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ABSTRACT

Prediction of common secondary structure across multiple RNA se-

quences is known to significantly increase accuracy in comparison with

single-sequence based prediction methods. However, the computa-

tional requirements for joint prediction can often be daunting in com-

parison to single-sequence prediction. As a result, heuristic simplifica-

tions are often necessary for this joint estimation problem in order to

perform computations on current hardware in reasonable times. In this

paper, principled heuristics are presented for the purpose of computa-

tion reduction based on probabilistic methods. The methods presented

eliminate the computations over extremely improbable alignments and

structures, thereby reducing computation with little or no degradation

in accuracy. Experimental results over databases of RNA families with

known secondary structure validate our methods, demonstrating over

a two-fold computational speed up in tests over the 5S rRNA family,

without any compromise in accuracy.

Index Terms— RNA secondary structure, posterior base pairing

probability, hidden Markov model

1. INTRODUCTION

One of the major developments in biology in recent years has been the

discovery of new functions for ribonucleic acids (RNAs). It was once

believed that RNA molecules were merely intermediate copies of parts

of the genetic information residing in DNA (deoxy-ribonucleic acid)

that were created for the purpose of protein synthesis. More recently,

it has been realized that RNA is a central player in cellular biology and

serves a number of direct functions in addition to the conventional roles

of messenger RNAs and tRNAs in protein synthesis. In these direct

roles, the RNAs are not “coding for proteins” and the corresponding

RNAs are therefore referred to as noncoding RNAs (ncRNAs) [1, 2].

As is the case for most biomolecules, the three-dimensional struc-

ture of an ncRNA determines its function and therefore a determination

of ncRNA structure is key problem in biology. The structure of RNA

is determined by interactions among the atoms that form the molecule

and also by interactions with other molecules that are in their vicinity

in cellular physiological conditions. The interactions vary in strength

and accordingly a hierarchy is seen in RNA structure [3] typically ar-

ranged in order of decreasing strength of the interactions. The primary

structure of RNA is a linear chain of four different types of nucleotides

that are joined together by covalent phosphodiester bonds [4]. The

four types of nucleotides can be identified by their nitrogenous bases

adenine (A), guanine (G), cytosine (C), and uracil (U), and accord-

ingly, the primary structure can be specified as a sequence of these four

bases. Within a RNA molecular chain, nucleotides pair through the

formation of hydrogen bonds between (some of the) complementary

nitrogenous bases: specifically, A can pair with U , G can pair with C,

and G can pair with U . The set of the A − U , G − C, and G − U

pairings is referred to as the secondary structure of the RNA molecule.

Additional interactions among the molecules in an RNA chain beyond

the secondary structure base pairings define the tertiary structure and

interactions with other molecules such as proteins and other strands

of RNA are classified as quaternary structure. The intramolecular1

structure at a lower level of this hierarchy can be determined without

involving the higher levels since the interactions become progressively

weaker [5, 6, 7].

The primary structure of RNA is experimentally determined

through sequencing [4]. In the coding role of RNA in protein synthesis,

the function of the RNA molecule is determined largely by this pri-

mary structure, whereas for ncRNAs the complete three-dimensional

structure is desired. Experimental determination of the complete

three-dimensional structure is however rather difficult and expensive.

Therefore computational methods for the prediction of the secondary,

tertiary, and quaternary structure are of significant research interes t.

The methods for prediction follow the hierarchy of RNA structure and

the first step in this process is the prediction of secondary structure

from sequence data representing the primary structure, which is the

focus of the current paper.

2. JOINT PREDICTION OF RNA STRUCTURE ACROSS

MULTIPLE SEQUENCES

For ncRNAs, often multiple sequences exist with the same structure

and function. These are referred to as homologs. At the secondary

structure level, it can be seen that the replacement one of the base pairs

A − U , G − C, or G − U by another base pair from this set does

not change the topology of the secondary structure. These base pair

substitutions, referred to as compensatory mutations, are actually ob-

served in nature in homologous RNA molecules. In addition, other

minor changes in bases and base pairs may be encountered in homol-

ogous sequences without a change in secondary structure. Fig. 1 illus-

trates an example of this, where two homologous tRNA molecules are

shown, which differ in their sequence data but have common (topology

of) secondary structure.

