
IE
do

www.ietdl.org
Published in IET Generation, Transmission & Distribution
Received on 23rd January 2009
Revised on 6th May 2009
doi: 10.1049/iet-gtd.2009.0039

ISSN 1751-8687

Probabilistic load flow in systems with
wind generation
J. Usaola
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Abstract: A method for solving a probabilistic power flow that deals with the uncertainties of (i) wind generation,
(ii) load and (iii) generation availability in power systems is proposed. Dependence between random variables has
been considered. The method is based on the properties of cumulants of random variables. Cornish-Fisher
expansion series are used to obtain the cumulative distribution function (CDF) of the output variables.
Multimodal CDF are obtained by convolutions, whose number has been minimised in order to decrease the
computation requirements.
1 Introduction
The great expansion of intermittent generation in power
systems has increased their uncertainty. This leads to
greater needs of probabilistic analysis tools, both for system
planning [1] and for the daily system operation.

Probabilistic power flow is one of the best known
probabilistic tools. From the first proposals in the 1970s
[2, 3], a great deal of literature can be found about it. The
most straightforward method of solving this problem is
Monte Carlo simulation [4]. This technique involves
repeated simulations with values obtained from the
probability density function (PDF) of the considered
random variables. For an adequate representation, many
simulations must be considered in real systems, which
makes sometimes this approach unpractical. One of the
alternatives is the convolution of the PDF of the random
variables involved, when they are independent of each
other, and linearly related. Although this reduces the
computational burden, it is costly to obtain the PDF of a
line when several random power injections are considered
even if fast fourier transform (FFT) [5] techniques are
used. Convolution techniques and FFT were also used in
[6] for distribution networks with wind energy, where a
simplified estimate of the PDF for short-term wind power
prediction was made. A multilinear approach was proposed
in [7], and fuzzy techniques [8] have been used to solve a
probabilistic optimal power flow. Another recent proposal
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is the point estimate method [9, 10], which approximates
the moments of the system variables of interest. This
method has been also applied to the probabilistic optimal
power flow problem [11].

The previous approaches assume that the random variables
considered are independent. However, dependence between
the uncertainties of power injections should be considered
for loads and for wind generation. The generalisation of
some of these methods for considering the dependence
between random variables is very complex, or impossible.
There have been proposals that consider this dependence,
only between loads, in [12], where it is modelled with a
linear relation, or in [13], where the covariance between
dependent random variables has been considered.

Probabilistic load flow has mostly included the uncertainty
of load. This uncertainty is not usually very high, especially
for day-ahead operation, and it can be modelled using
Gaussian probabilistic density functions. Wind energy
proliferation, however, poses new challenges, since the
variability of wind power production is much higher, and
the PDF of the uncertainties are not Gaussian.

The use of cumulants and the approximation of a PDF
by orthogonal series (Gram-Charlier A expansion series or
Laguerre polynomials [14]) have also been recently
proposed for the probabilistic power flow [15], with
discrete distributions [16], or for the probabilistic optimal
1031
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power flow [17]. It has interesting properties, and is
computationally inexpensive. For large transmission
networks, it seems that it is very adequate because of its
low computational requirements. It has the disadvantage of
the necessary linearisation but it may be generalised for
dependent random variables. However, for non-Gaussian
PDF, Gram-Charlier A expansion series have serious
convergence problems, and the Cornish-Fisher expansion
gives better results without more computational burden [18].

The aim of this paper is to propose an analytical method
[called enhanced linear method (ELM)] for the problem of
probabilistic load flow. This method improves the approach
proposed by the author in [18], by including the
dependendent continuous random variables and discrete
random variables. The ELM method can be applied to
grids where the wind power uncertainty, load uncertainty
and generation availability must be considered.
Mathematically, this means that the considered random
variables may be continuous and/or discrete, and also
dependent and/or independent.

The method combines different approaches, but it is based
on the cumulant method, generalised for the case of
dependent random variables. A refinement is also added to
better consider the non-linearity of load flow equations.
Cornish-Fisher expansion series are used to evaluate the CDF
of the output random variables, and a short number of FFT-
based convolutions are made only when the resultant CDF is
multimodal. The method has been applied to the daily
operation problem, using as inputs the scheduled generation,
the forecasted load and the wind prediction for a specific
moment of the day ahead. The intended contributions of this
paper are the consideration of the dependence between input
random variables (for instance the wind power predictions in
an area), and to deal with multimodal distributions
minimising the required computing time.

The paper is organised as follows. Section 2 gives the
statistical background used in the paper. Section 3 gives an
overview of short-term wind power prediction. In Section
4, load flow equations are formulated. The computational
procedure is explained in Section 5, and Section 6 includes
the results of an application example. The Conclusion with
the main intended contributions ends the paper.

