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Abstract— Power systems are becoming more complex and the 
need for increased awareness at the lower voltage levels of the 
distribution grid requires new tools that provide a reliable and 
accurate estimation of the system state. This paper describes an 
innovative state estimation method for low voltage (LV) grids that 
analyses similarities between a real-time snapshot comprising 
only a subset of smart meters with real-time communications and 
fully observed system states present in historical data. Real-time 
estimates of voltage magnitudes are obtained by smoothing the 
most similar past snapshots with a data-driven methodology that 
does not relies on full knowledge of the grid topology and 
electrical characteristics. Moreover, the output of the LV state 
estimator is a conditional probability distribution obtained with 
kernel density estimation. The results show highly accurate 
estimation of voltage magnitude, even in a scenario characterized 
by a strong integration of photovoltaic (PV) microgeneration.  

Index Terms—Analog Search, Data-driven Estimation, Kernel 
Density Estimation, Low Voltage, Smart Grids, State Estimation. 

I. INTRODUCTION 
Presently, the nature of LV grids is changing and hence 

demanding for a paradigm shift in terms of monitoring and 
control. Distribution System Operators (DSO) are installing 
advanced metering infrastructures that bring more data and 
monitoring capacity, which, in general, is only processed in 
batch mode once per day. Due to technical and economic 
constraints, real-time monitoring of the voltage magnitude in 
LV grid nodes is not readily available. On the other hand, the 
growing penetration of renewable energy resources and storage 
units, including electric vehicles, demand-side-management 
strategies and microgrids with independent controllability and 
islanding capabilities, require new techniques to increase the 
situational awareness of human operators and enable real-time 
decision making [1], [2]. 

Considering all these challenges, the operation of 
distribution systems can become more efficient only if new 
operational methods and tools are developed. A tool of 
unquestionable value for this purpose is a state estimation (SE) 
algorithm suitable for LV grids. Such tool will aid the DSO to 

monitor and operate the grid in quasi-real time, similarly to 
what already happens in transmission grids.  

By taking advantage of the large volumes of data provided 
by the advanced metering infrastructure, it is possible to 
identify patterns and capture correlations in such a way that, 
even with a small subset of real-time data sources, a quite 
accurate estimation of the system’s state can be obtained. LV 
grids are many times found bereft of topology and equipment 
characterization. In this context, having a data-driven state 
estimator based exclusively on historical data and a small subset 
of smart meters with real-time communication of active power 
and voltage measurements is very advantageous. For instance, 
the results from a demonstration campaign of real-time 
monitoring of a LV grid conducted in the FP7 European project 
IDE4L showed the following benefits: detection of current 
imbalances; identification of local voltage deviations; support 
the implementation of decentralized control strategies to 
improve power quality [3].  

Several works have tried to offer a solution to deal with the 
changing paradigm in the operation of distribution grids. 
However, traditional approaches do not properly accommodate 
the different acquisition rates of analogic and digital devices. 
One very important source are the phase measurement units 
(PMUs) that have been tentatively included within the 
traditional state estimation algorithm [4], ignoring analogic-
based measure-ments [5], or in a linear post processing step [6], 
although with unavoidable information losses. The new 
dynamics found at the distribution grid level weaken the typical 
quasi-static scenarios and some works explore the time-varying 
nature of the varia-bles with Kalman filter-based estimators [5], 
[7], [8], although with limitations due to the process noise 
covariance matrix. 

Additionally, a single outlier can severely contaminate all 
the data requiring different criteria than the traditional weigthed 
least squares, for example the correntropy in [9] and the LWS 
(least winsorized square) in [10]. Notwithstanding, the 
application of Newton’s method to solve state estimation 
formulations is proved to be numerically unstable, leading to 
local optimums or not even achieving convergence. This kind 
of approach gets even less appealing when one takes into 
account the lack of characterization of the LV grid, the 
inexistence of good levels of redundancy within the dataset of 
measurements and the limited observability to perform real-
time estimation. Data-driven methods can overcome these 
limitations and extract value from smart meter data. 