The accuracy of RNA secondary structure prediction can be sig-

nificantly improved by determining the (common) secondary structure

across two or more homologous sequences [8]. The process can be

viewed as simultaneously aligning the two sequences while constrain-

ing them to folding into a common secondary structure. This problem

was mathematically formulated first by Sankoff [9] who proposed a dy-

namic programming solution for addressing this problem. Though the

space of common secondary structures for two sequence is exponen-

tial in the shorter sequence length [10], dynamic programming makes

polynomial time (in the length of the shorter of the two sequences) al-

gorithms possible for determining the most likely common secondary

structure for a pair of RNA sequences.

1Interactions governing tertiary and quaternary structure have similar
strengths but the quaternary interactions are bimolecular and may need to over-
come an entropic cost in order to change the underlying tertiary structures of
the interacting molecules.
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Fig. 1. Common secondary structure for RD0260 and RD0500 tRNA

molecules

3. PRUNING OF SEARCH SPACE IN JOINT PREDICTION

OF RNA STRUCTURE

Even though dynamic programming makes the structural alignment

problem significantly simpler than brute force optimization, the com-

putational complexity of the resulting algorithm is still rather high,

O(N6), where N is the length of the smaller sequence. Thus, in

practice, heuristic pruning of the search space is necessary to realize

implementations that run in reasonable time on current hardware. As

part of his original algorithm description, Sankoff [9] proposed limit-

ing computations to a banded region motivated by a limitation on the

maximum allowable insertion length. Such banded computations have

been employed in practical implementations of the algorithm [11, 12].

One limitation with this methodology is that the maximum insertion

lengths encountered can vary significantly from one ncRNA family

to another requiring manual adjustment of this parameter. Addition-

ally, for ncRNA families with longer sequences, often longer insertion

lengths are encountered, which reduces the potential savings in com-

putation for these cases even though there is greater need for computa-

tional saving.

The preceding comments indicate that data adaptive approaches to

pruning the search space are likely to be more effective than methods

based on a purely ad hoc heuristic. Along these lines, an alternate

methodology for pruning computation has been based on determining,

for some choice of positive integers k and l, the k most likely folds

for the individual sequences and l most likely alignments for the se-

quences based on a simple sequence alignment model (that does not

account for common secondary structure). These selected folds and

alignments define corresponding fold and alignment envelopes as the

regions they cover in the folding and alignment spaces, respectively,

to which the joint computation can be constrained [13]. Though well-

motivated and adaptive to the sequence data, the method has the disad-

vantage that in regions where the alignment or folding have low confi-

dence, the choices of k and l determined from computational consider-

ations may not be adequate. Yet another approach for pruning compu-

tation is employed in Consan [14], where, based on a hidden Markov

model (HMM) for pairwise sequence alignment, nucleotide positions

called “pins” are determined that are judged to be aligned with high

confidence. These are then forced to be aligned for the joint alignment

and secondary structure estimation. The method has the limitation that

there are no constraints apart from the pins and no pins may be found

in sequence pairs with low sequence conservation.

3.1. Search Space Pruning using a posteriori Probabilities

Models for single sequence folding based on thermodynamic stability

and those for pairwise sequence alignment based on HMMs can pro-

vide not only estimates of the most likely (or k most likely) folds and

alignments, but these models can also provide estimates of the posterior

probabilities of base pairing and of nucleotide alignment, respectively.

The algorithms for determining the posterior probabilities are closely

related to those for determining the most likely estimates and have the

same order of computational complexity, just as the Viterbi [15] and

BCJR [16] algorithms for error correction coding share strong similar-

ities and have same order of complexity 2.

