
Probabilistic Logic Programming on the Web

Fabrizio Riguzzia, Elena Bellodib, Evelina Lammab, Riccardo Zeseb,
Giuseppe Cotab

aDipartimento di Matematica e Informatica – University of Ferrara, Via Saragat 1,

I-44122, Ferrara, Italy
bDipartimento di Ingegneria – University of Ferrara, Via Saragat 1, I-44122, Ferrara,

Italy

Abstract

We present the web application “cplint on SWISH”, that allows the user
to write probabilistic logic programs and compute the probability of queries
with just a web browser. The application is based on SWISH, a recently
proposed web framework for logic programming. SWISH is based on vari-
ous features and packages of SWI-Prolog, in particular its web server and
its Pengine library, that allow to create remote Prolog engines and to pose
queries to them. In order to develop the web application, we started from
the PITA system which is included in cplint, a suite of programs for rea-
soning on Logic Programs with Annotated Disjunctions, by porting PITA
to SWI-Prolog. Moreover, we modified the PITA library so that it can be
executed in a multi-threading environment. Developing “cplint on SWISH”
also required modification of the JavaScript SWISH code that creates and
queries Pengines. “cplint on SWISH” includes a number of examples that
cover a wide range of domains and provide interesting applications of Prob-
abilistic Logic Programming (PLP). By providing a web interface to cplint

we allow users to experiment with PLP without the need to install a system,
a procedure which is often complex, error prone and limited mainly to the
Linux platform. In this way, we aim to reach out to a wider audience and
popularize PLP.

Keywords: Logic Programming, Probabilistic Logic Programming,

Email addresses: fabrizio.riguzzi@unife.it (Fabrizio Riguzzi),
elena.bellodi@unife.it (Elena Bellodi), evelina.lamma@unife.it (Evelina Lamma),
riccardo.zese@unife.it (Riccardo Zese), giuseppe.cota@unife.it (Giuseppe Cota)

Preprint submitted to Elsevier November 19, 2015

Distribution Semantics, Logic Programs with Annotated Disjunctions, Web
Applications

1. Introduction

Probabilistic Logic Programming (PLP) introduces probabilistic reason-
ing in logic programs in order to represent uncertain information. PLP is
receiving an increasing attention due to its applications in particular in the
Machine Learning field [1], where many domains are characterized by com-
plex and uncertain relations among their entities.

Many PLP languages have adopted the distribution semantics [2], accord-
ing to which a program defines a probability distribution over normal logic
programs called worlds and the probability of a query is obtained from this
distribution over programs. Examples of languages following the distribu-
tion semantics include Probabilistic Logic Programs [3], Independent Choice
Logic [4], PRISM [5], pD [6], Logic Programs with Annotated Disjunctions
(LPADs) [7], CP-logic [8] and ProbLog [9]. All these languages have the
same expressive power as a theory in one language can be translated into
another [10, 11].

Inference in PLP amounts to computing the probability of queries from
a program. Solving this problem in a fast way is fundamental especially for
Machine Learning applications, where a large number of queries have be to
answered. Several algorithms have been proposed for this, such as PRISM
[5], Ailog2 [12], ProbLog [13], SLGAD [14, 15] and PITA [16, 17]. Moreover,
cplint (CP-logic interpreter) [18, 19] is a suite of programs for inference and
learning of LPADs.

In this paper, we present the “cplint on SWISH” web application for
performing inference on user-defined probabilistic logic programs. “cplint
on SWISH” is available at http://cplint.lamping.unife.it. It is based
on SWISH [20], a web framework for LP using features and packages of
SWI-Prolog and its Pengines library. SWISH allows the user to write a logic
program and ask a query over it. The query and the program are sent to the
server using Javascript. The server then builds a Pengine (Prolog Engine)
that evaluates the query and returns answers for it. Both the web server and
the inference back-end are run entirely within SWI-Prolog.

Reasoning in “cplint on SWISH” is accomplished by PITA, which has
ported to SWI-Prolog and made thread-safe. We also modified SWISH both

2

http://cplint.lamping.unife.it

Figure 1: cplint interface on SWISH.

in its server and client parts. The interface of “cplint on SWISH” is shown
in Figure 1 and offers several LPADs and query examples from different
domains.

“cplint on SWISH” offers similar features as ProbLog2 [21], the current
inference and learning engine for the PLP language ProbLog. The ProbLog2
web application allows the user to write the ProbLog program in a text area
and press a button to run inference or learning. ProbLog2 exploits JavaScript
for sending the program to the server in JSON format. The server is a PHP
application that runs the system on the server machine and returns the result
as a JSON object.

While ProbLog2 uses a mix of technologies, including PHP, Python 3
and the DSHARP compiler1, “cplint on SWISH” uses a software stack
completely running in the Prolog interpreter.

These web interfaces to PLP allow users to experiment with PLP without
the need to install a system, a procedure which is often complex, error prone
and limited mainly to the Linux platform. In this way, the aim is to reach

1http://www.haz.ca/research/dsharp/

3

http://www.haz.ca/research/dsharp/

out to a wider audience and popularize PLP, similarly to what is done for
the functional probabilistic language Church [22], which is equipped with the
webchurch2 system for compiling Church programs into Javascript.

The paper is organized as follows. Section 2 provides an overview on the
distribution semantics, Section 3 describes the PITA algorithm for reasoning
over LPADs while Section 4 illustrates how PITA has been ported to SWI-
Prolog. Section 5 describes the SWISH web platform and Section 6 the
integration of cplint in it. Finally, Section 7 shows some examples available
in the web application and Section 8 concludes the paper.

2. Probabilistic Logic Programming

The distribution semantics [2] is reaching a growing importance in PLP.
In the distribution semantics, a probabilistic logic program defines a proba-
bility distribution over a set of normal logic programs (called worlds). The
distribution is extended to a joint distribution over worlds and a ground query
and the probability that the query is true is obtained from this distribution
by marginalization.

