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Abstract

In this paper, we review developments in probabilistic methods of gene recognition in

prokaryotic genomes with the emphasis on connections to the general theory of hidden

Markov models (HMM). We show that the Bayesian method implemented in GeneMark, a

frequently used gene-finding tool, can be augmented and reintroduced as a rigorous forward-

backward (FB) algorithm for local posterior decoding described in the HMM theory. Another

earlier developed method, prokaryotic GeneMark.hmm, uses a modification of the Viterbi

algorithm for HMM with duration to identify the most likely global path through hidden

functional states given the DNA sequence. GeneMark and GeneMark.hmm programs are

worth using in concert for analysing prokaryotic DNA sequences that arguably do not follow

any exact mathematical model. The new extension of GeneMark using the FB algorithm was

implemented in the software program GeneMark.fba. Given the DNA sequence, this program

determines an a posteriori probability for each nucleotide to belong to coding or non-coding

region. Also, for any open reading frame (ORF), it assigns a score defined as a probabilistic

measure of all paths through hidden states that traverse the ORF as a coding region. The

prediction accuracy of GeneMark.fba determined in our tests was compared favourably to the

accuracy of the initial (standard) GeneMark program. Comparison to the prokaryotic

GeneMark.hmm has also demonstrated a certain, yet species-specific, degree of improvement

in raw gene detection, ie detection of correct reading frame (and stop codon). The accuracy of

exact gene prediction, which is concerned about precise prediction of gene start (which in a

prokaryotic genome unambiguously defines the reading frame and stop codon, thus, the whole

protein product), still remains more accurate in GeneMarkS, which uses more elaborate HMM

to specifically address this task.

INTRODUCTION
A primary goal of genome annotation

project is to locate all protein-coding

genes. Currently, this task is too

expensive to be solved by experimental

means. Therefore, the major tools of gene

annotation are computational gene-

finding programs with algorithms using

both intrinsic (ab initio, statistical) and

extrinsic (sequence similarity) measures.

The first step in developing an ab initio

gene-finding algorithm is to perform

statistical analysis of DNA sequences of

interest (protein-coding and non-coding)

and to identify statistical determinants,

such as in-frame frequencies of

oligonucleotides, that can help recognise

sequences of these two types. The second

step is to build statistical models, such as

Markov models for all sequence

categories, particularly gene models. The

third step is to integrate the models into a

pattern recognition algorithm.

Development of computational
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methods of gene prediction has a history of

over two decades, with pioneering works

published in 1980s.1–7 These early

approaches used statistical patterns of

nucleotide ordering in a DNA sequence

alone, and, thus, could be classified into

the category of intrinsic or ab initio

methods.

Among various statistical determinants

of protein-coding potential examined by

Fickett and Tung8 in-frame hexamer

frequencies were shown to possess the

highest predictive power. A mathematical

framework of non-uniform

(inhomogeneous) Markov chain

models9,10 had been suggested earlier to

rigorously incorporate frame-dependent

oligonucleotide frequencies into a

Bayesian pattern recognition algorithm.

This advance in modelling led to the

development of the GeneMark algorithm

and program.11 Over the years,

inhomogeneous Markov models have

been found to be very efficient for gene

modelling and have been used in several

popular algorithms and programs for

prokaryotic as well as eukaryotic gene

prediction.

The extrinsic methods use conservation

of protein-coding sequences in evolution.

Many of them use search for similarity of

a protein product of predicted gene to

other protein sequences in a database, an

accumulation of substantial amount of

sequence data in databases was required

before considerable work was eventually

and successfully done in this direction

(eg, see Robison et al.12 and Frishman

et al.13).

