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Probabilistic methods applied to 2D

electromagnetic numerical dosimetry

D. Voyer∗ F. Musy† L. Nicolas∗ R. Perrussel∗

Abstract

Purpose Probabilistic approaches are performed on electromagnetic numeri-

cal dosimetry problems in order to take into account the variability of the input

parameters.

Methodology/Approach Methods are based on an expansion of the random

parameters in two different ways: a spectral description and a nodal description.

Findings It is shown on a simple scattering problem that only 100 calculations

are required applying these methods while the Monte Carlo method uses 10 000

samples for a comparable accuracy.

Originality/value of paper The number of calculations is dramatically re-

duced using different techniques: a regression technique, sparse grids computed

from Smolyak’s algorithm or a suited coordinate system.

Keywords Numerical dosimetry, electromagnetism, stochastic method, poly-

nomial chaos, sparse grid.

Paper type Research paper.
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1 Introduction

Electromagnetic dosimetry attempts to evaluate the interaction between elec-

tromagnetic waves and biological tissues; the coupling between the electromag-

netic field radiated by a cellphone and the human body is an illustrative ex-

ample. Numerical simulations are the only tool to estimate accurately the

specific absorption rate – SAR – in the human body [Leveque et al., 2004,

Scorretti et al., 2004]. Up to now most of the works has been focused on

determinist problems in which the values of the input parameters are sup-

posed to be certain. However, these parameters are inherently known with

some vagueness; uncertainties appear indeed in the description of the human

body – e.g. the nature of tissues or the morphology – but also in the de-

scription of the source – e.g. the position of the cellphone or the frequency –

[Stavroulakis, 2003, Hurt et al., 2000]. Thus, determinist calculations are not

suited to properly describe the complexity of the problem. This issue is partic-

ularly crucial in the normative context.

In order to obtain statistic information such as the mean or the variance

of the SAR, the Monte Carlo method could be applied [Newman et al., 1999].

However, the convergence rate of the method is slow: 1/
√
K where K denotes

the number of realizations. When the modeling of the 3D interaction between

the human body and a cellphone is considered with many details in the mor-

phology, one calculation already requires large computational resources. This

consequently makes prohibitive the use of the Monte Carlo method. To deal with

this issue, another method – the spectral stochastic finite element method – has

been introduced in mechanics in the early nineties [Ghanem and Spanos, 1991].

It is based on a spectral decomposition of the random space using the polyno-

mial chaos. There are two approaches: the so called intrusive method where

the determinist solution is widely recast [Ghanem and Kruger, 1996] and the

so called non intrusive method that uses determinist computations with a re-

strictive number of realizations a priori chosen [Ghiocel and Ghanem, 2002]. In
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this paper, we will focus our attention on the non intrusive method because of

the limitation of the numerical resources. Indeed, the intrusive method leads

to an algebraic system that is larger than the system built in the determin-

ist case. This is a serious drawback in complex problems where these matrix

systems are already large in the determinist case. Completing the previous

strategy, a collocation method using Lagrange polynomial has recently came

out [Chauvière et al., 2006]. This technique is an alternative method to reduce

the number of realizations; the difference with spectral methods lies on the fact

that the description of the random variable is based on a nodal approach. The

numerical cost can be further decreased using a regression approach, sparse grids

computed from Smolyak algorithm or a suited coordinate system.

In electromagnetism, only few works have been led; let’s however quoting

two significant examples: the intrusive spectral stochastic finite element method

has been applied to an electrostatic problem where the permittivity of ma-

terials is described by a random law [Gaignaire et al., 2007]; the collocation

method has been implemented in a scattering problem where uncertainty is

introduced in the source term, in the geometrical shape and in the material

[Chauvière et al., 2006]. The objective of this paper is to show the feasibility of

the probabilistic methods in electromagnetic dosimetry. For this purpose, non

intrusive methods are used and several developments, such as the sparse grid or

the suited coordinate system, are investigated to reduce the numerical costs. In

order to evaluate their accuracy, the electromagnetic problem has been reduced

to a 2D problem so that the results can be compared with those obtained by

the Monte Carlo method.
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2 Some probability concepts

2.1 Expansion of random variables

2.1.1 Related Hilbert space

The manipulated random variables are supposed to be described in the vector

space of random variables with finite variance that is denoted L2 (Ω, P ), where

Ω is the sample space and P a probability measure on Ω.

