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ABSTRACT

The Kepler Mission has discovered thousands of planets with radii <4 ÅR , paving the way for the first statistical
studies of the dynamics, formation, and evolution of these sub-Neptunes and super-Earths. Planetary masses are an
important physical property for these studies, and yet the vast majority of Kepler planet candidates do not have
theirs measured. A key concern is therefore how to map the measured radii to mass estimates in this Earth-to-
Neptune size range where there are no Solar System analogs. Previous works have derived deterministic, one-to-
one relationships between radius and mass. However, if these planets span a range of compositions as expected,
then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic
mass–radius relationship (M–R relation) evaluated within a Bayesian framework, which both quantifies this
intrinsic dispersion and the uncertainties on the M–R relation parameters. We analyze how the results depend on
the radius range of the sample, and on how the masses were measured. Assuming that the M–R relation can be
described as a power law with a dispersion that is constant and normally distributed, we find that

=Å ÅM M R R2.7 1.3( ) , a scatter in mass of ÅM1.9 , and a mass constraint to physically plausible densities, is
the “best-fit” probabilistic M–R relation for the sample of RV-measured transiting sub-Neptunes (Rpl< 4 ÅR ).
More broadly, this work provides a framework for further analyses of the M–R relation and its probable
dependencies on period and stellar properties.
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1. INTRODUCTION

The Kepler Mission has found thousands of planetary
candidates with sizes between that of Earth and Neptune
(Borucki et al. 2011; Batalha et al. 2013; Burke et al. 2014;
Mullally et al. 2015; Rowe et al. 2015). The emergence of this
population poses fundamental questions about the typical
compositional constituents of planets within a few times
Earth’s size. As bulk densities offer some insight into this
problem, mass and radius measurements of individual planets
have provided observational constraints for theoretical compo-
sition studies performed on a per-planet basis (e.g., Rogers &
Seager 2010; Valencia et al. 2010; Lopez et al. 2012). Recently
these studies have shifted to considering the available planets
as a statistical ensemble (e.g., Rogers 2015; Wolfgang &
Lopez 2015 sans mass constraints), which motivates detailed
analyses of the observed mass–radius distribution.

The joint planetary mass–radius distribution, which is often
couched in terms of the mass–radius “relationship” (M–R
relation), is also highly relevant for dynamical and formation
studies of the Kepler planet candidates (PCs). Mass measure-
ments for individual PCs are often unavailable, as the majority
orbit stars too faint for Doppler follow-up (Batalha et al. 2010)
and only ∼6% exhibit transit timing variations (TTVs) at high
signal-to-noise ratios (Mazeh et al. 2013). Therefore, a

statistical “conversion” is necessary to map observed radii to
the masses these studies need.
To date, several M–R relations have been posed in the

exoplanet literature. To solve the practical issue described
above, Lissauer et al. (2011) fit a power law to Earth and Saturn
and found M=R2.06, where M and R are in Earth units. Wu &
Lithwick (2013) derived masses using the amplitudes of
sinusoidal TTVs for 22 planet pairs, and found =M R3 . More
recently, Weiss & Marcy (2014), hitherto WM14, fit a power
law to masses and radii available in the literature, which was
dominated by the 42 planets chosen by the Kepler team to be
followed up with radial velocity measurements (Marcy et al.
2014); they found =M R2.69 0.93 for planets with
1.5<R<4 ÅR .
All of these results were produced via basic least squares

regression, which is commonly used in astronomy to fit lines
through points. However, this classic technique does not
properly account for several issues that are relevant to the
small-planet M–R relation: measurement uncertainty in the
independent variable (i.e., planet radii), non-detections and
upper limits, and intrinsic, astrophysical scatter in the
dependent variable (i.e., planet masses). Thankfully, there are
solutions to these problems in both the Bayesian and
frequentist statistics literature (see Section 1 of Kelly 2007
for a concise overview). We present an example of one of these
techniques which can be executed using existing numerical
algorithms and code (Section 4), which is effectively a
simplified implementation of the Kelly (2007) linear regression
scheme.
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Of particular interest is the intrinsic scatter that has not been
previously characterized. Theoretical work on planet composi-
tions suggest this scatter should exist: thermally evolved rock-
hydrogen sub-Neptune internal structure models yield radii
mostly independent of mass (Lopez & Fortney 2014), which
produces significant mass–radius scatter when a distribution of
gaseous mass fractions is present in the population (Wolfgang
& Lopez 2015). Furthermore, the diversity of choices for
exoplanets’ internal structures produces a range of radii at a
given mass due only to differences in the layers’ compositions
(e.g., Fortney et al. 2007a; Seager et al. 2007; Rogers
et al. 2011).

These theoretical findings motivate us to move beyond
deterministic, one-to-one mappings, which are in a sense
“mean” relationships. This average behavior is insufficient and
inappropriate if one’s aim is to argue for a particular physical
process based on full distributions of parameters (versus
qualitative comparison to observations), or if the purpose is to
rule out parts of parameter space, which requires knowledge of
the full mass–radius distribution.

Realizing the need to move beyond deterministic mass–
radius relations for their own theoretical work, Chatterjee &
Tan (2015) derived a piecewise probabilistic M–R relation by
fitting the density distribution of planets in four mass bins, and
then fit a continuous, yet still deterministic, relation to those
results. However, they stop short of computing a relation which
is both continuous and probabilistic (which they admit would
be ideal), and do not incorporate measurement error, which is
significant for small planets. With the hierarchical Bayesian
modeling (HBM) that we employ here, we do both. In the
process, we also more fully characterize the uncertainty in the
M–R relation based on the current data. The effort to
understand this uncertainty is important, as quantifying how
well constrained the M–R relation parameters are will be a key
metric by which we measure the improvement in our under-
standing of the M–R distribution, especially as TESS and its
follow-up observations produce more individual mass and
radius measurements.

In this paper we show how a probabilistic M–R relation can
be constructed (Section 2) and constrained (Section 4) using
any subset of planetary masses and radii (Section 3). We also
highlight the observational evidence for this expected intrinsic
scatter and quantify it in a statistically robust way that includes
uncertainties on the M–R relation parameters (Section 5). We
discuss the correct usage and some major implications of these
findings in Section 6.

2. MODELING THE M–R RELATION

Power laws are often used to parameterize the M–R relation
because they are conceptually and computationally simple and
can be easily fit to data using the familiar tool of linear
regression. We continue with this choice to facilitate more
direct comparisons with previous work and to illustrate how a
hierarchical framework enables straightforward extensions to
entire families of M–R relations. In addition, we cast this in
terms of M(R) instead of R(M) to address the practical problem
of estimating masses from Kepler radii.

In particular, we consider three power law-based M–R
relations (Equations (1)–(3)). The first is the form used by most

prior studies (see Section 1):
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whereM is the mass of the planet, R is the planetary radius, and
C and γ are the parameters to be fit to the data. This relation is
deterministic in the sense that only one mass is allowed for a
given radius.
If instead we want to allow for a range—that is, if we want to

incorporate the expected intrinsic scatter—then we need to
create an M–R relation which specifies how those masses
should be distributed at a given input radius. Again, taking the
most simple, familiar, and analytically tractable approach, we
choose a Gaussian distribution, where the mean population
mass μ is given by the above power-law relation and where the
standard deviation σM (units of ÅM ) parameterizes the intrinsic
scatter in planet masses:
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Note that ∼ means “drawn from the distribution,” thereby
marking the difference between a deterministic and a
probabilistic M–R relation. Figure 1 is the graphical model
corresponding to Equation (2), and includes Gaussian error
bars on the measured masses and radii (see Section 4 for all
details of the model).
Generalizing further, the width of the intrinsic scatter may

change as planets increase in size, so we consider a
probabilistic M–R relation that allows the standard deviation

Figure 1. Graphical model used to find the best-fit parameters for the
probabilistic mass–radius relationship in Equation (2). These parameters of
interest are yellow while the observed data are gray (see Section 3) and
unobserved parameters are white; definitions are below. In practice, we
summarize each planet’s “RV vs. time” data set as the mass measurement M i

ob
( )

and the uncertainty in that measurement, s ;i
Mob
( ) similarly, the “Flux vs. time”

data set is summarized as the radius measurement Rt
i( ) and its uncertainty s i

Rob
( ) .