The above observation suggests an alternative for pruning of the

search space. Posterior probabilities of fold and alignment events can

be determined using relatively simple computational models for these

individually [18, 19, 20]. The search space for the computationally

demanding joint alignment and folding problem can then be restricted

to regions over which these probabilities are higher than a pre-set

threshold. If the threshold is set fairly low, these constraints exclude

only the consideration of highly improbable base pairing and align-

ment states. In regions where the folding and alignment are known

with high confidence, computation is restricted to narrowly constrained

regions whereas in regions where the folding and alignment are poorly

resolved, a wider range of possibilities are allowed (for the joint prob-

lem). This methodology constitutes a principled data adaptive heuristic

that concentrates the joint computation in regions where it is required.

The application of this idea is described next specifically with respect

to the pruning of the allowed alignment space for the Dynalign algo-

rithm. This work was recently reported in [21]. Constraints based on

posterior probabilities of base pairing have also been developed, albeit

for a different algorithm for joint alignment and secondary structure

prediction [22].

4. ALIGNMENT CONSTRAINTS FROM POSTERIOR

PROBABILITIES

Hidden Markov models (HMMs) provide effective probabilistic mod-

els for the alignment of protein and DNA sequences where sequence

information is conserved for homologs [20]. For ncRNA sequences,

as remarked earlier, homologs demonstrate conservation of secondary

structure and can often show significant divergence in sequence data.

The divergence in sequence, however, is often localized and conser-

vation of sequence information is seen in large parts of homologous

ncRNAs. For this reason, HMM based models are still effective in

identifying the alignment of ncRNAs in regions with high sequence

conservation and in identifying the regions in which sequence informa-

tion alone is unreliable for alignment. This characteristic makes HMMs

well suited to the task of pruning the alignment space: in regions where

the sequence information alone restricts the alignment to a narrow band

with high confidence, the alignment space may be pruned to the corre-

sponding region and in regions where the sequence information alone

does not provide a reliable estimate, a larger search space should be

allowed for the structure based joint alignment and folding problem.

As outlined next, the computation of posterior alignment probabilities

allows this dynamic pruning of the search space.

4.1. Pairwise Alignment HMM

A pairwise alignment HMM models the alignment between two RNA

sequences as a chain of states from a three state Markov chain, where

the three states correspond to alignment (ALN) between the two se-

quences, nucleotide insertion in the first sequence (INS1), and nu-

cleotide insertion in the second sequence (INS2). In the ALN state

the model emits a nucleotide in each of the sequences, in the INS1

state it emits a nucleotide in the first sequence alone and in the INS2

state it emits a nucleotide in the second sequence alone. Each emit-

ted nucleotide (in any of the states) takes on one of the values A, U ,

G, and C. The nucleotide sequences are observed, whereas the un-

derlying alignment states are not and constitute the hidden part of the

HMM. The state transition probabilities between the three alignment

states, initial probabilities over the states, and the emission probabili-

ties for the possible nucleotide emissions in each of the states consti-

tute the parameters of the HMM alignment model. Given the values

of these parameters and two sequences s1, s2, the a posteriori prob-

ability of an alignment x can be readily defined. As a specific ex-

ample, consider the two sequences and postulated alignment between

2A recent paper [17] formalizes the basis for this similarity.
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p(s1, s2,x) = π0(ALN)pe

ALN (G, G)pt(ALN, INS1)pe

INS1(U)pt(INS1, ALN)pe

ALN (C, C) · · · pt(ALN, ALN)pe

ALN (C, C) (1)

these as shown in Fig. 2. The joint probability of the postulated align-

ment and the emission of the two sequences can be obtained for this

case as shown in (1), where for m, m2 ∈ {ALN, INS1, INS2}
and x, y ∈ {A, U, G, C}, π0(m) denotes the initial probability of the
alignment statem, pe

ALN (x, y) denotes the probability of emitting nu-
cleotide x in the first sequence and nucleotide y in the second sequence

in an aligned state, pt(m, m2) denotes the alignment Markov chain
state transition probability that the next state is m2 given than the cur-

rent state ism, pe

INS1(x) is the probability of emitting the nucleotide x

in the first sequence in the INS1 state, and pe

INS2(x) is the probability
of emitting the nucleotide x in the second sequence in the INS2 state.
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Fig. 2. Two RNA sequences and a hypothetical alignment.

