
Probabilistic Maximum Error Modeling for Unreliable Logic
Circuits

Karthikeyan Lingasubramanian
Department of Electrical Engineering

University of South Florida, Tampa, FL

Sanjukta Bhanja
Department of Electrical Engineering

University of South Florida, Tampa, FL

ABSTRACT
Reliability modeling and evaluation is expected to be one
of the major issues in emerging nano-devices and beyond
22nm CMOS. Such devices would have inherent propensity
for gate failures due to the underlying device variabilities.
Many of these failures would be transient in nature, neces-
sitating the need for probabilistic logic based analysis. Cur-
rent research in this area is concerned with computing error
bounds, but they do not account for circuits structures or
are usually derived for specific logic gate types. In addition,
the usual focus is on computing the average error behavior.
In this work, we propose an exact probabilistic error model
to compute the maximum error in a circuit-specific manner
and can handle various types of logical components in the
same circuit. We model the error estimation problem as a
maximum a posteriori estimate (MAP) over the joint error
probability function of the entire circuit. Using this model,
we can not only compute the maximum error, but can also
identify the input vector that cause the maximum output
error. We demonstrate this model using MCNC and IS-
CAS circuits. We observe that for some circuits, maximum
error probabilities are significantly larger than the average
likelihood error, thus making a case for the consideration
of maximum error metric as an essential design guideline
rather than just average-case estimates. We also find that
the error estimates depend on the specific circuit structure.
Lastly, we observe that the maximum error probabilities are
sensitive to the individual gate failure probabilities.

Categories and Subject Descriptors: C.4Performance
of Systems:Reliability, availability, and serviceability

General Terms: Reliability

Keywords: Maximum error, MAP

1. INTRODUCTION
In this work, we present a formalism to study the maxi-

mum output error over all possible input space. This prob-
lem is essentially the Maximum a posteriori (MAP) estimate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

that maximizes the probability of evidence (in our case out-
put error) for all possible primary inputs. As the first step
in our model, we convert the circuit into a corresponding
probabilistic model to represent the interdependence of the
random variables of interest in a composite joint probabil-
ity distribution function P (Y1, Y2, · · · , YN), where the graph
structure models all structural dependencies in an edge-
minimal fashion. The initial probabilistic model consists
of three blocks, (i) ideal error free logic, (ii) logic network
with erroneous gate and (iii) a detection unit that compares
outputs from error-free and erroneous blocks for each out-
put. Both the ideal logic and error free logic would be fed by
the primary inputs I. We denote all the internal nodes, both
in the error-free and erroneous portions, by X and the com-
parator outputs as O. The output logic is based on XOR
and hence a value “1” would signify error at the output.
The MAP problem estimates the maximum probability of
individual output error P (oi) by sum-marginalizing the un-
derlying joint probability distribution function over all the
internal nodes X and maximizing over the primary inputs
I.

The specific steps for the estimation process involves the
conversion of the probabilistic model to a join tree(JT) through
a series of transformations for local computation in presence
of re-convergence. An upper bound of MAP probability is
then obtained by message-passing between the neighboring
clusters. We then obtain the exact MAP probability by
a systematic depth-first search over the input instantiation
tree and using the upper bound obtained from the join tree
to branch and bound and prune some part of the search
tree. We also can obtain the inputs that cause the max-
imum output error. We want to point out that since the
probabilistic logic network will work in a stochastic manner,
even with a fixed input vector, probability of output error
will be non-zero and could exceed the expected error value
for many cases. We study this behavior for various gate
error probabilities.

2. PROBABILISTIC ERROR MODEL
The underlying model compares error-free and error-prone

outputs. Our model contains three sections, (i) error-free
logic where the gates are assumed to be perfect, (ii) error-
prone logic where each gate goes wrong independently by
an error probability ε and (iii) XOR-logic based compara-
tors that compare between the error-free and error-prone
outputs. These sections are modeled using a probabilistic
network. Fig. 1 illustrates our model. In Fig. 1(a) block 1
is the error-free logic, block 2 is the error-prone logic with

I1

O1

X6

X5X4

X3

X2X1

ε

(b)

Block 1

Block 3

Block 2

(a)

εBlock 1

Block 3

I3

Block 2

O1

I1 I2 I3

X6X3

X5X4

I2

X2X1

Figure 1: (a) Digital logic circuit (b) Corresponding
probabilistic model

gate error probability ε and block 3 is the comparator logic.
Fig. 1(b) represents the equivalent probabilistic network.