A continuous random variable X of this space is characterized by a proba-

bility density function fX . The mathematical expectation E [X] is then given

by:

E [X] =

∫ +∞

−∞

xfX (x) dx. (1)

It can be shown that the space L2 (Ω, P ) is a Hilbert space with the inner

product and the norm defined as follow:

〈X,Y 〉 = E [XY ] and ‖X‖ =
√
E [X2]. (2)

Any random variable of L2 (Ω, P ) can be expanded on the polynomial chaos

– this is the spectral description – or be interpolated using Lagrange polynomials

– this is the nodal description –.

2.1.2 Spectral description

Let us suppose that X is a random variable depending on a single random

parameter. It can be expressed from a canonical random variable such as a

normal or a uniform random variable [Schoutens, 2000]. Let us take for example

a standard normal variable ξ. Then X can be decomposed as follow:

X =

+∞∑

j=0

XjHj (ξ) , (3)

where {Hj}+∞

j=1
denotes the sequence of Hermite polynomials. In particular one

has H0 = 1, H1 = ξ and H2 = ξ2 − 1. The Hermite polynomials form an
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orthogonal basis with respect to the inner product defined in (2):

E [HiHj ] = i! δij , ∀i, j ∈ N, (4)

where δij is equal to one if i = j and else is equal to zero.

Let us now suppose that X is a random variable depending on D random

parameters. Then X can be expressed introducing as many standard normal

variables ξ1, ξ2, ..., ξD as there are random parameters:

X =

+∞∑

j=0

Xjψj (ξ1, ξ2, . . . , ξD) , (5)

where {ψj}+∞

j=1
denotes the polynomial chaos. Those polynomials are built from

a product of unidimensional Hermite polynomials:

ψj (ξ1, ξ2, . . . , ξD) =

D∏

i=1

Hαi
(ξi) , (6)

where

D∑

i=1

αi = dj with dj the total degree of the polynomial ψj .

In the numerical implementation, the total degree of the polynomial chaos

is limited to a value d. The dimension of the polynomial space is then
(
D+d

d

)

and it grows fast with D or d.

2.1.3 Nodal description

In the univariate case, X can be interpolated from P collocation points {ξp}P−1

p=0

using Lagrange polynomials:

Xinterp =

P−1∑

j=0

X̃jLj (ξ) , (7)
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where Lagrange’s polynomials Lj are defined by:

Lj (ξ) =

P−1∏

p=0
p6=j

ξ − ξp

ξj − ξp
, (8)

in order to satisfy:

Lj

(
ξi

)
= δij , ∀i, j ∈ J0;P − 1K. (9)

In the multivariate case, X can be interpolated from a product of unidimen-

sional Lagrange polynomials.

2.2 Statistic information from determinist codes

Let us consider X the output random variable of the problem. For a better un-

derstanding, only the case of a single input random variable will be treated; the

random space can then be described by a single normal variable ξ. The problem

is to approximate the random variable X using the same code as for determinist

computations. The methods presented here evaluate the approximate solution

from few realizations of the input random variable ξ a priori determined.

2.2.1 Projection method

In the numerical implementation, the expansion given in (3) is truncated to an

order P − 1 so that the approximate solution is expressed as:

Xappr =

P−1∑

j=0

XjHj (ξ) . (10)

The projection method is based on the orthogonality property of the Hermite

polynomials [Puig et al., 2002]. From (3), one finds:

Xj =
E [XHj ]

E
[
H2

j

] , ∀j ∈ [0, P − 1] . (11)
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In (11), the difficulty is to evaluate the numerator:

E [XHj ] =

∫ +∞

−∞

X (ξ) Hj (ξ)
e−

ξ2

2√
2π

dξ. (12)

The integral in (12) can be approximated by using the gaussian quadrature

formula:

E [XHj ] ≈
P−1∑

p=0

wpX (ξp)Hj (ξp)

with wp =
(P − 1)!

H ′
P (ξp)HP−1 (ξp)

,

(13)

where {ξp}P−1

p=0 are the roots of the Hermite polynomials of order P .