The research leading to this work is being carried out as a part of the InteGrid 
project (Demonstration of INTElligent grid technologies for renewables 
INTEgration and INTEractive consumer participation enabling 
INTEroperable market solutions and INTErconnected stakeholders), which 
received funding from the European Union’s Horizon 2020 Framework 
Programme for Research and Innovation under grant agreement No. 731218. 



 

 

In [11], a data-driven SE is performed over distribution 
grids using auto-associative neural networks, the autoencoders 
(AE), which only require an historical database and a few real-
time measurements to perform an effective state estimation. 
Missing quantities are reconstructed using Evolutionary 
Particle Swarm Optimization (EPSO). The method is very 
flexible regarding the type of measurements that are used as 
input, allowing a full exploitation of the available metering 
infrastructure, and avoid two major drawbacks of conventional 
approaches: (i) modeling the complex three-phase equations, 
which may lead to heavy iterative algebraic calculations and 
numerical/convergence problems and (ii) characterizing all the 
grid parameters. A similar concept was explored in [12], but 
using extreme learning machines combined with EPSO. In 
both, only deterministic estimations of voltages were produced. 

In [13], instead of using the results produced by the last state 
estimation to initialize the state variables in the Newton’s 
method, it is used a Bayesian approach based on historical data 
search via kernel ridge regression. After identifying a group of 
measurement sets with the smallest distances to the current 
measurement set, the group of sets is used to compute an initial 
guess for the iterative algorithm to calculate the current state. 
Another data-driven SE is proposed in [14], where a 
load/generation forecasting method is used to feed a standard 
SE algorithm and produce a probabilistic estimation of the 
node’s voltage. In this work, the authors assume knowledge of 
active power in the MV/LV substation and the proportions to 
allocate that load per LV client are calculated from the previous 
day smart meter data. The method shows the following 
limitations: (i) balanced loads are assumed across the three 
phases, and are represented as constant active/reactive power 
demands with no voltage dependency; (ii) probabilistic 
estimations of voltage are calculated by considering the 
unconditional historical error distribution of load forecasting. 

The work of the present paper was inspired by the approach 
developed in [15] to generate aggregated wind power forecasts, 
based on the search for similarities between current wind speed 
forecasts and historical wind speed forecasts. The method was 
extended to the low voltage state estimation and this paper 
produces the following original contributions: 

 Real-time state estimation in LV grids is performed 
using a very limited number of real-time metering 
points, although assuming that smart meter voltage 
measurements are sent to the historical database 
periodically (e.g. every 24 hours or every week). 

 In contrast to [14], the estimation results express the 
conditional uncertainty involved, in the form of a set of 
quantiles. This feature gains particular relevance to 
increase the awareness of the human operator by 
defining probabilistic alarms for the occurrence of 
under/overvoltages. 

 The grid observability, in this case defined by the 
number of nodes for which there is historical data or 
real-time measurements, is not required. Since the SE 
is applied for each node individually, the existence of a 
portion of the grid without real-time telemetry or smart 
meters does not prevent the execution of the estimator.  

 Neither topological information, nor electrical 
characteristics of the elements of the grid are necessary. 
Nonetheless, the knowledge of the phase where each 
measured value corresponds to, improves the 
estimation. This also contrasts with [14] that applied a 
standard SE and assumed balanced phases. 

 Weather measurements/forecasts (exogenous varia-
bles) can be included to improve the estimation, 
benefiting grids with strong presence of renewable 
energy resources (even if under self-consumption 
schemes). Compared to the state-of-the-art, this work is 
the first to include information about weather in SE.   

In summary, this work describes a novel data-driven 
probabilistic LV state estimator (LVSE), which takes advantage 
of information collected by the smart grid infrastructure, and 
includes exogenous information like weather forecasts and 
calendar information (hour of the day, day of the week, etc.). 

The remaining of this paper is organized as follows: section 
II discusses the motivation for a data-driven state estimation in 
LV grids; section III describes the methodology to derive point 
and probabilistic voltage estimations; section IV presents the 
results for a LV grid test case; finally, section V presents the 
conclusions and future work.  