2 Statistical background
2.1 Moments and cumulants of
multivariate distributions

Definitions: For the sake of simplicity, the definitions given
here will be for the bivariate case. Generalisation to a higher
number of variables is straightforward. More information can
be found in [19].

Let x1 and x2 be two random variables, f (x1, x2) their joint
PDF and F (x1, x2) their joint bivariate CDF. For these
32
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random variables, the joint moment of order kþ r ¼ n is

mkr ¼ E[xk
1xr

2] ¼

ð1

�1

ð1

�1

xk
1xr

2 f (x1, x2) dx1 dx2 (1)

The values h1 ¼ m10 and h2 ¼ m01 are the means of the
marginal distributions. The joint central moments of x1

and x2 are the moments of (x1 � h1) and (x2 � h2)

mkr ¼
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The joint moment generation function of x1 and x2 is
defined as

f(s1, s2) ¼ E[es1xþs2x2 ]

¼
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And it can be shown that
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The joint cumulant generating function is defined as
c(s1, s2) ¼ ln f(s1, s2). The values of the derivatives of this
function
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c(0, 0) ¼ kkr

are by definition the joint cumulants kkr of order k and r of
random variables x1 and x2. The mathematical relations
between multivariate moments and cumulants are rather
complex [20].

Linear combination of random variables: The following
equations will also be formulated for two variables. Let z be
the random variable z ¼ a1x1 þ a2x2 where x1 and x2 are
random variables and a1 and a2 are real constants. Then, the
moment of order n of variable z, mz,n is

mz,n ¼ E[zn] ¼ E[(a1x1 þ a2x2)n] (4)

¼ E
Xn

j¼0

Cj
n(a1x1)n�j(a2x2) j

" #
(5)

where

Cj
n ¼

n!

j!(n� j)!

and thanks to the linearity of the expression

mz,n ¼
Xn

j¼0

Cj
na

n�j
1 a

j
2m(n�j) j (6)
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where m(n�j)j ¼ E[x
n�j
1 x2

j]. It could be also demonstrated
(see [20]) that

mz,n ¼
Xn

j¼0

Cj
na

n�j
1 a

j
2m(n�j) j (7)

kz,n ¼
Xn

j¼0

Cj
na

n�j
1 a

j
2k(n�j) j (8)

where mz,n and kz,n are, respectively, the central moment and
cumulant of order n of the variable z, andm(n�j)j and k(n�j)j are
the joint central moment and cumulant of order (n� j) and
j of the variables x1 and x2. In general, it is better to work
with cumulants for the following reasons [20]:

† Most statistical calculations using cumulants are simpler
than the corresponding calculation using moments.

† For independent random variables, the cumulants of a
sum are the sum of cumulants.

† For independent random variables, the cross-cumulants
are zero.

† Series expansion such as the Cornish-Fisher expansion is
most conveniently expressed using cumulants.

† Where approximate normality is involved, high-order
cumulants can usually be neglected, but not higher order
moments.

2.2 Cornish–Fisher expansion series

To approximate the CDF of a random variable from its
moments or cumulants is a complex mathematical problem
not yet completely solved [21]. In the area of probabilistic
power flow, previous works [10, 15] have proposed the
Gram-Charlier A series to solve it. However, the convergence
of this series is poor when the involved distributions are not
Gaussian (see [22] or [23]). Numerical errors may make this
convergence worse [24].

The Cornish-Fisher expansion provides a better
approximation of a quantile a of a distribution function
F (x) in terms of the quantile of a normal N (0, 1)
distribution F and the cumulants of F (x). Using the first
five cumulants, the series expansion can be written as (see [22])

x(a)’ j(a)þ
1

6
(j2(a)� 1)k3þ

1

24
(j3(a)� 3j(a))k4

�
1

36
(2j3(a)� 5j(a))k2

3þ
1

120
(j4(a)� 6j2(a)þ 3)k5

�
1

24
(j4(a)� 5j2(a)þ 2)k3k4

þ
1

324
(12j4(a)� 53j2(a)þ 17)k3

3 (9)

where x(a) ¼ F�1(a) and j(a) ¼ F
�1(a) and kr is the

cumulant of order r of the distribution function F. More
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information about this series expansion can be found in
[21, 25] or [26].

Although the convergence properties of Cornish-Fisher
series are difficult to demonstrate [21], their behaviour for
non-Gaussian CDF is usually better. A comparison
between Gram-Charlier A and Cornish-Fisher expansion
series applied to a probabilistic load flow can be found in
[18], where this issue is discussed in more detail.

2.3 Multimodal distributions

A multimodal distribution has several modes, and comes
from a combination of a continuous and a discrete random
variables. In a multimodal distribution, it is not possible to
estimate the CDF of the random variable through series
expansion from moments, and convolutions must be made.
Since these are time consuming, it would be shown here
how to minimise their number.