The posterior probability of the alignment given the two sequences

is then obtained from Bayes’ rule and one can readily see that the max-

imum aposteriori probability (MAP) alignment can equivalently be ob-

tained by maximizing p(s1, s2,x). Additionally, using the model the
posterior probability that the alignment state m occurs at nucleotide

index n1 along the first sequence and nucleotide index n2 along the

second sequence as

p(n1

m
↔ n2 | s1, s2) =

1

p(s1, s2)

X

x:n1

m

↔n2∈x

p(s1, s2,x) (2)

Both the MAP alignment and the posterior probabilities can be

efficiently computed in O(n2) time using dynamic programming al-
gorithms, utilizing respectively, the Viterbi algorithm and the HMM

forward-backward algorithm [23]. Specific details of the posterior

probability computations for the pairwise alignment HMM can be

found in [21].

4.2. Co-incidence Probabilities and Alignment Constraints

Observe that whenever a nucleotide is emitted in a sequence it con-

tributes to an elongation of the corresponding sequence by exactly 1
nucleotide. Thus an alignment between the two sequences s1and s2,

having lengths N1 and N2, respectively, can be equivalently speci-

fied by a (connected) path in a 2-D (N1 + 1) × (N2 + 1) array.
The path begins at (0, 0) and ends at (N1, N2), at each successive
position along the path the the first array index is incremented if the

alignment state is ALN or INS1 and the second array index is in-
cremented if the alignment state is ALN or INS2. Mathematically,
the path is defined by a sequence of ordered-pairs of nucleotide in-

dices (i1, k1), (i2, k2), . . . (iL, kL), where 0 = i1 ≤ i2 ≤ iL = N1,

0 = k1 ≤ k2 ≤ kL = N2, and 1 ≤ (il−il−1)+(kl−kl−1) ≤ 2. The
first value in each ordered-pair represents a nucleotide index in the the

first sequence s1and the second value in each ordered-pair represents a

nucleotide index of the second sequence s2. The value index 0 repre-
sents the beginning of the sequences, allowing for insertions in either

sequence before the start of the other. Under the specified alignment,

for each l = 1, 2, . . . L, the nucleotide position il in the first sequence

is said to be co-incident with the nucleotide position kl in the second

sequence [21].

Dynamic programming algorithms for the joint prediction of RNA

secondary structure across two sequences, can be thought of as jointly

searching for the optimum solution over the combination of the fold-

ing spaces representing possible foldings for each of the two sequences

and the alignment space for the inter-sequence alignments [13]. In par-

ticular, the connected path representation for an alignment indicated in

the preceding paragraph for possible alignments forms the basis of the

dynamic programming with respect to alignment: If any point (i, j)

lies on the path representing an alignment in the 2-D array representa-

tion, at least one of the “preceding” points (i− 1, j − 1), (i, j − 1), or
(i−1, j) in the 2-D array must also be on the alignment path. This im-
plies that when restricting the search space for alignment for reducing

computation, a specific alignment will be allowable under the align-

ment constraints if all co-incident pairs of nucleotides in the alignment

are allowed by the constraints. Thus alignment constraints are often

implemented as boolean (N1 + 1) × (N2 + 1) arrays that indicate
the nucleotide positions for which co-incidence is allowed. As a spe-

cific example, an implementation of Dynalign that preceded the present

work [12] used the following banded constraint for the alignment space

˛

˛

˛

˛

i × N2

N1

− k

˛

˛

˛

˛

≤ M (3)

whereM specifies the width of the banded region.

Instead of the static band constraint, a data adaptive constraint

on the alignment space can be obtained by utilizing the HMM based

probabilistic model for sequence alignment presented in Section 4.1.

Specifically, using the posterior probabilities for the alignment states

in (2), the posterior probability that nucleotide position n1 in s1is co-

incident with nucleotide position n2 in s2is readily obtained as

p(n1 ↔ n2 | s1, s2) =
X

m

p(n1

m
↔ n2 | s1, s2) (4)

An example of computed posterior coincidence probabilities for two

tRNA sequences is shown in Fig. 3, where the probabilities are plotted

on a (natural) log scale. From the figure it is apparent that at the lower

and upper diagonals of the matrix representing the alignment space, al-

most the entire the probability mass is contained in very narrow bands.