From the truncated expansion (10), the whole probabilistic information of

X can be approximated. For example, the mean µ and the variance σ2 are given

by:

µ = E [X] = X0,

σ2 = E
[
(X − µ)

2
]
≈ E

[
(Xappr − µ)

2
]

=
P−1∑

j=1

X2
j j! .

(14)

2.2.2 Least square minimization

The method is based on a least square minimization of the discrepancy be-

tween the input variable X and its truncated approximation Xappr given in (10)

[Webster et al., 1996]. The technique consists in minimizing the error between

X and Xappr at K points
{
ξk

}K

k=1
expressed by:

err =

K∑

k=1

(
X

(
ξk

)
−Xappr

(
ξk

))2
. (15)

Minimizing err leads to the following linear system:

K∑

k=1




H0H0 · · · H0HP−1

...
. . .

...

H0HP−1 · · · HP−1HP−1




ξ=ξk




X0

...

XP−1




=

K∑

k=1




XH0

...

XHP−1




ξ=ξk

. (16)

7



Usually the points
{
ξk

}K

k=1
are chosen to be the roots of an Hermite poly-

nomial of degree equal or higher than P .

2.2.3 Collocation method

The collocation method is based on a nodal description [Chauvière et al., 2006].

From (7), it is required that the residual X (ξ) −Xinterp (ξ) is zero at the col-

location points {ξp}P−1

p=0 . The property reported in (9) immediately gives the

value of X̃j :

X̃j = X
(
ξj

)
. (17)

It seems natural to choose the collocation points {ξp}P−1

p=0 as the roots of the

Hermite polynomial of order P since ξ is a normal variable.

As for the spectral description, the whole probabilist quantities can be ex-

tracted from the nodal approach. For example, the mean µ is given by:

µ ≈ E [Xinterp] =

P−1∑

j=0

X̃j

∫ +∞

−∞

Lj (ξ)
e−

ξ2

2√
2π

dξ. (18)

The integral can be evaluated using the gaussian quadrature formula. One finds:

µ ≈
P−1∑

j=0

wj X̃j (19)

where wj are the weights associated to the roots of the Hermite polynomial of

degree P given in (13).

2.3 Reduction of the number of calculations

When a lot of random variables are required for the problem, the methods

described in the previous section become less efficient since more determinist

calculations have to be performed. In order to reduce the numerical cost, several

techniques can be applied.
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2.3.1 Sparse grids

Sparse grids can be used to choose a restrictive number of nodes either with the

projection method or with the collocation method. Let us consider first the case

of the projection method. In the multivariate case, (12) involves the polynomial

chaos defined in (5) and becomes:

E [X ψj ] =

∫

RD

(Xψj) (ξ1, · · · , ξD)
e−(ξ2

1
+...+ξ2

D)/2

(2π)D/2
dξ1 . . . dξD. (20)

In order to evaluate (20), univariate quadrature rules can be extended to mul-

tiple dimensions by an appropriate tensor product rule:

E [X ψj ] ≈
∑

ξ1∈Pp1

. . .
∑

ξD∈PpD

(Xψj) (ξ1, . . . , ξD)

D∏

m=1

wpm
(ξm)

= (Vp1
⊗ . . .⊗ VpD

) (Xψj)

(21)

where the set of nodes {Pp1
, . . . ,PpD

} and weights {wp1
, . . . , wpD

} are those im-

plied by the underlying unidimensional quadrature rules {Vp1
, . . . , VpD

}. Con-

sequently, the product rule evaluates the function Xψj at the full grid of points

Pp1
⊗ . . .⊗ PpD

. In D dimensions, the product rule therefore requires PD eval-

uations of the function Xψj if the underlying univariate rules are all based on

P nodes. While for example a gaussian quadrature rule exactly evaluates a

univariate polynomial of order 7 with 4 function evaluations, the corresponding

product rule with 10 dimensions requires 410 = 1 048 576 evaluations which is

generally prohibitive.

