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reference system for the human brain, the Bayesian approach is well suited to the task of modeling 
variation in morphology. Statistical information about morphological variability, accumulated over past 
samples, can be formally introduced into the problem formulation to guide the matching or normalization 
of future data sets. 

Comments Comments 
University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-95-07. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/ircs_reports/122 

https://repository.upenn.edu/ircs_reports/122


P

E

N

N

University of Pennsylvania
Founded by Benjamin Franklin in 1740

The Institute For
Research In Cognitive

Science

Probabilistic Matching of Brain Images

by

J.C. Gee
University of Pennsylvania

L. LeBriquer
C. Barillot

Université de Rennes I
D.R. Haynor

University of Washington

IRCS Report 95-07

University of Pennsylvania
3401 Walnut Street, Suite 400C
Philadelphia, PA  19104-6228

April 1995

Site of the NSF Science and Technology Center for

Research in Cognitive Science



PROBABILISTIC MATCHING OF BRAIN IMAGES�

J� C� GEE

Department of Computer and Information Science

University of Pennsylvania

Philadelphia� PA ������ USA

L� LE BRIQUER AND C� BARILLOT

Laboratoire SIM

Facult�e de M�edecine� Universit�e de Rennes I

����� Rennes Cedex� France

AND

D� R� HAYNOR

Department of Radiology

University of Washington

Seattle� WA ������ USA

Abstract� Image matching has emerged as an important area of investiga�
tion in medical image analysis� In particular� much attention has been fo�
cused on the atlas problem� in which a template representing the structural
anatomy of the human brain is deformed to match anatomic brain images
from a given individual� The problem is made di�cult because there are
important di�erences in both the gross and local morphology of the brain
among normal individuals� We have formulated the image matching prob�
lem under a Bayesian framework� The Bayesian methodology facilitates a
principled approach to the development of a matching model� Of special in�
terest is its capacity to deal with uncertainty in the estimates� a potentially
important but generally ignored aspect of the solution� In the construction
of a reference system for the human brain� the Bayesian approach is well
suited to the task of modeling variation in morphology� Statistical informa�
tion about morphological variability� accumulated over past samples� can
be formally introduced into the problem formulation to guide the matching
or normalization of future data sets�

�To appear in Proceedings of XIVth International Conference on Information Pro�
cessing in Medical Imaging� Ile de Berder� France� June ������ ����	
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�� Introduction

Modern imaging modalities routinely provide a variety of information�
ranging from highly detailed� three�dimensional ���D	 pictures of cerebral
anatomy to maps of functional activity within the brain�that have be�
come indispensable in the investigation of the neurological integrity of an
individual� These images� however� are often di�cult to interpret because
of ambiguity in the precise location and extent of the structure�s	 of inter�
est� This uncertainty can arise in several ways
 intrinsic limitations in the
resolution of the scanner� disparate angles at which image sections were ob�
tained by the di�erent scanners or at di�erent times� or natural variability
in both the gross and local morphology of the brain among normal individ�
uals� The goal of our work is to ameliorate the localization of anatomical
structures by developing fully automated methods based on the use of a
labeled atlas� An early survey of atlas�based methods for cerebral localiza�
tion can be found in �
�� in which advantages unique to the approach are
discussed� The fundamental assumption of these methods is that the topol�
ogy of cerebral structures is invariant among normal individuals� To the
degree that this assumption holds� the localization problem can be solved
by determining the mapping from the brain image of a given individual to
some labeled representation� or atlas of normal neuroanatomy�

The �rst comprehensive e�ort aimed at recovering the local di�erences
between a pair of brain images was made by Broit ���� Broit proposed
modeling the atlas as an elastic object so that it could be �physically�
deformed to match the brain image of an individual� A multiresolution
version of this �elastic matching� technique was implemented by Bajcsy and
Kova�ci�c ��� to speed its convergence and to handle large�scale variations in
anatomy� Physically�based modeling is now widely applied in image analysis
to characterize shape and its deformation� A number of global object models
have been proposed for recognition tasks but these are unsuited to the atlas
problem because they cannot describe local changes in shape� Even the
hybrid schemes ��� �� ��� which combine lumped and distributed parameter
models� and many of the distributed parameter models �
�� 

� are generally
not appropriate because only the surface or contour of an object is modeled�
whereas fully volumetric representations are the most useful for the atlas
problem�

In the present paper� we present a Bayesian decision�theoretic formula�
tion of the volumetric image matching problem� The Bayesian approach �to
regularization	 represents a generalization of many physically�based meth�
ods� such as elastic matching� and is appealing for additional important rea�

