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1. Origins 

Before beginning the research that led to "Probabilistic logic" [11 ], I 
had participated with Richard Duda, Peter Hart, and Georgia Sutherland 
on the PROSPECTOR project [3]. There, we used Bayes' rule (with some 
assumptions about conditional independence) to deduce the probabilities 
of hypotheses about ore deposits given (sometimes uncertain) geologic evi- 
dence collected in the field [4]. At that time, I was also familiar with the use 
of "certainty factors" by Shortliffe [18], the use of "fuzzy logic" by Zadeh 
[20], and the Dempster/Shafer formalism [16]. All of these methods made 
(sometimes implicit and unacknowledged) assumptions about underlying 
joint probability distributions, and I wanted to know how the mathematics 
would work out if no such assumptions were made. I began by asking how 
modus ponens would generalize when one assigned probabilities (instead of 
binary truth values) to P and P D Q. As can be verified by simple calcu- 
lations using a Venn diagram, the probability of Q is under-determined in 
this case but can be bounded as follows: 

p ( P )  + p ( P  D Q) - 1 <~ p (Q)  <~ p ( P  ~ Q). 

The techniques that I developed in the paper for calculating bounds on 
probabilities can be understood as a kind of generalization of the Venn 
diagram method. While I was working out the ideas in "Probabilistic logic", 
I was unaware of similar work by Good [7], Smith [19], and de Finetti 
[21. 

Given probabilities on sentences, one can do no better than calculate 
bounds on derived sentences because the probabilities of the given sentences 
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do not, in general, completely determine the underlying joint distribution. 
However, it is of  interest to ask about the minimum-entropy joint distribu- 
tion because, perhaps unlike some of the other methods for reasoning with 
uncertain information, the minimum-entropy distribution assumes minimal 
additional information. For this reason, I included in the paper Cheeseman's 
technique for minimum entropy [ 1 ]. 

My primary aim in writing "Probabilistic logic" was to present an intu- 
itively reasonable but foundational account of the problem of uncertain rea- 
soning. The complete impracticability of calculating the bounds prescribed 
in the paper was of little concern to me because I imagined that approxi- 
mate methods might later be devised, and I even suggested an approximate 
method in the paper. Pearl [12, p. 463] mentions that a mechanism in 
Quinlan's INFERNO [14] can be regarded as a local approximation to 
probabilistic logic. 

2. Main contribution 

The key intellectual contribution of "Probabilistic logic" was a formal 
procedure for calculating the bounds on the probability of a sentence in the 
predicate calculus given the probabilities (or the bounds on the probabilities) 
of  other sentences. I called this process "probabilistic entailment" because 
it is based on models of the sentences. The contribution served mainly 
to elucidate the foundations of probabilistic reasoning even though it is 
in general, intractable. I hoped that it would set the stage for possible 
approximate methods and for comparison with other methods. 

3. Open issues 

A major omission from the paper was any discussion of proof-theoretic 
methods for making probabilistic deductions. The paper stimulated some 
attempts to develop deductive techniques; see, for example, recent work by 
Haddawy and Frisch who have found a complete set of inference rules for 
a subset of  probabilistic logic [9]. 

Devising good approximate methods for probabilistic entailment is still 
an important area for future work. It would seem that assumptions about 
conditional independence (as might be represented by influence diagrams 
or belief networks) could be used to simplify the bounds calculations in 
probabilistic entailment. In that connection, see a recent paper by Fertig 
and Breese [6]. 

Judea Pearl [13] has persuaded me that I should have shown more explic- 
itly how probabilistic logic should handle assignments of conditional rather 
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than absolute probabilities. For example, a more natural generalization of 
modus ponens emerges if we specify p(P) and, then, p(Q[P) instead of 
p(P ~ Q). The probability of Q is then bounded by 

p(QlP)p(P)  <~ p(Q) <~ 1. 

Pearl [12, p. 459] argues that the probability p(P ~ Q) does not properly 
reflect what we normally mean by the certainty of the rule "if P then Q". For 
example, if we want to say that some rare event P has a likely consequence 
Q, and we write p(P)  = 0.01 and p(P ~ Q) -- 0.9, we find that the two 
sentences are inconsistent. Writing p(P) = 0.01 and p(QIP) = 0.9 gives 
the bound 0.09 ~< p(Q) ~< 1, which is more reasonable. 

4. Subsequent work 

Work on probabilistic reasoning exploded after the mid-1980s. Several 
"Workshops on Uncertainty in Artificial Intelligence" have been held, and 
their proceedings have been published. The volume edited by Shafer and 
Pearl contains many important papers as well as illuminating perspectives 
by the editors about various aspects of uncertain reasoning [17]. Pearl has 
also written an indispensable text on the subject [12], now available in a 
revised and updated second printing. 

Fagin and Halpern have presented a more formal and general analysis 
than that contained in my paper [5]. 

Two other important developments have occurred. One is the use of be- 
lief networks and influence diagrams to represent causal relations that allow 
simplifying assumptions to be made about the conditional independence 
of propositions (see [ 12, Chapters 2-4] and [ 15] ). Another development 
involves analyses by Heckerman [10] and by Grosof [8] that establish im- 
portant connections among techniques that use (slightly modified) certainty 
factors, the Dempster/Shafer formalism, and special cases of Bayes' rule. 

5. Conclusions 

Since my foray into probabilistic reasoning was brief, and because I have 
not acquainted myself with the extensive and growing literature in this field, 
I will refrain from attempting any sage remarks about how my work might 
relate to that of others. The reader might want to consult a few paragraphs 
by Pearl, however, on the circumstances under which one might want to use 
probabilistic logic [12, pp. 461-462]. I am also indebted to Judea Pearl for 
his comments and suggestions about the present note. 
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