Section 6.3 contains further discussion of this choice. Our full hierarchical
model, which includes the details of the probability distributions from which
each parameter is drawn, is displayed in Equation (4). a=population-wide
radius distribution parameters C=constant in mean M–R relation γ=power
law index of mean M–R relation σM=intrinsic dispersion in planet masses at
a given radius Rt

i( )=true radius of the ith planet R i
ob
( )=observed radius of the

ith planet s i
Rob
( ) =measurement uncertainty in R i

ob
( ) Mt

i( )=true mass of the ith
planet M i

ob
( )=observed mass of the ith planet s i

Mob
( ) =measurement uncer-

tainty in M i
ob
( ).
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itself to vary as a function of radius via the slope β (units of
Å Å

-M R2 1):
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where = -ÅR R R 1˜ and sM1 is now the standard deviation in
planet masses at 1 ÅR ( =R 0˜ ).

3. DATA

With the statistical M–R relations defined, we turn to the
problem of identifying which observational data set to use.
Optimally we would use a subset of mass and radius
measurements that is uniform and complete, as any systematic
biases present in the sample will manifest as biased M–R
parameter values. Unfortunately, the available masses and radii
are far from this ideal, with mass measurements made with two
fundamentally different methods by many different pipelines
and chosen for follow-up by a complex, poorly documented
selection function. There is significant work to be done to
understand how these systematics affect the M–R relation, but
it is outside the scope of this paper, as our main purpose is to
show how a probabilistic M–R relation can be derived from
whichever data set one wishes to use. Therefore, we choose a
baseline data set consisting of radial velocity-measured masses,
which somewhat reduces the heterogeneity of the sample while
preserving a fairly large number of data points.

Table 2 shows all of the masses and radii that we consider,
with our baseline data set denoted with a label of 0; the list was
constructed by starting with the WM14 data set and identifying
new planets and updates in the NASA Exoplanet Archive (last
accessed 2015 January 30). We manually double-checked each
planet to verify that the reported measurements were correct
and most up-to-date, paying particular attention to which
methods and stellar parameters were used (data denoted by a
label of 1 were present in and have not changed since WM14).
Given the above concerns with data set heterogeneity, when
both TTV and RV masses are independently available for a
single planet, we choose the RV-measured masses. In practice,
only Kepler-18b (Cochran et al. 2011) provide strong enough
mass constraints from both methods to require a choice to be
made, and even then the two mass measurements are
consistent. The TTV data set (label of 2) contains only the
sub-Neptune-sized planets that have had their TTVs fit with N-
body integrations, as these masses are the best constrained and
therefore provide the most information for the sub-Neptune M–

R relation; neither circumbinary planets nor unconfirmed
planets were included, again to try to keep a somewhat more
homogeneous data set. Finally, to enable easier comparison
with previous work, we continued the error treatment
of WM14: if asymmetric upper and lower uncertainties were
reported, we used their average as a symmetric 1σ error bar.9

2σ upper limits were included if they were <80 ÅM for
R<4 ÅR and <300 ÅM for 4<R<8 ÅR .

4. FITTING THE M–R RELATIONS

We use HBM to fit the M–R relations in Section 2 to the data
described in Section 3. This statistical method is described in

detail in Wolfgang & Lopez (2015) in the context of exoplanet
compositions; further pedagogical discussion and examples of
HBM in the astronomical literature is provided by Loredo
(2013, p. 15). A very similar approach to this HBM-enabled
linear regression was detailed in Kelly (2007); we refer the
reader to that paper for an in-depth discussion of the general
advantages and improvements of this approach over the
commonly used χ2 analysis for linear regression.
For the problem at hand, HBM (or the analogous frequentist

methods for multi-level modeling) is necessary for a number of
reasons:

1. It allows us to directly model and fit the astrophysical
dispersion in the population as an explicit parameter.

2. It allows us to self-consistently incorporate uncertainties
on the independent variable (radii in this case), without
the need for elaborate bootstrapping schemes.

3. Most sub-Neptune mass uncertainties are large, and some
are realistically only upper limits. HBM is able to
simultaneously use all likelihood distributions no matter
their width or shape, which increases the information
content of the resulting M–R relation and decreases the
biases that binning or weighting schemes introduce when
these likelihoods are asymmetric.

4. Relatedly, HBM allows us to introduce the true masses
and radii as latent (unobserved) parameters; this enables
us to restrict the masses to physically allowed parameter
space (such asM> 0 or ρ< ρiron(M)) while preserving all
of the information in the observations, including when the
“best-fit” masses happen to be negative.

5. As with all Bayesian methods, HBM produces posterior
distributions, allowing us to easily see the uncertainties in
the M–R relation parameters. Most of the M–R relations
currently reported and used in the literature have no
published uncertainties.

The hierarchical model for our baseline M–R relation
(Equation (2)) is displayed in Figure 1 to clarify the structural
relationships between parameters and observables. This
structure is also present in the written version below, along
with details of the distributions we used (“N” represents a
normal distribution with the listed parameters in order of μ and
σ; “U” represents a uniform distribution with the listed
numbers bounding the interval; and “∣” means “given,” i.e.,
the parameter to the left depends on the parameters to the
right):
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For the deterministic M–R relation of Equation (1), Equation
(4) remains the same except there is no σM parameter, and

g = mM R C e, ,t
i

t
i

M

i

∣( ) ( ) ( )

9 Future work using HBM can improve on this error treatment by using the
full posteriors of the mass and radius measurements, if these posteriors are
made available in the literature (see Section 6.3).
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while for the M–R relation of Equation (3), there was an
additional parameter β such that:

b

g s b s b
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1 1
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Note that the normal distributions in the last two lines of the
model (collectively Equation (4)) are the same likelihoods that
are assumed when using χ2 to perform linear regression.

For all M–R relations we consider, we truncated the Mt
i( )

distribution such that < <M M0 t
i

t
i
,pureFe

( ) ( ) where Mt
i
,pureFe
( ) was

computed using the 0% rock mass fraction analytic fits to the
Fortney et al. (2007a) rock-iron internal structure models:

=
- + - -

M
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4
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where a=0.0975, b=0.4938, and c=0.7932 (Fortney
et al. 2007b). This truncation was imposed to restrict the
planet masses to physically plausible densities given the
planet’s true radius.