�This representation can take many forms but is usually derived from either a brain
image of an individual or a textbook 
see� for example� the atlases in ��� �� �
�	
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sons� First� because we are dealing with uncertain quantities� such as noisy
data� fromwhich information or decisions are derived �that must themselves
then be uncertain	� it is natural to adopt a probabilistic approach� Second�
Bayesian analysis formally embodies the use of prior information that we
may have about the problem� In matching� the prior serves to constrain
our mappings by favoring certain con�gurations� in e�ect� regularizing the
problem� Among the many operational advantages of Bayesian analysis�
the most relevant to our work is that the result is a posterior distribution

for the unknown mapping� which expresses the probability of any map�
ping given the observed images� The existence of this distribution makes
possible a range of analyses� including the estimation of the variance or re�
liability of the estimated mapping� This information about the uncertainty
in the estimate better informs the investigator in his or her interpretation
of the results and indicates to the user where the addition of information
may improve the results �in terms of reducing its uncertainty	� In the con�
struction of a reference system for the human brain� the Bayesian approach
can provide information about the variability inherent in the normalization
procedure�

�� Elements of Decision Theory

Statistical decision theory is concerned with the problem of decision mak�
ing in light of relevant statistical information other than that provided by
the sample �
��� One important kind of such nonsample information is prior
knowledge that we may have about the unknowns� We usually also have
some understanding of the possible consequences of making a particular
decision� and indeed its quanti�cation will be necessary to perform esti�
mation� This is achieved by determining a loss function which measures
the cost incurred for making a particular decision given some value of the
unknown� In our matching problem� the unknown state of nature or param	

eter � is the �true� displacement mapping relating the pair of images� the
images constitute the sample� and the decision or action concerns the value
to which the mapping is assigned� To evaluate the e�ect of taking action
a� when the true state of nature is ��� the loss function is used to calculate
the cost L���� a�	 that is incurred�

As with knowledge about the consequences of making particular deci�
sions� the prior information related to � must similarly be quanti�ed in
order to be useful� This is done by considering the unknowns to be random
variables� The prior knowledge is then expressed as a probability distribu�
tion � on the parameter space ��

In order to actually make a decision� �rst note that the actual incurred
loss is itself a random quantity� that is� it will never be known with certainty�
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A sensible approach to take under such circumstances is to base the choice
of a decision on its �expected� loss


E��L��� a	 �

Z
�
L��� a	 d����	�

where ����	 is the �nal �posterior	 probability distribution of � �see Section
�	� Decisions can then be made by choosing the action which minimizes the
expected loss�

�� Prior Information

The use of prior information is a fundamental element of Bayesian decision
theory� In many problems� the introduction of prior knowledge substantially
improves the solution by� for example� reducing noise or ruling out �impos�
sible� answers� But for image matching and other ill�posed problems� prior
information in the form of constraints are essential to their solution�

In the absence of speci�c prior information about a given problem� con�
straints on the smoothness of its solution� as imposed by standard regular�
ization� have turned out to be useful for solving a wide range of ill�posed
problems�see �
�� 
�� for examples in early vision� In the study of biological
shape� the imposition of C� continuity has been advocated in performing
morphometrics� based on the observation that spatial variation in the pro�
portions of shape tend to be graded �
��� Nevertheless� it will be bene�cial
to admit mappings of C� continuity� which have proved satisfactory for
the atlas problem when used in combination with a separate global a�ne
registration stage ��� 
���

The task of designing priors which re�ect our expectations about the
smoothness of the unknown mapping is straightforward
 the prior probabil�
ity corresponding to a particular stabilizing functional can be modeled by
the Gibbs distribution whose energy function is the same stabilizer� For the
linear elastic strain energy functional we have used �
��� the Gibbs energy
function is quadratic
 our prior distribution ���	 is therefore Gaussian��
Szeliski �
�� has observed that the spectrum of the membrane model�to
which our linear elastic prior is related�coincides in form to that of a
Brownian fractal� One implication is that our priors have no natural scale
and hence are suitable for modeling data of any size�

�It should be emphasized that smoothness constraints compose only one kind of prior
information useful for image matching and that the particular prior we have chosen is
not essential to the present Bayesian formulation of the matching problem�see ���
 for
additional discussion on prior models suitable for atlas matching	
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�� Likelihood Functions

The likelihood f�zj�	 expresses the probability of observing the data z given
any particular value of the unknowns �� Its de�nition requires a model for
predicting the observations from given values of the unknowns as well as
knowledge about the statistical characteristics of the measurement noise�
The likelihood function therefore provides us with the means to explicity
model the process by which our observations are degraded�

The observations encountered in image matching may be of several
kinds� each corresponding to a di�erent feature space� This is di�erent from
the usual case in which the observations would be degraded samples of the
unknowns� Rather� the likelihood of a mapping is determined by measuring
the similarity between pairs of features� The uncertainty in these measure�
ments can be modeled by imagining that the similarity values are obtained
from a virtual sensor� The procedure is described in �
�� but the general
idea is as follows
 an error surface is �rst estimated locally about the current
displacement estimate of the given point� this surface is approximated by a
quadratic that we then use to de�ne a Gaussian representing the likelihood
function for the point�

�� Posterior Analysis

We began by requiring that� in the absence of additional information� a
mapping should be smooth and that the likelihood of its occurrence in�
creased with its smoothness� When data is presented to us in the form of
�observations� made of the unknown mapping � � �� the likelihood of an
arbitrary mapping no longer depends only on its smoothness but must take
into account its probability of actually having produced the observations�
Our revised beliefs about the mappings � in view of the observed data z is
simply the conditional distribution of � given z


���jz	 �
f�zj�	���	R

� f�zj�	 d���	
�

where f and � are the likelihood and prior� respectively� We determined
earlier that an optimal action is one which minimizes the expected loss of
the problem� We recognize now that the expectation should be taken with
respect to the posterior distribution ���jz	�

���� DISPLACEMENT FIELD ESTIMATION

The most common estimate used in Bayesian analysis is the value of the
unknown which maximizes the posterior distribution� This maximum a pos	
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teriori �MAP	 estimate is of interest because it represents the maximum
likelihood estimate derived from the posterior distribution�

Consider the situation in which the similarity of an image pair is deter�
mined by some similarity measure S and the prior is the Gibbs distribution
with energy Uprior equal to the linear elastic strain energy� Because the like�
lihood function is similarly a Gibbs distribution� the posterior is Gibbsian
with energy U��� fIsubject� Iatlasg	 equal to


�
Z
�atlas

S�Iatlas�x� �	� Isubject�x		 dx� Uprior��	� �
	

where Iatlas and Isubject represent the images of the atlas and brain of the
individual� respectively� and S is computed over all points x in the domain
of the atlas �atlas� For Gibbs distributions� MAP estimation reduces to
the problem of minimizing energy U � Note that the energy functional in
�
	 is the same one that appears in the variational formulation of elastic
matching� Thus� the current MAP estimate and the standard�regularized
solution to the elastic matching problem are equivalent�

Our optimization algorithm to estimate the MAP solution is described
in ����� and its performance along with that of the minimum mean squared

error �MMSE	 estimator were recently examined in �
��� The MMSE es�
timate is the optimal action for the squared error loss function
 L��� a	 �
�� � a	�� It is equal to the mean of the posterior and can be estimated
through Monte Carlo integration using the Gibbs sampler described next�

���� VARIANCE ESTIMATION

Although Bayesian estimates represent �optimal� interpretations of the in�
formation contained in the prior and the sample data� a potential fault
with their use�and with all other methods in the brain image matching
literature�is that there is no indication of the uncertainty in their values�
The uncertainty encodes information about the in�uence of the prior on
the estimate� In addition� the uncertainty in the sample data is re�ected in
the �nal reliability of the solution�

Consider a Gibbs distribution p with quadratic energy


� log p�Z � z	 �



�
�z � z

�	TK�z � z
�	 � k�

where z� is the minimum energy value and k a constant� This is Gaussian
and� therefore� the mean and covariance completely characterize the distri�
bution� To obtain the covariance matrix� it is only necessary to invert the
matrix K associated with the Gibbs energy function� For energies that are
not convex� the de�nition of the corresponding Gibbs distribution requires



Probabilistic Matching of Brain Images �

higher order statistics� We can nonetheless approximate the variance near
an estimate by �tting a quadratic to the posterior energy function at the
estimate� The matrix inversion needed to obtain the covariance matrixK��

can be performed using a number of techniques� However� for the problem
domains that are normally encountered in image matching� the covariance
matrix is very large� We therefore considered only the diagonal elements of
the covariance matrix� which represent the variance of the estimate at each
site�

A �nite element approximation to � was used� In the �nite element
method ��
�� the problem domain is subdivided into regions or elements�
Neighboring elements share discrete nodal points along their interface� The
only unknowns are those at the element nodes� The displacement � at
any other point within an element is interpolated from the nodal values

�j �

P
n�N �e��

j
nNn� where N �e	 is the set of nodes which delimit element

e� Ni are the interpolating functions� and we write �in for the value of the
ith component of the displacement at node n� It is straightforward to verify
that the �nite element representation of an arbitrary Gibbs energy function
leads to a Markov random �eld �MRF	 model� Since our energy functions
are quadratic� the local characteristics of the MRF are Gaussian� It is thus
possible to build an e�cient continuous state space Gibbs sampler for our
problem ����� To illustrate its construction� consider the following quadratic
��nite element	 energy


