U⊤

m r0

= x0 + R−1 A−⊤ A⊤Um(U⊤
m AR−1 A−⊤ A⊤Um)−1U⊤

m r0

= x0 + Σ0 A⊤Um(U⊤
m AΣ0 A⊤Um)−1U⊤

m r0.

The third line uses Σ0 = (A⊤ R)−1 = R−1 A−T . This is

equivalent to the posterior mean in Eq. (2) with Sm = Um . ⊓⊔

A corollary which provides further insight arises when one

considers the polar decomposition of A. Recall that an invert-

ible matrix A has a unique polar decomposition A = P H ,

where P ∈ R
d×d is orthogonal and H ∈ R

d×d is symmetric

positive definite.

Corollary 10 Consider a projection method defined by Xm , Um ∈

R
d×m and the starting vector x0, and suppose that Um =

P Xm , where P arises from the polar decomposition A =

P H. Then, under the prior

p(x) = N

(

x; x0, H−1
)

and the search directions Sm = Um = P Xm , the iterate in

the projection method is identical to the posterior mean in

Lemma 3.

Proof This follows from Proposition 9. Setting R = P aligns

the search directions in Corollary 10 with those in Proposi-

tion 9. Since P is orthogonal, P−1 = P⊤, and since H is

symmetric positive definite, A⊤ P = P⊤ A = H by def-

inition of the polar decomposition, which gives the prior

covariance required for Proposition 9. ⊓⊔

This is an intuitive analogue of similar results in Hen-

nig (2015) and Cockayne et al. (2017) which show that

CG is recovered under certain conditions involving a prior

Σ0 = A−1. When A is not symmetric and positive definite,

it cannot be used as a prior covariance. This corollary sug-

gests a natural way to select a prior covariance still linked

to the linear system, though this choice is still not com-

putationally convenient. Furthermore, in the case that A is

symmetric positive definite, this recovers the prior which

replicates CG described in Cockayne et al. (2018). Note that

each of H and P can be stated explicitly as H = (A⊤ A)
1
2 and

P = A(A⊤ A)−
1
2 . Thus, in the case of symmetric positive-

definite A we have that H = A and P = I , so that the prior

covariance Σ0 = A−1 arises naturally from this interpreta-

tion.

4 Preconditioning

This section discusses probabilistic views on precondition-

ing. Preconditioning is a widely used technique accelerating

the convergence of iterative methods (Saad 2003, Sections 9

and 10). A preconditioner P is a nonsingular matrix satisfy-

ing two requirements:

1. Linear systems Pz = c can be solved at low computa-

tional cost

2. P is “close” to A in some sense.

In this sense, solving systems based upon a preconditioner

can be viewed as approximately inverting A, and indeed,

many preconditioners are constructed based upon this intu-

ition. One distinguishes between right preconditioners Pr

and left preconditioners Pl , depending on whether they act

on A from the left or the right. Two-sided preconditioning

with nonsingular matrices Pl and Pr transforms implicitly

Eq. (1) into a new linear problem

Pl APr z∗ = Pl b, with x∗ = Pr z∗. (10)

The preconditioned system can then be solved using arbitrary

projection methods as described in Sect. 3.1, from the starting

point z0 defined by x0 = Pr z0. The probabilistic view can

be used to create a nuanced description of preconditioning

as a form of prior information. In the SBI framework, Propo-

sition 11 below shows that solving a right-preconditioned

system is equivalent to modifying the prior, while Propo-

sition 12 shows that left preconditioning is equivalent to

making a different choice of observations.

Proposition 11 (Right preconditioning) Consider the right-

preconditioned system

APr z∗ = b where x∗ = Pr z∗. (11)
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SBI on Eq. (11) under the prior

z ∼ N (z; z0,Σ0) (12)

is equivalent to solving Eq. (1) under the prior

x ∼ N (x; Pr z0, PrΣ0 P⊤
r ).

Proof Let p(x) = N (x; x0,Σr ). Lemma 3 implies that after

observing information from search directions Sm , the poste-

rior mean equals

xm = x0 + Σr A⊤Sm(S⊤
m AΣr A⊤Sm)−1S⊤

m r0

where r0 = b − Ax0. Setting x0 = Pr z0 and letting Σr =

PrΣ0 P⊤
r gives

xm = Pr z0 + PrΣ0 B⊤Sm(S⊤
m BΣ0 B⊤Sm)−1S⊤

m r̂0

where B := APr and r̂0 = b − B z0. Left multiplying by

P−1
r shows that this is equivalent to

zm := P−1
r xm

= z0 + Σ0 B⊤Sm(S⊤
m BΣ0 B⊤Sm)−1S⊤

m r̂0.