We also performed a prior sensitivity analysis on our
population-wide parameters to assess the degree to which our
results depend on our priors. As given in Equation (4), we used
a wide normal distribution for the power law index; we chose
this prior to be wide with a variance of 1 to minimize the
amount of information in the posterior that comes from the
prior, and we chose a mean of 1 because we expected a priori
that near-linear relationships were physically plausible. This
choice was admittedly arbitrary, so we tested the sensitivity of
our results to these assumptions. To do this, we ran the MCMC
again, but with two other priors: a uniform distribution for γ
and a uniform distribution for s where γ=tan(s), which
corresponds to a uniform distribution in the slope of the power
law.10 Under each prior, we find that the posterior modes (the
“best fits”) for C, γ, and σM differed by no more than 0.05 from
the best-fits listed in Table 1, which is below our reported
precision. Additionally, we tested several end member cases for
the Rt distribution, and the choice for this prior had a similarly
negligible effect on the result, primarily because Rob is fairly

well constrained throughout the sample. Therefore, we
conclude that our results are robust to our choice of priors.
To produce the results shown in Section 5, we evaluate each

model with Just Another Gibbs Sampler (Plummer 2003), an R
code for numerically evaluating hierarchical Bayesian models
with MCMC. For each set of posteriors in Figures 2 and 3, we
ran 10 chains consisting of 500,000 iterations each. The first
half of each chain is discarded as “burn-in,” and the resulting
half is thinned by a factor of 250, such that we retain 10,000
posteriors samples of each parameter.
To assess the independence of these samples, we compute

the effective sample size (ESS), which accounts for the
autocorrelation still present within these thinned Markov
chains (ESS= 10,000 indicates perfect independence). The
ESS is >4000 for each parameter listed in Table 1, with two
exceptions. The ESS of the deterministic relation parameters
are around 230, an order of magnitude lower than all the
probabilistic relations we tested. The difficulty this model had
with convergence reflects the challenges of applying a
physically inappropriate model to data and is another indication
that a deterministic relation does not fit the observed masses
and radii well. Less concerning yet not quite as well converged
compared to the others were the parameters for the probabilistic
M–R relation fit only to the smallest radii (ESS= 1500–4000).
This occurs because these small planets have the largest mass
uncertainties; this causes the maximum mass restriction in
Equation (5) to severely truncate most of the likelihoods, which
results in high autocorrelation in the MCMC chains. Given the
small ESS for these two sets of parameters, we caution against
over-interpretation of their results: their “best-fit” values in
Table 1 are ∼6 and ∼2 times more uncertain than the others
(corresponding to the precision of the posterior mean with the
square root of the sample size [the ESS]), and the boundaries of
their 95% credible regions in Figure 3 are poorly estimated. We
do not spend time running these simulations longer, as they
were performed for the sake of comparison, and we display
them for this purpose only.
For the main result—the baseline data set evaluated with the

probabilistic M–R relation—the ESS of C and γ are 10,000,
and the ESS of σM is 5300. Furthermore, the between-chain
convergence diagnostic R̂ of Gelman & Rubin (1992) is
1.002 for all parameters in our probabilistic models (except
again for the smallest radii planets, for which =R 1.008ˆ at its
worst). Together, these two tests provide no evidence that the
posteriors have not converged, and we proceed with the usual
amount of confidence (given that no one can ever prove
convergence).

5. RESULTS

Table 1 shows the results of our modeling: it displays the
best-fit parameters for each of the various M–R relations and
data sets that we consider. The first entry corresponds to the
deterministic M–R relation; entries 2–6 correspond to our
probabilistic M–R relation for various data sets (see Sections 3
and 5.2); and the last entry corresponds to the probabilistic M–

R relation with non-constant scatter. In particular, the second
entry lists the best-fit values for Equation (2) using our baseline
data set. All were computed with the density restriction given
by Equation (5); this constraint should also be applied to the
masses generated from these M–R relations when these
relations are used in forward modeling.

Table 1

Best-Fit Parameters of the M–R Relation

Equation Data Set C γ σM β

(1) baseline: RV only, <4 ÅR 2.1 1.5 L L

(2) baseline: RV only, <4 ÅR 2.7 1.3 1.9 L

(2) N-body TTVs only, <4 ÅR 0.6 1.7 1.7 L

(2) Weiss (<4 ÅR ) 2.8 0.9 2.5 L

(2) RV only, <1.6 ÅR 1.4 2.3 0.0 L

(2) RV only, <8 ÅR 1.6 1.8 2.9 L

(3) baseline: RV only, <4 ÅR 2.6 1.3 2.1 1.5

Note. These “best fit” values correspond to the mode of the joint posterior
distributions; see code and posterior samples in the github repository
dawolfgang/MRrelation to account for the full uncertainty in the parameters
that is contained the posteriors (see Section 5.3 for more details on this). Also,
when using these M–R relations to generate masses from planet radii, one
should apply the density constraint given by Equation (5).

10 Uniform γ places high probability at steep power laws, which are highly
unlikely on physical grounds.
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Table 2

Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) ( ÅM ) ( ÅM ) ( ÅR ) ( ÅR ) Reference Reference