Smolyak proposed an algorithm to evaluate integrals over several dimensions

with a substantially smaller number of function evaluations than the product

rule [Xiu and Hesthaven, 2005]. This is achieved by combining sequences of

univariate rules with different accuracy levels. The set of nodes used by the
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sparse grids rule can be written as:

PD,k =

k−1⋃

q=k−D

⋃

p∈ND
q

Pp1
⊗ . . .⊗ PpD

(22)

where p = {p1, . . . , pD} and:

N
D
q =

{
p ∈ N

D :

D∑

i=1

pi = D + q

}
(23)

when q ≥ 0 and N
D
q = ∅ when q < 0; for instance N

2
2 = {[2, 2] , [1, 3] , [3, 1]}.

Figure 1 shows the construction of the sparse grid by the Smolyak rule in a

simple example with D = 2 and k = 3. The nodes for a sequence of univariate

quadrature rules P1, P2 and P3 are shown in the top of the figure. The product

rule P3⊗P3 evaluates the function at all two-dimensional combinations of nodes

prescribed by P3 which are shown in the upper right part of the figure. As

expressed in (22), the sparse grids rule combines tensor products of lower degree

Pi ⊗ Pj such that 3 ≤ i + j ≤ 4. The nodes of these products as well as the

resulting sparse grid are shown in the lower part of the figure. The integral over

multiple dimensions given in (20) can then be approximated by:

E [X ψj ] ≈
k−1∑

q=k−D

(−1)
k−1−q

(
D − 1

k − 1 − q

) ∑

p∈ND
q

(Vp1
⊗ . . .⊗ VpD

)(Xψj). (24)

Sparse grids can also be exploited with the collocation method: the selected

nodes given in (22) are used to build a Lagrange polynomial basis.

2.3.2 Regression method

This technique is derived from the least square minimization. In (16), it ap-

pears that the linear system is built in a cumulative way: at each new iteration

k, terms depending on ξk are added to the matrix and to the second member

which had been obtained in the previous iteration k − 1. Consequently, it is

possible to solve this matrix equation without performing the whole of the K

10



Univariate nodes Product rule
P1 P2 P3 P3 ⊗ P3

P1 ⊗ P2 P1 ⊗ P3

P2 ⊗ P1 P2 ⊗ P2

P3 ⊗ P1





Sparse grid

Figure 1: an example of sparse grid.

computations. This is the aim of the regression method: the solution is calcu-

lated for each iteration k and the algorithm is stopped when the convergence is

achieved [Berveiller et al., 2006]. The points
{
ξk

}K

k=1
are organized according

to the greatest density probability.

2.3.3 Choice of the coordinate system in the random space

The efficiency of probabilistic approaches depends actually on a judicious choice

of the coordinate system in the random space. The expansion of random varia-

bles using the Hermite polynomials was at the very beginning a spectral repre-

sentation of the fields built from normal variables [Wiener, 1938]. However, the

convergence turns out to be slow when the random variables are not normal.

Let us consider for example a random variable X characterized by a uniform law
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on the interval [Xa, Xb]. The representation using a standard normal variable

ξG can be calculated analytically [Field and Grigoriu, 2004]:

X =
Xa +Xb

2
H0 (ξG) +

+∞∑

j=0

(−1)
j
ηj√

π 2j (2j + 1)!

Xb −Xa

2
H2j+1 (ξG) , (25)

where ηj = |−1 × 1 × 3 × . . .× (2j − 1)|.

However, using a uniform variable ξU defined in the interval [−1, 1], the

expansion on the Legendre polynomials is immediately given by:

X =
Xa +Xb

2
Lg0 (ξU ) +

Xb −Xa

2
Lg1 (ξU ) (26)

where {Lgj}+∞

j=0
is the sequence of Legendre polynomials. In particular, one has

Lg0 = 1 and Lg1 = ξU . The Legendre polynomials form an orthogonal basis

with respect to the inner product defined in (2).

Thus a suited choice of the coordinate system improves the convergence in

the representation of the random variables and consequently leads to a better ac-

curacy of the probabilistic methods. This approach has recently been developed

through the generalized polynomial chaos: the polynomial basis is built accord-

ing to the nature of the distribution of random variables [Xiu and Karniadakis, 2002].