The languages based on the distribution semantics differ in the way they
define the distribution over logic programs. Each language allows proba-
bilistic choices among atoms in clauses. Of these languages, LPADs and
CP-Logic offer the most general syntax and we mainly concentrate on them
here. They differ in that CP-Logic deems invalid some programs to which a
causal meaning can not be attached but they are otherwise the same. Here
we consider LPADs, which are sets of disjunctive clauses in which each atom
in the head is annotated with a probability. We will briefly mention ProbLog
and PRISM at the end of the section.

Formally a Logic Program with Annotated Disjunctions [7] consists of a
finite set of annotated disjunctive clauses. An annotated disjunctive clause
Ci is of the form

hi1 : Πi1; . . . ;hini
: Πini

:- bi1, . . . , bimi
.

In such a clause the semicolon stands for disjunction, hi1, . . . hini
are logical

atoms and bi1, . . . , bimi
are logical literals, Πi1, . . . ,Πini

are real numbers in
the interval [0, 1] such that

∑ni

k=1 Πik ≤ 1. Note that, if ni = 1 and Πi1 = 1,

2https://github.com/probmods/webchurch

4

https://github.com/probmods/webchurch

the clause corresponds to a non-disjunctive clause. If
∑ni

k=1 Πik < 1, the
head of the annotated disjunctive clause implicitly contains an extra atom
null that does not appear in the body of any clause and whose annotation is
1 −

∑ni

k=1 Πik. We denote by ground(T) the grounding of an LPAD T , i.e.,
the results of replacing variables with constants in T .

Example 1. Consider this LPAD from [23] that is inspired by the morpho-
logical characteristics of the Stromboli Italian island:

C1 = eruption : 0.6; earthquake : 0.3 :- sudden energy release, fault rupture(X).
C2 = sudden energy release : 0.7.
C3 = fault rupture(southwest northeast).
C4 = fault rupture(east west).

The Stromboli island is located at the intersection of two geological faults,
one in the southwest-northeast direction, the other in the east-west direc-
tion, and contains one of the three volcanoes that are active in Italy. This
program models the possibility that an eruption or an earthquake occurs at
Stromboli. If there is a sudden energy release under the island and there is a
fault rupture, then there can be an eruption of the volcano on the island with
probability 0.6 or an earthquake in the area with probability 0.3. The energy
release occurs with probability 0.7 and we are sure that ruptures occur in both
faults.

We now present the distribution semantics for the case in which the program
does not contain function symbols so that its Herbrand base is finite3.

An atomic choice is a selection of the k-th atom for a grounding Ciθj of a
probabilistic clause Ci and is represented by the triple (Ci, θj, k), where θj is
a grounding substitution (a set of couples V ar/constant grounding Ci) and
k ∈ {1, . . . , ni}. An atomic choice represents an equation of the form Xij = k
where Xij is a random variable associated with Ciθj. A set of atomic choices
κ is consistent if (Ci, θj, k) ∈ κ, (Ci, θj,m) ∈ κ implies k = m, i.e., only one
head is selected for a ground clause.

A composite choice κ is a consistent set of atomic choices. The probability
of a composite choice κ is P (κ) =

∏
(Ci,θj ,k)∈κ

Πik. A selection σ is a total

composite choice (one atomic choice for every grounding of each probabilistic
clause). Let us call ST the set of all selections. A selection σ identifies a logic
program wσ called a world. The probability of wσ is P (wσ) = P (σ) =

3For the distribution semantics with function symbols see [2, 12, 17].

5

∏
(Ci,θj ,k)∈σ

Πik. Since the program does not contain function symbols, the

set of worlds WT = {w1, . . . , wm} is finite and P (w) is a distribution over
worlds:

∑
w∈WT

P (w) = 1.
The conditional probability of a query Q given a world w can be defined

as: P (Q|w) = 1 if Q is true in w and 0 otherwise. We can obtain the
probability of the query by marginalizing over the query:

P (Q) =
∑

w

P (Q,w) =
∑

w

P (Q|w)P (w) =
∑

w|=Q

P (w) (1)

Example 2. For the LPAD T of Example 1, clause C1 has two groundings,
C1θ1 with θ1 = {X/southwest northeast} and C1θ2 with θ2 = {X/east west},
while clause C2 has a single grounding C2∅. Since C1 has three head atoms
and C2 two, T has 3× 3× 2 worlds. The query eruption is true in 5 of them
and its probability is P (eruption) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 ·
0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588.

Figure 2 shows the computation of the probability of eruption in “cplint
on SWISH”.

Inference in probabilistic logic programming is performed by finding a cov-
ering set of explanations for queries.

A composite choice κ identifies a set ωκ that contains all the worlds
associated with a selection that is a superset of κ: i.e., ωκ = {wσ|σ ∈ ST , σ ⊇
κ}. We define the set of worlds identified by a set of composite choices
K as ωK =

⋃
κ∈K ωκ. Given a ground atom Q, a composite choice κ is

an explanation for Q if Q is true in every world of ωκ. For example, the
composite choice κ1 = {(C2, ∅, 1), (C1, {X/southwest northeast}, 1)} is an
explanation for eruption in Example 1. A set of composite choices K is
covering with respect to Q if every world wσ in which Q is true is such
that wσ ∈ ωK . In Example 1, a covering set of explanations for eruption is
K = {κ1, κ2} where κ1 = {(C2, ∅, 1), (C1, {X/southwes northeast}, 1)} and
κ2 = {(C2, ∅, 1), (C1, {X/east west}, 1)}.