This occurs because the sequences are highly conserved in these re-

gions. In the middle region, however, there is an insertion in the first

sequence and correspondingly the probability mass is dispersed over a

wider region.
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Fig. 3. Posterior co-incidence probabilities for two RNA sequences.

An alignment constraint that excludes only the nucleotide coinci-

dence probabilities for which the probability is very small is obtained

by selecting a sufficiently small threshold probability Pthresh and al-

lowing all co-incidence possibilities n1 ↔ n2 for which p(n1 ↔ n2 |
s1, s2) > Pthresh. The resulting set of allowed co-incidence possi-

bilities is shown as the dark gray region in Fig. 4(a). In Fig. 4(b) the

alignment path as manually determined by Biologists is overlaid on

this constraint in black. It can be seen that the constraint allows the

true alignment, which is desirable. A comparison of the probabilisti-

cally derived constraint set against the static banded constraint is in-

structive, the latter is shown in Fig. 4(c) for a typical value of M = 6.
The difference between the two sets is shown in Fig. 4(d). From these
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figures it can be seen that the probabilistically derived constraint set

is data data adaptive: in regions of high sequence conservation, where

the HMM narrows the alignment to a narrow region with high confi-

dence, computation is restricted to a rather narrow band and in regions

close to the insertion in the first sequence, a wider band of computation

is allowed. Thus as compared to the banded computation the method

concentrates the computation where it is required. Based on the fact

that the light gray areas in Fig. 4(d) dominate the dark gray areas, it

can also be conjectured that the method would provide an overall sav-

ing in computation.

5. EXPERIMENTAL RESULTS

The efficacy of the probabilistically derived alignment constraints as a

method for pruning computations was evaluated by integrating these

constraints in the Dynalign [11] algorithm for predicting the secondary

structure common to two RNA sequences [21]. Dynalign with the

probabilistically derived alignment constraints was also compared

against the Dynalign with the banded constraint defined by (3) with

M = 7, which was utilized in Dynalign prior to this work [12].
The two versions of Dynalign were compared with respect to the

accuracy of the predicted structures and with respect to the execution

times and memory requirements. For the evaluation of the accuracy

of predicted structures, a dataset of 309 5S RNAs [24] and 484 tR-

NAs [25] with known secondary structures is utilized. For each of

the tRNA and 5S rRNA families, 2000 pairs of sequences were se-
lected at random from the, respective, databases and the common sec-

ondary structures of the sequence pairs were predicted by each of the

methods. The predictions were then evaluated against the known sec-

ondary structures in terms of their sensitivity and positive predictive

value (PPV). The sensitivity is defined as the fraction of base pair-

ings in the true secondary structure that are predicted (correctly) by

the algorithm and PPV is defined as the fraction of the base pairings

predicted by the algorithm that are present in the known structure. Ex-

ecution time and memory estimates were obtained as averages over a

randomly selected set of 100 tRNA and 5S RNA sequence pairs each

selected at random from the RFAM database [26].

Table 1 compares the accuracy of the secondary structures pre-

dicted in terms of sensitivity and PPV. For the purpose of comparison,

the accuracy of the predictions obtained using a single sequence based

prediction of secondary structure [27] is also included in the Table.

From the tabulated values it can be seen that Dynalign with the proba-

bilistically derived constraint and Dynalign with the banded constraint

perform comparably in terms of their sensitivity and PPV, with a mi-

nor (though not statistically significant) advantage for the version with

the probabilistic constraint. Both versions significantly outperform the

single sequence prediction.