Let z be a linear combination of the discrete random
variable xd and the continuous random variable xc. Both
variables are independent. Then

z ¼ xc þ adxd (10)

where ad is a real constant. One approach to the estimate of the
PDF of z is the convolution of the PDF of those variables,
since they are independent. A property of the Fourier
transform is that the transform of a convolution of two
functions is the product of their Fourier transforms, that is

fz(z) ¼ fx1
(x1) � fx2

(x2)$ Fz(v) ¼ Fx1
(v) � Fx2

(v)

where the asterisk means convolution and F stands for the
Fourier transform of f. An example of a transform of a
continuous exponential PDF a discrete binomial PDF and
its product is given in Fig. 1. It must be remarked that the
Fourier transform of the discrete distribution is a periodic
function in the frequency domain. The result of the
convolution is the multimodal PDF shown in Fig. 2. Not all
linear combinations of discrete and continuous variables
render z a multimodal distribution. This depends on the
nature of both, and on the coefficient ad.

Since the convolution is a computationally expensive
procedure, if there are many discrete variables and many
combinations to be considered, the computational burden
increases hugely. Therefore it could be found under which
conditions the convolution of a discrete and a continuous
variable yields a multimodal PDF in order to reduce the
number of convolutions as much as possible. When the
distribution is unimodal, the Cornish-Fisher series
expansion provides a good approximation.

To obtain the condition for a multimodal distribution, it is
better to work in the frequency domain. The condition is that
the transform of the continuous variable has a sufficiently low
1033
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value at the frequency of the first minimum of the Fourier
transform of the discrete variable. This minimum is given by

flim ¼
1

2adDxd

(11)

where Dxd is the separation between two non-zero values of
the discrete distribution. Hence, the unimodality condition is

jF c(flim)j , 1f (12)

where 1f is a number sufficiently small and F c is the Fourier
transform of the continuous function. If this condition is
fulfilled, the result of the convolution will be an unimodal
function, and a Cornish-Fisher expansion may be applied to
estimate the CDF. Otherwise, a convolution should be made.

2.4 Generation of correlated random
numbers

The uncertainty of dependent short-term wind power
predictions is modelled in this paper as a multivariate Beta

Figure 2 Multimodal PDF from a combination of a discrete
and continuous functions

Figure 1 Transforms of a discrete and continuous PDF, and
their product

Multimodal case
34
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PDF (see Section 3). Random numbers with this
distribution are not easily generated, and that is why a
method is given here to generate multivariate random
numbers with any distribution.

The method is based on the inverse transformation of a
uniform distribution. Let x1 be a random variable with
uniform distribution U (0, 1) (the CDF of a U (0, 1) is
H (x) ¼ x), and let us take n random samples of this variable.
Let x1,k be the sample k. Then, to generate random numbers,
x2,k, of a given distribution with invertible CDF F (x), it is
necessary to perform the operation x2,k ¼ F�1(x1,k). If we
transform this new variable, forming x3,k ¼ F (x2k), then x3k

will have again a U (0, 1) distribution.

The method begins by generating random numbers of a
multivariate normal random variable, with a given correlation
matrix, forming the array x1 [ Rm,n, where m is the number
of variables and n the sample size. Each element is written
as x1,ij , where i is the variable and j the sample. These
numbers can be easily generated by standard programs.

In a second step, a normal transformation is made to these
values in order to obtain a multivariate uniform distribution,
x2. That is to say, x2 ¼ F (x1), where F (x) is a multivariate
normal CDF.

The third step consists in transforming the obtained
multivariate uniform random numbers into series with the
wished marginal distributions G. Then, sample j of the new
variable i x3,ij will be obtained as x3,ij ¼ G�1(x2,ij). The
obtained random numbers with the wished distribution will
have correlations very close to the original one of the normal
multivariate distribution. The difference is due to the non-
linearity of the transformation performed.

A more complex approach, such as copula modelling,
could be used to preserve the desired correlation among
variables, that is in the origin of the transformations (see,
for instance, [21] or [27] for wind power), but to go deeper
into this problem is beyond the aim of this paper.