Thus, zm is the posterior mean of the system B z∗ = b with

prior Eq. (12) after observing search directions Sm . ⊓⊔

Proposition 12 (Left preconditioning) Consider the left-

preconditioned system

Pl Ax∗ = Pl b (13)

And the SBI prior

p(x) = N (x; x0,Σ0).

Then, the posterior from SBI on Eq. (13) under search direc-

tions Sm is equivalent to the posterior from SBI applied to

the system Eq. (1) under search directions P⊤
l Sm .

Proof Lemma 3 implies that after observing search direc-

tions Tm , the posterior mean over the solution of Eq. (1)

equals

xm = x0 + Σ0 A⊤Tm(T ⊤
m AΣ0 A⊤Tm)−1T ⊤

m r0

where r0 = b − Ax0. Setting Tm = P⊤
l Sm gives

xm = x0 + Σ0 B⊤Sm(S⊤
m BΣ0 B⊤Sm)−1S⊤

m Pl r̂0

where B := Pl A and r̂0 = Pl b − Pl Ax0. Thus, xm is the

posterior mean of the system Bx∗ = Pl b after observing

search directions Sm . ⊓⊔

If a probabilistic linear solver has a posterior mean which

coincides with a projection method (as discussed in Sect. 3.1),

the Propositions 11 and 12 show how to obtain a proba-

bilistic interpretation of the preconditioned version of that

algorithm. Furthermore, the equivalence demonstrated in

Sect. 2.4 shows that the reasoning from Propositions 11

and 12 carries over to MBI based on left-multiplied observa-

tions: right preconditioning corresponds to a change in prior

belief, while left-preconditioning corresponds to a change in

observations.

We do not claim that this probabilistic interpretation of

preconditioning is unique. For example, when using MBI

with right-multiplied observations, the same line of reason-

ing can be used to show the converse: right preconditioning

corresponds to a change in the observations and left precon-

ditioning to a change in the prior.

5 Conjugate gradients

Conjugate gradients have been studied from a probabilistic

point of view before by Hennig (2015) and Cockayne et al.

(2018). This section generalises the results of Hennig (2015)

and leverages Proposition 6 for new insights into BayesCG.

For this section (but not thereafter), assume that A is a sym-

metric and positive definite matrix.

5.1 Left-multiplied view

The BayesCG algorithm proposed by Cockayne et al. (2018)

encompasses conjugate gradients as a special case. BayesCG

uses left-multiplied observations and was derived in the

solution-based perspective.

The posterior in Lemma 3 does not immediately result in

a practical algorithm as it involves the solution of a linear

system based on the matrix S⊤
m AΣ0 A⊤Sm ∈ R

m×m , which

requires O(m3) arithmetic operations. BayesCG avoids this

cost by constructing search directions that are AΣ0 A⊤-

orthonormal, as shown below, see (Cockayne et al. 2018,

Proposition 7).

Proposition 13 [Proposition 7 of Cockayne et al. 2018

(BayesCG)] Let s̃1 = b − Ax0, and let s1 = s̃1/‖s̃1‖.

For j = 2, . . . , m let

s̃ j = b − Ax j−1 − 〈b − Ax j−1, s j−1〉AΣ0 A⊤ s j−1

s j = s̃ j/‖s̃ j‖AΣ0 A⊤ .

Then, the set {s1, . . . , sm} is AΣ0 A⊤-orthonormal, and con-

sequently S⊤
m AΣ0 A⊤Sm = I .

With these search directions constructed, BayesCG becomes

an iterative method:
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Proposition 14 (Proposition 6 of Cockayne et al. 2018)

Using the search directions from Proposition 13, the pos-

terior from Lemma 3 reduces to:

xm = xm−1 + Σ0 A⊤sm(s⊤
m(b − Axm−1))

Σm = Σm−1 − Σ0 A⊤sm s⊤
m AΣ0

In Proposition 4 of Cockayne et al. (2018), it was shown that

the BayesCG posterior mean corresponds to the CG solution

estimate when the prior covariance is taken to be Σ0 = A−1,

though this is not a practical choice of prior covariance as

it requires access to the unavailable A−1. Furthermore, in

Proposition 9 it was shown that when using the search direc-

tions from Proposition 13, the posterior mean from BCG has

the following optimality property:

xm = arg minx∈Km (Σ0 A⊤ A,Σ0 A⊤b) ‖x − x∗‖
Σ−1

0

Note that this is now a trivial special case of Proposition 4.

The following proposition leverages these results along

with Proposition 6 to show that there exists an MBI method

which, under a particular choice of prior and with a partic-

ular methodology for the generation of search directions, is

consistent with CG.