II. MOTIVATION FOR A DATA-DRIVEN APPROACH 
As previously stated, LV grids present different challenges 

that undermine the use of classical approaches to the SE 
problem. For instance, real-time metering is not possible due to 
technical-economic reasons and the electrical characteristics of 
grid elements is many times inexistent (or with gross errors). 
On the other hand, analyzing in detail some of the particularities 
of these grids it is clear that patterns and dependencies between 
electrical quantities in different nodes are strong, and this can 
justify a data-driven approach. 

Figure 1 depicts the voltage magnitude temporal variation 
in a node’s phase of a typical LV grid where are visible the daily 
patterns. This periodic behavior is a good indicator that there is 
valuable information in past voltage measurements (serial 
dependency).  

Moreover, the common radial structure of these grids create 
identifiable dependencies between the voltage magnitudes 
across the grid. Figure 2 presents the voltage magnitude 
dependency between two different nodes of the same LV grid. 
In the left picture is clear the high and linear dependency 
between the voltages when these are connected to the same 
phase. Still, even in the case of being connected to different 
phases (right picture), strong dependencies can be detected. 

This work assumes that the LV grids have smart meters 
capable of gathering voltage magnitude measurements every 
30 minutes (at least) and send it periodicaly to the DSO control 
center or data concentrator located in the MV/LV substation. 
In this context, it is possible to construct a historical database 
to feed the data-driven method. Additionaly, the existence of 
some real-time telemetry is assumed for a subset of meters. 

Exogeneous variables, like calendar variables (e.g., hour of 
the day, day of the week) and weather measurements or 



 

 

forecasts can also contain relevant information to infer an 
online (or real-time) snapshot of voltage profiles. 

 

 
Figure 1 - Voltage magnitude variation over 240 instants of 30 minutes at 

phase a of node 1 of high_PV (see section IV.A). 

Figure 2 - Voltage magnitude correlation between the same phase of nodes 2 
and 12 (left picture) and between phases a and b of nodes 9 and 22 (right 

picture) of high_PV (see section IV.A). 

III. LOW VOLTAGE STATE ESTIMATOR (LVSE) 

A. General Framework 
The basic principle behind the proposed LVSE is to search 

for analog voltage events in the historical dataset, using a set 
of explanatory variables, and extrapolate the current operating 
state from past information. This naturally relies on 
information collected online (or in real time) from a subset of 
smart meters, but also explores other types of information, 
mainly related to the autocorrelation of the voltage time series 
and influence of weather and calendar variables in the load 
patterns that results in voltage variations along the day.  

The analog-search procedure is described in section III.B 
and Figure 3 illustrates a set of potential explanatory variables. 
In brief, the method explores recent and current measures 
collected by the subset of smart meters with real-time 
communication and MV/LV substation meter, together with 
voltage observations from the previous day and from all the 
meters installed in the LV grid and MV/LV substation. 
Information about the most recent numerical weather 
predictions (NWP), like global horizontal irradiance or 
ambient temperature, can be also integrated in the model. The 
same is valid for measurements collected by a weather station. 
Information about demand response actions or dynamic price 
signals are other potential explanatory variables if available. 

The outcome is a deterministic estimation (i.e., expected 
value) of the voltage magnitude in the smart meters without 
real-time communication, which combined with the others 
meters provide a real-time snapshot of the system state. 

 
Figure 3 – Group of potential explanatory variables for the low voltage state 

estimator.  

The lack of full observability leads to uncertainty in the 
estimated variables, which is also conditional to the grid 
current operating conditions (e.g., level of PV generation, 
observability). Section III.C describes a methodology based on 
kernel density estimation (KDE) to derive a conditional and 
non-parametric uncertainty estimation. This statistical method 
requires a set of hyper-parameters that need to be estimated 
offline (to avoid “flat start”) and online (to adjust to changes 
in the grid structure and measurements). The model’s tuning 
process is described in section III.D. 