3 Application in electromagnetic dosimetry

3.1 Description of the problem

Electromagnetic dosimetry deals with the problem of the interaction between

the human body and the electromagnetic field in the low frequency range or

the high frequency range. The methodology described here may be applied in

low frequency problem but this is not considered in the present paper. In high

frequency, the problem concerns the coupling between the human body and

the electromagnetic waves radiated from a cellphone or an antenna. This issue

may become very complex if a realistic scene is modeled. In this paper, the
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problem is reduced to a 2D geometry so that the Monte Carlo method can be

applied for comparison. The geometry of the problem is described in Figure 2;

it could be the leg of a human adult that is modeled by an infinite cylinder

with different layers to take into account the presence of different biological

tissues; three layers characterized by different permittivities and conductivities

are introduced to describe bone, muscle and fat. The structure is illuminated

by an incident plane wave or by an infinitely long filament source in free space.

Thus the electromagnetic problem is invariant following the direction of the

cylinder axis and a symmetry appears.

muscle

fat

bone

free space

10 cm
20 cm

Figure 2: the 2D geometry problem.

To solve numerically this problem, the finite element method has been imple-

mented with second order absorbing boundary conditions allowing the scattering

waves to radiate out of the domain [Bayliss and Turkel, 1980]. The frequency is

set about to 1.2 GHz and 3 000 to 4 000 elements are used for the discretization.

The effects of the electromagnetic waves in the body are quantified by calcula-

ting the SAR ; it measures the quantity of electromagnetic power absorbed by

1 kg of tissue:

SAR =
1

2

σE2

ρ
(W/kg) (27)

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and

E the amplitude of the electric field. In this paper, we are interested in the

maximal SAR locally absorbed in the body.

13



In order to properly describe the reality, the variability that appears in

the properties of the tissues – permittivity and conductivity – but also in the

morphology – thickness of the tissues – or in the characteristics of the source

– frequency and position of the punctual source – has to be introduced. The

problem consists then in evaluating how those uncertainties affect the maximal

SAR in the leg.

3.2 Statistic calculations using the Monte Carlo method

To calculate the statistic response of the maximal SAR, the Monte Carlo method

can be applied. Using a given number of samples, one calculates the maximal

value of SAR for each realization. The estimated mean µSAR and variance σ2
SAR

can then be computed as follows:

µSAR =
1

K

K∑

k=1

SARk and σ2
SAR =

1

K

K∑

k=1

(SARk − µSAR)
2
, (28)

where K is the total number of samples and {SARk}K
k=1 are the values of the

maximal SAR for the K realizations.

In the first example treated in this paper, an incident transverse electric wave

whose electric field has an amplitude E = 1 Vm−1 illuminates the leg. Some ran-

domness is introduced in the properties of the tissues. More precisely, the per-

mittivity and the conductivity of the three kinds of tissues are considered to be

random variables with lognormal distributions. The mean values of these param-

eters are obtained from [Council, ] – see also [C.Gabriel and E.Corthout, 1996]

–. The variance values have been chosen arbitrarily in order to compare the

robustness of the different methods. The parameters are reported in Table 1.

Figure 3 shows an illustration of the electric field and SAR computed using

the mean values given in Table 1.

The repartition of the maximal SAR computed from 10 000 samples is given

in Figure 4. The mean and the variance estimated from those data are equal to

µSAR = 5.19 10−5 Wkg−1 and σ2
SAR = 1.31 10−10 W2kg−2.
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Quantity Mean Variance
Relative permittivity of bone 12.2 0.6
Conductivity of bone (Sm−1) 0.185 0.030
Relative permittivity of muscle 54.4 1.0
Conductivity of muscle (Sm−1) 1.055 0.100
Relative permittivity of fat 5.41 0.04
Conductivity of fat (Sm−1) 0.0580 0.0008

Table 1: parameters of the different lognormal laws.
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Figure 3: electric field and SAR computed for the first example with the mean
values of the parameters given in Table 1.

3.3 Probabilistic calculations using a spectral description

The space of random variables is built from the polynomial chaos made of six

normal variables to describe the six uncertain tissue parameters. The total

degree of the polynomials is first limited to d = 2; this leads to consider 28

polynomials. The total degree d is too low to accurately describe the lognormal

laws but it already implies 36 = 729 determinist calculations if spectral methods

are applied as they are initially proposed. The results concerning the mean are

close to those obtained with the Monte Carlo method – the relative difference is
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Figure 4: repartition of the maximal SAR calculated from 10 000 samples.

less than 1% – but there is a difference concerning the variance: roughly 17% for

the projection method and 12% for the least square method – see Table 2 –. In

order to refine the result, the total degree d is increased to 4; 210 polynomials

are then handled. However, there would be a priori 56 = 15 625 determinist

calculations to make, which goes beyond the number of calculations realized

using the Monte Carlo method.

