
Probabilistic methods for Support Vector

Machines

Peter Sollich

Department of Mathematics, King's College London

Strand, London WC2R 2LS, U.K. Email: peter.sollich@kcl.ac.uk

Abstract

I describe a framework for interpreting Support Vector Machines

(SVMs) as maximum a posteriori (MAP) solutions to inference

problems with Gaussian Process priors. This can provide intuitive

guidelines for choosing a 'good' SVM kernel. It can also assign

(by evidence maximization) optimal values to parameters such as

the noise level C which cannot be determined unambiguously from

properties of the MAP solution alone (such as cross-validation er

ror) . I illustrate this using a simple approximate expression for the

SVM evidence. Once C has been determined, error bars on SVM

predictions can also be obtained.

1 Support Vector Machines: A probabilistic framework

Support Vector Machines (SVMs) have recently been the subject of intense re

search activity within the neural networks community; for tutorial introductions

and overviews of recent developments see [1, 2, 3]. One of the open questions that

remains is how to set the 'tunable' parameters of an SVM algorithm: While meth

ods for choosing the width of the kernel function and the noise parameter C (which

controls how closely the training data are fitted) have been proposed [4, 5] (see

also, very recently, [6]), the effect of the overall shape of the kernel function remains

imperfectly understood [1]. Error bars (class probabilities) for SVM predictions -

important for safety-critical applications, for example - are also difficult to obtain.

In this paper I suggest that a probabilistic interpretation of SVMs could be used to

tackle these problems. It shows that the SVM kernel defines a prior over functions

on the input space, avoiding the need to think in terms of high-dimensional feature

spaces. It also allows one to define quantities such as the evidence (likelihood) for a

set of hyperparameters (C, kernel amplitude Ko etc). I give a simple approximation

to the evidence which can then be maximized to set such hyperparameters. The

evidence is sensitive to the values of C and Ko individually, in contrast to properties

(such as cross-validation error) of the deterministic solution, which only depends

on the product CKo. It can thfrefore be used to assign an unambiguous value to

C, from which error bars can be derived.

350 P. Sollich

I focus on two-class classification problems. Suppose we are given a set D of n

training examples (Xi, Yi) with binary outputs Yi = ±1 corresponding to the two

classes. The basic SVM idea is to map the inputs X onto vectors c/>(x) in some

high-dimensional feature space; ideally, in this feature space, the problem should be

linearly separable. Suppose first that this is true. Among all decision hyperplanes

w·c/>(x) + b = 0 which separate the training examples (Le. which obey Yi(W'c/>(Xi) +
b) > 0 for all Xi E Dx , Dx being the set of training inputs), the SVM solution is

chosen as the one with the largest margin, Le. the largest minimal distance from

any of the training examples. Equivalently, one specifies the margin to be one and

minimizes the squared length of the weight vector IIwI1 2 [1], subject to the constraint

that Yi(W'c/>(Xi) + b) 2:: 1 for all i. If the problem is not linearly separable, 'slack

variables' ~i 2:: 0 are introduced which measure how much the margin constraints

are violated; one writes Yi(W'c/>(Xi) + b) 2:: 1 - ~i' To control the amount of slack

allowed, a penalty term C Ei ~i is then added to the objective function ~ IIwI1 2 ,

with a penalty coefficient C. Training examples with Yi(w ·c/>(xd + b) 2:: 1 (and

hence ~i = 0) incur no penalty; all others contribute C[l - Yi(W 'c/>(Xi) + b)] each.

This gives the SVM optimization problem: Find wand b to minimize

~llwl12 + C Ei l(Yi[W 'c/>(Xi) + b])

where l(z) is the (shifted) 'hinge loss', l(z) = (1- z)8(1- z).