B. Deteministic State Estimation Formulation 
This estimation methodology relies on the idea that 

information regarding the current state of the system can be 
used to quantify how analogous a given known past state is 
[15]. When running, the state estimator searches for similarities, 
for each node’s phase n, computing a weighted average as in 
Eq. 1, where the estimated voltage for the current instant t, 𝑉 , , 
is obtained as a weighted average of past states (instants 𝐻). 

 𝑉 , = ∑ 𝑉 , ∙ 𝑤 , ,∑ 𝑤 , ,  (1) 

The smoothing coefficients, 𝑤𝑛,ℎ,𝑡, are in this method 
calculated considering:  

i) The distance (𝑑 , , ) between the explanatory variables 
at instant 𝑡 and at each instant of the past, ℎ. In this work, 
we considered the absolute distance (Eq. 2) for the 𝐾 
explanatory variables contained in vector 𝑢. 

 𝑑 , , = 𝑢 , − 𝑢 ,  (2) 

ii) The bandwidth 𝛿  that defines the selection window of 
data according to the distances. Here, it is computed as 
a percentage 𝑝𝑟 (tuning parameter) of the range of 
distances, 𝑑  and 𝑑  (Eq. 3). 

 𝛿 = 𝑑 + 𝑝𝑟(𝑑 − 𝑑 ) (3) 
Other alternatives to the range of distances could be 
chosen like the median or the mean distance [15]. 

iii) A function that weights the past instants according to 
distances and within the bandwidth (Eq. 4), where 𝛼 is 
a tuning parameter, μ is the center of the distribution of 
distances, 𝜏  is the age in hours of the selected historical 
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element 𝑚 and 𝜆, with 0 < 𝜆 < 1, is the forgetting 
factor. The value of 𝛼 regulates how local the weighting 
is, so the larger its value, more localized the model is. 
The objective is to give largest weights to the nearest 
observations. The age-weighting coefficient 𝜆  
provides to the algorithm a higher capacity to adapt to 
possible topology changes by influencing its preference 
for more recent observations over the older ones. 

 𝑤 , , = exp − 𝛼𝜇 ∙ 𝑑 , , ∙ 𝜆  (4) 

The estimation methodology is rather straightforward 
though it requires tuning some hyper-parameters.  

C. Probabilistic Reconstruction of the System State 
In order to reach a higher level of awareness and provide 

insights regarding the confidence on the results of the SE, the 
KDE method is applied to derive conditional probability 
density functions (pdf) for the estimated variables (with no 
assumptions on the shape of the conditional distributions). 

The KDE is a memory-based learning method that estimates 
an unknown density function by smoothing out the 
observations. The flexibility arising from its non-parametric 
nature makes KDE a very popular approach for data drawn 
from a complicated distribution [16].  

Let 𝑌 , … , 𝑌  ∈  ℝ  be an independent, identically 
distributed random sample from an unknown distribution 𝐹 
with density function 𝑓. The KDE can be written as 

 𝑓(𝑦) = 1𝑛ℎ 𝐾 𝑦 − 𝑌ℎ  (5) 

where 𝐾 ∶  ℝ  →  ℝ is a smooth function called the kernel 
function and ℎ > 0 is the smoothing bandwidth that controls 
the amount of smoothing. 

Different kernels are available, like the normal, spherical, 
Gaussian, Epanechnikov, beta, among others. The bandwidth 
requires special care since if it is too small, there will be many 
wiggles in the density estimate. If it is too large, important 
features can be smoothed out. In fact, the choice of the kernel 
function generally does not play an important role as the 
selection of the bandwidth. In this work, the Gaussian kernel 
was considered.   