U��	 �



�
���TK� � ���Tf � k

�



�

X
nm

��n�
TKnm�m �

X
n

��n�
Tfn � k�

where K is a positive de�nite matrix� f a constant vector� and k a constant�
The indices n and m range over the set of all element nodes� De�ne the
lattice of sites S to be the set of �nite element nodes� The neighborhood
system G at each node n comprises those nodes m which potentially exert a
�force� on it
 Gn � fmjm �� n and m � N �E�n		g� where E�n	 is the set of
elements containing node n� Finally� de�ne the clique potentials as follows


VC��	 �
�
� ��n�

TKnn�n � ��n�
Tfn if C � fng�

VC��	 � ��n�TKnm�m if C � fn�mg� where n �� m�
VC��	 � � otherwise�

��	

It is evident that U��	 �
P

C VC��	� We now establish that the local char�
acteristics of this MRF are Gaussian or� equivalently� show that the local
energies are quadratic� By de�nition�

p��nj�m� m �� n	 � exp�
X

fCjn�Cg

VC��	� ��	
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Substituting the clique potentials de�ned in ��	 into ��	� the local energy
Un��	 �

P
fCjn�Cg VC��	 can be rewritten as


Un��	 �



�
��n�

TKnn�n � ��n�
Tfn �

X
m�Gn

��n�
TKnm�m�

This expression can be factored into the following quadratic form


Un��	 �



�
��n � �n	

TKnn��n � �n	�



�
��n�

TKnn�n�

where

�n � �K��
nn

�
�fn � X

m�Gn

Knm�m

�
� �

The implementation of our continuous state space Gibbs sampler at itera�
tion k� where site n is being updated� can be summarized as follows


� Calculate the mean vector �
�k�
n � �K��

nn

h
fn �

P
m�Gn Knm�

�k�
m

i
�

� Set the new displacement ��k���
n � �

�k�
n � bn� where bn is Gaussian

noise with zero mean and covariance equal to K��
nn �

�� Experimental Results

To demonstrate some of the manifold features of the Bayesian approach� it
will be enough to use the two�dimensional data set displayed in Figure 
�
The left image in the �gure represents an MRI section� extracted at the
level of the AC�PC plane� Its slice dimensions are 
��� 
�� with pixel size
equal to 
���mm � 
���mm� This image was then distorted with a known
thin�plate spline to produce the image shown in the center of Figure 
�
The object of the experiment was simply to recover the mapping from the
original brain section to its distorted version� To make the problem more
challenging� the test image depicted in the right of the �gure was created
by adding white Gaussian noise �� � 
�	 to the spline�distorted image after
�rst blurring it with a Gaussian �� � 
 pixel	�

Figure � illustrates some of the results obtained when the match between
a pair of points was rated according to the similarity of their underlying tis�
sue constituents �
��� In the current case� the MRI volume from which our
section was extracted had previously been segmented into its gray and white
matter components ����� To interpet the displacement mappings in the �g�
ure� focus on their central portion and ignore those parts which displace
only the background pixels�the discrepancy in the background motion is
partially due to the zero displacement boundary condition that we imposed
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Figure �� Original MRI section 
left� and its distorted versions	

at the image periphery in lieu of �rst performing a global a�ne registration
of the images� The MMSE estimate has a smoother appearance than that
of the MAP solution and� as such� more closely resembles the truth in this
case� In spite of the perceived disparity between their motion �elds� the two
estimates produce similar registrations of the gray and white matter com�
ponents in terms of the amount of relative overlap between their matched
and distorted versions� The speci�c values are listed in the second and third
columns of Table 
 along with the overlap values prior to matching� Note
that the MAP estimate actually results in a slightly better match of the
tissue components�

Displayed to the right of the estimated mappings in Figure � are images
of the magnitude of the variance estimates� Compare the variance of the
MAP estimate �maximum � 
�
 pixels	 with the original MRI section
 the
underlying structural anatomy is visible� re�ecting the fact that the uncer�
tainty is reduced at the gray�white interfaces but is relatively large within
those portions of the image that lack informative features� In contrast� the
posterior variance �maximum � ��� pixels	 plainly depicts the complex�
ity of the entire posterior distribution� In this case� for example� it reveals
information that would otherwise be unavailable about portions of the map�
ping which have an exceptionally large variance�in the present experiment
where the truth is known� these large uncertainties are also manifest as mis�
matches by the mean estimate� Unfortunately� it is not possible to visually
qualify the extent of the di�erences between the two variance estimates in
the �gure because their gray�level values were not scaled in the same way�

The results for the noise�corrupted test image are presented in Fig�
ure �� In this experiment� the normalized cross�correlation between two
given points was used to measure their similarity �
��� The good visual
agreement between the estimates and the truth is supported by the accu�
rate registration that the estimates produce for the gray and white matter
as indicated in Table 
� The motion �elds of the two estimates are remark�
ably similar� Even more striking is the resemblance between their variance
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Mean