Proposition 15 Consider the MBI prior

p(
−→
A−1) = N (

−→
A−1;

−−→
A−1

0 , A−1 ⊗ W0)

where W0 ∈ R
d is symmetric positive definite and so that

b⊤W0b = 1. Suppose left-multiplied information is used, and

that the search directions are generated sequentially accord-

ing to:

s̃1 = (I − AA−1
0 )b

s1 =
s̃1

‖s̃1‖A

and for j = 2, . . . , m

s̃ j = (I − AA−1
j−1)b − b⊤(I − AA−1

j−1)
⊤ As j−1 · s j−1

s j =
s̃ j

‖s̃ j‖A

.

Then, it holds that the implied posterior mean on solution

space, given by A−1
m b, corresponds to the CG solution esti-

mate after m iterations, with starting point x0 = A−1
0 b.

Proof First note that, by Proposition 6, since left-multiplied

observations are used and since b⊤W0b = 1, the implied

posterior distribution on solution space from MBI is identical

to the posterior distribution from SBI under the prior

p(x) = N (x; A−1
0 b, A−1).

It thus remains to show that the sequence of search directions

generated is identical to those in Proposition 13 for this prior.

For s̃1:

s̃1 = (I − AA−1
0 )b = b − Ax0

as required. For s̃ j :

s̃ j = (I − AA−1
j−1)b − b⊤(I − AA−1

j−1)
⊤ As j−1 · s j−1

= b − Axm−1 − (b − Ax j−1)
⊤ As j−1 · s j−1

= b − Axm−1 − 〈b − Ax j−1, s j−1〉A · s j−1

where the second line uses that A−1
j−1b = x j−1. Thus, the

search directions coincide with those in Proposition 13. It

therefore holds that the implied posterior mean on solution

space, A−1
m b, coincides with the solution estimate produced

by CG. ⊓⊔

5.2 Right-multiplied view

Interpretations of CG (and general projection methods) that

use right-multiplied observations seem to require more care

than those based on left-multiplied observations. Neverthe-

less, Hennig (2015) provided an interpretation for CG in

this framework, essentially showing7 that Algorithm 1 repro-

duces both the search directions and solution estimates from

CG under the prior

p(A−1) = N (
−→
A−1;

−→
α I , β A−1⊗⊖A−1).

where α ∈ R \ {0}, β ∈ R
+ and ⊗⊖ denotes the symmetric

Kronecker product (see Section A.1). The posterior under

such a prior is described in Lemma 2.2 of Hennig (2015)

(see Lemma 21), though we note that the sense in which

the solution estimate xm output by this algorithm is related

to the posterior over A−1 differs from that in the previous

section, in the sense that A−1
m b �= xm . (More precisely, xm =

A−1
m (b − Ax0) − x0 − (1 − αm)dm , as the CG estimate is

corrected by the step size computed in line 6. Fixing this rank-

1 discrepancy would complicate the exposition of Algorithm

1 and yield a more cumbersome algorithm.) The following

proposition generalises this result.

Proposition 16 Consider the prior

p(A−1) = N (
−→
A−1;

−→
α I , (β I + γ W )⊗⊖(β I + γ W ))

where W := A−1. For all choices α ∈ R \ {0} and β, γ ∈

R+,0 with β +γ > 0, Algorithm 1 is equivalent to CG, in the

sense that it produces the exact same sequence of estimates

xi and scaled search directions si .

7 Algorithm 1 is not included in this form in the op.cit.
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Proof The proof is extensive and has been moved to

“Appendix B”. ⊓⊔

Algorithm 1 The algorithm referred to by Proposition 16,

which reproduces the search directions and solution esti-

mates from CG.

1 x0 ← A−1
0 b � initial guess

2 r0 ← Ax0 − b

3 for i = 1, . . . , m do

4 di ← − A−1
i−1r i−1 � compute optimisation direction

5 zi ← Adi � observe

6 αi ← −
d⊤

i r i−1

d⊤
i zi

� optimal step size

7 si ← αi di � re-scale step

8 yi ← αi zi � re-scale observation

9 xi ← xi−1 + si � update estimate for x

10 r i ← r i−1 + yi � new gradient at xi

11 A−1
i ← Ep(A−1|S,Y ) A−1 � estimate A−1

12 end for

13 return xm

Note that, unlike previous propositions, Proposition 16

proposes a prior that does not involve A−1 for the case when

γ = 0.

6 GMRES

The generalised minimal residual method (Saad 2003, Sec-

tion 6.5) applies to general nonsingular matrices A. At

iteration m, GMRES minimises the residual over the affine

space x0 + Km(A, r0). That is, rm = r0 − Axm satisfies

‖rm‖2 = min
x∈Km (A,r0)

‖Ax − r0‖2

= min
x∈x0+Km (A,r0)

‖Ax − b‖2. (14)

Since Ax − b = A(x − x∗), this corresponds to minimising

the error in the A⊤ A norm.