Given a covering set of explanations for a query, we can obtain a Boolean
formula in Disjunctive Normal Form (DNF) where we replace each atomic
choice of the form (Ci, θj, k) with the equation Xij = k, we replace an ex-
planation with the conjuction of the equations of its atomic choices and the
set of explanations with the disjunction of the formulas for explanations.
If we consider a world as the specification of a truth value for each equa-
tion Xij = k, the formula evaluates to true exactly on the worlds where

6

Figure 2: “cplint on SWISH” running on Example 1.

the query is true [12]. In Example 1, if we associate the variables X11 to
C1{X/southwest northeast}, X12 to C1{X/east west} and X21 to C2∅, the
query is true if the following formula is true:

f(X) = (X21 = 1 ∧X11 = 1) ∨ (X21 = 1 ∧X12 = 1). (2)

Since the disjuncts in the formula are not necessarily mutually exclusive, the
probability of the query can not be computed by a summation as in Formula
(1). The problem of computing the probability of a Boolean formula in DNF,
known as disjoint sum, is #P-complete [24]. One of the most effective ways
to date of solving the problem makes use of Decision Diagrams.

Since the random variables that are associated with atomic choices can
assume multiple values, we need to use multi-valued Decision Diagrams
(MDDs) [25]. An MDD represents a function f(X) taking Boolean values
on a set of multi-valued variables X by means of a rooted graph that has
one level for each variable. Each node n has one child for each possible value
of the multi-valued variable associated with n. The leaves store either 0
or 1. Since MDDs split paths on the basis of the values of a variable, the
branches are mutually exclusive so a dynamic programming algorithm [9]

7

can be applied for computing the probability. Figure 3(a) shows the MDD
corresponding to Formula (2).

Most packages for the manipulation of decision diagrams are however re-
stricted to work on Binary Decision Diagrams (BDD), i.e., decision diagrams
where all the variables are Boolean. These packages offer Boolean operators
between BDDs and apply simplification rules to the results of operations in
order to reduce as much as possible the size of the BDD, obtaining a reduced
BDD.

A node n in a BDD has two children: the 1-child and the 0-child. When
drawing BDDs, rather than using edge labels, the 0-branch, the one going to
the 0-child, is distinguished from the 1-branch by drawing it with a dashed
line.

To work on MDDs with a BDD package we must represent multi-valued
variables by means of binary variables. The following encoding, used in [26],
gives good performances. For a multi-valued variable Xij, corresponding
to a ground clause Ciθj, having ni values, we use ni − 1 Boolean variables
Xij1, . . . , Xijni−1 and we represent the equationXij = k for k = 1, . . . ni−1 by
means of the conjunction Xij1∧ . . .∧Xijk−1∧Xijk, and the equation Xij = ni

by means of the conjunction Xij1∧ . . .∧Xijni−1. The BDD corresponding to
the MDD of Figure 3(a) is shown in Figure 3(b). BDDs obtained in this way
can be used as well for computing the probability of queries by associating
to each Boolean variable Xijk a parameter πik that represents P (Xijk = 1).
The parameters are obtained from those of multi-valued variables in this way:
πi1 = Πi1, . . . πik =

Πik∏k−1

j=1
(1−πij)

, . . ., up to k = ni − 1.

X11

1
2

3

X12
1

2

31
2 3X21

1
2

1 0
(a) MDD.

X111

X121

X211

1 0
(b) BDD.

Figure 3: Decision diagrams for Example 1.

8

ProbLog [9] programs differs from LPADs as they allow probabilistic
clauses only in the form of facts with two alternatives, one of which is implicit.

PRISM [5], similarly to ProbLog, allows probabilities only on facts but
the alternatives can be more than two. In particular, PRISM offers the
special predicate msw(switch, value) that encodes a random switch (i.e., a
random variable) and that can be used in the body of clauses to check that
the random switch named switch takes the value named value. The possible
values of each switch are defined by facts for the values/2 predicate, while
the probability of each value is set by calling the predicate set sw/2.

3. The PITA System

PITA computes the probability of a query from a probabilistic program
in the form of an LPAD by first transforming the LPAD into a normal pro-
gram containing calls for manipulating BDDs. The idea is to add an extra
argument to each subgoal to store a BDD encoding the explanations for
the answers of the subgoal. The values of the subgoals’ extra argument are
combined using a set of general library functions:

• init, end: initialize and terminate the data structures for manipulat-
ing BDDs;

• zero(-D), one(-D): return BDDs representing the Boolean constant
0 and 1;

• and(+D1,+D2,-DO), or(+D1,+D2,-DO), not(+D1,-DO): Boolean op-
erations between BDDs;

• equality(+Var,+Value,-D): D is the BDD representing Var=Value,
i.e. that the multi-valued random variable Var is assigned Value;

• ret prob(+D,-P): returns the probability of the BDD D.

These functions are implemented in C as an interface to the CUDD4 library
for manipulating BDDs. A BDD is represented in Prolog as an integer that
is a pointer in memory to the root node of the BDD. Moreover, the predicate
get var n(+R,+S,+Probs,-Var) is implemented in Prolog and returns the

4http://vlsi.colorado.edu/~fabio/CUDD/

9

http://vlsi.colorado.edu/~fabio/CUDD/

multi-valued random variable associated with rule R with grounding substi-
tution S and list of probabilities Probs.

The PITA transformation applies to atoms, literals and clauses. The
transformation for an atom h and a variable D, PITA(h,D), is h with the
variable D added as the last argument. The transformation for a negative
literal b = \+ a and a variable D, PITA(b,D), is the Prolog conditional

(PITA(a,DN)->

not(DN,D)

;

one(D)

).

In other words, the data structure DN is negated if a has some explanations;
otherwise the data structure for the constant function 1 is returned.

The disjunctive clause

Cr = h1:p1 ; ... ; hn:pn :- b1,...,bm.

where the parameters sum to 1, is transformed into the set of clauses PITA(Cr):

PITA(Cr,i)=PITA(hi,D):- one(DD0),

PITA(b1,D1),and(DD0,D1,DD1),....,

PITA(bm,Dm),and(DDm-1,Dm,DDm),

get_var_n(r,V,[p1,...,pn],Var),

equality(Var,i,DD),and(DDm,DD,D).

for i=1,...,n, where V is a list containing all the variables appearing in Cr.
If the parameters do not sum up to 1, then n-1 rules are generated as the
last head atom, null, does not influence the query since it does not appear
in any body. In the case of empty bodies or non-disjunctive clauses (a single
head with probability 1), the transformation can be optimized.