The probabilistic network is a conditional factoring of a
joint probability distribution. The nodes in the network rep-
resent random variables. Let us define the following random
variables say Y={I ∪ X ∪ O} are composed of the three
disjoint subsets I, X and O where each one of them have
two states, logic state ′′0′′ and logic state ′′1′′ and where

1. I1, · · · , Ik ∈ I are the set of k primary inputs.

2. X1, · · · , Xm ∈ X are the internal logic signals for both
the erroneous (every gate has a failure probability ε)
and error-free ideal logic elements.

3. O1, · · · , On ∈ O are the n comparator outputs each
one signifying the error in one of the primary outputs
of the logic block.

4. N = k+m+n are the total number of network random
variables.

We would consistently denote smaller-case variables for
instantiation of the Upper-case random variables. Any prob-
ability function P (y1, y2, · · · , yN) can be written as1

P (y1, · · · , yN) = P (yN |yN−1, yN−2, · · · , y1)

P (yN−1|yN−2, yN−3, · · · , y1)

· · ·P (y1) (1)

This expression holds for any ordering of the random vari-
ables. In most applications, a variable is usually not depen-
dent on all other variables. There are lots of conditional in-
dependencies embedded among the random variables, which
can be used to reorder the random variables and to simplify
the conditional probabilities.

P (y1, · · · , yN) =
�

v

P (yv|Pa(Yv)) (2)

where Pa(Yv) are the parents of the variable Yv, represent-
ing its direct causes. This factoring of the joint probability
function can be denoted as a graph with links directed from
the random variable representing the inputs of a gate to the
random variable representing the output. The probability

1Probability of the event Yi = yi will be denoted simply by
P (yi) or by P (Yi = yi).

distribution of each random variable is given in a condi-
tional probabilistic table based on the logic function which
governs the signal. In this setup it is easier to incorporate
the individual gate error probability ε by just changing the
probabilities in the conditional probabilistic table. For ex-
ample for a given gate error probability ε for a NAND gate,
the conditional probability of the output equaling one (zero)
given that the inputs are zero is 1 − ε (ε).

3. MAXIMUM A POSTERIORI (MAP) ESTIMATE
The Maximum a posteriori estimate over a joint proba-

bility distribution function P , and three disjoint subsets of
random variables I, X and O is a way to find an instan-
tiation i of variables in I that maximizes the P (i,o) given
some evidence o in O. Hence, MAP problem involves both
summation (over X) and maximization operators over(I), si-
multaneously. The average likelihood estimator works only
to find the probability of evidence or P (o), the maximum
likelihood estimator estimates the maximum probability of
P (i,x,o).

The method to compute MAP probabilities, described
in this section, is based on the works by Park and Dar-
wiche [13] [14]. The reader is encouraged to refer [13] and
[14] for more detailed explanation. Here we provide rough
sketch of the computations. Again, we restate that proba-
bilistic network variables say {Y } can be divided into three
subsets I, X and O. Let I1, · · · , Ik ∈ I; X1, · · · , Xm ∈ X;
O1, · · · , On ∈ O.

Consider that the variables in I are the MAP variables i.e.,
the variables whose most probable configuration i has to be
found out, and we give evidence o to the variables in O. The
MAP estimate calculates the probability MAP (i,o).

MAP (i,o) = max
I

�

X

P (i, x1, · · · , xm,o) (3)

For example, consider Fig 1. In the probabilistic model
shown in Fig 1(b), {I1, I2, I3} ∈ I; {X1, X2, X3, X4, X5, X6} ∈
X; {O1} ∈ O. For an evidence o = {O1 = o1} the MAP will
provide the instantiations i = {I1 = i1, I2 = i2, I3 = i3}.

The maximization and summation operators in Eq. 3 are
non-commutative.