We present a brief development of GMRES, starting with

Arnoldi’s method (Sect. 6.1) and the GMRES algorithm

(Sect. 6.2), before presenting our Bayesian interpretation

(Sect. 6.3).

6.1 Arnoldi’s method

GMRES uses Arnoldi’s method (Saad 2003, Section 6.3)

to construct orthonormal bases for Krylov spaces of gen-

eral, nonsingular matrices A. Starting with q1 = r0/‖r0‖2,

Arnoldi’s method recursively computes the orthonormal

basis

Qm =
[

q1 . . . qm

]

∈ R
d×m

for Km(A, r0). The basis vectors satisfy the relations

AQm = Qm+1 H̃m = Qm Hm + hm+1,m qm+1e⊤
m (15)

and Q⊤
m AQm = Hm , where the upper Hessenberg matrix

Hm is defined as

Hm =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h11 h12 h13 . . . h1,m−1 h1m

h21 h22 h23 . . . h2,m−1 h2m

0 h32 h33 . . . h3,m−1 h3m

... 0 h43 . . . h4,m−1 h3m

...
. . .

. . .
...

...

0 . . . . . . 0 hm,m−1 hmm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
m×m

and

H̃m =

[

Hm

hm+1,m e⊤
m

]

∈ R
(m+1)×m .

6.2 GMRES

GMRES computes the iterate

xm = x0 + Qm cm

based on the optimality condition in Eq. (14), which can

equivalently be expressed as

cm = arg minc∈Rm ‖AQm c − r0‖2

=
(

(AQm)⊤(AQm)

)−1
(AQm)⊤r0. (16)

Thus,

xm = x0 + Qm

(

Q⊤
m A⊤ AQm

)−1
Q⊤

m A⊤r0, (17)

confirming that GMRES is a projection method with Xm =

Qm and Um = AQm .

GMRES solves the least squares problem in Eq. (16) effi-

ciently by projecting it to a lower-dimensional space via

Arnoldi’s method. To this end, express the starting vector

in the Krylov basis,

r0 = ‖r0‖2q1 = ‖r0‖2 Qm+1e1,

and exploit the Arnoldi recursion from Eq. (15),

AQm c − r0 = Qm+1

(

H̃m+1c − ‖r0‖2e1

)

,

followed by the unitary invariance of the two-norm,

‖AQm c − r0‖2 = ‖H̃m c − ‖r0‖2 e1‖2.
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Thus, instead of solving the least squares problem Equation

(16) with d rows, GMRES solves instead a problem with

only m + 1 rows,

cm = arg minc∈Rm ‖H̃m c − ‖r0‖2 e1‖2. (18)

The computations are summarised in Algorithm 2.

Algorithm 2 GMRES (Saad 2003, Algorithm 6.9)

1 r0 ← b − Ax0, β ← ‖r0‖2, q1 ← r0/β

2 for j = 1, . . . , m do

3 w j ← Aq j

4 for i = 1, . . . , j do

5 hi j ← 〈w j , Aqi 〉

6 w j ← w j − hi j qi

7 end for

8 h j+1, j ← ‖w j ‖2

9 if h j+1, j = 0 then

10 m ← j , go to 14

11 end if

12 q j+1 ← w j /h j+1, j

13 end for

14 Define H̃m ∈ R
(m+1)×m with elements hi j

15 cm ← arg minc ‖H̃m c − βe1‖2

16 xm ← x0 + Qm cm

6.3 Bayesian interpretation of GMRES

We now present probabilistic linear solvers with posterior

means that coincide with the solution estimate from GMRES.

6.3.1 Left-multiplied view

Proposition 17 Under the SBI prior

p(x) = N (x; x0,Σ0) where Σ0 = (A⊤ A)−1

and the search directions Um = AQm , the posterior mean is

identical to the GMRES iterate xm in Eq. (17).

Proof Substitute R = A and Um = AQm into Proposi-

tion 9. ⊓⊔

Proposition 17 is intuitive in the context of Proposition 4:

setting Σ0 = (A⊤ A)−1 ensures that the norm being min-

imised coincides with that of GMRES, as does the solution

space Xm = AQm . This interpretation exhibits an interesting

duality with CG for which Σ0 = A−1.

Another probabilistic interpretation follows from Propo-

sition 8.

Corollary 18 Under the prior

p(x) = N (x; x0,Σ0) where Σ0 = Qm Q⊤
m, (19)

and with observations ym = Q⊤
m b, the posterior mean from

SBI is identical to the GMRES iterate xm in Eq. (17).