MAP

Original

Displacement Variance

Figure �� Original and estimated motion �elds for the distorted but noise�free test
image� where the match between a pair of points was rated according to the similarity of
their underlying tissue constituents	 Displayed to the right of each displacement estimate
is the estimated 
magnitude of the� variance of its values	

estimates�both have maximum values equal to ��
 pixels� The gray�white
interfaces are not only readily discernible in the variance estimate about
the MAP solution but are equally apparent in the posterior variance� The
implication is that the matching problem for the current experimental set�
up based on cross�correlation is actually fairly �well posed�� Reducing the

TABLE �	 Relative overlap between the estimated and true re�
gions corresponding to the gray and white matter components	
The overlap was de�ned as the ratio between the intersecting
area of the two regions under comparison and the area of their
union	

Classi�cation Correlation

Original MAP Mean MAP Mean

Gray Matter �	�� �	�� �	�� �	�� �	��

White Matter �	�� �	�� �	�� �	�� �	��
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Mean

MAP

Original

Displacement Variance

Figure �� Original and estimated motion �elds for the distorted and noise�corrupted
test image� where the normalized cross�correlation between two given points was used
to measure their similarity	 Displayed to the right of each displacement estimate is the
estimated 
magnitude of the� variance of its values	

�strength� of the prior by an order of magnitude results in a decrease of
only approximately � percentage points in the �nal overlap values for the
gray and white matter registration� However� as the in�uence of the prior is
further reduced� the solution begins to deteriorate and eventually becomes
singular�

�� Discussion

The basic elements of a Bayesian approach to the problem of matching
brain images has been described� The method has important advantages
that are particularly useful in the construction and application of a prob�
abilistic reference system for the human brain� Since the method is in�
herently probabilistic� it is well suited to the task of modeling variation
in morphology� one of the principal features of such a reference system�
Prior statistical information about morphological variability� accumulated
over past samples� can be formally introduced into the problem formula�
tion to guide the matching of future data sets� Equally important is that
the Bayesian methodology facilitates a principled derivation of the likeli�
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hood model� which together with the prior make up a particular matching
�posterior	 model� In the evaluation of any matching algorithm then� its
essential assumptions can be made explicit by determining the models and
the estimator e�ectively in use by the method� For example� the solutions
obtained using variational regularization correspond to the MAP estimate�
In contrast� the speci�cation of the loss function is part of the problem
de�nition in Bayesian estimation�

The task of properly building a Bayesian model is a di�cult one� but
the process encourages careful deliberation of the problem at hand to arrive
at the assumptions used to form the components of the model� For brain
image matching� a number of e�ective similarity measures exist� whereas
there is comparatively little known about the kinds of prior models that
are speci�cally suited to the problem �and its applications	 or how their
in�uence on the solution� relative to the likelihood� should be determined�
The resolution of these issues directly impacts the viability of any matching
procedure� Bayesian or otherwise� but is best addressed within a Bayesian
setting� The potential bene�ts that follow from the Bayesian approach� in�
cluding the capability to estimate and explore the uncertainty of a Bayesian
solution ����� are compelling reasons for adopting the method in brain image
matching�
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A� Maximum A Posteriori Estimation

This appendix is extracted from ���� and does not appear in the proceedings
version of this manuscript� Its inclusion here is to help make the present
paper as self�contained as possible�

Recall �
	 and suppose for concreteness that Uprior is equal to the lin�
ear elastic strain energy�we will also show how to implement the related
membrane energy functional� In addition� we are provided with a set of
landmarks� In ����� the likelihood of observing the intensity at a point in
one image IT � given the intensity at the corresponding point in the second
image IR� was represented by an unknown conditional probability density
and its estimation formed part of the problem� The two di�erent sources
of information about the unknown mapping�landmarks and the images
themselves�are combined in a logarithmic opinion pool �
��� The problem
of �nding the MAP estimate was expressed as follows
 �nd 	 and p to
minimize

U � �
Z
�R

log p�IT �	�x		jIR�x		 dV

� �
NX
i��

�	�pi	� p
�

i	
�

���i

�



�

Z
�R

���T� dV ��	

� UI � UII � UIII�

where

x is a generic point in Rd� d being equal to the number of spatial dimen�
sions�

��x	 is a vector�valued deformation or displacement�
	�x	 � R�x� ��x		 is the correspondence induced by the local deforma�

tion � and the global a�ne map R� R�x	i �
P

j Rijxj � Ci�

�pi�p
�

i	 is a set of user�de�ned �approximately	 corresponding points� where
the true location of 	�pi	 is assumed to have a distribution centered
at p