[
�

X

max
I

P](y) ≥ [max
I

�

X

P](y) (4)

This is the basis for the first step of MAP evaluation. In
this step a variable elimination algorithm is used which ba-
sically computes an upper bound on MAP probability. A
valid elimination order of variables should have the summa-
tion variables first followed by the maximization variables.
Subsequently an invalid elimination order will give the up-
per bound for MAP solution based on Eq. 4. Eventually,
the closer the chosen invalid elimination order to the valid
elimination order, the tighter will be the upper bound. This
variable elimination mechanism can be incorporated using a
jointree algorithm.

A jointree is a tree where individual nodes are clusters of
variables of the basic probabilistic model shown in Fig 2b [12].
There are many algorithms for this transformation. Inter-
ested reader is referred to [12]. The neighboring clusters
will have one or more common variables which enables mes-
sage passing. With each cluster node, j, in the join tree
we associate a function, φ(j), also termed as the probability

potential function, over the variables in the cluster node,
constructed out of conditional probabilities in the proba-
bilistic model (Eq. 5). For each conditional probability,
P (yv|Pa(Yv)), we find one and only one cluster node, j,
that contain the node set {yv} ∪ Pa(Yv). The potential
function for a cluster node is the product of the conditional
probability functions mapped to that cluster node. Thus,

φ(j) =
�

{yv}∪Pa(Yv)∈j

P (yv|Pa(Yv)) (5)

The joint probability function, which was expressed as prod-
uct of conditional probabilities, can now be expressed equiv-
alently as the product of these individual φ potentials.

A message sent from a cluster j to cluster l can be de-
scribed as,

Mjl = max
M

�

S

φj

�

k �=l

Mkj (6)

where M ⊆ I and S ⊆ X for all variables in cluster j
and not in l. Given this we can say that for any cluster j
the potential that contains the upper bound for the MAP
solution can be given as,

max
M

�

S

φj

�

k

Mkj (7)

where M ⊆ I and S ⊆ X.
Once the join tree is formed, we designate a cluster as

root cluster and with respect to that cluster, we find the
leaf clusters. In the first phase, the MAP algorithm uses
a message passing algorithm from the leaf to the root clus-
ter. In this pass an upper bound of the MAP probability
�P (i,o)� is obtained for a given evidence. This is done by
subsequently obtaining the upper bound �P (I \ Ii,o, ii)� of
the MAP probability by removing Ii from the maximizing
variables (inputs) and adding the variable to the set of al-
ready known evidences.

In the next step, we create a binary search tree for the
input instantiations. One path from the root to the leaf
node of this search tree gives one input vector choice. At an
internal node i, we have partial instantiations of the maxi-
mizing input variables. Children of this node i contains the
instantiations of I \ i.

While performing the depth first search in the input tree,
at every node i, we perform �P (I \ i,o, i)� using the message
passing algorithm on JT as discussed above. If this upper
bound is less or equal to the largest stored MAP probabil-
ity, then the children of i are not considered further. The
process is initialized by obtaining a MAP upper bound by
performing a local search using hill climbing technique [14].

4. EXPERIMENTAL RESULTS
Our main goal is to provide the maximum output error

probabilities for different gate error probabilities ε. To get
the maximum output error probabilities every output signal
of a circuit has to be examined through MAP estimation.
First, an evidence has to be provided to one of the out-
put signal variables in set O such that P (oi = 0) = 0 and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1 0.12

Gate error probability

Pr
ob

ab
ili

ty
 o

f o
ut

pu
t e

rr
or

Avg_c17
Max_c17
Avg_voter
Max_voter

Figure 2: Sensitivity of average and maximum error
probabilities with reference to the change in gate
error probability ε for c17 and voter

P (oi = 1) = 1. Recall that these variables have a probabil-
ity distribution based on XOR logic and so giving an evi-
dence like this is similar to forcing the output to be wrong.
The outputs are evidenced individually and the correspond-
ing input instantiations i are obtained by performing MAP.
Then the input variables in the probabilistic model are in-
stantiated with each instantiation i and inferenced to get the
output probabilities. For performing MAP and inference in
the probabilistic model, we use a tool called SAMIAM [2].
P (oi = 1) is noted from all the outputs for each i and the
maximum value gives the maximum output error probabil-
ity. In order to give a comparison we also present the aver-
age output error probabilities by providing the probability
distribution, P (ii = 0) = 0.5 and P (ii = 1) = 0.5, to all
the input variables. The entire operation is repeated for
different ε values.