Note that Proposition 17 has a posterior covariance which

is not practical, as it involves A−1. (Cockayne et al. 2017)

proposed replacing A−1 in the prior covariance with a pre-

conditioner to address this, which does yield a practically

computable posterior, but this extension was not explored

here. Furthermore, that approach yields unsatisfactorily cal-

ibrated posterior uncertainty, as described in that work.

Corollary 18 does not have this drawback, but the posterior

covariance is a matrix of zeroes.

6.3.2 Right-multiplied view

As for CG in Sect. 5.2, finding interpretations of GMRES that

use right-multiplied observations appears to be more difficult.

Proposition 19 Under the prior

p(A−1) = N (0,Σ ⊗ I ) (20)

and given Ym = AQm , the implied posterior mean on the

solution space given by A−1
m b is equivalent to the GMRES

solution. This correspondence breaks when x0 �= 0.

Proof Under this prior, b applied to the posterior mean is

A−1
m b = A−1

0 b + (Qm − A−1
m Ym)(Y ⊤

m Ym)−1Y ⊤
m b

= Qm(Y ⊤
m Ym)−1Y ⊤

m b

= Qm(Q⊤
m A⊤ AQm)−1 Q⊤

m A⊤b

which is the GMRES projection step if x0 = 0. ⊓⊔

6.4 Simulation study

In this section, the simulation study of Cockayne et al. (2018)

will be replicated to demonstrate that the uncertainty pro-

duced from GMRES in Proposition 17 is similarly poorly

calibrated to CG, owing to the dependence of Qm on x∗ by

way of its dependence on b. Throughout the size of the test

problems is set to d = 100. The eigenvalues of A were drawn

from an exponential distribution with parameter γ = 10 and

eigenvectors uniformly from the Haar-measure over rotation

matrices (see Diaconis and Shahshahani 1987). In contrast

to Cockayne et al. (2018), the entries of b are drawn from a

standard Gaussian distribution, rather than x∗. By Lemma 1,

the prior is then perfectly calibrated for this scenario, provid-

ing justification for the expectation that the posterior should

be equally well calibrated for m ≥ 1.

Cockayne et al. (2018) argue that if the uncertainty is well

calibrated, then x∗ can be considered as a draw from the
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posterior. Under this assumption, i.e. Σ
−1/2

m (x∗ − xm) ∼

N (0, I) they derive the test statistic:

Z(x∗) := ‖Σ
−1/2

m (x∗ − xm)‖ ∼ χ2
d−m .

Figure 1 shows on the left the convergence of GMRES and

on the right the convergence rate of the trace of the poste-

rior covariance. Figure 2 displays the test statistic. It can be

seen that the same poor uncertainty quantification occurs in

BayesGMRES; even after just 10 iterations, the empirical

distribution of the test statistic exhibits a profound left shift,

indicating an overly conservative posterior distribution. Pro-

ducing well-calibrated posteriors remains an open issue in

the field of probabilistic linear solvers.
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Fig. 1 Convergence of posterior mean and variance of the probabilistic interpretation of GMRES from Proposition 17
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Fig. 2 Assessment of the uncertainty quantification. Plotted are kernel density estimates for the statistic Z based on 500 randomly sampled test

problems for steps m = {1, 3, 5, 8, 10}. These are compared with the theoretical distribution of Z when the posterior distribution is well calibrated
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7 Discussion

We have established many new connections between proba-

bilistic linear solvers and a broad class of iterative methods.

Matrix-based and solution-based inference were shown to be

equivalent in a particular regime, showing that results from

SBI transfer to MBI with left-multiplied observations. Since

SBI is a special case of MBI, future research will establish

what additional benefits the increased generality of MBI can

provide.

We also established a connection between the wide class

of projection methods and probabilistic linear solvers. The

common practice of preconditioning has an intuitive proba-

bilistic interpretation, and all probabilistic linear solvers can

be interpreted as projection methods. While the converse was

shown to hold, the conditions under which generic projection

methods can be reproduced are somewhat restrictive; how-

ever, GMRES and CG, which are among the most commonly

used projection methods, have a well-defined probabilistic

interpretation. Probabilistic interpretations of other widely

used iterative methods can, we anticipate, be established from

the results presented in this work.