�

i� with uncertainty measured by the Gaussian with width �i� and
� and � are the stress and strain vectors respectively�

The �rst term in the expression above represents the logarithm of the
unknown likelihood� integrated over the domain �R of IR� The second
term represents the sum over the user�speci�ed landmarks pi� which must
be mapped by 	 into the points p

�

i� the value of � is adjusted so that

k	�pi	 � p
�

ik is of order �i� The last term represents the internal strain
energy of the deformation � � It penalizes deviations from a smooth �glob�
ally a�ne	 map 	� For simplicity� we assume that the atlas� in addition to
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being linear elastic� is isotropic and homogeneous� thus� only Lame�s elastic
constants 	 and � remain to de�ne its material properties�

The minimization problem implied by MAP estimation is made di�cult
in image matching because the expressions involved� as exempli�ed by ��	�
are highly nonlinear� Iterative techniques must therefore be used to search
for the solution� We begin by computing a spline approximation to 	 if
landmarks are available� otherwise� only an initial registration R is inferred
by aligning the centroids and principal axes of the brain volumes� The joint
histogram between IR�x	 and IT �	�x		 then provides us with an estimate
of p� which is smoothed� We use a �nite element approximation to � � In
the �nite element method� the domain of the problem is �rst divided into
regions called elements� The elements are connected at discrete nodal points
along their periphery� The only unknowns are those at the element nodes�
We de�ne N to be the set of all nodes and E the set of all elements� The
jth component of the displacement � at any other point within the element
is interpolated from its nodal values


�j �
X

n�N �e�

�jnNn� ��	

where N �e	 represents the set of nodes in element e and we write �in for the
value of �i at node n� In our preliminary investigations� the interpolating
or shape functions Ni were those for the two�dimensional ���D	 parabolic
isoparametric element or the bilinear quadrilateral element�

Of the three terms in ��	� the second and third are immediately seen to
be quadratic in � �because of the local character of �nite element basis
functions� the middle term in ��	 involves only a few of the �in�s� If the �rst
term in ��	 were also quadratic� then the problem of minimizing U would
reduce to solving a large but sparse system of linear equations� Our strategy
is to replace the �rst term by a linearized or quadratic approximation� The
global minimum �

� of the resulting quadratic is found� This is used to form
the next estimate of 	 and p is recomputed again� We then develop a new
approximation valid near �� and repeat the process until a stable solution
is reached�

The algorithm is illustrated in Figure �� It is has an outer loop over
di�erent resolution levels and an inner optimization algorithm� The inner
algorithm� given a starting approximation to �� �xed values for �� elastic
constants 	 and �� and p�IT jIR	� �nds a local optimum for U given by ��	�
The outer loop de�nes a series of image sets IkR� I

k
T � Lagrange multipliers �

k �
and elastic constants 	k and �k designed so that if �k minimizes Uk��	 �
U��� IkR� I

k
T � f�pi�p

�

i	g� �
k� pk�Rk� 	k� �k	� then



i� �k � �
�� the value that globally minimizes U �
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for 
k � �� k � N � k��� f Loop over each of N resolution levels�

if 
k � �� f

Calculate ������ initial spline approximation to � if tie points� 
pi� p
�

i�� are avail�

able� otherwise� ������ � R�����x� where R����� is obtained by aligning cen�
troids and principal axes of the brain volumes�

Calculate initial displacement �eld ������
x� � 
R��������������
x��x for x � �R�

g else f

R�k��� � R�k���mk�� ��

��k��� � ��k���mk�� ��

��k��� � ��k���mk����

If N k��� Ek�� are di�erent from N k� Ek � then ��k��� is interpolated from
��k���mk�� ��

g

for 
l � �� l � mk� l��� f Optimize � over mk iterations�
updating �� p at intermediate steps�

if 
l � �� f

R�k�l� � R�k�l����

��k�l� � ��k�l����

��k�l� � ��k�l����

g

Calculate p�k�l�� kernel�smoothed estimate of p� based on the map ��k�l�
x� �

R�k�l�
x� ��k�l�
x���

Optimize local deformation

�
��k�l�� IkR� I
k
T � f
pi�p

�

i�g� �
�k�l�� p�k�l��R�k�l�� �k � �k��

Optimize global a�ne map

R
��k�l�� IkR� I
k
T � f
pi�p

�

i�g� �
�k�l�� p�k�l��R�k�l�� �k� �k�� Optional�

Update ��k�l��

g

g

Figure �� Algorithm to iteratively estimate the mapping � and the conditional prob�
ability density p by minimizing the negative logarithm of the posterior over multiple
resolution levels�see 
��	


ii� �k � ��� which is such that 	�pi	 � p
�

i to within �i�

iii� pk � p�� which is an estimate for the joint probability density of IR

and IT �

iv� IkR � IR and IkT � IT �
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IkR and IkT represent smoothed versions of IR and IT that have been re�
duced in resolution under some �xed �ltering schedule� For example� the
Gaussian pyramid is a suitable representation for multiscale applications
and one that has been successfully applied in elastic matching� We wish in
general the elastic constants 	k and �k to be decreasing but experimental
investigation will be required to determine their schedules� Initially� assum�
ing 	k � 	� �k � � for all k is reasonable� The element and node sets Ek �
N k are normally di�erent at each iteration k� with the size of the elements
decreasing as the value of k increases� � is adjusted within the optimiza�
tion loop so that 	�pi	 agrees with p