55 Cnc e 0.737 8.09 0.26 2.17 0.098 McArthur et al. (2004) Nelson et al. (2014), Gillon et al. (2012) a
CoRoT-7 b 0.854 4.73 0.95 1.58 0.064 Queloz et al. (2009), Léger et al. (2009) Barros et al. (2014) a
GJ 1214 b 1.580 6.45 0.91 2.65 0.09 Charbonneau et al. (2009) Carter et al. (2011) a, b
GJ 3470 b 3.337 13.73 1.61 3.88 0.32 Bonfils et al. (2012) Biddle et al. (2014) a
HD 97658 b 9.491 7.87 0.73 2.34 0.16 Howard et al. (2011) Dragomir et al. (2013) a, b
HIP 116454 b 9.12 11.82 1.33 2.53 0.18 Vanderburg et al. (2015) Vanderburg et al. (2015) a
Kepler-10 b 0.837 3.33 0.49 1.47 0.02 Batalha et al. (2011) Dumusque et al. (2014) a
Kepler-10 c 45.294 17.2 1.9 2.35 0.06 Batalha et al. (2011) Dumusque et al. (2014) a
Kepler-19 b 9.287 L 20.3 2.21 0.048 Borucki et al. (2011) Ballard et al. (2011) a, e
Kepler-20 b 3.696 8.7 2.2 1.91 0.16 Borucki et al. (2011) Gautier et al. (2012) a
Kepler-20 c 10.854 16.1 3.5 3.07 0.25 Borucki et al. (2011) Gautier et al. (2012) a
Kepler-20 d 77.612 L 20.1 2.75 0.23 Borucki et al. (2011) Gautier et al. (2012) a, e
Kepler-20 e 6.098 L 3.08 0.868 0.08 Borucki et al. (2011) Fressin et al. (2012) a, e
Kepler-20 f 19.58 L 14.3 1.03 0.11 Borucki et al. (2011) Fressin et al. (2012) a, e
Kepler-21 b 2.786 L 10.4 1.635 0.04 Borucki et al. (2011) Howell et al. (2012) a, e
Kepler-25 b 6.239 9.60 4.20 2.71 0.05 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-37 b 13.367 2.78 3.70 0.32 0.02 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-37 c 21.302 3.35 4.00 0.75 0.03 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-37 d 39.792 1.87 9.08 1.94 0.06 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-48 b 4.778 3.94 2.10 1.88 0.10 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-48 c 9.674 14.61 2.30 2.71 0.14 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-48 d 42.896 7.93 4.60 2.04 0.11 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-62 b 5.715 L 9 1.31 0.04 Borucki et al. (2011) Borucki et al. (2013) a, e
Kepler-62 c 12.44 L 4 0.54 0.03 Borucki et al. (2013) Borucki et al. (2013) a, e
Kepler-62 d 18.164 L 14 1.95 0.07 Borucki et al. (2011) Borucki et al. (2013) a, e
Kepler-62 e 122.39 L 36 1.61 0.05 Borucki et al. (2011) Borucki et al. (2013) a, e
Kepler-62 f 267.29 L 35 1.41 0.07 Borucki et al. (2013) Borucki et al. (2013) a, g
Kepler-68 b 5.399 5.97 1.70 2.33 0.02 Borucki et al. (2011) Marcy et al. (2014) a, d
Kepler-68 c 9.605 2.18 3.50 1.00 0.02 Batalha et al. (2013) Marcy et al. (2014) a, d
Kepler-78 b 0.354 1.69 0.41 1.20 0.09 Sanchis-Ojeda et al. (2013a) Howard et al. (2013) a, b
Kepler-89 b 3.743 10.50 4.60 1.71 0.16 Borucki et al. (2011) Weiss et al. (2013) a, b
Kepler-93 b 4.727 4.02 0.68 1.48 0.019 Borucki et al. (2011) Dressing et al. (2015) a
Kepler-94 b 2.508 10.84 1.40 3.51 0.15 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-95 b 11.523 13.00 2.90 3.42 0.09 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-96 b 16.238 8.46 3.40 2.67 0.22 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-97 b 2.587 3.51 1.90 1.48 0.13 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-98 b 1.542 3.55 1.60 1.99 0.22 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-99 b 4.604 6.15 1.30 1.48 0.08 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-100 b 6.887 7.34 3.20 1.32 0.04 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-100 c 12.816 0.85 4.00 2.20 0.05 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-100 d 35.333 −4.36 4.10 1.61 0.05 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-101 c 6.03 L 9 1.25 0.18 Borucki et al. (2011) Bonomo et al. (2014) a, f
Kepler-102 d 10.312 3.80 1.80 1.18 0.04 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-102 e 16.146 8.93 2.00 2.22 0.07 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-102 f 27.454 0.62 3.30 0.88 0.03 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-102 b 5.287 0.41 1.60 0.47 0.02 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-102 c 7.071 −1.58 2.00 0.58 0.02 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-103 b 15.965 14.11 4.70 3.37 0.09 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-106 b 6.165 0.15 2.80 0.82 0.11 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-106 c 13.571 10.44 3.20 2.50 0.32 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-106 d 23.980 −6.39 7.00 0.95 0.13 Batalha et al. (2013) Marcy et al. (2014) a, b
Kepler-106 e 43.844 11.17 5.80 2.56 0.33 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-109 b 6.482 1.30 5.40 2.37 0.07 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-109 c 21.223 2.22 7.80 2.52 0.07 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-113 b 4.754 7.10 3.30 1.82 0.05 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-113 c 8.925 −4.60 6.20 2.19 0.06 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-131 b 16.092 16.13 3.50 2.41 0.20 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-131 c 25.517 8.25 5.90 0.84 0.07 Batalha et al. (2013) Marcy et al. (2014) a, b
Kepler-406 b 2.426 4.71 1.70 1.43 0.03 Borucki et al. (2011) Weiss (2014) a, b
Kepler-406 c 4.623 1.53 2.30 0.85 0.03 Batalha et al. (2013) Weiss (2014) a, b
Kepler-407 b 0.669 0.06 1.20 1.07 0.02 Borucki et al. (2011) Marcy et al. (2014) a, b
Kepler-409 b 68.958 2.69 6.20 1.19 0.03 Batalha et al. (2013) Marcy et al. (2014) a, b
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In all cases the reported “best fit” values correspond to the
mode of the joint posterior distribution, and are denoted by the
triangles in Figures 2 and 3. The uncertainties in the parameters
are represented by the displayed 68% and 95% posterior
contours, with the contours corresponding to our baseline data
set colored blue. The gray points are the 10,000 saved posterior
samples from our thinned MCMC chains using the baseline
data set.

5.1. Deterministic Versus Probabilistic M–R Relations

The primary motivation for this paper was to assess the
observational evidence for intrinsic scatter in the sub-Neptune
M–R relation, and to characterize this scatter if warranted. To
do so, we compare the posteriors for our three M–R relations in
Figure 2 (note that not all relations have all parameters: for
example, the deterministic M–R relation of Equation (1) is
described only by C and γ, so it only appears in panel (a)).
Panels (b) and (c) show that this intrinsic scatter exists: because
the posteriors lie away from zero, σM=0 is strongly excluded

by the data, even with the currently large individual mass error
bars. This is not a result of our choice of priors: the
parameterization in Equation (4) is equivalent to
s s~ 1M M
2 2 , which is strongly weighted toward zero, in

contrast to the posterior we compute.
Comparing the different M–R relations, we see that the C, γ

posterior for the model given by Equation (1) is much tighter
than that for Equations (2) and (3). This is expected: when we
keep the data set fixed but add more parameters, especially one
like σM that by construction allows wiggle room around a
deterministic relation, the observational information content per
parameter decreases, and the posteriors widen. Given this
expectation, what is arguably more notable are the small
differences between Equations (2) and (3)ʼs model posteriors
for the parameters they have in common: most of the extra
width of Equation (3)ʼs joint posterior is contained in the new
parameter β (Figure 2, panels (d)–(f)), which spans zero. There
is therefore not enough evidence in the current data set to
justify an intrinsic scatter that changes as a function of radius,

Table 2

(Continued)

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) ( ÅM ) ( ÅM ) ( ÅR ) ( ÅR ) Reference Reference

Kepler-4 b 3.213 24.47 3.81 4.00 0.21 Borucki et al. (2010) Borucki et al. (2010) L

GJ 436 b 2.64 25.4 2.1 4.10 0.16 Butler et al. (2004) Lanotte et al. (2014) L

Kepler-89 c 10.42 15.6 10.6 4.32 0.41 Batalha et al. (2013) Weiss et al. (2013) L

HAT-P-11 b 4.888 25.74 2.86 4.73 0.157 Bakos et al. (2010) Bakos et al. (2010) L

CoRoT-22 b 9.756 L 35 4.88 0.28 Moutou et al. (2014) Moutou et al. (2014) e
Kepler-103 c 179.61 36.1 25.2 5.14 0.14 Borucki et al. (2011) Marcy et al. (2014) L

Kepler-101 b 3.488 51.1 4.9 5.77 0.82 Borucki et al. (2011) Bonomo et al. (2014) L

Kepler-63 b 9.43 L 95 6.1 0.2 Borucki et al. (2011) Sanchis-Ojeda et al. (2013b) g
HAT-P-26 b 4.235 18.75 2.23 6.33 0.58 Hartman et al. (2011) Hartman et al. (2011) L