The PITA transformation applied to Example 1 yields

PITA(C1,1)=eruption(D) :-

one(DD0),sudden_energy_release(D1),and(DD0,D1,DD1),

fault_rupture(X,D2),and(DD1,D2,DD2),

get_var_n(1,[X],[0.6,0.3,0.1],Var),

equality(Var,1,DD),and(DD2,DD,D).

PITA(C1,2)=earthquake(D) :-

10

one(DD0),sudden_energy_release(D1),and(DD0,D1,DD1),

fault_rupture(X,D2),and(DD1,D2,DD2),

get_var_n(1,[X],[0.6,0.3,0.1],Var),

equality(Var,2,DD),and(DD2,DD,D).

PITA(C2,1)=sudden_energy_release(D) :- one(DD0),

get_var_n(2,[],[0.7,0.3],Var),

equality(Var,1,DD),and(DD0,DD,D).

PITA(C3,1)=fault_rupture(southwest_northeast,D) :- one(D).

PITA(C4,1)=fault_rupture(east_west,D) :- one(D).

Clause C1 has three alternatives in the head but the last one is the null

atom so only two clauses are generated. Clauses C3 and C4 are definite facts
so their transformation is optimized as shown above.

PITA uses tabling, a logic programming technique that reduces computa-
tion time and ensures termination for a large class of programs [27]. The idea
of tabling is simple: keep a store of the subgoals encountered in a derivation
together with answers to these subgoals. If one of the subgoals is encoun-
tered again, its answers are retrieved from the store rather than recomputing
them. Besides saving time, tabling ensures termination for programs without
function symbols under the Well-Founded Semantics (WFS) [28].

PITA was originally developed for XSB Prolog5. It exploits its answer
subsumption feature [27] that, when a new answer for a tabled subgoal is
found, combines old answers with the new one according to a partial order
or lattice. For example, if the lattice is on the second argument of a binary
predicate p, answer subsumption may be specified by means of the declaration

:-table p(_, or/3 - zero/1).

where zero/1 is the bottom element of the lattice and or/3 is the join oper-
ation of the lattice. Thus if a table has an answer p(a,d1) and a new answer
p(a,d2) is derived, the answer p(a,d1) is replaced by p(a,d3), where d3 is
obtained by calling or(d1,d2,d3).

In PITA, various predicates should be declared as tabled. For a predicate
p/n, the declaration is

:-table p(_1,...,_n, or/3 - zero/1).

5http://xsb.sourceforge.net/

11

http://xsb.sourceforge.net/

which indicates that answer subsumption is used to form the disjunction of
BDDs in the last argument.

At a minimum, the predicate of the goal and all the predicates appear-
ing in negative literals should be tabled with answer subsumption. If these
predicates are not tabled with answer subsumption, PITA is not correct as
it does not collect all answers for the subgoals of these predicates. It is usu-
ally useful to table every predicate whose answers have multiple explanations
and are going to be reused often since in this way repeated computations are
avoided.

4. PITA in cplint

cplint is a suite of programs for reasoning on LPADs. It includes various
algorithms for inference and learning. It is available for Yap Prolog [29] and
SWI-Prolog6 [30]. In this section we describe how PITA was ported to SWI-
Prolog, the basis of the “cplint on SWISH” web application.

Since SWI-Prolog has no tabling facilities, and thus also no answer sub-
sumption, in order to port PITA to SWI-Prolog we used bagof/3 to collect
all the BDDs for the query and then compute the disjunction of all of them
using or/3. So the disjunction of different explanations is not computed for
each subgoal but only for the top level query. This does not pose any problem
except for negated goals: for them, in fact, we can’t collect a BDD encoding
an explanation and negate it for each explanation but we need to collect all
the explanations, disjoin them and negate the result.

Thus the transformation for a negative literal b = \+ a and a variable D,
PITA(b,D), is the Prolog conditional

(bagof(B,PITA(a,B),L)->

or_list(L,DL),

not(DL,D)

;

one(D)

)

where or_list(L,D) returns in D the disjunction of all the BDDs in the list
L.

6http://www.swi-prolog.org/

12

http://www.swi-prolog.org/

In order to compute the probability of an atom Q, the predicate s(+Q,-P)
returns in P the probability of Q. s/2 is implemented as:

s(Q,P) :-

init,

(bagof(D,PITA(Q,D),L) ->

or_list(L,B)

;

zero(B)

),

ret_prob(B,P),

end.

The query Q passed to s/2 does not need to be ground. However, if it is not,
it is grounded and the corresponding probability is returned. At the moment
it is not possible to ask for other instantiations of the query. Moreover, the
query Q must be an atom, it can’t be a conjunction. We plan to remove these
limitations in future versions.

cplint can be installed by the user with the goal pack install(cplint)

at the SWI-Prolog prompt. After this call, pita can be loaded with the
command use module(library(pita)).

5. SWISH

SWISH7 is a web application that allows the user to write Prolog programs
and ask queries through the browser. The SWISH page is divided into three
panes, one with a program editor (on the left), one with a query editor (on
the bottom right) and one that shows the query results (on the top right).
When the user hits return after writing a query, a runner is created that
collects the text in the program editor (if any) and the query and sends
these to the server, which creates a Pengine (Prolog Engine). The Pengine
compiles the program into a temporary private module. The Pengine assesses
whether executing the query can compromise the system. If this fails, an
error is displayed. If the query is considered safe, it executes the query and
communicates with the runner about the results using JSON messages.

7http://swish.swi-prolog.org/

13

http://swish.swi-prolog.org/

SWISH is based on SWI-Prolog and uses its Pengines library [31], which
allows to create Prolog engines from an ordinary Prolog thread, from another
Pengine, or from JavaScript running in a web client.

A Pengine is composed of a Prolog thread, a dynamic clause database
(private to the Pengine), a message queue for incoming requests, and a mes-
sage queue for outgoing responses.