3 Uncertainty of short-term wind
power prediction
Short-term wind power prediction programs are tools that
provide an estimate of future power production of a wind
farm for the next hours. They use meteorological forecasts
from a Numerical Weather Prediction tool, and sometimes
real-time SCADA data from the wind farms. Data of the
wind farms, such as rated power, type and availability of
wind turbines etc., are also necessary. The output of these
programs is the hourly average wind farm production for
the next hours. Typically, predictions are issued for the
next 48 h, but longer time horizons are possible. The
accuracy of these tools are smaller than load prediction
programs and decreases with the time horizon. A survey of
the accuracy of these tools is given in [28].
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
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The forecasts provided by a short-term wind power
prediction program are uncertain. This uncertainty changes
with the range of the wind farm power output, since this
value is bounded between zero and the rated power.
Besides, the power curve of a wind turbine or wind farm is
non-linear. If we assume that the wind speed forecasts have
Gaussian uncertainty, then the PDFs of the power
predictions will not be Gaussian. The shape of these PDFs
is also affected by the time lag elapsed between the
prediction and the operation times. A sample of an
heuristical PDF of the uncertainty of short power
prediction is given in Fig. 3 This function shows the
uncertainty of a wind power prediction made with a time
horizon of 7 h when the forecasted power was 0.2 p.u.

It is not within the purposes of this paper to model this
uncertainty, and a reasonable approximation will be used.
Owing to the bounded nature of the power produced by a
wind farm, a beta distribution will be used, as in [29]. In our
case, the mean of the distribution will be the predicted
power at the time of interest, whereas the standard deviation
s will depend on the level of power injected, with respect to
the wind farm rated power. This dependence has been
obtained heuristically for some wind farms, and the results
are shown in Fig. 4, where the value of standard deviation is
normalised to the rated power of the wind farm. Although
there are wide variations, an approximation by a quadratic
curve (shown in the picture) may provide realistic results.

The uncertainty of short-term wind power prediction of
geographically close wind farms are correlated, since the
wind power in all of them are due to similar meteorological
conditions. This dependence has not yet been modelled,
but studies such as [30] show the dependence between
productions in a wide area. These results may be
considered as an estimate of actual correlation values,
although it is necessary to wait for more specific studies.

Figure 3 Sample PDF of the uncertainty of wind power
prediction
T Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
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4 Load flow equations
The load flow equations for a power system may be written
as (13)

S ¼ g(Z)

Pf ¼ h(Z) (13)

where Z is the vector of nodal voltages and angles, S, the
input vector of real and reactive power injections, and Pf ,
the output vector of line active power flows; g and h are
non-linear functions. Linearising these equations around a
working point yields, after some calculation

DPf ¼ J h J�1
P DP ¼ LfDP (14)

DP is the vector of incremental active power injections taken
from vector S. J h is the jacobian matrix of non-linear function
h, whereas J P is the submatrix of the jacobian matrix of
function g that relates line active power flows to variables
Z. Reactive power injections have been considered as
linearly related to active power injections, since most
modern wind generation may control the power factor of
wind farms according to economic incentives and the
power factor of loads will be considered constant. Hence
the changes in the reactive power injected or demanded are
proportional to the active power.

Matrix Lf is a sensitivity matrix whose terms are the system
power transfer distribution factors (PTDF). The definition of
these PTDFs assumes that the power injections are
compensated by opposite power injections at the slack bus.
This could be an acceptable assumption when the injections
have a small value. However, large fluctuations because of
changes of power in wind farms are compensated by the
combined operation of several generators. Hence, the

Figure 4 Relation between standard deviation and mean
for the uncertainty of predictions
1035
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sensitivity coefficients used in this work have been calculated
considering the distribution of input power among different
generators. Evidently, conventional PTDF are a particular
case of these sensitivities. The expression of these new
sensitivity coefficients is

l0qi ¼ lqi �
XR

r¼1

kirlqr (15)

where lqi is the term (q, i) of the sensitivity matrixLf , that is to
say, the PTDF of line q with respect to an injection in node i, kir

is the part of power injection in node i that the regulating
generator r assumes, for example (kir ¼ 1=R). R is the
number of generators that compensate the injection in node i.
Of course, any other sharing among generators is possible.
Hence, it may be written that

DPf ¼ L0fDP (16)

whereDP includes only the considered power injections, that is,
the random power injections in our case.

A similar approach may be made to estimate the reactive
power and the voltage sensitivities. The accuracy of these
approximations is smaller, because of the higher non-
linearity of the involved equations. This approximation can
be written, for reactive power, as

DQf ¼ G 0fDP (17)

5 Computational procedure
The method proposed in this paper calculates the CDF of the
line power flows from the CDF of the power injections
through a linear approximation of the load flow equations,
taking into account the dependence among power
injections. The input random variables are wind power,
demand and availability of conventional generation. The
proposed method will be called ELM.

The time range considered in the paper is the daily
operation, although it could also be applied for other time
ranges. The process goes as shown in the next paragraphs.
A flowchart of the process is given in Fig. 5.

1. Base case: The input data are the grid data, the forecasted
load and wind power and the scheduled power of the power
plants. The sensitivities of the line power flows to power
injections are calculated as shown in Section 4.