Posterior uncertainty remains a challenge for probabilis-

tic linear solvers. Direct probabilistic interpretations of CG

and GMRES yield posterior covariance matrices which are

not always computable, and even when the posterior can be

computed, the uncertainty remains poorly calibrated. This is

owed to the dependence of the search directions in Krylov

methods on Ax∗ = b, resulting in an algorithm which is

not strictly Bayesian. Mitigating this issue without sacrific-

ing the fast rate of convergence provided by Krylov methods

remains an important focus for future work.
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Appendix A: Properties of Kronecker prod-
ucts

The following identities about Kronecker products and the

vectorisation operator are easily derived, but recalled here

for the convenience of the reader:

(A ⊗ B)
−→
C =

−−−−→
AC B⊤ (K1)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D) (K2)

(A ⊗ B)−1 = A−1 ⊗ B−1 (K3)

(A ⊗ B)⊤ = A⊤ ⊗ B⊤ (K4)

(A + B) ⊗ C = A ⊗ C + B ⊗ C (K5)

A.1 The symmetric Kronecker product

Definition 20 (symmetric Kronecker product) The symmet-

ric Kronecker product for two square matrices A, B ∈ R
N×N

of equal size is defined as

A⊗⊖B := Γ (A ⊗ B)Γ

where [Γ ]i j,kl := 1/2δikδ jl + 1/2δilδ jk satisfies

Γ
−→
C = 1/2

−→
C + 1/2

−→
C⊤

for all square matrices C ∈ R
N×N .

Proposition 21 (Theorem 2.3 in Hennig 2015) Let W ∈

R
d×d be symmetric and positive definite. Assume a Gaus-

sian prior of symmetric mean A−1
0 and covariance W⊗⊖W

on the elements of a symmetric matrix A−1. After m linearly

independent noise-free observations of the form S = A−1Y ,

Y ∈ R
d×m, rk(Y ) = m, the posterior belief over A−1 is a

Gaussian with mean

A−1
m = A−1

0 + (S − A−1
0 Y )GY ⊤W

+ W Y G(S − A−1
0 Y )⊤

+ W Y GY ⊤(S − A−1
0 Y )GY ⊤W (21)

and posterior covariance

Vm =(W − W Y GY ⊤W )⊗⊖(W − W Y GY ⊤W ) (22)

where G := (Y ⊤W Y )−1.

Remark 22 Since A−1
0 is symmetric and the symmetric prior

places mass only on symmetric matrices, the posterior mean

A−1
m is also symmetric.

Appendix B: Proofs

B.1 Proposition 6

Proof of Proposition 6 Let H = A−1 and let A−1
0 = H0. First

note that by right-multiplying the information in Eq. (6) by

H :

Y ⊤
m H = S⊤

m
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�⇒
−−−→
Y ⊤

m H =
−→
S⊤

m

�⇒ (Ym ⊗ I )
−→
H =

−→
S⊤

m (from K1)

Now the implied posterior on
−→
H can be computed using the

standard laws of Gaussian conditioning:

−→
H ∼ N (

−→
H0,Σ ⊗ W )

�⇒
−→
H |D ∼ N (

−→
Hm,Ωm).

Let Ω0 = Σ0 ⊗ W0 and let P = Y ⊤
m ⊗ I . Then,

−→
Hm =

−→
H0 + [PΩ0]

⊤[PΩ0 P⊤]−1(
−→
S⊤

m −
−−−→
Y ⊤

m H0)

Ωm = Ω0 − [PΩ0]
⊤[PΩ0 P⊤]−1(PΩ0)

Now note that

PΩ0 = (Y ⊤
m ⊗ I )(Σ0 ⊗ W )

= (Y ⊤
m Σ0) ⊗ W

�⇒ (PΩ0)
⊤ = (Σ0Ym) ⊗ W

where the second line uses Eq. (K2) and the third uses

Eq. (K4). Thus,

PΩ0 P⊤ = (Y ⊤
m ⊗ I )(Σ0 ⊗ W0)(Y

⊤
m ⊗ I )⊤

= (Y ⊤
m Σ0Ym) ⊗ W0

�⇒ (PΩ0 P⊤)−1 = (Y ⊤
m Σ0Ym)−1 ⊗ W −1

0

where the second line is again using Eq .(K2) and Eq. (K4),

while the third line uses Eq. (K3). We conclude that

(PΩ0)
⊤(PΩ0 P⊤)−1

= [(Σ0Ym) ⊗ W ][(Y ⊤
m Σ0Ym)−1 ⊗ W −1]

= (Σ0Ym(Y ⊤
m Σ0Ym)−1) ⊗ I

�⇒ (PΩ0)
⊤(PΩ0 P⊤)−1(PΩ0)

= (Σ0Ym(Y ⊤
m Σ0Ym)−1Y ⊤

m Σ0) ⊗ W0.

From these expressions, it is straightforward to simplify the

expressions for
−→
Hm :

−→
Hm =

−→
H0 + (Σ0Ym(Y ⊤

m Σ0Ym)−1 ⊗ I )(
−→
S⊤

m −
−−−→
Y ⊤

m H0)

= vec
(

H0 + Σ0Y m(Y ⊤
m Σ0Ym)−1(S⊤

m − Y ⊤
m H0)

)

where the last line follows from K1. For Ωm :

Ωm = Σ0 ⊗ W − (Σ0Ym(Y ⊤
m Σ0Ym)−1Y ⊤

m Σ0) ⊗ W0

= (Σ0 − Σ0Ym(Y ⊤
m Σ0Ym)−1Y ⊤

m Σ0) ⊗ W0

where the last line is from application of K5.