INHOMOGENEOUS
MARKOV MODELS AND
THE GENEMARK
ALGORITHM
The GeneMark algorithm integrates an

inhomogeneous (three-periodic) Markov

model for protein-coding DNA sequence

and a homogeneous Markov model for

non-coding sequence in a Bayesian

formalism to calculate the posterior

probability of a sequence segment to

belong to the following categories (or

states): coding region, reverse

complement of coding region (coding

region shadow), non-coding region.11

For a DNA sequence segment,

S ¼ {s1, s2, . . . , sn} (n is a multiple of 3),

the algorithm determines the a posteriori

probabilities P(cod|S), P(shadow|S) and

P(non|S) for S to belong to the coding,

shadow and non-coding regions

respectively. A protein-coding sequence is

said to be situated in phase i, I ¼ 1,

2, 3 if the first nucleotide of the

sequence is located in the position i of a

codon. Given a three-periodic Markov

model of order m, the probability of

sequence S to be generated by this model

in phase 1, P(S|cod1), is defined by the

equation:

P(Sjcod1) ¼ P1(sm1 )
� P1(smþ1jsm1 )

� P2(smþ2jsmþ1
2 ) � P3(smþ3jsmþ2

3 )

� . . . � P t(snjsn�1
n�m) (1)

Here m is the model order, skl designates

an oligonucleotide starting in position l

and ending in position k, Pi(sm1 ) is the

initial probability of oligonucleotide sm1
situated in phase i and Pi(sk|s

k�1
k�m) is the

transition probability of base sk to follow

the oligonucleotide sk�1
k�m situated in phase

i, t ¼ 2, 1, 3 if m (mod 3) ¼ 1, 2, 0,

respectively. Note that values of

parameters of the Markov model, the

initial and transition probabilities are

estimated using maximum likelihood

approach. Equations for P(S|cod2) and

P(S|cod3) can be obtained from (1) by

cyclic permutations of the superscripts. In

a similar way, P(S|shadowi) can be

computed. The equation for P(S|non) is

similar to (1) and even simpler as it is

omitting the phase consideration.

Finally, the a posteriori probability of the

event of observing a protein-coding

sequence in phase i, given sequence S,

P(codi|S), (I ¼ 1, 2, 3) is determined by

the Bayesian equation:

Gene prediction can be
done by extrinsic and
intrinsic approaches

Inhomogeneous Markov
chain models provide a
mathematical
framework to account
for in-frame
oligonucleotide
statistics of protein-
coding regions

By incorporating a gene
shadow model in the
Bayesian formalism,
GeneMark identifies
genes on both strands
using a DNA sequence
of the strand only
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where P(codi), P(shadowi) and P(non)

are a priori probabilities of observing

sequence of each category respectively

upon a ‘random pick’ of a segment of

length n. Equations that define the a

posteriori probabilities of observing a

coding region shadow sequence (in

three phases) given sequence S or

observing a non-coding sequence are

similar to (2).

The GeneMark program uses a sliding

window technique to calculate ‘profiles’

of a posteriori probabilities for a sequence

of any length, up to a whole prokaryotic

genome.11 The window defines a

sequence segment (of a default length, 96

nt) in a DNA sequence. These a posteriori

probability profiles identifying local

coding property of DNA sequence have

been also useful in detecting frame shifts

that occur in experimentally determined

nucleotide sequences due to sequencing

errors or as a natural consequence.

The score of an ORF in GeneMark is

defined as the average value of the a

posteriori probabilities (for being coding) of

the sequences in the windows that fall

inside the open reading frame (ORF) and

have the same reading frame (phase). If

the score exceeds an established threshold,

the ORF is predicted as a gene.

GeneMark has been successfully used in a

number of genome sequencing projects

(see, for example, Fleischmann et al.,14

Bult et al.,15 Blattner et al.,16 Kunst et

al.,17 Tomb et al.18).

Probabilistic parameters of Markov

models, in an ideal case, should be

determined from experimentally

validated sets of protein-coding and non-

coding DNA sequences. However, for a

largely anonymous prokaryotic genome

with no sufficient number of

experimentally confirmed genes,

parameter estimation is still feasible by

the unsupervised training procedure

suggested by Audic andClaverie.19 In

their approach the Markov models were

built from randomly partitioned

genomic sequences. Then, after

clustering into three groups, the three

sequence models were defined and

integrated in the GeneMark-like

algorithm that classified sequence

segments into one of the three categories.