2. Uncertainty of power injections: Wind power uncertainties
are modelled as dependent beta distributions whose means
are the forecasted power, and whose standard deviations are
estimated as shown in Section 3. Load uncertainties are
modelled as dependent or independent normal variables
with a given standard deviation and correlation matrix.
Power plant uncertainties are modelled as independent
36
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binomial variables. Random numbers with the mentioned
distributions are generated as shown in Section 2.4. As it
can be seen, the method does not depend on the accuracy
of the correlation between the input data.

3. Moments and crossed moments of input variables: Central
moments of inputs variables are calculated numerically from
the random numbers previously generated, using a
discretisation of (2). From the central moments, cumulants
are found as described in [20].

4. Estimation of mean values of output variables: The mean
values of the output variables are estimated using a
(2mþ 1) point estimate (PE) method, without considering
the correlation between random variables. In spite of this
simplification, the accuracy of the approximation for the
mean value is very good.

5. Higher order cumulants of output variables: Cumulants of
order 2 and higher are calculated using (8), irrespectively
of the continuous or discrete character of the
random variables. The linear coefficients that relate the
output variables (power flows through branches) to the input
variables (power injections) are given by (16). The cumulants
up to the fifth order are obtained, since they are needed for
the Cornish-Fisher expansion series, as shown in (9).

6. CDF of output variables: Once the cumulants of distributions
of the output variables are known, it is necessary to estimate
their CDF. This process follows three steps:

(a) First, the CDF of the output variables, without considering
the discrete variables (power plant availabilities), is estimated
using Cornish-Fisher expansion series.

(b) Then, the unimodality condition of (12) is checked for
each output variable of interest and for each power plant.

(c) If the resulting CDF is not multimodal, then a Cornish-
Fisher expansion series is used to approximate the CDF. If
the CDF is multimodal, then the necessary convolutions
are made in order to obtain the estimate of the CDF. This
process is made at the end, in order to minimise the
number of necessary convolutions.

6 Study case
In order to show the possibilities of ELM and to quantify its
accuracy, a simulation study has been made for a test case.

Data: The IEEE-118 test system [31] has been modified to
include wind generation. Wind generation replaces part of
the conventional generation, which has been reduced
proportionally. The wind power installed is 693 MW, and
the total load is 3670 MW. The injected wind power in this
situation, 416 MW, is the 60% of the installed wind power.
Wind farms are clustered into three groups. Wind farms of
the same group are highly correlated, but the groups are
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
doi: 10.1049/iet-gtd.2009.0039
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Figure 5 Flowchart of ELM
considered to be independent between them. The values of the
correlation coefficients were taken from actual correlation
coefficients between nearby wind farm productions in
peninsular Spain. Although this is not a wholly rigorous
approach, it could be enough as a first approximation, since
there are not yet studies concerning spatial dependence
between short-term wind power predictions, to the
knowledge of the author. The data of this system are given in
the Appendix (Tables 5 and 6).

The availability of power plants has been considered as a
binomial variable. The plants that compensate load and
generation changes are those located in nodes 10, 25, 46,
54, 61, 66 and 100. The changes in generation or load
power are shared equally among them.

In order to assess the performance of ELM and
the importance of considering the dependence between
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
: 10.1049/iet-gtd.2009.0039
random variables, its results are compared to the PE
method [9, 10]

Computation times: The method has been programmed in
MATLAB. Computation times depend on the number of
output variables of interest and the number of convolutions
performed, but some values are given in Table 1. They
have been obtained with a processor Intel Pentium of
2.13 GHz with 1 Gb of RAM. The number of samples in
the Monte Carlo simulation is 10 000.

Results: The accuracy of the approximation of moments is
shown in Table 2 for the ELM and (2mþ 1) PE method,
compared with Monte Carlo simulation results. Two cases
have been considered, with and without dependence
between input variables, in order to show the importance of
considering this dependence. This table shows the average
error in % between moments of the line power flows,
1037
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obtained analytically, by ELM and the PE method, and
those obtained through Monte Carlo simulation. The error
is defined by

1n ¼
1

NB

XNB

j¼1

jman
n,j � mMC

n,j j

jmMC
n,j j

� 100 (18)

where man
n,j is the moment of order n of branch j found

analytically (either with ELM or PE), whereas mMC
n,j is the

same moment obtained by the Monte Carlo method. NB is
the number of branches in the grid.

Comparison with Monte Carlo is made in order to check the
accuracy of the proposed method, and no attempt has been
made to minimise the number of Monte Carlo simulations.
In order to assess the accuracy of the results of the Monte
Carlo simulations in the given system, the following data are
given. The 95% confidence interval for the mean estimate by
Monte Carlo have been found for all the lines. Since its size is
very variable, because also the power flow is very different
among lines, average quantities have been considered. The
average power flowing in the lines (absolute value) is
0.4762 p.u., whereas the average size of the 95% confidence
intervals is 0.0037 p.u., which is a 5.6% of the average power.
The number of Monte Carlo simulations necessary to reduce
this value to a 5% of the average absolute power is about
12 600. The average 95% confidence interval of the variance
is a 5.55% of the average variance of all the lines. For this last
test, normality of the power flow distribution has been
assumed, so the result is only approximate.