Pengines follow a master/slave architecture in which the master creates
a Pengine on the slave and posts a query to it. The conversations between
the master and the slave follows a communication protocol called the Prolog
Transport Protocol (PLTP) that is layered on top of HTTP.

We now show an example from [31]: we use pengine create/1 to create
a slave Pengine in a remote Pengine server.

:- use_module(library(pengines)).

main :-

pengine_create([

server(’http://pengines.org’),

src_text("

q(X) :- p(X).

p(a). p(b). p(c).

")

]),

pengine_event_loop(handle, []).

handle(create(ID, _)) :-

pengine_ask(ID, q(X), []).

handle(success(ID, [X], false)) :-

writeln(X).

handle(success(ID, [X], true)) :-

writeln(X),

pengine_next(ID, []).

The option src text is used to send the program to be queried in textual
form to the Pengine. pengine event loop/2 is used to start an event loop
that listens for event terms and calls handle/1 on them. If the event term is
create(ID,), it means that the Pengine with id ID has been created and the
event handler uses pengine ask/3 to ask a query. Predicate pengine ask/3

is deterministic, the results of the query will be returned in the form of event
terms.

14

If the event term is of the form success(ID, Query, More), ID is the
Pengine’s id that succeeded in solving the query, Query holds an instantiation
of the query and More is either true or false, indicating whether we can
expect the Pengine to be able to return more solutions or not, in case we
call pengine next/2. If More is true, handle/1 calls pengine next/2 to get
the following solution. Thus running main/0 will write the terms q(a), q(b)
and q(c) to standard output.

Code sent to Pengines is executed in a “sandboxed” environment that
ensures that only predicates that do not have side effects such as accessing
the file system, loading foreign extensions, defining other predicates outside
the sandbox environment, etc., are called. Goals’ safety is validated using a
call to safe goal/1 of library(sandbox) prior to execution.

SWI-Prolog also offers a JavaScript library pengine.js that allows the
creation of Pengine JavaScript objects. These, in turn, create Pengine objects
on the server that can be queried from JavaScript.

The SWISH web server is implemented by the SWI-Prolog HTTP pack-
age, a series of libraries for serving data on HTTP [32].

SWISH exploits TogetherJS8 in order to make the development of the
code collaborative. TogetherJS is an open source JavaScript library built
and hosted by Mozilla. This library permits a real time interaction between
users and offers different built-in features:

Audio and Text Chat The collaborators can chat by talking or texting to
each other.

User Focus The collaborators see each other’s mouse cursors and clicks.

Co-browsing The collaborators can follow each other to different pages on
the same domain.

Real time content sync The content is synchronized between all the col-
laborators.

It is possible to start collaborating on SWISH by clicking the item “File”
in the menu bar and then clicking on “Collaborate..”. The TogetherJS dock
will appear and you can invite another user by sharing the generated link.

8https://togetherjs.com/

15

6. “cplint on SWISH”

In order to implement “cplint on SWISH”, we had to modify the foreign
language C library of PITA in order to allow different threads to use it at
the same time. In fact, the library makes use of static global variables that
hold data structures for the CUDD manager and the association between
the random variables and CUDD variables. If two different threads use the
library, there would be a conflict on these variables. Therefore, we added an
extra argument Environment to all the library predicates. This argument
holds the data structures and allows the computation of the probability by
different threads.

So init(-Env), when called, returns a pointer to a data structure storing
the environment that must be given as input to all the other predicates:

• zero(+Env,-D), one(+Env,-D)

• and(+Env,+D1,+D2,-DO), or(+Env,+D1,+D2,-DO),

not(+Env,+D1, -DO)

• equality(+Env,+Var,+Value,-D)

• ret prob(+Env,+D,-P)

• end(+Env)

As a consequence, the PITA transformation function must take as input the
variable Env that stores the environment.

To allow Pengines to execute the pita library predicates, they are de-
clared as safe by the code:

:- multifile sandbox:safe_primitive/1.

sandbox:safe_primitive(pita:init).

sandbox:safe_primitive(pita:ret_prob(_,_)).

...

in the pita module file.
The PITA library was also modified with respect to the application of

the transformation. While PITA uses a predicate load/1 that loads the
program file and applies the transformation to it, we decided to use term
expansion through the predicate term expansion/2, a de-facto standard

16

in Prolog for source-to-source transformations. When compiling a module,
SWI-Prolog will consider each term T in the program one by one and apply
term expansion(T,NewT), then it will compile NewT instead of T. So if the
user provides clauses for the term expansion/2 predicate, the system will
compile a modified version of the input.

After loading pita with use module(library(pita)), the PITA pred-
icate set/2 must be used to set the PITA flag compiling to on. All the
clauses for term expansion/2 check this flag before performing the trans-
formation. If it is not set to on, the transformation is not applied. After
setting compiling to on, consulting a file containing an LPAD performs its
translation into Prolog and loads the result in memory.

Similarly, if a file containing an LPAD includes the directives :-use module

(library(pita)). and :-set(compiling,on). at the beginning, when it
is consulted from the top level it is transformed and loaded in memory.

“cplint on SWISH” has the interface shown in Figure 1. It allows the
user to write an LPAD in the left pane and write a query in the bottom right
pane. When the user presses enter at the end of the query or presses the
Run! button, a Pengine is created with the program. This is done by the
runner.js JavaScript file that creates a new Pengine object. The creation of
the object was modified by adding to the program source some directives for
loading the pita library, for disabling the check for discontiguous clauses and
for enabling compilation. This is done by the following snippet of runner.js:

data.prolog = new Pengine({

...

src: ":-use_module(library(pita)).

:-style_check(-discontiguous).

:-set(compiling,on). "

+ query.source,

...

oncreate: handleCreate,

...

});

that stores a new Pengine object in the runner’s data.prolog attribute.
query.source holds the program text.