It remains to project the posterior into R
d by performing

the matrix-vector product H b.

x =
−→
H b = (I ⊗ b⊤)H . (from K1)

Thus, the implied posterior is x ∼ N (x̄m, Σ̄m), with

x̄m = (I ⊗ b⊤)vec
(

H0 + Σ0Ym(Y ⊤
m Σ0Ym)−1(S⊤

m − Y ⊤
m H0)

)

= vec
(

H0b + Σ0Ym(Y ⊤
m Σ0Ym)−1(S⊤

m b − Y ⊤
m H0b)

)

= x0 + Σ0 A⊤Sm(S⊤
m AΣ0 A⊤Sm)−1S⊤

m (b − Ax0)

where in the last line we have used that H0b = x0 and that

Ym = A⊤Sm . Furthermore,

Σ̄m = (I ⊗ b⊤)

·
[

(Σ0 − Σ0Ym(Y ⊤
m Σ0Ym)−1Y ⊤

m Σ0) ⊗ W0

]

· (I ⊗ b⊤)⊤

= (Σ0 − Σ0Ym(Y ⊤
m Σ0Ym)−1Y ⊤

m Σ0) × b⊤W0b

= Σ0 − Σ0 A⊤Sm(S⊤
m AΣ0 A⊤Sm)−1S⊤

m AΣ0

where in the second line we have used K2 and the fact that

b⊤W0b is a scalar, while in the third line we have used that

b⊤W0b = 1 and that Ym = A⊤Sm .

Note that xm = x̄m and Σm = Σ̄m , as defined in Cock-

ayne et al. (2018). Thus, the proof is complete. ⊓⊔

B.2 Theorem 16

Proof of Theorem 16. Denote by xCG
i the conjugate gradient

estimate in iteration i and with pi the search direction in

that iteration. From one iteration to the next, the update to

the solution can be written as (Nocedal and Wright 1999,

p. 108)

xCG
i+1 = xCG

i +
r⊤

i pi

p⊤
i A pi

pi . (K23)

Comparing this update to lines 7 to 10 in Algorithm 1, it is suf-

ficient to show that di ∝ pi which follows from Lemma 23. ⊓⊔

Lemma 23 Assume that CG does not terminate before d iter-

ations. Using the prior of Theorem 16 in Algorithm 1, the

directions di are scaled conjugate gradients search direc-

tions, i.e.

di = γi pCG
i
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where pCG
i is the CG search direction in iteration i and

γi ∈ R \ {0}.

Proof The proof proceeds by induction. Throughout we will

suppress the superscript CG on the CG search directions,

i.e. pCG
i = pi . For i = 1, A−1

i−1 = α I by assumption and

therefore di = αr0 which is the first CG search direction

scaled by γ1 = α �= 0.

For the inductive step, suppose that the search directions

s1, ..., si−1 are scaled CG directions and that the vectors

x1, . . . , xi−1 are the same as the first i − 1 solution esti-

mates produced by CG. We will prove that si is the i th CG

search direction, and that xi is the i th solution estimate from

CG. Lemma 25 states that di can be written as

di = A−1
i−1r i−1 =

∑

j<i

ν j s j + νi r i−1. (K24)

where ν j ∈ R, j = 1, . . . , i . Under the prior, the posterior

mean A−1
i is always symmetric as stated in Remark 22. This

allows application of Lemma 24, so that {s1, . . . , si−1, di }

is an A-conjugate set. Thus, we have, for ℓ < i :

0 = s⊤
ℓ Adi = νℓs⊤

ℓ Asℓ + νi s⊤
ℓ Ar i−1

= νℓs⊤
ℓ Asℓ + νi y⊤

ℓ r i−1. (K25)

Now note that

y⊤
ℓ r i−1 = (rℓ − rℓ−1)

⊤r i−1.

This follows from line 10 of Algorithm 1, from which it is

clear that yℓ = rℓ − rℓ−1. Recall that the CG residuals r j

are orthogonal (Nocedal and Wright 1999, p. 109) and that

from the inductive assumption, Algorithm 1 is equivalent to

CG up to iteration i − 1). Thus, for ℓ < i − 1 we have that

y⊤
ℓ r i−1 = 0

�⇒ sℓ Adi = νℓs⊤
ℓ Asℓ = 0 ∀ ℓ < i − 1

where the second line is from application of the first line in

Eq. (K25). However, A is positive definite and by assumption

the algorithm has not converged, so dℓ �= 0. Furthermore,

clearly s⊤
ℓ Asℓ �= 0. Hence, we must have that

νℓ = 0 ∀ j < i − 1.