Two formulations, AC and DC, have been considered for
ELM. The DC formulation uses the DC load flow equations
for the analytical approach and the Monte Carlo simulation,
whereas the AC case uses the sensitivities obtained in Section

Table 1 Computation times, in s

Branches Conv. ELM Monte Carlo

28 23 14.52 332.26

172 43 AC 43.98 311.7

DC 27.23 271.14
38
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4, and the results are compared to those of Monte Carlo
simulations with AC load flow.

The PE method yields a good approximation for the
independent case up to the second-order moment.
Estimates of higher order moments have also higher errors.
The method, however, behaves poorly when the input
random variables are dependent. ELM, on the other hand
gives slightly worse results for the independent case. For
the dependent case, the method yields satisfactory results.

The error in the 90% percentile of active power, that is
calculated as in (19), has also been found

190 ¼
1

NB

XNB

j¼1

jpELM
90,j � pMC

90,j j

jpMC
90,j j

� 100 (19)

where pELM
90,j and pMC

90,j are the 90% quantile of branch j for
ELM and the Monte Carlo simulation, respectively. The
values of 190 are given in Table 3.

The results for reactive power flows in branches are given
in Table 4, where the error is defined as in (18). The
results of the PE method in the independent case are
better than ELM for the second moment, but in the
dependent case ELM behaves better than the PE method.
In all the cases the error 1n is high, as could be expected.
This is due not only to the higher non-linearity of reactive
power with respect to input power, but also to the smaller
variability of reactive power flows and the definition of 1n.
For instance, for the case of linearised AC equation with
dependent variables, the average variance of branch active
powers is 0.019 (p.u.)2, whereas that of reactive powers is
5.73 � 1024(p.u.)2. The maximum values of these
parameters are 0.4749 (p.u.)2 and 0.0132 (p.u.)2,
respectively. For higher order moments, the differences are
even larger. This implies that the importance of
considering reactive power variations is smaller.

The PDF resulting from Monte Carlo simulation, the
Cornish-Fisher expansion and the normal approximation is
also compared for the power flows in two lines. Fig. 6
shows the PDF of the power flow through line 5–11. It
Table 2 Value of 1n: active power in lines

Moment Independent Dependent

ELM PE (2mþ 1) ELM PE (2mþ 1)

DC AC DC AC

1 0.31 0.36 0.13 0.35 0.36 0.40

2 0.88 2.00 0.78 0.91 1.82 29.93

3 8.55 13.39 10.07 9.97 12.94 60.56

4 2.24 5.34 59.36 2.72 5.39 77.86

5 11.47 25.97 – 13.65 17.26 –
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
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Table 3 Errors for the 90% quantile: active power in lines

Independent Dependent

AC DC AC DC

C-F N C-F N C-F N C-F N

190 1.93 2.73 1.95 3.06 1.83 2.03 1.81 2.13

max. (p.u.) 0.160 0.089 0.142 0.094 0.077 0.061 0.064 0.066

C-F: Cornish-Fisher expansion; N: Normal distribution
can be seen that the Cornish-Fisher result fits better to
the Monte Carlo PDF. The PDF obtained through
Gram-Charler A series is also included. It can be seen that
this series expansion leads to a bad approximation.

When the influence of a discrete variable (the uncertainty of a
power plant production) on the line power flows is large,
multimodality appears, as shown in Fig. 7. The normality
assumption gives a bad approximation for the PDF, whereas
the convolution result fits well. It must be remarked that
convolutions are only performed whenever they are needed: in
the previous case (Fig. 6), no convolution was made.

Table 4 Value of 1n: reactive power in lines, grid IEEE-118

Moment Independent Dependent

ELM PE (2mþ 1) ELM PE (2mþ 1)

1 1.01 0.95 2.04 1.80

2 25.41 9.40 22.88 30.36

3 102.24 152.46 97.42 155.48

4 58.45 82.26 45.74 86.84

5 142.33 – 132.12 –

Figure 6 PDFs of active power in branch 5–11
, 2009, Vol. 3, Iss. 12, pp. 1031–1041
039
Although the method has been developed also for voltages,
the changes in the voltages, when power variations are
compensated by different nodes, are extremely small, and
for this reason the results are not presented here.

7 Conclusion
Probabilistic power flow becomes more important in systems
with high wind power penetration, because of the high
variability of the injected power. For daily system operation,
it is necessary to consider the uncertainties of short-term
wind power predictions. These uncertainties are correlated
for nearby wind farms. In general, they cannot be assumed
to be Gaussian, and a beta distribution is a better choice.