The handleCreate function is performed at the creation of the Pengine
and was modified to allow the computation of the probability. The query
given by the user is sent to the Pengine with the ask method in a transformed

17

form: the query atom without the full stop is inserted into a call to s/2 in
this way:

function handleCreate() {

var elem = this.pengine.options.runner;

var data = elem.data(’prologRunner’);

this.pengine.ask("s("+termNoFullStop(data.query.query)+",Prob)");

elem.prologRunner(’setState’, "running");

}

Here data.query.query is a string containing the query. The top right pane
will then show the value of Prob variable, together with the other variables’
values possibly present in the query. Figure 2 shows Example 1 code together
with the query eruption and its result.

7. Examples

“cplint on SWISH” contains a number of examples, accessible from the
“Example” menu. The complete list of available examples is in the Ap-
pendix. Below we describe two examples that, to our knowledge, have not
been encoded yet in LPADs.

The first, the Monty Hall puzzle [33], models the TV game show hosted
by Monty Hall in which a player has to choose which of three closed doors
to open. Behind one door there’s a prize while behind the other two there
is nothing. Once the player has selected the door, Monty Hall opens one of
the remaining closed doors which does not contains the prize, and then he
asks the player if he would like to change his door with the other closed door
or not. The problem of this game is to determine whether the player should
switch. The prize is behind one of the three doors with equal probability:

prize(1):1/3; prize(2):1/3; prize(3):1/3.

The player has selected door 1

selected(1).

The following clauses model the choice of which door Monty Hall will open
after the player’s decision:

18

open_door(A):0.5; open_door(B):0.5 :-

member(A,[1,2,3]),

member(B,[1,2,3]),

A<B,

\+ prize(A),

\+ prize(B),

\+ selected(A),

\+ selected(B).

open_door(A) :-

member(A,[1,2,3]),

\+ prize(A),

\+ selected(A),

member(B,[1,2,3]),

prize(B),

\+ selected(B).

In case the player keeps its choice, he wins if he has selected a door with the
prize behind:

win_keep :-

selected(A),

prize(A).

In case the player switches, he wins if the prize is behind a door that he has
not selected and that Monty Hall has not opened:

win_switch :-

member(A,[1,2,3]),

\+ selected(A),

prize(A),

\+ open_door(A).

Querying win keep and win switch we obtain 1/3 and 2/3 respectively, so
the player should switch.

The second example is the three-prisoners puzzle following [34]:

Of three prisoners a, b, and c, two are to be executed, but a does
not know which. Thus, a thinks that the probability that i will

19

be executed is 2/3 for i ∈ {a, b, c}. He says to the jailer, “Since
either b or c is certainly going to be executed, you will give me
no information about my own chances if you give me the name of
one man, either b or c, who is going to be executed.” But then, no
matter what the jailer says, naive conditioning leads a to believe
that his chance of execution went down from 2/3 to 1/2.

Each prisoner is safe with probability 1/3:

safe(a):1/3; safe(b):1/3; safe(c):1/3.

If a is safe, the jailer tells that one of the other prisoners will be executed
uniformly at random:

tell_executed(b):1/2; tell_executed(c):1/2 :-

safe(a).

Otherwise, he tells that the only unsafe prisoner will be executed:

tell_executed(A) :-

member(A,[b,c]),

member(B,[b,c]),

A\=B,

safe(B).

The jailer speaks if he tells that somebody will be executed:

tell:-

tell_executed(_).

a is safe after the jailer utterance if he is safe and the jailer speaks:

safe_after_tell :-

safe(a),

tell.

By computing the probability of safe(a) and safe after tell we get the
same probability of 1/3. We can see this also by considering conditional
probabilities: the probability of safe(a) given the jailer utterance tell is

P (safe(a)|tell) =
P (safe(a), tell)

P (tell)
=

P (safe after tell)

P(tell)
=

1/3

1
= 1/3

because the probability of tell is 1.

20

8. Conclusions

Web-based systems are, today, the way to reach out to a wider audi-
ence. In order to popularize Probabilistic Logic Programming, we have im-
plemented the web application “cplint on SWISH” that allows the user to
easily write a PLP program and compute the probability of queries with just
a web browser. “cplint on SWISH” already includes a number of examples
that cover a wide range of domains and provide interesting applications of
PLP. “cplint on SWISH” has been implemented by exploiting the features
of the system SWISH for Prolog programming and querying on the Web, and
by porting the PITA system for inference on LPAD from its original XSB
implementation to SWI-Prolog.

In the future, we plan to allow the user to pose conjunctive and condi-
tional queries. Moreover, we plan to extend “cplint on SWISH” with other
inference procedures and with learning algorithms.

References

[1] L. De Raedt, P. Frasconi, K. Kersting, S. Muggleton (Eds.), Probabilistic
Inductive Logic Programming - Theory and Applications, Vol. 4911 of
LNCS, Springer, Berlin, 2008.

[2] T. Sato, A statistical learning method for logic programs with distribu-
tion semantics, in: Proceedings of ICLP, MIT Press, Cambridge, MA,
Tokyo, 1995, pp. 715–729.

[3] E. Dantsin, Probabilistic logic programs and their semantics, in: Logic
Programming: Proceedings of the First and Second Russian Conference
on Logic Programming, Vol. 592 of LNCS, Springer, Berlin, Irkutsk and
St. Petersburg, Russia, 14-18 and 11-16 September, 1991, pp. 152–164.

[4] D. Poole, The independent choice logic for modelling multiple agents
under uncertainty, Artif. Intell. 94 (1-2) (1997) 7–56.

[5] T. Sato, Y. Kameya, PRISM: A language for symbolic-statistical mod-
eling, in: Proceedings of IJCAI, Morgan Kaufmann, Burlington, MA,
Nagoya, Japan, 1997, pp. 1330–1339.

[6] N. Fuhr, Probabilistic Datalog: Implementing logical information re-
trieval for advanced applications, J. Am. Soc. Inf. Sci. 51 (2) (2000)
95–110.