Equation (K24) thus simplifies to

di = νi−1si−1 + νi r i−1 = νi−1αi−1di−1 + νi r i−1. (K26)

Now, again by Lemma 24, d i must be conjugate to si−1 which

implies νi �= 0. Pre-multiplying Eq. (K26) by s⊤
i−1 A gives

0 = νi−1αi−1s⊤
i−1 Adi−1 + νi s⊤

i−1 Ar i−1

�⇒ νi−1αi−1 = −νi

s⊤
i−1 Ar i−1

s⊤
i−1 Adi−1

.

Thus, di can be written as

di = νi

(

r i−1 −
s⊤

i−1 Ar i−1

s⊤
i−1 Adi−1

di−1

)

= νi

(

r i−1 −
p⊤

i−1 Ar i−1

p⊤
i−1 A pi−1

pi−1

)

(K27)

where the second line again applies the inductive assumption

that di−1 and si−1 are proportional to the CG search direction

pi−1, noting that the proportionality constants on numerator

and denominator cancel. The term inside the brackets is pre-

cisely the i th CG search direction. This completes the result.

⊓⊔

Lemma 24 If the belief over A−1
m is symmetric for all m =

0, . . . , d and A is symmetric and positive definite, then Algo-

rithm 1 produces A-conjugate directions.

Proof The proof is by induction. Note that the case i = 1

is irrelevant since a set consisting of one element is trivially

A-conjugate. On many occasions, the proof relies on the con-

sistency of the MBI belief, i.e. A−1
i zk = dk for k ≤ i and by

symmetry z⊤
k A−1

i = d⊤
k . Thus, for the base case i = 2 we

have:

d⊤
1 Ad2 = −d⊤

1 A(A−1
1 r1)

= −d⊤
1 A(A−1

1 ( y1 + r0))

= −d⊤
1 A(s1 + A−1

1 r0)

where the second line is by line 10 of Algorithm 1. Now

recall that α1 = −d⊤
1 r0/d⊤

1 Ad1 to give:

d⊤
1 Ad2 = −α1d⊤

1 Ad1 − d⊤
1 AA−1

1 r0

= d⊤
1 r0 − d⊤

1 AA−1
1 r0

= d⊤
1 r0 − z⊤

1 A−1
1 r0

= d⊤
1 r0 − d⊤

1 r0

= 0. (K28)

Here, the symmetry of the estimator A−1
i is used in Eq. (K28).

For the inductive step, assume {d0, . . . , di−1} are pairwise

A-conjugate. For any k < i , we have:

d⊤
k Adi = −d⊤

k A(A−1
i r i )

= −d⊤
k AA−1

i

⎛

⎝

∑

j≤i

y j + r0

⎞

⎠
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where the second line follows from the fact that r i = r i−1 +

yi . Thus, we have:

d⊤
k Adi = −d⊤

k A

⎛

⎝

∑

j≤i

s j + A−1
i r0

⎞

⎠

= −d⊤
k A

⎛

⎝

∑

j≤i

α j d j + A−1
i r0

⎞

⎠ .

Now, applying the conjugacy from the inductive assumption:

d⊤
k Adi = −αk d⊤

k Adk − d⊤
k A(A−1

i r0)

= d⊤
k rk−1 − d⊤

k r0

= d⊤
k

⎛

⎝

∑

j<k

y j + r0

⎞

⎠ − d⊤
k r0 = 0

=
∑

j<k

α j d⊤
k Ad j = 0.

where the second line rearranges line 6 of the algorithm to

obtain αi d⊤
i zi = −d⊤

i r i−1. The third line again uses that

r i = r i−1 + yi , while the fourth line is from the assumed

conjugacy. ⊓⊔

Lemma 25 Under the prior in Theorem 16 and given scaled

CG search directions p1, ..., pi , it holds that A−1
i r i ∈

span{ p1, ..., pi , r i }.

Proof Recall first that under the prior in Theorem 16, A−1
0 =

α I . Then, by inspection of Eq. (21) we have A−1
i r i ∈ S

where

S = span{r i , p1, ..., pi , y1, ..., yi , W y1, ..., W yi }

By choice of W = β I + γ A−1, S = span{r i , p1, ..., pi ,

y1, ..., yi }. From line 10 of Algorithm 1, yi = r i − r i−1 and

therefore S = span{r1, ..., r i , p1, ..., pi }. By Theorem 5.3

in (Nocedal and Wright 1999, p. 109), the span of the conju-

gate gradients residuals and search directions are equivalent.

Therefore, S ⊆ {r i , p1, ..., pi }. ⊓⊔
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