The new predictions were used to refine

the clusters and models and this process

was iterated to convergence (ie the

current predictions classified all sequences

from a current cluster into the same

cluster). Eventually, these three clusters

accumulated the three types of sequences,

coding, coding shadow and non-coding,

and parameters of the three models

corresponding to these three categories

were determined. It was reported that

convergence was typically reached in less

than 50 iterations and resulted in up to

90 per cent gene detection accuracy.

Another machine-learning method for

deriving models from genomic sequence

without knowing experimentally

validated genes, GeneMark-Genesis,20

used the observation that ORFs longer

than 1000 nt are predominantly protein-

coding. The goal of that algorithm was

to build several types of gene models

such as ‘typical’ and ‘atypical’ with the

notion that ‘atypical’ genes are possibly

horizontally transferred genes.

GeneMark-Genesis employed an iterative

k-means clusterisation procedure with

relative entropy (Kullback–Leibler

distance) used as a distance function to

monitor the convergence of the

clustering procedure in the space of

model parameters. A learning procedure

using ‘long’ ORFs to derive gene models

was also used in the Glimmer

program.21,22

Sliding window
approach of the
GeneMark programme
also helps in frameshift
detection

Parameters of Markov
models can be derived
by machine learning
approaches using an
anonymous genomic
sequence

P(codijS) ¼
P(Sjcodi) �P(codi)X3

j¼1

P(Sjcod j)
� P(cod j)þ

X3
j¼1

P(Sjshadow j)
� P(shadow j)þP(Sjnon) � P(non)

(2)
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INTERPOLATED MARKOV
MODELS
Markov models of several orders were

combined in the ‘interpolated’ model for

gene prediction in the Glimmer

algorithm.21,22 The parameters of the

interpolated model were defined by the

following equation:

PIMM(bjc k) ¼ º(c k)
� P(bjc k)

þ [1� º(c k)]
� PIMM(bjc k � 1) (3)

Here, P IMM(b|ck) is the interpolated

transition probability of a nucleotide b

given the preceding k-mer ck, P(b|ck) is

the maximum likelihood estimate of the

value of transition probability of a regular

Markov chain model, and º(ck) is the
interpolation parameter corresponding to

ck, 0 < º(ck) < 1.

Generally, if the frequency of

oligonucleotide ck in the training

sequence is sufficiently high, the value of

º(ck) is close to 1; for oligonucleotides

with very low frequency, the value º(ck)
is close to 0, and the interpolated

probability P IMM(b|ck) gains most of its

value from P IMM(b|ck�1). The estimation

of interpolation parameters º(ck) is a non-
trivial issue and several alternative

approaches have been proposed

earlier.21,23

HIDDEN MARKOV MODELS
The theory of hidden Markov models

(HMM) was developed in the early

1970s.24–26 Around that time the HMM

theory started to be applied to speech

recognition problems27–30 as it was

realised that a speech process can be

characterised by a stochastic Markov

process and statistical algorithms could be

used in a speech recognition to identify

the sequence of spoken phonemes or

words. The subsequent two decades saw a

significant progress in applications of

HMMs to speech recognition. For

substantial reviews of these studies we

refer to publications by Rabiner and

Juang,31 Rabiner32 and Jelinek.33

Following the success in speech

recognition applications, the HMM

theory was soon introduced for

developing algorithms of pattern

recognition in biological sequences (see

Durbin et al.34 and Krogh35 for consistent

text and review).

The application of HMM in gene-

finding started with the pioneering work

on the ECOPARSE program by Krogh

et al.36 Subsequently, a number of

algorithms employing HMM were

developed for gene identification in

genomes of prokaryotes37–40 as well as

eukaryotes.41–43

An HMM introduces a state sequence

A ¼ {A1, . . . , An}, where Ai denotes the

hidden states that ‘emit’ the observed

(given) DNA sequence S ¼ {S1, . . . ,
Sn}. For example, the hidden states can

be protein-coding, protein-coding

shadow and non-coding in a hidden state

model shown in Figure 1(a). As transitions

between hidden states and emissions of

nucleotides are governed by probabilistic

rules, one could think about the state

sequence A� that is most likely associated

with the observed sequence S.