21

[7] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic programs with an-
notated disjunctions, in: Proceedings of ICLP, Vol. 3131 of LNCS,
Springer, Berlin, Saint-Malo, France, 2004, pp. 195–209.

[8] J. Vennekens, M. Denecker, M. Bruynooghe, CP-logic: A language of
causal probabilistic events and its relation to logic programming, Theory
Pract. Log. Program. 9 (3) (2009) 245–308.

[9] L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: A probabilistic Pro-
log and its application in link discovery., in: Proceedings of IJCAI,
IJCAI/AAAI, Palo Alto, CA, Hyderabad, India, 2007, pp. 2462–2467.

[10] J. Vennekens, S. Verbaeten, Logic programs with annotated disjunc-
tions, Tech. Rep. CW386, K. U. Leuven, Leuven, Belgium (2003).

[11] L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens,
A. Kimmig, N. Landwehr, T. Mantadelis, W. Meert, R. Rocha, V. San-
tos Costa, I. Thon, J. Vennekens, Towards digesting the alphabet-soup
of statistical relational learning, in: Proceedings of the NIPS Workshop
on Probabilistic Programming, Whistler, Canada, 2008, pp. 1–3.
URL http://probabilistic-programming.org/wiki/NIPS*2008_

Workshop/Schedule#talk-deraedt

[12] D. Poole, Abducing through negation as failure: stable models within
the Independent Choice Logic, J. Log. Program. 44 (1-3) (2000) 5–35.

[13] A. Kimmig, B. Demoen, L. D. Raedt, V. S. Costa, R. Rocha, On the im-
plementation of the probabilistic logic programming language ProbLog,
Theory Pract. Log. Program. 11 (2-3) (2011) 235–262.

[14] F. Riguzzi, Inference with logic programs with annotated disjunctions
under the well founded semantics, in: Proceedings of ICLP, Vol. 5366 of
LNCS, Springer, Berlin, Udine, Italy, 2008, pp. 667–771. doi:10.1007/
978-3-540-89982-2\string_54.

[15] F. Riguzzi, SLGAD resolution for inference on Logic Programs with
Annotated Disjunctions, Fundam. Inform. 102 (3-4) (2010) 429–466.
doi:10.3233/FI-2010-392.

22

http://probabilistic-programming.org/wiki/NIPS*2008_Workshop/Schedule#talk-deraedt
http://probabilistic-programming.org/wiki/NIPS*2008_Workshop/Schedule#talk-deraedt
http://probabilistic-programming.org/wiki/NIPS*2008_Workshop/Schedule#talk-deraedt
http://probabilistic-programming.org/wiki/NIPS*2008_Workshop/Schedule#talk-deraedt
http://dx.doi.org/10.1007/978-3-540-89982-2_54
http://dx.doi.org/10.1007/978-3-540-89982-2_54
http://dx.doi.org/10.3233/FI-2010-392

[16] F. Riguzzi, T. Swift, Tabling and Answer Subsumption for Reasoning
on Logic Programs with Annotated Disjunctions, in: Technical Commu-
nications of ICLP, Vol. 7 of LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, Edinburgh, Scotland, 2010, pp.
162–171. doi:10.4230/LIPIcs.ICLP.2010.162.

[17] F. Riguzzi, T. Swift, Well-definedness and efficient inference for prob-
abilistic logic programming under the distribution semantics, Theory
Pract. Log. Program. 13 (Special Issue 02 - 25th Annual GULP Confer-
ence) (2013) 279–302. doi:10.1017/S1471068411000664.

[18] F. Riguzzi, A top down interpreter for LPAD and CP-logic, in: Proceed-
ings of AI*IA, Vol. 4733 of LNAI, Springer, Berlin, Rome, Italy, 2007,
pp. 109–120. doi:10.1007/978-3-540-74782-6\string_11.

[19] F. Riguzzi, Extended semantics and inference for the Independent
Choice Logic, Log. J. IGPL 17 (6) (2009) 589–629. doi:10.1093/

jigpal/jzp025.

[20] Swish, http://pengines.swi-prolog.org/apps/swish/index.html.

[21] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gut-
mann, I. Thon, G. Janssens, L. De Raedt, Inference and learning in
probabilistic logic programs using weighted boolean formulas, The-
ory and Practice of Logic Programming 15 (2015) 358–401. doi:

10.1017/S1471068414000076.
URL http://arxiv.org/abs/1304.6810

[22] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, J. B.
Tenenbaum, Church: a language for generative models, in: D. A.
McAllester, P. Myllymäki (Eds.), UAI 2008, Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence, Helsinki, Finland,
July 9-12, 2008, AUAI Press, 2008, pp. 220–229.
URL http://uai.sis.pitt.edu/displayArticleDetails.jsp?

mmnu=1&smnu=2&article_id=1346&proceeding_id=24

[23] F. Riguzzi, N. Di Mauro, Applying the information bottleneck to sta-
tistical relational learning, Mach. Learn. 86 (1) (2012) 89–114. doi:

10.1007/s10994-011-5247-6.

23

http://dx.doi.org/10.4230/LIPIcs.ICLP.2010.162
http://dx.doi.org/10.1017/S1471068411000664
http://dx.doi.org/10.1007/978-3-540-74782-6_11
http://dx.doi.org/10.1093/jigpal/jzp025
http://dx.doi.org/10.1093/jigpal/jzp025
http://pengines.swi-prolog.org/apps/swish/index.html
http://arxiv.org/abs/1304.6810
http://arxiv.org/abs/1304.6810
http://dx.doi.org/10.1017/S1471068414000076
http://dx.doi.org/10.1017/S1471068414000076
http://arxiv.org/abs/1304.6810
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
http://dx.doi.org/10.1007/s10994-011-5247-6
http://dx.doi.org/10.1007/s10994-011-5247-6

[24] L. G. Valiant, The complexity of enumeration and reliability problems,
SIAM J. Comp. 8 (3) (1979) 410–421.