CoRoT-8 b 6.212 69.92 9.53 6.39 0.22 Bordé et al. (2010) Bordé et al. (2010) L

Kepler-89 e 54.32 35 23 6.56 0.62 Batalha et al. (2013) Weiss et al. (2013) L

Kepler-11 b 10.304 1.90 1.2 1.80 0.04 Lissauer et al. (2011) Lissauer et al. (2013) b, c
Kepler-11 c 13.024 2.90 2.3 2.87 0.06 Lissauer et al. (2011) Lissauer et al. (2013) b, c
Kepler-11 d 22.684 7.30 1.2 3.12 0.07 Lissauer et al. (2011) Lissauer et al. (2013) b, c
Kepler-11 f 46.689 2.00 0.9 2.49 0.06 Lissauer et al. (2011) Lissauer et al. (2013) b, c
Kepler-11 g 118.38 L 25 3.33 0.07 Lissauer et al. (2011) Lissauer et al. (2013) c, e
Kepler-18 b 3.505 6.9 3.4 2.00 0.100 Borucki et al. (2011) Cochran et al. (2011) b, c
Kepler-30 b 29.334 11.3 1.4 3.90 0.200 Borucki et al. (2011) Sanchis-Ojeda et al. (2012) b, c
Kepler-36 b 13.840 4.45 0.30 1.486 0.035 Carter et al. (2012) Carter et al. (2012) b, c
Kepler-36 c 16.239 8.08 0.53 3.679 0.054 Borucki et al. (2011) Carter et al. (2012) b, c
Kepler-79 b 13.485 10.9 6.7 3.47 0.07 Borucki et al. (2011) Jontof-Hutter et al. (2014) b, c
Kepler-79 c 27.403 5.9 2.1 3.72 0.08 Borucki et al. (2011) Jontof-Hutter et al. (2014) b, c
Kepler-79 e 81.066 4.1 1.2 3.49 0.14 Batalha et al. (2013) Jontof-Hutter et al. (2014) b, c
Kepler-88 b 10.954 8.7 2.5 3.78 0.38 Borucki et al. (2011) Nesvorný et al. (2013) c
Kepler-138 c 13.782 3.83 1.39 1.610 0.160 Borucki et al. (2011) Kipping et al. (2014) c
Kepler-138 d 23.089 1.01 0.38 1.610 0.160 Borucki et al. (2011) Kipping et al. (2014) c
Kepler-289 b 34.545 7.3 6.8 2.15 0.1 Borucki et al. (2011) Schmitt et al. (2014) c
Kepler-289 d 66.063 4.0 0.9 2.68 0.17 Borucki et al. (2011) Schmitt et al. (2014) c

Notes.
a Included in baseline data set, which consists of RV masses (see Section 3).
b Mass, radius values and their error bars are unchanged (within rounding error) from WM14.
c Mass measured by fitting the observed TTVs to N-body integrations of the system.
d The Kepler-68 planets were repeated twice in the WM14 data set, so we use the Marcy et al. (2014) values.
e The σMobs column contains the 2σ upper limit as reported in the second reference.
f Only a 1σ upper limit of 3.78 was given, and no posteriors were shown; in this analysis, we set the 2σ upper limit at 9 ÅM to include 1.8 m s−1 uncertainty quoted in
RV semi-amplitude for the larger Kepler-101 b.
g The 2σ upper limit is interpolated from given 1σ and 3σ upper limits.

(This table is available in machine-readable form.)
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at least not under our model assumptions.11 For the best-fit
values of these parameters, which correspond to the triangles in
Figure 2, see Table 1.

5.2. Changing the Data Set

The results in Section 5.1 are for our baseline data set, an
RV-only sample with Robs<4 ÅR . However, all Bayesian
results depend on the data that are used, so it is important to
carefully consider what the data set contains. To demonstrate
this, we present some illustrative examples of the M–R relation
posteriors under different mass and radius selection functions
(Figure 3).

The left side of Figure 3 displays results for samples of
planets that have had their masses measured in different ways.
A number of prior studies (e.g., Jontof-Hutter
et al. 2014, WM14) have noted that planets with masses

measured from their high SNR TTVs tend to be systematically
less dense than planets with RV-measured masses.12 The origin
of this difference is still unclear, and is not something our
current modeling is able to address (see Section 6.3): it could
be due to either an intrinsic difference in the densities of these
two populations, or to observational bias, as TTVs for larger
(and thus less dense) planets are easier to detect while RVs for
more massive (and thus more dense) planets are easier to
measure. In any case, our results confirm the existence and
nature of this discrepancy, if not the reason: the green TTV-
only posterior is shifted toward lower C with similar γ and σM,
which produces on average lower masses for a given radius.
Furthermore, the hybrid WM14 data set yields the red

Figure 2. Posteriors for the parameters in our family of M–R relations when fit to our baseline data set (row 1: Equations (1)–(3); row 2: Equations (2) and (3); row 3
and gray posterior samples in all panels, which contain all 10,000 saved samples from our thinned MCMC chains: Equation (3)). 68% and 95% contours are shown for
each, and demarcate the uncertainties on these M–R relation parameters; the triangles denote best-fit values. Panels (b) and (c) show that σM=0 is strongly excluded
for R<4 ÅR , and so astrophysical scatter exists in the sub-Neptune M–R relation. Therefore, theoretical studies which require an M–R relation should use a
probabilistic one like that of Equation (2) with one of the sets of parameter values in Table 1.

11 While outside the scope of this paper, future analyses of the M–R relation
can address this and other questions of model selection more quantitatively by
computing posterior Bayes factors. Regardless, the results for the statistical
models represented by Equations (1) and (3) can serve as a sensitivity test for
that of Equation (2), as we describe.

12 This appears to be a population-level effect: there are few planets with
independently analyzed, strongly constrained TTV and RV masses, and they all
yield measurements that are consistent between the two methods (Kepler-18b
& c (Cochran et al. 2011), Kepler-88c (Nesvorný et al. 2013), and Kepler-117
(Bruno et al. 2015); note that only Kepler-18b appears in our table). There are
other systems where the two methods have been used in concert to infer planet
masses (e.g., Kepler-9, Kepler-10 Kepler-11, Kepler-89; see table for
references), but the constraints from one or both methods are relatively weak,
making them insensitive tests of a TTV-RV difference on a per-planet basis.
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posterior, which falls between the TTV-only and RV-only
posteriors yet peaks at lower γ, illustrating that posterior modes
(Bayesian “best fits”) for joint data sets are not necessarily
averages of the modes for separate subsets. This behavior can
be understood when one considers that these TTV-measured
planets are preferentially larger than the RV-measured planets:
this pulls the joint M–R relation down at higher radii because
the TTV-measured planets there have lower masses (which
lowers γ) but affects the relation at lower radii very little
because there are few small planets in our TTV-measured
sample (which keeps C roughly the same).

The right side of Figure 3 displays results for samples of
planets spanning different radius ranges, illustrating the effect
that a somewhat arbitrary radius cut can have on one’s results.
Compared to our default sub-Neptune range, a Robs<8 ÅR cut
produces an M–R relation that is overall shifted down, is
steeper, and has more intrinsic scatter (the cyan posterior has
lower C and higher γ, σM). This is consistent with the Lissauer
et al. (2011) fit to Earth and Saturn over a similar radius range,
although neither of these Solar System planets were included in
our data set. Meanwhile, the M–R relation is poorly
constrained for the Robs<1.6 ÅR sample, the radius range
outside of which rocky planets likely do not occur (Rogers
2015). This is because our < <M M0 t

i
t
i
,pureFe)

( ) ( ) restriction is
most severe for these small planets, allowing only a small range
of physically plausible masses. This range is completely
spanned by most of the mass measurements (see right side of
Figure 4), so there is little empirical extrasolar information for
Robs<1.2 ÅR , and the orange posteriors are dominated by the
few larger planets with well measured masses. With this

sample, there is not currently enough observational evidence in
this radius range to rule out a deterministic relation. This does
not mean, however, that these small planets all have the same
composition, as the posterior 68% contour spans power-law
indexes between 1 and 3 and a constant population-wide Earth-
like rocky composition would have a power-law index of
around 3.7 (Valencia et al. 2006). More data will be needed to
yield a better estimate of the power-law index, and therefore of
the compositional diversity of small planets.