(1)

To interpret SVMs probabilistically, one can regard (1) as defining a (negative)

log-posterior probability for the parameters wand b of the SVM, given a training

set D. The first term gives the prior Q(w,b) "" exp(-~llwW - ~b2B-2). This

is a Gaussian prior on W; the components of W are uncorrelated with each other

and have unit variance. I have chosen a Gaussian prior on b with variance B2;

the flat prior implied by (1) can be recovered! by letting B -+ 00. Because only

the 'latent variable' values O(x) = w·c/>(x) + b - rather than wand b individually

- appear in the second, data dependent term of (1), it makes sense to express

the prior directly as a distribution over these. The O(x) have a joint Gaussian

distribution because the components ofw do, with covariances given by (O(x)O(x'))

= ((c/>(x) ·w) (w·c/>(x'))) + B2 = c/>(x)·c/>(x') + B2. The SVM prior is therefore simply

a Gaussian process (GP) over the functions 0, with covariance function K(x,x') =
c/>(x) ·c/>(x') + B2 (and zero mean). This correspondence between SVMs and GPs

has been noted by a number of authors, e.g. [6, 7, 8, 9, 10J .

The second term in (1) becomes a (negative) log-likelihood if we define the proba

bility of obtaining output Y for a given X (and 0) as

Q(y =±llx, 0) = ~(C) exp[-Cl(yO(x))] (2)

We set ~(C) = 1/[1 + exp(-2C)] to ensure that the probabilities for Y ±1
never add up to a value larger than one. The likelihood for the complete data set

is then Q(DIO) = It Q(Yilxi, O)Q(Xi), with some input distribution Q(x) which

remains essentially arbitrary at this point . However, this likelihood function is not

normalized, because

lI(O(x)) = Q(llx, 0) + Q(-llx, 0) = ~(C){ exp[-Cl(O(x))] + exp[-Cl(-O(x))]} < 1

lIn the probabilistic setting, it actually makes more sense to keep B finite (and small);
for B -+ 00, only training sets with all Yi equal have nonzero probability.

Probabilistic Methods for Support Vector Machines 351

except when IO(x)1 = 1. To remedy this, I write the actual probability model as

P(D,9) = Q(DI9)Q(9)/N(D) . (3)

Its posterior probability P(9ID) '" Q(DI9)Q(9) is independent Qfthe normalization

factor N(D); by construction, the MAP value of 9 is therefore the SVM solution.

The simplest choice of N(D) which normalizes P(D, 9) is D-independent:

N = Nn = Jd9Q(9)Nn(9), N(9) = JdxQ(x)lI(O(x)). (4)

Conceptually, this corresponds to the following procedure of sampling from P(D, 9):

First, sample 9 from the GP prior Q(9) . Then, for each data point, sample x from

Q(x). Assign outputs Y = ±1 with probability Q(ylx,9), respectively; with the

remaining probability l-lI(O(x)) (the 'don't know' class probability in [11]), restart

the whole process by sampling a new 9. Because lI(O(x)) is smallest2 inside the 'gap'

IO(x)1 < 1, functions 9 with many values in this gap are less likely to 'survive' until

a dataset of the required size n is built up. This is reflected in an n-dependent

factor in the (effective) prior, which follows from (3,4) as P(9) '" Q(9)Nn(9).
Correspondingly, in the likelihood

P(ylx,9) = Q(ylx, 9)/1I(O(x)), P(xI9) '" Q(x) lI(O(x)) (5)

(which now is normalized over y = ±1), the input density is influenced by the

function 9 itself; it is reduced in the 'uncertainty gaps' IO(x)1 < 1.

To summarize, eqs. (2-5) define a probabilistic data generation model whose MAP

solution 9* = argmax P(9ID) for a given data set D is identical to a standard

SVM. The effective prior P(9) is a GP prior modified by a data set size-dependent

factor; the likelihood (5) defines not just a conditional output distribution, but also

an input distribution (relative to some arbitrary Q(x)). All relevant properties of

the feature space are encoded in the underlying GP prior Q(9), with covariance

matrix equal to the kernel K(x, Xl). The log-posterior of the model

In P(9ID) = -t J dx dxl O(X)K-l(X, Xl) O(XI) - C 'Ei l(YiO(xi)) + const (6)

is just a transformation of (1) from wand b to 9. By differentiating w.r.t. the

O(x) for non-training inputs, one sees that its maximum is of the standard form

O*(x) = Ei (}:iYiK(X, Xi); for YiO*(Xi) > 1, < 1, and = lone has (}:i = 0, (}:i = C and