To reduce this number using the projection method, sparse grids have been

experimented. The nodes for the sequence of univariate quadrature rules P1, P2

and P3 are set to be the roots of Hermite polynomials of degree 1, 3 and 5. This

choice is such that zero is a root shared by the three sequences; consequently,

the construction of the Smolyak grid leads to a lower number of nodes. In

this case, the sparse grid P6,3 is composed of 97 nodes instead of 15 625 nodes

for the product rule. But the variance calculated using this grid is far from

the expected value; this is due to the fact that Smolyak algorithm guaranties
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a small error when the degree of the integrand Xψ in (20) is not too large

[Xiu and Hesthaven, 2005]. In the present case, the degree of X is a priori

infinite; however, the weight of higher degree components decreases more and

less fast following the non linear dependence on the input random variables.

To take into account higher degree components in integral computations, the

sparse grid has to be extended. For example, a fourth sequence P4 composed

with the roots of the Hermite polynomial of degree 7 can be added. The sparse

grid P6,4 then counts 533 nodes. The computed results are more accurate; the

variance is closer to the one calculated with the Monte Carlo method – the

relative difference is roughly 8%; see Table 2 –.

To save numerical cost using the least square approach, the regression method

can be applied by increasing progressively the numbers of nodes. The analysis

reported on Figure 5 shows that the value of the variance converges when K is

close to 800 and the result is not so far from the one evaluated using the Monte

Carlo method – the relative difference is approximately 2%; see Table 2 –.

(a) estimated mean µSAR against the number
of nodes K.

(b) estimated variance σ2

SAR
agings the num-

ber of nodes K.

Figure 5: study of convergence using the regression method.

3.4 Probabilistic calculations using a nodal description

A Lagrangian basis is first built from the product rule using the roots of the

Hermite polynomial of degree 3; that is to say the basis is composed of 36 = 729
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Number µSAR error σ2
SAR error

Method of in on in on
realizations Wkg−1 µSAR W2kg−2 σ2

SAR

Monte Carlo 10 000 5.19 10−5 - 1.31 10−10 -
Projection d = 2 729 5.17 10−5 0.4% 1.08 10−10 17%
Projection d = 4 15625 no no no no
Projection d = 4

533 5.12 10−5 1.3% 1.42 10−10 8%
& Smolyak P6,4

Least square d = 2 729 5.24 10−5 0.9% 1.15 10−10 12%
Regression d = 4 800 5.16 10−5 0.5% 1.34 10−10 2%

Table 2: summary of the results for the first example using spectral methods.
”no” means that no computation has been performed.

polynomials. In this case, the difference of the calculated variance compared to

the Monte Carlo method is lower than the one obtained with spectral methods

– the relative difference is roughly 4%; see Table 3 –. A sparse grid can be

built to improve this result without growing the computer resource consump-

tion; Smolyak algorithm can be implemented using other sequences than those

described in Subsection 3.3. For example, the nodes for the sequence of univari-

ate quadrature rules P1, P2 and P3 can be chosen to be the roots of Hermite

polynomials of degree 1, 3 and 9. Then the sparse grid P6,3 is composed of 121

nodes. The variance calculated using this grid is closer to the value obtained

with the Monte Carlo method – the relative difference is approximately 1%; see

Table 3 –.

Number µSAR error σ2
SAR error

Method of in on in on
realizations Wkg−1 µSAR W2kg−2 σ2

SAR

Monte Carlo 10 000 5.19 10−5 - 1.31 10−10 -
Collocation &

729 5.17 10−5 0.4% 1.25 10−10 4%
roots from degree 3
Collocation

121 5.14 10−5 0.9% 1.32 10−10 1%
& Smolyak P6,3

Table 3: summary of the results for the first example using nodal methods.
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3.5 Other kind of distributions

In the second example, the source is an infinitely long filament of constant

current I = 1 A ; this implies that the electromagnetic problem is described in

the transverse magnetic mode. The position and the frequency of the source as

well as the dimensions of the three tissues are supposed to be random variables

with uniform distributions. The different parameters are reported in Table 4.