�

i to within approximately �i� Thus�

� is decreased if
P

i�	�pi	 � p
�

i	
�
���i is too small and increased if it is

too large� As with the elastic constants� an initial estimate of � will be
obtained from prior experience� In order to calculate p�k�l� and rp�k�l� we
construct the joint empirical probability histogram of IR and IT by deter�
mining �IkR�x	� I

k
T�	

�k�l��x			 for a large number of points x� This empirical
estimate is smoothed� rp�IT jIR	 can then be estimated at a given point x
in IR by �rst determining the values of p�IT jIR	 for a small neighborhood
centered at x� �

� in IT � where �
� is the current displacement estimate� A

quadratic surface is �t to these likelihood values� from which our gradient
is �nally derived� Following the density estimation step the algorithm at�
tempts to �nd a new local minimum of U given the current estimate of ��
We proceed by di�erentiating each of the three terms in ��	 separately�

UII
 For each i� pi � ei � E � where ei is some uniquely determined element
of E � For x � ei�

	�x	 � R�x�
X

n�N �ei�

�nNn�x		�

It follows that

�

��jn

�
�	�pi	� p

�

i	
�

���i

�
�

� P
k

�
��
i

�	�pi	� p
�

i�kRkjNn�pi	 if n � N �ei	�

� otherwise�

In the �nite element implementation it is convenient to develop an equiva�
lent matrix form of the above derivation� Let

�
e � ���� ��� � � � � �n�

T�

the vector of n nodal displacements of the element e and

N � �N��N�� � � � �Nn��

where Ni � NiI and I is the r � r identity matrix with r the number of
unknowns per node� Then ��	� which de�nes the displacement at a point
within the element� can be written as

� � N�e�
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For pedagogic clarity� we will ignore the a�ne component R in the matrix
derivations� The minimization of UII with respect to the nodal displacement
vector �e for each i becomes in matrix notation


�

��e

�
�	�pi	� p

�

i	
�

���i

�
�




���i

�

��e

n
�pi �N�e	� p

�

i

o�

�



���i

�

��e

n
�pi � p

�

i	
� � ���e�T�N�T�pi � p

�

i	

� ��e�T�N�TN�e
o

�



��i
�N�T�pi � p

�

i	 �



��i
�N�TN�e

� f eII �Ke
II�

e�

where

Ke
II �




��i
�N�TN

is the contribution of the point matching term to the element �sti�ness�
matrix Ke of the element e and

f eII �



��i
�N�T�pi � p

�

i	

is its contribution to the element �load� vector f e�

UIII
 In the �nite element method integrals� such as the one representing
the internal strain energy in UIII� are calculated on an element�by�element
basis and then summed� Thus� we write

UIII �
X
e

U e
III �

X
e

Z
V e
���T� dV� ��	

where it is understood that the summation is over the elements comprising
�R� In our linear elastic problem the strains at a point within the element
can be interpolated from the nodal displacements as follows


� �

�
� �x�

�x�

x�x�

�
� �

�
���

���

�x�
���

�x�
���

�x�
� ���

�x�

�
��� � B�e� ��	

where

B � �B��B�� � � � �Bn�
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and

Bi �

�
��

�Ni

�x�
�

� �Ni

�x�
�Ni

�x�

�Ni

�x�

�
�� �

The stresses are in turn linearly related to the strains


� � D�� ��	

where D is the elasticity matrix� In isotropic plane stress� for example� the
elasticity matrix is equal to

D �
E


� ��

�
� 
 � �
� 
 �
� � ���

�

�
� �

whereE and � are Young�s modulus and Poisson�s ratio� respectively�these
can be directly related to Lame�s elastic constants 	 and �� Substituting
��	 and ��	 into ��	� we obtain for an arbitrary element e

U e
III �




�

Z
V e
��e�T�B�TDB�e dV�

Minimizing with respect to �e� as was done in UII� we have

�U e
III

��e
�

Z
V e
�B�TDB�e dV

� Ke
III�

e�

where

Ke
III �

Z
V e
�B�TDBdV

is the contribution of the linear elastic prior to the element sti�ness matrix
Ke�

The priors corresponding to the Tikhonov stabilizers similarly form a
portion of the sti�ness matrix when their ��nite element	 energies are dif�
ferentiated with respect to the nodal unknowns� To illustrate this result�
consider the �rst order Tikhonov stabilizer� also known as the membrane
energy functional


UIII �
Z
�R

X
ij

�
��j�x	

�xi

��

dV

�
X
e

Z
V e

X
ij

�
��j�x	

�xi

��

dV

�
X
e

Z
V e

X
j

kr�jk� dV�
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where its �nite element representation is as follows
Z
V e

X
j

kr�jk� dV �
X
j

Z
V e
�
X

n�N �e�

�jnrNn	
� dV

�
X
jnn�

�jn�
j
n�

Z
V e
rNnrNn� dV�

Di�erentiating this expression with respect to �e� we have

�

��jn

�	


Z
V e

X
j

kr�jk� dV

��

 � �

X
n��N �e�

�j
n�

Z
V e
rNnrNn� dV for n � N �e	�

In matrix form� we writeZ
V e

X
j

kr�jk� dV �

Z
V e

��e�T�rN�TrN�e dV�

where �rN�ij � �Nj
�xiI and I is the r�r identity matrix� The derivative
with respect to �e can then be expressed as

�U e
III

��e
�

Z
V e

� �rN�TrN�e dV

� Ke
III�

e�

where

Ke
III �

Z
V e

� �rN�TrN dV

is the element sti�ness contribution of the �rst order Tikhonov stabilizer�
We can express the sum of UII and UIII as follows


��UII � UIII	

��
� K� � f� ��	

with K a constant �global sti�ness	 matrix and f� a constant �global load	
vector�

UI
 To di�erentiate UI with respect to �� the integral is again divided into
the contributions of individual elements


UI � �
X
e

Z
Ve

log p �IT �R�x� ��x			 j IR�x		 dV

� �
X
e

Z
Ve

log p�IT �R�x�
X

n�N �e�

�nNn�x			 j IR�x		 dV� �
�	
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The derivative of UI with respect to �jn arises only from the terms in �
�	
for which n � N �e	� i�e� for e � E�n	 where E�n	 is the set of elements
containing n� We have� for such an e�

�U e
I

��jn
�

�

��jn

�	


Z
Ve

� log p�IT �R�x�
X

n�N �e�

�nNn�x			 j IR�x		 dV

��

�

	

�

Z
Ve

�
�


p�IT �	�x		 j IR�x		

�
X
k

frp�IT �	�x		� IR�x		gk RkjNn�x	 dV

�
� �
�	

where the summation is over the number of nodal unknowns� The key
approximation is to treat this as a constant� say f

�

�
 we then have� with
f � f� � f

�

��
�U

��
� K� � f � �
�	

a minimum is sought for U by solving �
�	� In the case a linear approxima�
tion K

�

�� � f
�

� is used in place of �
�	� we would have

�U

��
� �K�K

�

�	� � �f� � f
�

�	� �
�	

The result with either approximation is a large sparse matrix equation�
Moreover� the sti�ness matrix is symmetric positive de�nite�this is en�
sured in �
�	 or� more speci�cally� in the construction of K

�

� by discarding
points that lead to negative de�nite element sti�nesses� We solve �
�	 or
�
�	 using the ITPACK iterative linear system solver	 and call the solution
�
�� We then seek the true minimum for U along the line segment between
the previous estimate � and �

�� The algorithm is presented in Figure ��
where a constant approximation to �
�	 has been assumed�

The procedure to optimize the global a�ne map is similar to� but sim�
pler than� the one to optimize �� First� we can ignore UIII since it does not
depend on R� The gradient of UII with respect to R is easily calculated�
The gradient of UI is computationally intensive� and is similar to the calcu�
lations for optimizing �� However� R can be updated much less frequently
than � since the initial solution is likely to be quite close to the truth�

�Kincaid DR� Respess JR� Young DM	 ITPACK
C� A FORTRANPackage for Solving
Large Sparse Linear Systems by Adaptive Accelerated Iterative Methods� Center for
Numerical Analysis� University of Texas� Austin� TX	
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Calculate K� f�� See ���

for �it � �� it � N � it		
 f Optimize over N iterations

Calculate f
�

�
at �� the current estimate of ���

Solve K�
� � f� 	 f

�

�
�

Find � � ��� �� such that U ��� 	 ��� �
��
 is minimal�

Set � � �� 	 ��� �
���

If � agrees with its previous value to within a prede
ned tolerance� then
exit�

g

Figure �� Subroutine to minimize the negative logarithm of the posterior with respect
to the local deformation�see Figure �	
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