Table 2 lists the average execution times and memory requirements

of the methods for joint prediction of the common secondary structure

of two sequences for the tRNA and 5S rRNA datasets. The tRNA data

set had an average sequence length of approximately 77 nucleotides
and the 5S rRNA dataset had an average sequence length of approxi-

mately 120 nucleotides. A comparison of the execution times for the
5S rRNA dataset demonstrates that the probabilistically derived align-

ment constraint sets cut computation time to less than half the value

required by the banded constraint. This reduction is all the more re-

markable since it comes without any reduction in accuracy (as already

demonstrated in Table 1). For the tRNA dataset the methods are quite

comparable with the banded constraint providing slightly faster exe-

cution. The gains for the 5S rRNA sequences are however more sig-

nificant since the execution times are significantly larger for these se-

quences than for the tRNAs owing to their longer lengths. The results

in Table 2 also indicate that the probabilistically derived alignment con-

straint sets also reduce the memory requirements, though only by a

relatively modest amount.

Often results for structure prediction accuracy are stratified by se-

quence percent identity. These can be found in [21], which also in-

cludes minimum and average statistics for execution times and mem-
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Fig. 4. Comparison of the probabilistic alignment constraint set against

the true alignment and the banded computation constraint set for tRNA

sequences: AE008837 and M32222. The abscissa and ordinates of

the plots indicate nucleotide positions n1 and n2 along the sequences

AE008837 and M32222, respectively. (a) Probabilistic alignment con-

straint set: permitted alignments shown in dark gray. (b) Alignment

constraint set with true alignment super-imposed (in black). (c) Align-

ment constraint set for the prior banded constraint withM = 6 (shown
in light gray). (d) Difference between the banded constraint and the

probabilistic alignment constraint sets. Light gray regions indicate nu-

cleotide position alignments permitted by the banded constraint and not

by the probabilistic constraint and the situation is vice-versa for dark

gray regions.
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ory in an attempt to quantify the variability in these. In particular, as

might be expected from the data dependency of the probabilistically

derived alignment constraint sets, greater variation is seen with these

than with the static banded constraint. Comparisons against a number

of other methods for RNA secondary structure prediction using two

RNA homologs are also included in [21].

tRNA 5S rRNA

Dynalign Prob. constraint
Sens 0.861 0.871

PPV 0.834 0.785

Dynalign banded constraint
Sens 0.855 0.870

PPV 0.825 0.782

Single Prediction
Sens 0.748 0.709

PPV 0.693 0.618

Table 1. Structural prediction accuracy for the different methods over

2000 random tRNA selections from[25] and 2000 5S rRNA selections
from [24]. Dynalign Prob. constraint refers to Dynalign with proba-

bilistic alignment constraints.

Timing Memory

Dynalign Prob. constraint
tRNA 9.98 10.988

5S rRNA 34.38 12.277

Dynalign band constraint
tRNA 9.39 10.960

5S rRNA 73.07 14.306

Table 2. Average execution times and memory requirements (in sec-

onds and megabytes of main memory, respectively) of the structure

prediction methods on 5S RNAs and tRNAs alignments from [24]

and [25]. Based on a dual-core AMD Opteron R©-270 2.0 GHz system

with 4 GBytes of main memory running Linux Fedora Core 4.

6. CONCLUSIONS AND FUTURE WORK

Pruning of the computational search space for joint alignment and

secondary structure prediction can be performed in a principled data

adaptive fashion by computing posterior probabilities for alignment

and folding from individual models and thresholding these to ex-

clude highly improbable regions from the joint computation. Results

demonstrate that methods for constraining alignment based on this

idea offer a significant reduction in computation for Dynalign without

compromising accuracy. Over a 5s RNA family dataset with an aver-

age sequence length of 120 nucleotides the method offers more than
two-fold speed-up.

Joint ncRNA structure prediction across two or more sequences

can be employed in a variety of applications. One application of par-

ticular interest is the scanning of genomes in order to search for novel

ncRNA genes [12]. This is a computationally demanding task since

genomes can be fairly large (the human genome, for instance, has over

three billion base pairs). A very significant speed-up of the joint algo-

rithms is therefore necessary in order to speed up searches for ncRNA

genes. While pruning of the search space helps in this respect, alterna-

tive approaches that offer greater potential for speed-up are also worthy

of exploration. In particular, turbo-decoding style iterative approaches

for solving the joint problem by iterating over the individual problems

with feedback may offer an attractive alternative in this respect [28].
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