(}:i E [0, C] respectively. I will call the training inputs Xi in the last group marginal;

they form a subset of all support vectors (the Xi with (}:i > 0). The sparseness of

the SVM solution (often the number of support vectors is « n) comes from the

fact that the hinge loss l(z) is constant for z > 1. This contrasts with other uses

of GP models for classification (see e.g. [12]), where instead of the likelihood (2)

a sigmoidal (often logistic) 'transfer function' with nonzerO gradient everywhere is

used. Moreover, in the noise free limit, the sigmoidal transfer function becomes a

step function, and the MAP values 9* will tend to the trivial solution O*(x) = O.

This illuminates from an alternative point of view why the margin (the 'shift' in

the hinge loss) is important for SVMs.

Within the probabilistic framework, the main effect of the kernel in SVM classi

fication is to change the properties of the underlying GP prior Q(9) in P(9) '"

2This is true for C > In 2. For smaller C, v(O(x» is actually higher in the gap, and the
model makes less intuitive sense.

352 P. Sollich

(e)

(h)

Figure 1: Samples from SVM priors; the input space is the unit square [0,1]2.

3d plots are samples 8(x) from the underlying Gaussian process prior Q(8). 2d

greyscale plots represent the output distributions obtained when 8(x) is used in the

likelihood model (5) with C = 2; the greyscale indicates the probability of y = 1

(black: 0, white: 1). (a,b) Exponential (Ornstein-Uhlenbeck) kernel/covariance

function Koexp(-Ix - x/l/l), giving rough 8(x) and decision boundaries. Length

scale l = 0.1, Ko = 10. (c) Same with Ko = 1, i.e . with a reduced amplitude of O(x);

note how, in a sample from the prior corresponding to this new kernel, the grey

'uncertainty gaps' (given roughly by 18(x)1 < 1) between regions of definite outputs

(black/white) have widened. (d,e) As first row, but with squared exponential (RBF)

kernel Ko exp[-(x - X I)2/(2l2)], yielding smooth 8(x) and decision boundaries. (f)

Changing l to 0.05 (while holding Ko fixed at 10) and taking a new sample shows how

this parameter sets the typical length scale for decision regions. (g,h) Polynomial

kernel (1 + x·xl)P, with p = 5; (i) p = 10. The absence of a clear length scale and

the widely differing magnitudes of 8(x) in the bottom left (x = [0,0]) and top right

(x = [1,1]) corners of the square make this kernel less plausible from a probabilistic

point of view.

Probabilistic Methods for Support Vector Machines 353

Q(O)Nn(o). Fig. 1 illustrates this with samples from Q(O) for three different types

of kernels. The effect of the kernel on smoothness of decision boundaries, and typ

ical sizes of decision regions and 'uncertainty gaps' between them, can clearly be

seen. When prior knowledge about these properties of the target is available, the

probabilistic framework can therefore provide intuition for a suitable choice of ker

nel. Note that the samples in Fig. 1 are from Q(O), rather than from the effective

prior P(O). One finds, however, that the n-dependent factor Nn(o) does not change

the properties of the prior qualitatively3.

2 Evidence and error bars

Beyond providing intuition about SVM kernels, the probabilistic framework dis

cussed above also makes it possible to apply Bayesian methods to SVMs. For ex

ample, one can define the evidence, i.e. the likelihood of the data D, given the model

as specified by the hyperparameters C and (some parameters defining) K(x, x'). It

follows from (3) as

P(D) = Q(D)/Nn, Q(D) = J dO Q(DIO)Q(O). (7)

The factor Q(D) is the 'naive' evidence derived from the unnormalized likelihood

model; the correction factor Nn ensures that P(D) is normalized over all data

sets. This is crucial in order to guarantee that optimization of the (log) evidence

gives optimal hyperparameter values at least on average (M Opper, private com

munication). Clearly, P(D) will in general depend on C and K(x,x') separately.