Taking into consideration the conditional construction of 
the voltage at the current instant from weighting analogous 
occurrences in its past, as described by Eq. 1, the density 
function is computed as follows: 

 𝑓(𝑦) = ∑ 𝑤 𝐾 𝑦 − 𝑌ℎ𝑛ℎ ∑ 𝑤  (6) 

The resulting density estimation is used for producing 
probabilistic estimations, represented by a set of quantiles. 
These are obtained by means of the cumulative distribution 
function (cdf). Considering the random variable 𝑌 with cdf 𝐹 (𝑦) = 𝑃(𝑌 ≤ 𝑦) = ∫ 𝑓 (𝑡)𝑑𝑡 the 𝜏-quantile, issued at time 𝑡 can be computed as 𝑞 = 𝐹 (𝜏), where 𝜏 ∈ [0,1].  

To obtain the cdf from the estimated pdf, two additional 
steps are needed. Firstly, the final pdf is determined by properly 
normalizing the estimated pdf, so that the integral is equal to 
one. Secondly, the cdf is obtained using numerical integration 
through the “normalized” pdf [17]. Once the cdf is estimated, 
extracting the quantiles is straightforward and computationally 
cheap. Altogether, the procedure avoids quantile crossing so the 
following monotonicity property is satisfied: 

 𝑞 ≤ 𝑞  ∀ 𝜏 , 𝜏     such that   𝜏 ≤ 𝜏  (7) 
D. Hyper-parameters Tuning 

As previously mentioned, the LVSE methodology depends 
on a set of hyper-parameters that should be tuned, namely: 𝑝𝑟, 𝛼, 𝜆 and the bandwidth ℎ. The first two were found with little 
impact as long as are kept above an empirical value (𝑝𝑟 > 40 
and 𝛼 > 15). The third one is hard to optimize unless multiple 
reconfigurations of the grid were tested, hence an educated 
guess was applied. The fourth deserves special attention since 
it affects the quality of the probabilistic estimation. 

According to Figure 4, an EPSO [18] is run initially over a 
part of the historical data to tune the bandwidth per feeder. 
Nevertheless, due to the changing nature of the distribution 
grid, this parameter is continuously optimized, individually for 
each phase’s node, as the process advances using the Nelder-
Mead dynamic simplex method (DynSimplex) [19].  

 

Figure 4 – Offline and online hyper-parameters tuning for the LVSE. 

Figure 5 depicts the main steps of the online optimization 
according to the theoretical description provided in Section III. 
It should be noted that the calculation of the performance 
metrics (see section IV.C) requires the real values of the 
voltages magnitude. This means that in every iteration of the 
DynSimplex, the evaluation of the simplex is applied to a past 
instant already present in the historical database in such a way 
that the last evaluation before an update will be applied to the 
last voltages in the database. 

The online approach on top of the forgetting factor 𝜆, 
makes the LVSE fully online and capable of handling concept 
drift (e.g., change in grid topology, new consumer) in the data 
generation mechanism. 
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Figure 5 – DynSimplex procedure for LVSE online adjustement of hyper-
parameters. The evaluation of the simplex at instant t is applied to instant t-

tlast_update 

IV. NUMERICAL RESULTS 

A. Test Case Description 
The LVSE tests were conducted using a 33-node LV grid 

available in [20] and represented in Figure 6 with different 
levels of renewable generation penetration:  

 Scenario no_PV – no presence of PV. 
 Scenario med_PV – medium presence of PV (historical 

data with a ratio between generated energy and 
consumption of 18%). 

 Scenario high_PV – heavy presence of PV (ratio of 
36%).   

 

 
Figure 6 – 33-node LV grid used for testing the methodology. Next to each 

load and generator is represented the phase where they are connected. 

The load time series was from a smart metering trial 
conducted by the commission for energy regulation (CER) in 
Ireland [21] and the PV generation was collected from Évora, 
Portugal, in the framework of the SuSTAINABLE project 
[22]. From this data, an unbalanced power flow algorithm was 
applied to calculate historical data of voltage magnitude. 