Mathematically, A� could be found by

maximisation of the conditional

probability P(A|S) with respect to A.

This task is solved by a dynamic

programming algorithm called the Viterbi

algorithm.32,34

The ECOPARSE program36 and later

the GeneHacker program38 were using the

classic HMMmodel, with each hidden

state emitting one nucleotide triplet

(codon) from the coding state and one

nucleotide from non-coding state. The

Viterbi algorithm implemented in

ECOPARSE and GeneHacker found the

maximum likelihood parse of a DNA

sequence given the sequence and the

model. In a later development of another

HMM-based algorithm,

GeneMark.hmm,37 the inhomogeneous

Markov models used in GeneMark were

explicitly utilised. However, that required

a different type of HMM called HMM

with duration. In Figure 1(b) we show the

architecture of an HMMwith duration,

which implies that a DNA sequence

consists of non-overlapping coding,

Interpolated Markov
models are obtained by
combining higher and
lower order models
with appropriate weight
factors

The hidden Markov
model theory used
initially in speech
recognition was
adapted later to
develop gene prediction
algorithms

Maximum likelihood
parse of a DNA
sequence into protein-
coding and non-coding
regions can be done by
the Viterbi algorithm
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shadow and non-coding regions. Each

region corresponds to single coding,

shadow or non-coding hidden state. Thus

each state emits a string of nucleotides

(coding or non-coding) and then

transition occurs to a different hidden state

(the allowed transitions are shown by line

arrows and the emissions by block arrows).

Advantages of HMMwith duration

include easiness of using any predefined

length distribution of coding and non-

coding fragments as well as opportunity to

readily utilise inhomogeneous Markov

models for different types of genes (typical

and atypical). To improve prediction

accuracy of the position of gene start,

several algorithms including ECOPARSE,

EasyGene, Glimmer, GeneMark.hmm

and GeneHacker Plus used ribosomal

binding site (RBS) models.

An iterative procedure, GeneMarkS,44

was developed to derive parameters for

GeneMark.hmm by unsupervised

learning. This procedure is using models

with heuristically defined pseudo-counts

in the initial step of the DNA sequence

parsing into coding and non-coding

regions.

Use of ribosomal
binding site models
improves gene start
prediction

1 2 3

nt nt

nt

nt nt nt

3 2 1

nt

Non-coding
state

Coding states

Shadow states

C

N

S

Coding sequence
( j nt long)

Shadow sequence
(k nt long)

Non-coding sequence
(i nt long)

(a)

(b)

Figure 1: The
architecture of (a)
standard HMM and (b)
generalised HMM. The
standard HMM has three
hidden states each for
coding sub-model as well
as shadow sub-model
and one hidden state for
the non-coding sub-
model. Each state emits
a nucleotide and then
transition occurs to the
next state. The
generalised HMM has
three hidden states
corresponding to the
three sub-models. Each
state emits a string of
nucleotides and then
transition to another
state occurs. The
allowed transitions are
shown by line arrows
and the emissions by
block arrows
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PROKARYOTIC GENE
PREDICTION USING
SIMILARITY SEARCH
Several powerful gene-finding programs

using extrinsic information have been

developed in recent years. For a given

genome the ORPHEUS program13

selects the ORFs whose protein

translations exhibit significant similarity to

known proteins. DNA sequences of these

ORFs are used as training data for

deriving statistical models of protein

coding sequence. In the ORPHEUS gene

prediction algorithm the coding potential

of a DNA sequence is measured by a

quantity � ¼ R(a1a2 . . . an) �
max{R(b1b2 . . . bn), R(c1c2 . . . cn)}, where
R(a1a2 . . . an) is the normalised form (in

standard deviation units) of the quantityPn
i¼1 log f (ai):
Here, (a1 . . . an), (b1 . . . bn), (c1 . . . cn)

denote the sequences of codons appearing

in three possible frames and f(ai) is the

frequency of the ai codon.