The use of cumulants to estimate the moments of line
power flows from the uncertainty of random power
injections seems to be a good choice, because of the
accuracy of the results and the easiness to include
dependence between input random variables.

Estimation of CDF from cumulants using Cornish-Fisher
expansion series seem to behave reasonably well in unimodal
non-Gaussian functions (such as those of the wind power
prediction uncertainty). To approximate the output PDF by a
normal distribution also gives an approximation of the higher
percentiles, even if the fitting of the resulting PDF is poor.

Figure 7 PDFs of active power in branch 92–102
1039
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When power plant availability or other discrete input
random variables are to be considered, some of the PDF of
the output variables may be multimodal, and it is necessary
to perform convolutions between the PDF of random
variables. This technique is computationally expensive, and
it is better to perform it only when necessary. To
discriminate between necessary and unnecessary
convolutions, a unimodality test can be made in the
frequency domain. If convolutions are made only when this
test is not passed, the number of necessary convolutions
reduces dramatically. Obviously, the normality assumption
does not hold for multimodality conditions.

8 References

[1] LEITE DA SILVA A.M., RIBEIRO S.M.P., ARIENTI V.L., ALLAN R.N., DE

COUTO FILHO M.B.: ‘Probabilistic load flow techinques applied
to power system expansion planning’, IEEE Trans. Power
Syst., 1990, PWRS-5, pp. 1047–1053

[2] BORKOWSKA B.: ‘Probabilistic load flow’, IEEE Trans.
Power Appl. Syst., 1974, PAS-93, pp. 752–759

[3] DOPAZO J.F.: ‘Stochastic load flow’, IEEE Trans. Power
Appl. Syst., 1975, PAS-94, pp. 299–309

[4] GENTLE J.E.: ‘Random number generation and Monte
Carlo methods’ (Springer, New York, 2003, 2nd edn.)

[5] ALLAN R.N., DA SILVA A.M.L., BURCHETT R.C.: ‘Evaluation
methods and accuracy in probabilistic load flow solutions’,
IEEE Trans. Power Appl. Syst., 1981, PAS-100, pp. 2539–2546

[6] HATZIARGYRIOU N.D., KARAKATSANIS T.S., PAPADOPOULOS M.:
‘Probabilistic load flow in distribution systems containing
dispersed wind power generation’, IEEE Trans. Power.
Syst., 1993, PWRS-8, pp. 159–165

[7] LEITE DA SILVA A.M., ARIANTI V.L.: ‘Probabilistic load flow by a
multilinear simulation algorithm’, IEE Proc., 1990, 137,
(Pt. C), pp. 276–282

[8] MIRANDA V., SARAIVA J.T.: ‘Fuzzy modelling of power system
optimal power flow’. Proc. Power Industry Computer
Application Conference, Baltimore, USA, 1991

[9] SU C.-L.: ‘Probabilistic load-flow computation using point
estimate method’, IEEE Trans. Power Syst., 2005, 20, (4),
pp. 1843–1851

[10] MORALES J.M., PEREZ-RUIZ J.: ‘Point estimate schemes to
solve the probabilistic power flow’, IEEE Trans., Power
Syst., 2007, 22, (4), pp. 1594–1601

[11] VERBIC G., CAÑIZARES C.A.: ‘Probabilistic optimal power
flow in electricity markets based on a two point estimate
method’, IEEE Trans. Power Syst., 2006, 21, pp. 1883–1893
40
The Institution of Engineering and Technology 2009
[12] LEITE DA SILVA A.M., ARIENTI V.L., ALLAN R.N.: ‘Probabilistic
load flow considering dependence between input nodal
powers’, IEEE Trans. Power. Appl. Syst., 1984, PAS-103,
pp. 1524–1530

[13] SANABRIA L.A., DILLON T.S.: ‘Power system reliability
assessment suitable for a deregulated system via the
method of cumulants’, Electric Power Energy Syst., 1993,
20, pp. 203–211

[14] TIAN W.D., SUTANTO D., LEE Y.B., OUTHRED H.R.: ‘Cumulant based
probabilistic power system simulation using Laguerre
polynomials’, IEEE Trans. Energy Convers., 1989, 4, pp. 567–574

[15] ZHANG P., LEE T.: ‘Probabilistic load flow computation
using the method of combined cumulants and Gram-
Charlier expansion’, IEEE Trans. Power Syst., 2004, PWRS-
19, pp. 676–682

[16] HU Z., WANG X.: ‘A probabilistic load flow method
considering branch outages’, IEEE Trans. Power Syst.,
2006, PWRS-21, pp. 507–514

[17] SCHELLENBERG A., ROSEHART W., AGUADO J.: ‘A cumulant-based
probabilistic optimal power flow (P-OPF) with gaussian and
gamma distributions’, IEEE Trans. Power. Syst., 2005, PWRS-
20, pp. 773–781

[18] USAOLA J.: ‘Probabilistic load flow with wind production
uncertainty using cumulants and Cornish-Fisher expansion’.
Proceedings of the 2008 Power System Computation
Conference, Glasgow, UK, July 2008

[19] PAPOULIS A., PILLAI S.U.: ‘Probability, random variables and
stochastic processes’ (McGraw-Hill, Boston, 2002, 4th edn.)