The following explanatory variables were considered: 
 Hour and week day. 
 Irradiance (homogeneous across all PV panels). 
 Real-time voltage measurements in all phases of nodes 

1, 2, 3 and 4. 
 Voltage magnitude measurement in t-24 (previous 

day). 
 Voltage magnitude measurement in t-168 (previous 

week). 
 Real-time active and reactive power flow 

measurements in all phases of the MV/LV substation. 
 sdd 

B. Benchmark Model: Autoencoders 
The deterministic version of the LVSE will be compared 

against a state-of-the-art technique based on Autoencoders 
(AE) coupled with a metaheuristic to reconstruct missing 
quantities [11]. Similarly, this technique only require an 
historical database and few quasi-real-time measurements to 
perform an effective state estimation. The AE method uses the 
same explanatory variables of the proposed LVSE. 

C. Evaluation Metrics 
To compare the deterministic results of the LVSE with the 

AE it was used the mean absolute error (MAE) and the 
maximum absolute deviation (MAD). In the case of assessing 
the probabilistic estimations, the evaluation metrics for 
probabilistic forecasting described in [23] were applied to the 
SE problem. 

Let us consider the indicator variable 𝜉 . Given a quantile 
estimation 𝑞  for voltage V and Vt the current voltage, the 
indicator is given by: 

 𝜉 =    1, 𝑖𝑓       𝑉 < 𝑞    0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (8) 

The first metric is the calibration, which measures the 
mismatch between the empirical probabilities (or long-run 
quantile proportions) and nominal (or subjective) probabilities. 
The difference between empirical and nominal probabilities 
can be called bias of the uncertainty estimation and is 
calculated for each quantile nominal proportion (Eq. 11). 

 𝑏 = 𝜏 − 1𝑁 𝜉  (9) 

The sharpness measures the “degree of uncertainty” of the 
probabilistic state estimation, which numerically corresponds 
to compute the average interval size between two symmetric 
quantiles, e.g., 10% and 90% centered in the 50% quantile 
(median).  

The two previous metrics can be quantified together in a 
single scoring rule. Eq. 10 presents the quantile score (QS) 
metric for the set of quantiles M, which is positively oriented 
and admits a maximum value of 0 for perfect probabilistic 
estimations. 

 𝑄𝑆 𝑓, 𝑉 =  (𝜉 − 𝜏 )(𝑉 − 𝑞 ) (10) 
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This metric is a generalization of the “pinball” function 
used in quantile regression. 

D. Results of the Deterministic SE 
Both the LVSE and the AE performed state estimations for 

a period of 2500 instants with 30-minute resolution. The AE 
was subjected to an initial training of 1300 instants that 
preceded the test period. In Figure 7 is shown a small portion 
of the deterministic state estimation comparing both methods. 

 
Figure 7 – Snapshot of voltage magnitudes obtained with the AE and the 

LVSE at phase b of node 15 for high_PV. 

Table I presents the results of running both methods for the 
three scenarios showing that in every scenario, the LVSE 
outperforms the AE. Both methods produce better estimations 
in the presence of more PV integration, which may indicate 
that the use of the irradiance as explanatory variable has a 
positive effect in estimations. Moreover, the existence of 
renewable energy close to consumption points has the effect of 
decreasing the voltage oscillations, thus facilitating the 
estimation. In terms of computation time, the AE needed 3630 
seconds to train and test while the LVSE runs in 86 seconds. 

TABLE I. COMPARISON BETWEEN THE AE AND THE LVSE USING THE MEAN 
ABSOLUTE ERROR (MAE) AND THE MAXIMUM ABSOLUTE DEVIATION (MAD). 

  no_PV med_PV high_PV 
AE MAE (p.u.) 0.014862 0.011052 0.009831 

MAD (p.u.) 0.104665 0.087185 0.089236 
LVSE MAE (p.u.) 0.004493 0.003877 0.003580 

MAD (p.u.) 0.053947 0.050930 0.051719 

E. Results of the Probabilistic SE 
In contrast to its deterministic version, the LVSE runs in 

offline (or batch) mode an EPSO to get a reasonable valuation 
of the kernel’s bandwidth. For this process, the QS (Eq. 10) 
was used as objective function. The real-time probabilistic 
estimation is then performed for 2500 observations with 30-
minute temporal resolution and all the results presented next 
refer to this test period. 