The mean values of the morphology parameters are realistic whereas the variance

values have been chosen in order to emphasize the discrepancy in the results

computed by the different methods.

Quantity Mean
Variation

around the mean
Frequency (GHz) 1.2 ±0.2
Position of the source (mm) 150 ±10
Radius for the layer of bone (mm) 18 ±5.5
Radius for the layer of muscle (mm) 59 ±6
Radius for the layer of fat (mm) 94 ±12

Table 4: parameters of the different uniform laws.

Figure 6 shows an illustration of the electric field and SAR computed using

mean values given in Table 4.

The statistic response of the maximal SAR has been calculated using Monte

Carlo method from 10 000 samples. The estimated mean and the variance are

µSAR = 88.52 Wkg−1 and σ2
SAR = 255.65 W2kg−2. As for probabilistic meth-

ods, polynomial basis have been built in two different ways using either normal

variables or uniform variables. Let us first consider the coordinate system com-

posed by standard normal variables. The collocation method is applied. A

Lagrangian basis is built from the product rule using the roots of the Hermite

polynomial of degree 3; that is to say the basis is composed using 35 = 243 nodes.

The results are not accurate: the difference with the Monte Carlo method is

roughly 1% on the mean and 7% on the variance – see Table 5 –. Let us now

consider the coordinate system composed with uniform variables defined in the

interval [−1, 1]. A Lagrangian basis is built from the product rule using the
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Figure 6: electric field and SAR computed for the second example with the
mean values of the parameters given in Table 4.

roots of the Legendre polynomial of degree 2; that is to say the basis is com-

posed using 25 = 32 nodes. Even if there are less nodes, the results are closer

to the ones obtained by the Monte Carlo method: the relative difference is less

than 1% on the mean and approximately 2% on the variance – see Table 5 –.

Number µSAR error σ2
SAR error

Method of in on in on
realizations Wkg−1 µSAR W2kg−2 σ2

SAR

Monte Carlo 10 000 88.5 - 255.7 -
Collocation & Hermite

243 87.6 1.0% 236.7 7%
& roots from degree 3
Collocation & Legendre

32 89.1 0.7% 261.9 2%
& roots from degree 2

Table 5: summary of the results for the second example.

Probabilistic methods enable to compute not only the mean and the vari-

ance but also higher order moments or the probability density function. Figure 7

shows a comparison of the probability density function of maximal SAR esti-

mated from Monte Carlo and collocation methods. The curve obtained with
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the collocation methods is smoother than the curve given by the Monte Carlo

method. The reason is that, when using the Monte Carlo method, the prob-

ability density function is determined only from 10 000 samples which is not

enough to properly describe the probability density function. On the contrary,

when using collocation method, the probability density function is plotted from

the nodal expansion (7) ; a larger number of points can be calculated without

spending a lot of time.

Figure 7: probability density function computed from collocation method –
dashed curve – and Monte Carlo method – continuous curve –.

4 Conclusion

In this paper, the feasibility in using probabilistic methods to evaluate the

stochastic response in a 2D electromagnetic dosimetry problem is demonstrated.

The different approaches experimented – projection, least square minimization

and collocation method – give accurate results with only a few hundreds of cal-

culations while the Monte Carlo method involves 10 000 samples. However, the
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collocation method using sparse grid seems to be the most efficient method; but

one has to be wise: the accuracy depends on the specificities of the problem

treated, mainly the number of random input parameters and the non linear

dependence on the random input variables. To ensure the validity of the com-

puted results, the only solution is to make a convergence study by increasing

the number of nodes with the collocation method or the number of polynomials

with the spectral method. The reduction of the numerical cost is essential in the

perspective of studying 3D realistic situations. This issue will be the next step

of this work. The difficulties to overcome concern not only numerical aspects

– saving time consumption is obviously more crucial in a 3D problem than in

the 2D case – but also the modelling of the variability in the human body – the

choice of realistic laws for random variables or the description of the uncertainty

in the morphology remain open problems –.
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