Our model also supports to have variable ε in a circuit.
Each gate in a circuit can have an ε selected in random
from a fixed range, say 0.005 - 0.1. We have presented the
result in Fig. 3 for max flat. Here we compare the average
and maximum output error probability and run time for
ε=0.005, ε=0.1 and variable ε ranging for 0.005 - 0.1. It can
be seen that the output error probabilities for variable ε are
closer to those for ε=0.1 than for ε=0.005.

Fig. 2 shows the change in both average and maximum
error probabilities with reference to the change in gate er-
ror probability ε. These graphs are obtained by performing
the experiment for different ε values ranging from 0.005 to
0.1. The notable result is that the maximum error probabil-
ities are much larger than average error probabilities making
them a very crucial design parameter to consider. We also
can see that even for small circuits such as c17, the gap
between the average and maximum error increases with ε
(Fig. 2).

Table 1 tabulates the average and maximum output error
probabilities with ε = 0.05 and ε = 0.1. The circuit count
shows large difference between the average and maximum
output error probability thereby indicating the importance
of maximum error. Also based on average error, c17 would
appear more damaging in terms of error tolerance than cir-
cuit count , where as considering maximum error, count
appears more error-prone for vulnerable inputs with respect
to c17. Table 1 also presents the run time for MAP com-
putation. It is performed on a Windows PC with 2.26GHz
Pentium 4 CPU with 1GB of RAM. The run time does not

0

0.1

0.2

0.3

0.4

0.5

0.6

0.005 0.1 variable(0.005 - 0.1)
Gate error probability

Avg
Max
Time

Figure 3: Comparison between the average and
maximum output error probability and run time for
ε=0.005, ε=0.1 and variable ε ranging for 0.005 - 0.1
for max flat

Table 1: Average and maximum output error prob-
abilities at ε = 0.05 and ε = 0.1

ε=0.05 ε=0.1 Time
Circuit Avg Max Avg Max

c17 0.188 0.312 0.309 0.487 0.047s
max flat 0.272 0.457 0.376 0.535 0.110s

voter 0.266 0.573 0.378 0.568 0.641s
pc 0.299 0.533 0.43 0.589 225.297s

count 0.179 0.492 0.282 0.507 36.610s
alu4 0.472 0.517 0.5 0.604 58.626s

malu4 0.481 0.587 0.499 0.725 588.702s

change significantly for different ε and we show that in Fig. 3
where it can be clearly seen that the run times are very close
to each other. This is expected as MAP complexity is de-
termined by number of inputs, and number of variables in
the largest cluster. Table 2 validates our proposed model
by comparing it with an in-house simulator. It is clearly
evident that the results from our model almost exactly co-
incides with the simulator results.

Table 3 gives the maximum-error input combinations got
from MAP i.e., the input combinations that gives maxi-
mum output error probability. In max flat and voter the
maximum-error input vectors from MAP changes with ε,
while in c17 it does not change. In the range {0.005-0.2}
for ε, max flat has three different maximum-error input
combinations while voter has two. It implies that these
maximum-error input combinations not only depend on the
circuit structure but could dynamically change with the ε.
This could be of concern for designers as the maximum-error
inputs might change after gate error probabilities reduce due
to error mitigation schemes. Hence, explicit MAP computa-

Table 2: Comparison between Maximum output er-
ror probabilities achieved from the proposed model
and the in-house simulator at ε = 0.05 and ε = 0.1

ε=0.05 ε=0.1
Circuit Model Simulation Model Simulation

c17 0.312 0.312 0.487 0.487
max flat 0.457 0.457 0.535 0.535

voter 0.573 0.573 0.568 0.568
pc 0.533 0.535 0.589 0.604

count 0.492 0.495 0.507 0.516
alu4 0.517 0.521 0.604 0.609

malu4 0.587 0.592 0.725 0.732

Table 3: Maximum-error input combinations from
MAP

Circuits No. of Input vector Gate error
Inputs probability ε

c17 5 01111 0.005 - 0.2
max flat 8 00010011 0.005 - 0.025

11101000 0.03 - 0.05
11110001 0.055 - 0.2

voter 12 000100110110 0.01 - 0.19
111011100010 0.2

tion would be necessary to judge the maximum error prob-
abilities after every redundancy schemes are applied.