The actual SVM solution, on the other hand, i.e. the MAP values 0*, can be seen

from (6) to depend on the product C K (x, x') only. Properties of the deterministi

cally trained SVM alone (such as test or cross-validation error) cannot therefore be

used to determine C and the resulting class probabilities (5) unambiguously.

I now outline how a simple approximation to the naive evidence can be derived.

Q(D) is given by an integral over all B(x), with the log integrand being (6) up to an

additive constant. After integrating out the Gaussian distributed B(x) with x ¢ Dx ,

an intractable integral over the B(Xi) remains. However, progress can be made by

expanding the log integrand around its maximum B*(Xi)' For all non-marginal

training inputs this is equivalent to Laplace's approximation: the first terms in

the expansion are quadratic in the deviations from the maximum and give simple

Gaussian integrals. For the remaining B(Xi), the leading terms in the log integrand

vary linearly near the maximum. Couplings between these B(Xi) only appear at the

next (quadratic) order; discarding these terms as subleading, the integral factorizes

over the B(xd and can be evaluated. The end result of this calculation is:

InQ(D) ~ -! LiYi<liB*(Xi) - CLil(YiB*(xd) - nln(l + e-2C) - ! Indet(LmKm)
(8)

The first three terms represent the maximum of the log integrand, In Q(DIO*);
the last one comes from the integration over the fluctuations of the B(x). Note

that it only contains information about the marginal training inputs: Km is the

corresponding submatrix of K(x, x'), and Lm is a diagonal matrix with entries

3Quantitative changes arise because function values with IO(x)1 < 1 are 'discouraged'
for large nj this tends to increase the size of the decision regions and narrow the uncertainty
gaps. I have verified this by comparing samples from Q(O) and P(O).

354

9(x)

2

1

o

-1

-2

0.2 0.4 x 0.6 0.8 1

0

-0.1

-0.2

-0.3

-0.4

-0.5

0.8

0.6

0.4

0.2

o
o

P. Sollich

1 2 C 3 4

I I
P(y=llx) I I I

I
I I

I
I I

\
I ,

\. J \. };

0.2 0.4 x 0.6 0.8 1

Figure 2: Toy example of evidence maximization. Left: Target 'latent' function 8(x)
(solid line). A SVM with RBF kernel K(x, Xl) = Ko exp[-(x - XI)2 /(2[2)], [= 0.05,

CKo = 2.5 was trained (dashed line) on n = 50 training examples (circles). Keeping

CKo constant, the evidence P(D) (top right) was then evaluated as a function

of C using (7,8). Note how the normalization factor Nn shifts the maximum of

P(D) towards larger values of C than in the naive evidence Q(D). Bottom right:

Class probability P(y = 11x) for the target (solid), and prediction at the evidence

maximum C ~ 1.8 (dashed) . The target was generated from (3) with C=2.

27r[ai(C -ai)/C]2. Given the sparseness ofthe SVM solution, these matrices should

be reasonably small, making their determinants amenable to numerical computation

or estimation [12]. Eq. (8) diverges when ai -+ a or -+ C for one of the marginal

training inputs; the approximation of retaining only linear terms in the log integrand

then breaks down. I therefore adopt the simple heuristic of replacing det(LmKm)

by det(1 + LmKm), which prevents these spurious singularities (I is the identity

matrix) . This choice also keeps the evidence continuous when training inputs move

in or out of the set of marginal inputs as hyperparameters are varied.