5.3. Visualizing the M–R Relation

While the posterior contours in Figures 2 and 3 show the
best-fit M–R relation parameters and their uncertainties,
visualizing the M–R relation itself requires that they be
mapped from parameter space to mass, radius space. There are
at least two ways to do this with Bayesian analysis, and they
are displayed in Figure 4.
First, one can simply take the best-fit values and plot the

resulting relation, as was done in the left panel. Here the 1 σ
width of the probabilistic relation, as parameterized by σM, is
denoted by the faded colored region while the mean relation, as
parameterized by C and γ, is the thick line of the same color.
Note that the mean M–R relations extend into unphysical
regimes for R<1 ÅR ; this is because the mass observations
span the physically allowed region, as discussed in Section 5.2,
leaving the M–R relation to be constrained primarily by the
locations of the larger, higher mass planets and our model
assumptions. The presence of intrinsic scatter in our M–R
relation nevertheless allows physically realistic masses to be

Figure 3. Posteriors for Equation (2)ʼs M–R relation parameters when we change the input data set (68% and 95% contours shown; triangles are best-fit values). The
blue contours represent the baseline data set and are the same as those in panels (a) and (b) of Figure 2; the gray points are the 10,000 saved posterior samples from our
MCMC chains using this baseline data set. The green TTV M–R relation is systematically shifted downward (lower C) compared to the baseline M–R relation, while
the red WM14 data set, a hybrid of the two, produces a posterior which falls between them (the black point is the WM14 result itself). When we consider different
radius ranges, we see that Robs<8 ÅR (cyan) produces a slightly down-shifted, steeper, and more dispersed M–R relation than the default Robs<4 ÅR (lower C and
higher γ, σM, although the posteriors do overlap), while the M–R relation for <R 1.6obs ÅR (orange) is not well constrained (although σM ≈ 0 for reasonable values
of C).
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assigned to the smallest planets; to force this requirement, we
recommend adding a density constraint to Equation (2) such
that the probability of a planet being drawn outside this range is
0 (the constraint we used is given in Equation (5)), or to use a
different M–R relation for sub-Earth-sized planets. The
different colors in the left panel correspond to the M–R
relations in the right column of Figure 3; these mostly overlap
in the sub-Neptune regime. Note that the RV-only data set
produces a steeper relation than one which also contains high
SNR TTV planets (i.e., the black dashed WM14 relation), as
discussed in Section 5.2.

While these best-fit M–R relations are easy to use, they do
not take into account the fact that the posteriors have non-zero
width and therefore a range of M–R relation parameters are
allowed by any one data set. A more thorough implementation
of these results would account for these uncertainties by
integrating over all of the posterior samples. This margin-
alization, which also incorporates the physical restrictions on
Mt as given by Equation (5), is displayed on the right: now the
blue region corresponds to the central 68% of planet masses
that were drawn for a given radius. Note that this region is
wider than that on the left and that the masses no longer extend
into unphysical regimes. The 68% coverage interval of the
posterior true masses and radii of individual planets in the
baseline sample are plotted red, while the same Rob and Mob as
on the left are plotted in gray. As expected (see the end of
Section 6.2), the posteriors have “shrunk” toward the mean
relation within the uncertainties provided by the data.
Furthermore, one can readily see that the data are qualitatively
consistent with the modeled M–R relation: the red lines fall
within and immediately around the blue region (see Section 6.2
for a quantitative treatment of model checking).

6. DISCUSSION

6.1. Using the M–R Relation to Predict Masses

The most straightforward and computationally simple way to
map a sub-Neptune’s radius to a mass while accounting for

intrinsic scatter is to adopt Equation (2) with one of the sets of
parameters in Table 1 and impose a density constraint like
Equation (5) for the smallest planets. This best-fit M–R relation
is analytic and represents a substantial improvement over the
previous deterministic relationships in capturing the full mass–
radius distribution. However, it does not incorporate uncertain-
ties in the M–R relation parameters or uncertainties in the
measured planet radius itself. Depending on how detailed one’s
analysis needs to be, a more accurate predictive mass
distribution may be needed.
To account for these issues, one must compute the posterior

predictive M–R relation, which marginalizes over both the
posteriors displayed here and the radius posterior produced by
one’s light curve modeling. This mass distribution will be
wider than that produced by simply applying Equation (2) (see
right side of Figure 4) because it incorporates the above sources
of uncertainty and thus more accurately reflects our state of
knowledge about these planets’ masses. Kepler-452 b (Jenkins
et al. 2015) provides an example of an individual planet’s
posterior predictive mass distribution that has been calculated
with this probabilistic M–R relation; because its computation
requires the numerical posterior samples that we have
produced, the resulting mass distribution is also numerical in
nature. To enable more calculations like this one, we have
posted our posterior samples in the github repository
dawolfgang/MRrelation along with R code that uses them to
compute and plot the posterior predictive mass distribution for
individual planets.

6.2. Model Checking

The purpose of the right panel in Figure 4 is to provide a
qualitative comparison between the data and the baseline
probabilistic M–R relation; this visual check immediately
verifies that, in the broadest sense, our model is a reasonable
description of the data (see Section 5.3). However, no model
perfectly describes nature. A more in-depth look is warranted,
to both understand the limitations of the current model and to
identify areas for improvement in future work.

Figure 4. Left: the best-fit M–R relations from the right column of Figure 3. For each, the solid line denotes the mean relation μM while the faded region denotes the
standard deviation of the intrinsic scatter (vertical height of region to either side of line = σM; note σM = 0 for the smallest planets). The M–R relation of WM14 is the
dashed black line while the baseline data set is overplotted as the thin black lines with triangles for the 2-σ upper limits (note that WM14 was calculated with a data set
that includes TTV planets). Right: the baseline M–R relation (the second entry in Table 1) marginalized over the corresponding posterior distribution and subjected to
our physical mass range restriction. The blue region now corresponds to the central 68% of planet masses that were drawn at a given radius. The 68% coverage interval
of the posterior true masses and radii of individual planets are plotted red; the same Rob and Mob as on the left are plotted in gray for comparison.
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Quantitatively, we can check the data-model consistency by
computing a “hierarchical p-value,” which yields the fraction of
all possible data sets which are more discrepant from the model
than the observed data set. This calculation necessarily involves
sampling from our forward model (Equation (4)) and using
those samples to calculate a statistic which quantifies
“discrepant.” The identification of robust and useful hierarch-
ical statistics is still an active area of statistical research (see,
for example, Bayarri & Castellanos 2007), as the multi-level
nature of hierarchical modeling offers a number of choices that
test different aspects of the model. As a result, model checking
in practice can be an involved process that requires investiga-
tions into multiple parts of the problem. We provide two such
investigations below to illustrate some of the subtlety of this
endeavor.

Regardless of the details, most forms of Bayesian model
checking use the posterior predictive distribution. Concep-
tually, this distribution defines the probability of observing a
certain data value given the currently observed data set and the
model. Mathematically, the posterior predictive distribution for
a new observation xnew is defined as:

ò q q q=x xp x M p x M p M d, , , 6new 1 new 1 1( ∣ ˆ ) ( ∣ ) ( ∣ ˆ ) ( )

where qp x M,new 1( ∣ ) is the likelihood of a new, currently
unobserved data point given the parameters q of model M1, and
q xp M, 1( ∣ ˆ ) is the posterior of model M1, i.e., the joint

probability of all of M1ʼs parameters given the observed data
set x̂. The integral denotes the process of marginalization over
the parameters, so that the probability of a new observation
incorporates the model uncertainty allowed by the current
observations.

Next, one draws hypothetical data from this posterior
predictive distribution until a data set of the same size N as
the observed data set is achieved:

~x xp x M, 7
N

new new 1ˆ ( ∣ ) ( )

where = ¼x x x x, , , Nnew new,1 new,2 new,ˆ { ˆ ˆ ˆ } and “~
N
” means “draw

from that same distribution N times.” This data set is then used
to compute the statistic of choice (see discussion below).
Repeating this process thousands of times (i.e., bootstrapping
the statistic) generates a distribution of the statistic which can
then be compared to the value that was calculated from the
observed data set. If the observed statistic falls within this
distribution, the model is consistent with the data (see
Figure 5).