The CRITICA algorithm45 computes

a coding score for each codon using

database search and combines this score

with a dicodon frequency score that

depends on the log likelihood function

ln[ f coding(aijai�1)= fnon-coding(aijai�1)].

Here f(ai|ai � 1) denotes the frequency of

codon ai, given the preceding codon

ai – 1. CRITICA uses an iterative

procedure for learning dicodon usage

statistics and thus belongs to the class of

self-training algorithms as well.

Bio-Dictionary, a database of patterns

describing a sequence space of proteins,

was developed by Shibuya and

Rigoutsos.46 The patterns called ‘seqlets’

were derived by processing database of

proteins using Teiresias algorithm.47

When used for gene finding, the seqlets

are matched against amino acid translation

of an ORF. If the number of matching

seqlets significantly exceeds a

predetermined threshold, the ORF is

predicted as a gene.

The most recent prokaryotic gene

finder, EasyGene,40 uses a database

similarity search information similar to

one in ORPHEUS machine-learning

procedure for deriving the model’s

parameters. EasyGene uses a non-looped

HMM architecture to assign to each ORF

a log-odds score. For instance, for a

sequence S containing an ORF, the score

W ¼ log[P(S|M )/P(S|N )], where

P(S|M ) and P(S|N ) are the posterior

probabilities of S being generated by

coding hidden Markov modelM and null

hidden Markov model N, respectively.

EasyGene also implements a procedure to

compute a statistical significance of the

score of a predicted gene, a unique feature

among gene prediction programs.

ACCURACY ASSESSMENT
The performance of a gene-finding

algorithm is usually assessed by two

accuracy parameters: sensitivity (Sn) and

specificity (Sp). Sensitivity is defined as

the percentage of real genes that were

correctly identified by the algorithm in a

test set. Specificity is defined as the

percentage of predicted genes that match

the real genes. The average value of Sn

and Sp can also be used as a single

accuracy parameter.

The accuracy assessments reported in

recent papers on prokaryotic gene-finding

indicate high level of sensitivity. Most of

the algorithms have attained sensitivity

above 90 per cent. On the tests done up to

date, EasyGene, GeneHacker Plus,

GeneMarkS and Glimmer performed

comparably in detecting the genes in terms

of sensitivity.39,41,44 However, a high-

quality prediction algorithm is supposed to

minimise the number of false positive

predictions, therefore specificity is equally

important. In this respect, the predictions

of EasyGene, GeneHacker Plus and

GeneMarkS have been reported to have

higher specificity than other

programs.39,40,44 For exact gene prediction

(with correctly identified gene start), on

test sets comprising 195 experimentally

verified genes from the Escherichia coli

genome,48 EasyGene and GeneMarkS

have shown a high performance with

above 93 per cent of precise predictions.40

With the fast growth of
DNA and protein
sequence databases, the
sequence similarity is
increasingly used to
identify genes

While the accuracy of
detection of a
prokaryotic gene
location (with its 39-
end) is close to the
theoretical limit the
exact prediction of a
gene start has greater
room for improvement
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POSTERIOR DECODING IN
GENEMARK AN
APPROXIMATION OF THE
FORWARD–BACKWARD
ALGORITHM
In this and subsequent sections we will

draw more parallels between the two

major algorithms of the HMM theory,

the FB algorithm and the Viterbi

algorithm, and two gene-finding

algorithms, GeneMark and

GeneMark.hmm. These parallels are,

however, not entirely complete unless we

develop full extension of GeneMark to

the FB algorithm. Indeed, even though

fairly successful in detecting genes in

prokaryotic genomes, the GeneMark

algorithm has heuristic elements that

deviate from a rigorous theory. For

example, a whole sequence segment

within the window is assigned to a single

functional category, though the function

in reality can vary inside the sequence

segment (as a gene boundary may fall

inside). Averaging a posteriori probabilities

to obtain the score for an ORF is a

heuristic solution as well. A rigorous

assignment of an a posteriori probability of

a functional state to each nucleotide in a

DNA sequence could be provided by the

FB algorithm.32 Also the FB algorithm

can be used to score ORFs in prokaryotic

genomes. In what follows we reintroduce

GeneMark by extending its procedure to

full FB algorithm and show that this

extension leads to improvement in gene

prediction accuracy.