Fig. 2 shows a simple application of the evidence estimate (8) . For a given data set,

the evidence P(D) was evaluated4 as a function of C. The kernel amplitude Ko was

varied simultaneously such that C Ko and hence the SVM solution itself remained

unchanged. Because the data set was generated artificially from the probability

model (3), the 'true' value of C = 2 was known; in spite of the rather crude

approximation for Q(D), the maximum of the full evidence P(D) identifies C ~

1.8 quite close to the truth . The approximate class probability prediction P(y =

11x, D) for this value of C is also plotted in Fig. 2; it overestimates the noise in the

target somewhat. Note that P(ylx, D) was obtained simply by inserting the MAP

values 8*(x) into (5). In a proper Bayesian treatment, an average over the posterior

distribution P(OID) should of course be taken; I leave this for future work.

4The normalization factor Nn was estimated, for the assumed uniform input density
Q(x) of the example, by sampling from the GP prior Q(9) . If Q(x) is unknown, the
empirical training input distribution can be used as a proxy, and one samples instead from
a multivariate Gaussian for the 9(xd with covariance matrix K(Xi , Xj). This gave very

similar values of In Nn in the example, even when only a subset of 30 training inputs was
used.

Probabilistic Methods for Support Vector Machines 355

In summary, I have described a probabilistic framework for SVM classification. It

gives an intuitive understanding of the effect of the kernel, which determines a

Gaussian process prior. More importantly, it also allows a properly normalized

evidence to be defined; from this, optimal values of hyperparameters such as the

noise parameter C, and corresponding error bars, can be derived. Future work

will have to include more comprehensive experimental tests of the simple Laplace

type estimate of the (naive) evidence Q(D) that I have given, and comparison with

other approaches. These include variational methods; very recent experiments with

a Gaussian approximation for the posterior P(9ID), for example, seem promis

ing [6]. Further improvement should be possible by dropping the restriction to a

'factor-analysed' covariance form [6]. (One easily shows that the optimal Gaussian

covariance matrix is (D + K- 1)-1, parameterized only by a diagonal matrix D.) It

will also be interesting to compare the Laplace and Gaussian variational results for

the evidence with those from the 'cavity field' approach of [10].

Acknowledgements

It is a pleasure to thank Tommi Jaakkola, Manfred Opper, Matthias Seeger, Chris

Williams and Ole Winther for interesting comments and discussions, and the Royal

Society for financial support through a Dorothy Hodgkin Research Fellowship.

References

[1] C J C Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121-167, 1998.

[2] A J Smola and B Scholkopf. A tutorial on support vector regression. 1998. Neuro
COLT Technical Report TR-1998-030; available from http://svm.first.gmd.de/.

[3] B Scholkopf, C Burges, and A J Smola. Advances in Kernel Methods: Su.pport Vector
Machines . MIT Press, Cambridge, MA, 1998.

[4) B Scholkopf, P Bartlett, A Smola, and R Williamson. Shrinking the tube: a new
support vector regression algorithm. In NIPS 11.

[5] N Cristianini, C Campbell, and J Shawe-Taylor. Dynamically adapting kernels in
support vector machines. In NIPS 11.

[6] M Seeger. Bayesian model selection for Support Vector machines, Gaussian processes
and other kernel classifiers. Submitted to NIPS 12.

[7] G Wahba. Support vector machines, reproducing kernel Hilbert spaces and the ran
domized GACV. Technical Report 984, University of Wisconsin, 1997.

[8] T S Jaakkola and D Haussler. Probabilistic kernel regression models. In Proceedings of

The 7th International Workshop on Artificial Intelligence and Statistics. To appear.

[9] A J Smola, B Scholkopf, and K R Muller. The connection between regularization
operators and support vector kernels. Neu.ral Networks, 11:637-649, 1998.

[10] M Opper and 0 Winther. Gaussian process classification and SVM: Mean field results
and leave-one-out estimator. In Advances in Large Margin Classifiers. MIT Press. To
appear.

[11] P Sollich. Probabilistic interpretation and Bayesian methods for Support Vector
Machines. Submitted to ICANN 99.

[12] C K I Williams. Prediction with Gaussian processes: From linear regression to linear
prediction and beyond. In M I Jordan, editor, Learning and Inference in Graphical

Models, pages 599-621. Kluwer Academic, 1998.