[20] MCCULLAGH P.: ‘Tensor methods in statistics’ (Chapman &
Hall, London, 1987)

[21] JASCHKE S.R.: ‘The Cornish-Fisher-expansion in the
context of delta-gamma-normal approximations’. http://
www.jaschke-net.de/papers/CoFi.pdf. Discussion Paper 54,
Sonderforschungsbereich 373, Humboldt-Universitaet zu,
Berlin

[22] STUART A., ORD K.: ‘Kendall’s advanced theory of statistics’
(Arnold, 1994, vol. I, 6th edn.)

[23] CRAMER H.: ‘Numerical methods of statistics’ (Princeton
University Press, Princeton, NJ, 1946)

[24] BLINNIKOV S., MOESSNER R.: ‘Expansions for nearly Gaussian
distributions’, Astron. Astrophys. Suppl. Ser., 1998, 130,
pp. 193–205

[25] CORNISH E.A., FISHER R.A.: ‘Moments and cumulants in the
specification of distributions’, Revue de l’Institut Inter.
Statis., 1937, 4, pp. 307–320
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
doi: 10.1049/iet-gtd.2009.0039



IET
do

www.ietdl.org
[26] HILL G.W., DAVIS A.W.: ‘Generalized asymptotic expansions
of Cornish-Fisher type’, Ann. Math. Stat., 1968, 39, (4),
pp. 1264–1273

[27] PAPAEFTHYMIOU G.: ‘Integration of stochastic generation in
power systems’. PhD dissertation, University of Delft, 2007

[28] KARINIOTAKIS G., ET AL.: ‘Evaluation of advanced wind
power forecasting models – results of the Anemos
project’. Proceedings of the EWEC, Athens, 2006

[29] FABBRI A., GOMEZ SAN ROMAN T., RIVIER J., MENDEZ QUEZADA V.H.:
‘Assessment of the cost associated with wind generation
prediction errors in a liberalized electricity market’, IEEE
Trans. Power Syst., 2005, 20, (3), pp. 1440–1446

[30] FOCKEN U., LANGE M., MOENNICH K., WALDL H.P., BEYER H.G., LUIG

A.: ‘Short-term prediction of the aggregated power output
of wind farms – a statistical analysis of the reduction of
the prediction error by spatial smoothing effects’, J. Wind
Eng. Ind. Aerodyn., 2002, 90, pp. 231–246

[31] Power Systems Test Case Archive. [Online]. Available
at: http://www.ee.washington.edu/research/pstca

9 Appendix: Data of the
study cases

Table 5 Wind farms included in the IEEE-118 system

WF Node Group P
(MW)

s

(MW)
Rated power

(MW)

1 52 1 59.3 25.6 98

2 44 1 31 13.2 51

3 53 1 14.8 6.48 25

4 50 1 8.5 3.66 14

5 84 2 20.1 9.4 36

6 86 2 17 7.2 28

7 83 2 33 15.11 58

8 82 2 50.3 20.84 82

9 2 3 33 14.1 55

10 5 3 20 9.4 36

11 16 3 27 11.2 44

12 13 3 37.5 16.1 62

13 3 3 27 10.5 42

14 14 3 37.5 16.1 62

total 416 693
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 12, pp. 1031–1041
i: 10.1049/iet-gtd.2009.0039
Table 6 Correlation coefficients: IEEE-118 case

Group 1

Wind farm 1 2 3 4

1 1 0.88 0.87 0.91

2 0.88 1 0.85 0.87

3 0.87 0.85 1 0.85

4 0.91 0.87 0.85 1

Group 2

Wind farm 5 6 7 8

5 1 0.82 0.85 0.9

6 0.82 1 0.85 0.88

7 0.85 0.85 1 0.89

8 0.9 0.88 0.89 1

Group 3

Wind farm 9 10 11 12 13 14

9 1 0.85 0.86 0.83 0.82 0.91

10 0.85 1 0.88 0.83 0.89 0.92

11 0.86 0.88 1 0.85 0.95 0.87

12 0.83 0.83 0.85 1 0.89 0.91

13 0.82 0.89 0.95 0.89 1 0.82

14 0.91 0.92 0.87 0.91 0.82 1
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& The Institution of Engineering and Technology 2009