[25] A. Thayse, M. Davio, J. P. Deschamps, Optimization of multivalued
decision algorithms, in: Proceedings of MVL, IEEE Computer Society
Press, Los Alamitos, CA,, Rosemont, IL, 1978, pp. 171–178.

[26] T. Sang, P. Beame, H. A. Kautz, Performing bayesian inference by
weighted model counting, in: Proceedings of AAAI, AAAI Press / The
MIT Press, Palo Alto, CA, Pittsburgh, PA, 2005, pp. 475–482.

[27] T. Swift, D. S. Warren, XSB: extending prolog with tabled logic
programming, TPLP 12 (1-2) (2012) 157–187. doi:10.1017/

S1471068411000500.

[28] A. Van Gelder, K. A. Ross, J. S. Schlipf, The well-founded semantics
for general logic programs, J. ACM 38 (3) (1991) 620–650.

[29] Yap Prolog, www.dcc.fc.up.pt/~vsc/Yap/.

[30] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, SWI-Prolog, Theory
and Practice of Logic Programming 12 (1-2) (2012) 67–96.

[31] T. Lager, J. Wielemaker, Pengines: Web logic programming made easy,
TPLP 14 (4-5) (2014) 539–552. doi:10.1017/S1471068414000192.

[32] J. Wielemaker, Z. Huang, L. van der Meij, SWI-Prolog and the web,
TPLP 8 (3) (2008) 363–392. doi:10.1017/S1471068407003237.

[33] C. Baral, M. Gelfond, J. N. Rushton, Probabilistic reasoning with an-
swer sets, Theory and Practice of Logic Programming 9 (1) (2009) 57–
144.

[34] P. Grünwald, J. Y. Halpern, Updating probabilities, J. Artif. Intell. Res.
(JAIR) 19 (2003) 243–278. doi:10.1613/jair.1164.

[35] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic programs with anno-
tated disjunctions, in: J. P. Delgrande, T. Schaub (Eds.), 10th Interna-
tional Workshop on Non-Monotonic Reasoning (NMR 2004), Whistler,
Canada, June 6-8, 2004, Proceedings, 2004, pp. 409–415.

24

http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S1471068411000500
www.dcc.fc.up.pt/~vsc/Yap/
http://dx.doi.org/10.1017/S1471068414000192
http://dx.doi.org/10.1017/S1471068407003237
http://dx.doi.org/10.1613/jair.1164

[36] E. Bellodi, F. Riguzzi, Expectation Maximization over binary decision
diagrams for probabilistic logic programs, Intell. Data Anal. 17 (2)
(2013) 343–363.

[37] E. Bellodi, F. Riguzzi, Structure learning of probabilistic logic programs
by searching the clause space, Theory and Practice of Logic Program-
ming 15 (2) (2015) 169–212. doi:10.1017/S1471068413000689.
URL http://journals.cambridge.org/repo_A91VE4W3

[38] H. Blockeel, Probabilistic logical models for mendel’s experiments: An
exercise, in: Inductive Logic Programming (ILP 2004), Work in Progress
Track, 2004, pp. 1–5.

[39] W. Meert, J. Struyf, H. Blockeel, CP-Logic theory inference with con-
textual variable elimination and comparison to BDD based inference
methods, in: Proceedings of ILP, Vol. 5989 of LNCS, Springer, Berlin,
Leuven, Belgium, 2009, pp. 96–109.

[40] H. Christiansen, J. P. Gallagher, Non-discriminating arguments and
their uses, in: Proceedings of ICLP, Vol. 5649 of LNCS, Springer, Berlin,
Pasadena, CA, 2009, pp. 55–69.

[41] T. Sato, K. Kubota, Viterbi training in prism, Theory and Prac-
tice of Logic Programming 15 (2) (2014) 147–168. doi:10.1017/

S1471068413000677.

[42] P. Singla, P. Domingos, Discriminative training of Markov logic net-
works, in: Proceedings of AAAI/IAAI, AAAI Press/The MIT Press,
Palo Alto, CA, Pittsburgh, PA, 2005, pp. 868–873.

[43] F. Riguzzi, T. Swift, The PITA system: Tabling and answer sub-
sumption for reasoning under uncertainty, Theory Pract. Log. Program.
11 ((ICLP Special Issue)4–5) (2011) 433–449.

Appendix A. List of Examples

• Coin [35]: models the throw of a coin with uncertain fairness.

• Dice [35]: models repeated throws of a dice until the face six comes
out.

25

http://journals.cambridge.org/repo_A91VE4W3
http://journals.cambridge.org/repo_A91VE4W3
http://dx.doi.org/10.1017/S1471068413000689
http://journals.cambridge.org/repo_A91VE4W3
http://dx.doi.org/10.1017/S1471068413000677
http://dx.doi.org/10.1017/S1471068413000677

• Epidemic [36]: models the development of an epidemic or a pandemic.

• Earthquake [23]: models the occurrence of an earthquake depending
on its possible causes.

• Eruption [37]: Example 1.

• Mendel inheritance of the color of pea plants [38].

• Mendel inheritance of human bloodtype [39].

• Path [9]: models the probability of the connection between two nodes
in a graph.

• Bayesian network [35]: encodes a simple alarm Bayesian network.

• Hidden Markov Model [40].

• Probabilistic Context Free Grammar [41]: models a parser for a PCFG
grammar.

• UWCSE: link prediction [39].

• Cora: entity resolution [42].

• Monty Hall puzzle [33].

• Three-prisoners puzzle [34].

• Trigger [8]: shows the use of noisy or for modeling a russian roulette
with two guns.

• Light [8]: shows the use of negation.

• Coins [35]: similar to the Coin example but with two coins.

• Three sided dice [43]: similar to the Dice example where the dice have
three faces.

• Mendel inheritance of color of pea plants - larger family [38]: as the
Mendel example with a larger number of individuals.

26

	Introduction
	Probabilistic Logic Programming
	The PITA System
	PITA in cplint
	SWISH
	``cplint on SWISH"
	Examples
	Conclusions
	List of Examples