5. CONCLUSION
We have proposed a probabilistic model that computes

the exact maximum output error probabilities for a logic
network and map this problem as maximum a posteriori
hypothesis of the underlying joint probability distribution
function of the network. We have demonstrated our model
with standard ISCAS and MCNC benchmarks. The results
show significant difference between the maximum and aver-
age output error probabilities. Using our model we can also
compute the most probable input instantiations that can
generate the maximum error probabilities. We also study
the change in output error with respect to the individual
gate error ε and the results show steady increase in output
error.

6. REFERENCES
[1] J. von Neumann, “Probabilistic logics and the synthesis of

reliable organisms from unreliable components,” in Automata
Studies (C. E. Shannon and J. McCarthy, eds.), pp. 43–98,
Princeton Univ. Press, Princeton, N.J., 1954.

[2] “Sensitivity Analysis, Modeling, Inference and More”

URL http://reasoning.cs.ucla.edu/samiam/

[3] K. Nikolic, A. Sadek, and M. Forshaw, “Fault-tolerant
techniques for nanocomputers,” Nanotechnology, vol. 13,
pp. 357–362, 2002.

[4] S. Krishnaswamy, G. S. Viamontes, I. L. Markov, and J. P.
Hayes, “Accurate Reliability Evaluation and Enhancement via
Probabilistic Transfer Matrices”, Design Automation and Test
in Europe (DATE), March 2005.

[5] R. Iris Bahar, J. Mundy, and J. Chan, “A Probabilistic Based
Design Methodology for Nanoscale Computation”,
International Conference on Computer Aided Design, 2003.

[6] G. Noman, D. Parker, M.Kwiatkowska and S. K. Shukla,
“Evaluating the reliability of defect-tolerant architectures for
nanotechnology with probabilistic model checking”,
International Conference on VLSI Design, 2004.

[7] T. Rejimon and S. Bhanja, “Scalable Probabilistic Computing
Models using Bayesian Networks”, IEEE Midwest Symposium
on Circuits and Systems, pp. 712-715, July 2005

[8] Z. Wang, K. Chakrabarty and M. Goessel, “Test Set
Enrichment using a Probabilistic Fault Model and the Theory
of Output Deviations”, Design, Automation and Test in
Europe(DATE), pp. 1-6, 2006

[9] W. Evans and N. Pippenger, “On the Maximum Tolerable
Noise for Reliable Computation by Formulas” IEEE
Transactions on Information Theory, vol. 44-3 pp. 1299–1305,
1998.

[10] S. Roy and V. Beiu, “Majority Multiplexing-Economical
Redundant Fault-tolerant Designs for Nano Architectures”
IEEE Transactions on Nanotechnology, vol. 4-4 pp. 441–451,
2005.

[11] J. Han, J. B. Gao,P. Jonker, Yan Qi and J.A.B. Fortes,
“Toward hardware-Redundant Fault-Tolerant Logic for
Nanoelectronics” IEEE Transactions on Design and Test of
Computers, vol. 22-4 pp. 328–339, July-Aug. 2005.

[12] R. G. Cowell, A. P. David, S. L. Lauritzen, D. J. Spiegelhalter,
“Probabilistic Networks and Expert Systems,” Springer-Verlag
New York, Inc., 1999.

[13] J. D. Park and A. Darwiche, “Solving MAP Exactly using
Systematic Search”, Proceedings of the 19th Annual
Conference on Uncertainty in Artificial Intelligence, 2003.

[14] J. D. Park and A. Darwiche, “Approximating MAP using

Local Search”, Proceedings of 17th Annual Conference on

Uncertainty in Artificial Intelligence, pp. 403-410, 2001.