Table II shows the benefits of using the online optimization 
with the DynSimplex versus keeping constant the bandwidth 
estimated by the EPSO algorithm. Likewise, the QS rule was 
used in the DynSimplex method. The results show a 
considerable improvement of the average (over all smart 
meters) probabilistic bias (Eq. 9) if this online hyper-parameter 
tuning is employed.  

TABLE II. AVERAGE PROBABILISTIC BIAS AND QUANTILE SCORE RESULTS FOR 
TWO SITUATIONS: ONLINE TUNING WITH DYNSIMPLEX; OFFLINE OR BATCH 

OPTIMIZATION WITH EPSO. 
 no_PV med_PV high_PV 
 Bias QS Bias QS Bias QS 

EPSO 0.085919 -0.001556 0.076140 -0.001681 0.068513 -0.001870 

EPSO+ 
DynSimplex 0.039042 -0.001491 0.047323 -0.001607 0.043939 -0.001876 

 
Figure 8 illustrates the probabilistic voltage estimation for 

one node in the scenario with high PV integration. The plot 
shows that the conditional uncertainty intervals are sharp, 
which is confirmed by Figure 9 that shows a maximum width 
of the intervals of around 0.02 p.u.. This result is expected due 
to the high dependency between the voltages (as depicted in 
Figure 2), which leads to low uncertainty, even only when 4 
meters out of 33 (12% of the meters) have real-time 
communication. Moreover, it is possible to see that periods 
with high voltage are characterized by wider uncertainty 
intervals. 

 
Figure 8 – Snapshot of the conditional probability distribution of voltage 

magnitudes obtained at phase a of node 16 for high_PV scenario. 

 
Figure 9 – Sharpness for all LV nodes and average sharpness, considering 

nominal coverage rates between 10% and 90%. 

A trade-off between sharpness and calibration is known in 
the literature. Thus, sharp estimations have a tendency to 
present a poor performance in calibration. However, as shown 
in Figure 10 the probabilistic bias on average is below -5%, 
which is a good result considering the presence of narrow 
uncertainty intervals. Nevertheless, some LV nodes show bias 
close to -12% for some quantiles. This plot also shows a 
tendency to underestimate the quantile proportions, which for 
the lower voltage limit might lead to underestimation of the 
voltage violation risk, and for the upper voltage limit can lead 
to overestimation of the risk. 



 

 

 
Figure 10 – Calibration for all LV nodes and average calibration, considering 

nominal quantiles between 5% and 95%. 

In summary, the obtained probabilistic estimations can be 
used to create probabilistic alarms with small bias in the 
associated probabilities and also with a small number of false 
alarms since the intervals are sharp. 

V. CONCLUSIONS 
This paper proposes an innovative data-driven probabilistic 

state estimator for LV grid that takes advantage of information 
collected by the smart grid infrastructure, both historical data 
and real-time measurements from a subset of meters. It can 
also include exogenous information like weather forecasts and 
dynamic price signals. The methodology does not depend on 
the knowledge of the grid’s topology and electrical 
characteristics, and is not affected by the typical observability 
issues that affect the traditional state estimators when applied 
to the distribution grid. Moreover, it is a modular approach 
where an estimator is applied to each LV node and the set of 
input features can be easily modified in case of communication 
failure of some smart meters.  

The method was in a first stage compared in its capability 
of providing deterministic state estimations against a state-of-
the-art technique based on Autoencoders. The results proved 
that not only was possible to improve the estimation results but 
also that it could be accomplished in a fraction of the 
computational time. The results also showed that it is possible 
to create sharp and reliable estimations of uncertainty from 
limited observability in real time. This is particularly relevant 
to enhance situational awareness and create probabilistic 
alarms for human operators. An online method was also 
proposed for hyper-parameters tuning, which resulted in an 
improved performance. 

Future work consists in applying metric learning 
techniques to improve the robustness of the state estimator and 
define empirical rules to define the location of real-time 
metering devices.  
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