In practice, MCMC simulations (Section 4) provide samples
from the posterior rather than the analytic form of the posterior
as required in Equation (6); therefore, the posterior predictive
distribution is not directly calculated. Instead, Equations (6)
and (7) are combined by using the posterior samples:

q q~ xp M, 1
ˆ ( ∣ ˆ )

to define the likelihood that one then draws from:

q~x p x M, . 8
N

new new 1ˆ ( ∣ ˆ ) ( )

Performing these two steps repeatedly produces an ensemble of
data sets drawn from Equation (6). Applying Equation (8) to
our M–R relation requires evaluating the lower levels of the
forward model described in Equation (4).

Part of the subtlety of checking data-model consistency
arises from the hierarchical nature of our model. In particular, q̂
of Equation (8) includes both the population-wide parameters
C, γ, σM and the individual parameters M R, ;t

i
t
i( ) ( ) we can use

the posterior samples of either of these groups of parameters to
calculate xnewˆ . We show the result of both choices in Figure 5,
using the posterior samples from the baseline M–R relation
(second line of Table 1). Conceptually, using samples from the
individual true mass and radius posteriors (q = M R,t

i
t
iˆ { }( ) ( ) )

evaluates the fit of the model to the currently observed set of
planets (the green histograms on the left), while using posterior
samples for the M–R relation parameters (q g s= C, , M

ˆ { })

evaluates the fit of the model to altogether new sets of planets
(the blue histograms on the right). For the former case, the
same s i

Mob
( ) and s i

Rob
( ) as the observed data set are used; for the

latter case, s i
Mob
( ) is drawn from the distribution of sMob for the

observed planets that have a similar mass, and s i
Rob
( ) is drawn

from the observed data set’s full distribution of sRob without
controlling for radius (the size of the radius error bars are fairly
constant across the data set).
The second aspect of hierarchical model-checking which

requires some effort is the identification of a robust statistic to
quantify the discrepancy between the observed data and the
model-generated data. Optimally this statistic would test the fit
of every part of the modeled probability distribution, including
the “average” behavior of the model, the “extreme” behavior
out on the tails of the distribution, and for hierarchical models,
the accuracy of the grouping and relational structure that is
illustrated by graphs like Figure 1. Due to high dimensional
parameter space, this proves to be very difficult, so one must
identify several statistics which test such aspects separately. To
illustrate the problem, we choose two: f1σ, the fraction of a
given data set’s simulated mass, radius observations which fall
within the 68% coverage interval of our probabilistic, baseline
M–R relation (blue region in Figure 4), and fμ, the fraction of a
given data set’s mass measurements whose 1σ error bars cross
the mean relation μ (see Equation (2)) of that same model.
Therefore, f1σ tests how well the width of our probabilistic M–

R relation fits the data, and fμ tests how tightly grouped the data
are around the mean compared to the normal distribution of our
model.
The results of these tests are displayed in Figure 5. The

observed data’s f1σ statistic (top) falls at the 63rd and 83rd
percentiles (i.e., within “one sigma”) of the distributions for
data sets generated from the individual posteriors and the
population-wide posteriors, respectively. Therefore, the model
is fully consistent with the data for the aspect of the model that
this statistic tests: the inferred intrinsic scatter of the M–R
relation. On the other hand, the observed data’s fμ statistic falls
at the 2nd and 0.2th percentile of the distributions. This test is
sensitive to the shape of the distribution around the mean
relation, and thereby probes the appropriateness of our
assumption of a normal distribution in Equation (2). The fact
that the data are marginally inconsistent with this aspect of the
model reveals that this is an area of improvement for future
work (see Section 6.3 for a further discussion about this).
The differences in the model-data fit implied by these two

statistics illustrates how careful one must be in performing
model checking and interpreting the results. Instead of asking
“is the model consistent with the data?,” a more well-posed
question would be “in what ways are the model consistent with
the data?,” especially as these statistical models become more
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complex to accommodate more sources of uncertainty and
more realistic physics. For the model at hand, we address this
question by returning to our purpose. We wanted to explore the
need for intrinsic scatter in the M–R relation; therefore, we care
most about the quality of the fit with respect to the spread of the
M–R relation, i.e., the data-model consistency as quantified by
f1σ. Because this fit is good, we are satisfied that our main result
holds up to this further scrutiny. The fμ data-model discrepancy
has implications for our choice to use a normal distribution for
the probabilistic M–R relation, which we discuss in
Section 6.3.

To wrap up our discussion on hierarchical Bayesian model
checking, we note that the reader may find it surprising that the
distribution of f1σ statistics peaks around ∼0.4, given that the
statistic was defined by the “one-sigma” central region of the
M–R relation. The reason why the statistic does not instead
cluster around 0.68 is due to a well-known feature of
hierarchical modeling called shrinkage. First worked out by
Stein (1955) and developed within a Bayesian framework by
Good (1965), shrinkage refers to the tendency for individual
parameter values at intermediate levels of hierarchical models
(such as M R,t

i
t
i( ) ( )) to cluster more closely together, or “shrink”

toward their mean, than if the parameters had been analyzed
completely independently of each other (we see this shrinking
visually by comparing the gray and red lines in the right panel
of Figure 4). This occurs because, by design, the hierarchical
structure of the model causes these individual parameters to be

related to each other, which then enables information about one
parameter to influence our inference for another parameter.
This additional information, provided solely by the hierarchical
structure, causes the variance among the population to decrease
relative to the case where the structure, and thus the
information, was not available. This decrease in variance is
perceived as a “shrinking” toward the mean.
We can understand how shrinkage manifests for the M–R

relation by returning to the forward model defined in
Equation (4). First we note that it is the true masses and radii,
not the observed masses and radii, which are drawn from the
M–R relation. Therefore, it is the Mt

i( ) and Rt
i( ) values which

would produce f1σ=0.68. However, we do not actually
observe Mt

i( ) and Rt
i( ) outright; we observe them convolved

with some error s i
ob
( ). Because the convolution of a normal

distribution with another normal produces a wider normal
distribution, we would indeed expect more of the observed
mass and radius points to fall outside of the “one-sigma”
bounds defined by the top level of the model. With this
additional insight into the nature of hierarchical models, we
understand that this behavior is not only consistent with what
we see, but expected.

6.3. Caveats and Future Work

As discussed in Sections 2 and 3, we made a number
of assumptions and modeling choices to facilitate a

Figure 5. Checking the model against the observed data, using two different statistics to quantify the data-model consistency (see Section 6.2). All panels contain 5000
hypothetical data sets generated from the baseline posterior predictive distribution (Equations (6)–(8)), with the statistic for the observed data set (Table 2) as the
vertical black dashed line. The green histograms on the left show the consistency of the model with the current data set, while the blue histograms on the right show the
consistency with new hypothetical data sets. The top histograms show the distribution of the statistic f1σ. The observed f1σ falls at the 63rd and 83rd percentiles of the
distribution (left and right, respectively), indicating that the width of the model’s M–R relation is consistent with the data. The bottom histograms show the distribution
of the statistic fμ. The observed fμ falls at the 2nd and 0.2th percentiles of the distribution, indicating that there is room for future improvement on the choice of what
distribution to use for the probabilistic M–R relation.
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straightforward investigation into the need for an intrinsic
scatter term in the sub-Neptune M–R relation. Some of these
choices, such as parameterizing the relation with a power law
or using a normal distribution to characterize the scatter, were
driven by convenience and familiarity rather than by physics.
In particular, we chose to use a power law in order facilitate
direct comparisons between our results and those in the
literature, and we chose the normal distribution because it
directly parameterizes the intrinsic scatter in the population
rather than relying on a transformation from a more obscure
distribution to derive the population variance. In general, our
philosophy was to limit the number of free parameters in our
model as much as possible in order to maximize the
information content per parameter.

That said, these parameterizations are by no means the only
ones that could be reasonably used. These approximations can
and should be revisited in future work, especially as more data
becomes available and we begin to describe more subtle
features in the M–R relation. An important aspect of these
studies will be model-checking to inform choices for
parameterizing the M–R relation (see Section 6.2) and
performing quantitative model comparisons. For now, we
emphasize that the inclusion of any kind of probability
distribution to account for intrinsic scatter represents a
significant improvement over prior work, and we leave testing
different distributions for future studies.

A related parameterization issue is our choice not to include
any other planet properties into this M–R relation, such as a
dependence on orbital period. It is entirely plausible on both
theoretical and observational grounds that the M–R relation at
short periods may be different from that at long periods.
Theoretically, photoevaporation is likely to have eroded planets
on short orbits (see, for example, Murray-Clay et al. 2009;
Lopez et al. 2012; Howe & Burrows 2015), thereby causing the
population of highly irradiated planets to be denser on average;
alternatively, migration could have produced a mass-dependent
stopping location given a certain structure for the inner regions
of the disk (e.g., Benítez-Llambay et al. 2011) or tidal
circularization could have produced a density-period correla-
tion for the shortest orbits (Barnes 2014). Observationally, we
see a suggestive dearth of >3 ÅR Kepler PCs and lower-mass
RV planets at short orbital periods (Beaugé & Nesvorný 2013)
and a period dependence in the marginalized, bias-corrected
Kepler radius distribution (Youdin 2011; Howard et al. 2012;
Morton & Swift 2014). These observations hint at the potential
for interesting features in the joint density-period distribution.

While these results provide strong motivation for further
investigations into period-dependent M–R relations, there will
be numerous details to address in fitting the more complex
period-dependent statistical model to the data. We choose to
leave these analyses for future work given the number of tests
that we have already performed here (choice of parameteriza-
tion for the intrinsic scatter, RV versus TTV masses, and
different radius ranges). In particular, this future work will need
to robustly account for the systematic biases between the
different mass measurement methods to make sure that our
inferences are not driven by arbitrary choices for the data we
use (or if these choices prove to be unavoidable, to quantify
their effect). In general, future studies will need to perform
model comparison to identify the most useful parameterizations
given the data. These two efforts pose cutting-edge statistical
challenges that are worthy of separate investigations in and of

themselves, and so we reserve them for follow-up studies that
build on the results presented here.
Returning to our current statistical model for the M–R

relation, our third major modeling choice after the power law
and Gaussian astrophysical scatter was using Gaussian errors
for the observed mass and radius measurements, as denoted in
the last line of our statistical model (Equation (4)). The most
accurate hierarchical analyses include the actual likelihood
used to infer these planetary parameters from the lower-level
photometric and spectroscopic data, rather than assume such a
heavily simplified functional form as we did. Incorporating
observers’ true likelihoods is important to capture important
correlations that exist in the measurement analysis and to use
all of the information contained in the lower-level data. Ideally,
future planet discovery papers will make their full, joint
likelihood distributions available in addition to the reported
“best-fit” value; depending on the type of analysis that
observers use to make measurements from their data, this
means providing either log-likelihood (e.g., χ2

) contours over
all of the parameters that were considered or providing
posterior samples along with detailed information about the
choice of priors. Unfortunately, this information is not publicly
available, and so we cannot use it. Therefore, we follow the
convention established by WM14 in using a normal distribu-
tion to represent the marginalized mass or radius likelihood.
Another notable approximation that we have made arises

from the difference between the graphical model describing our
M–R relation (Figure 1) and the way in which we have
implemented it (Equation (4)). The difference between the two
is subtle: by conditioning on s i

Mob
( ) in the lowest level of the

model, we are assuming that the observed mass measurement
uncertainty is independent from the measurement itself. In
reality, the calculation of both the uncertainty and the measured
value are produced by the same modeling process and thus are
correlated in a potentially nontrivial way.13 In practice, we had
no other choice than to assume independence because the
nature of this correlation is rarely, if ever, published.
An important caveat about our results is that we ignore

selection effects, primarily due to the inability to model the
human decisions which affected the ground-based follow-up
observing campaigns. As discussed in Section 3, we would
ideally have a uniform sample of masses and radii which were
analyzed in the same way, and have well-characterized the
selection effects and detection efficiencies. Unfortunately, this
is simply not possible at the present moment. The sample is
highly heterogeneous, a compilation of many observing teams’
programmatic, yearly, and nightly priorities that are not
communicated in the literature and therefore cannot be
accurately modeled. There is significant, difficult work still to
be done to understand the extent to which the follow-up
process shapes the observed mass–radius space and therefore
influence our inferences for the underlying M–R relation.
This is particularly important for interpreting the apparent

discrepancy between the population of TTV-measured masses
and the population of RV-measured masses. In Section 5.2 we
corroborate the systematic density difference between TTV and

13 At first glance this may seem like an inconsequential difference considering
the other modeling assumptions we have made, but the assumption of
independence becomes problematic when the processes of detection and
measurement use the same data and when the population analyses use regions
of parameter space where the detection efficiency starts to drop (see Loredo &
Wasserman 1995 for the technical details). We do not correct for detection bias
in this paper, so are unaffected by this problem.
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RV planets that had been noticed by Jontof-Hutter et al. (2014)
and Weiss & Marcy (2014), as we find a ∼ two “sigma” offset
in the two data sets’ M–R relation parameters. Since we do not
attempt to model the selection effects that are involved, we
cannot distinguish how much of this offset is created by
observational bias and how much is due to an intrinsic
difference in the density distribution. If the latter turns out to be
the driving factor behind this apparent discrepancy, disentan-
gling the underlying reason for this astrophysical density
difference from the current list of features which distinguish the
two samples will have numerous implications for planet
formation and evolution.

7. CONCLUSIONS

In this paper we have defined and constrained a probabilistic
mass–radius relationship for sub-Neptune planets (Equation (2)
with parameter values in Table 1 and the density constraint
provided in Equation (5)). In particular, we demonstrate that
there is intrinsic, astrophysical scatter in this relation, and that,
except for the smallest planets, this scatter is nonzero for all
considered data sets. For the first time in the exoplanet
literature, we display the uncertainties in the M–R relation
parameters through posterior distributions and explain how to
properly incorporate these uncertainties into a predictive
distribution of masses for individual planets. This M–R relation
will be useful for anyone who wishes to perform large-scale
dynamical or planet formation studies with the Kepler PCs.

More broadly, this work provides a framework for further
analyses of the M–R relation and its probable dependencies on
period and stellar properties. Here we have demonstrated how
to develop and apply a statistical model that incorporates
measurement uncertainties into population-wide inference of
the sub-Neptune M–R relation and that directly produces
estimates of the uncertainty of the inferred parameters. This
method is advantageous because it is quantitative and easily
generalizable to include additional variables which may be
important in the underlying M–R relation that we are trying to
model, such as incident flux (Section 6.3) or different stellar
masses or metallicities. We do not investigate these possibi-
lities here, as we wish to begin this broader effort with the
simplest reasonable statistical model. Nevertheless, searching
for additional dependencies in the M–R relation is an important
endeavor in order to understand which physical processes
shape the super-Earth population. With this work we establish
both a point of comparison and a framework for these further
studies.
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