Predicting the state of a
nucleotide with the FB
algorithm
Let us determine forward and backward

variables Æ t(i) and � t(i) as follows: Æ t(i) is

the probability of nucleotide St being

associated with hidden state i given the

observation of nucleotide sequence

S1,. . .,St and the model º; � t(i) is the

probability of nucleotide St being

associated with hidden state i given the

observation of nucleotide sequence

St þ 1,. . . ,Sn (from t + 1 to the end

position) and the model º. For a DNA

sequence S and a model º, the variables
Æ t(i) and � t(i) can be computed by the FB

algorithm (for details, we refer to

Rabiner32 and Durbin et al.34).

Æ t(i) ¼
X
j

Æ t�1( j )
�T j:i

 !�
Pi(St) (4)

� t(i) ¼
X
j

Ti, j
�Pj(Stþ1)

�� tþ1( j ) (5)

Here Ti,j is the transition probability from

hidden state i to state j. Pi(St) is the

probability of emitting the nucleotide St

from state i.

The probability of a nucleotide St to be

in state i, given model º and the

observation of sequence S, can be now

defined by the equation:

ª t(i) ¼
Æ t(i)

�� t(i)

P(S)
(6)

Here P(S), the probability of the sequence

S given the model º, can be computed

using the forward step of the FB

algorithm.32

The HMM architecture shown in

Figure 1(a) was used to calculate the

posterior probabilities ª t(i) of hidden

states in a given position of DNA

sequence. This HMM architecture

contains three hidden states

(corresponding to each phase) for the

protein-coding sub-model as well as for

protein-coding shadow sub-model, and a

single hidden state for non-coding sub-

model. Each state emits a nucleotide and

then transition to next state occurs. The

allowed transitions are indicated by the

arrows in Figure 1(a). The overlap of

coding sequences located either in the

same strand (in different frames) or in the

opposite strands is not allowed. Given the

three Markov models derived for coding

and coding shadow and non-coding

sequences (the second order models were

used in this implementation), ª t(i) was

calculated for three phase-dependent

states of protein-coding sub-model and

three phase-dependent states of protein-

There is a parallel
between the Bayesian
methodology used in
the GeneMark program
and the forward-
backward procedure of
the HMM theory

While GeneMark
determines the
a posterior probability of
the state of a short
sequence segment, the
forward-backward
algorithm determines
the a posterior
probability of a state of
a single nucleotide at a
given position
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coding shadow sub-model as well as for

the non-coding state.

In Figure 2, we show the plot of

posterior probabilities of six coding states

(in six possible coding frames) for the E.

coli genomic sequence containing genes

nhaR, insB1, insA1 and rpsT. For

comparison, the plot of posterior

probabilities produced for the same

sequence by the GeneMark program is

shown in Figure 3. As it can be seen in

Figures 2 and 3, both algorithms identify

the same coding regions, though larger

fluctuations in posterior probability values

are observed in the GeneMark output.

Determining scores for
predicted genes using the FB
algorithm
The FB algorithm was applied previously

for computing probabilistic scores for

exons predicted in eukaryotic genomic

sequences.41 A similar approach can be

used to score ORFs in prokaryotic

genomes, except that this goal can be

reached by using a standard HMM with

architecture shown in Figure 1(a). To

quantify the coding potential associated

with a subsequence, St�dþ1, . . . , St, of

length d, the standard HMM (Figure 1a)

can be employed to get the quantity:

Q ¼
X

i¼cod3,non
j¼non,cod1

Æ t�d(i)
� Ti,cod1

� Pcod1 (St�dþ1)
� Tcod1,cod2

� Pcod2 (St�dþ2)
� Tcod2,cod3

� Pcod3 (St�dþ3)
� . . . � Tcid2,cod3

� Pcod3 (St)
� Tcod3, j

� ��t ( j) (7)

where ��t ( j) ¼ � tþ1( j )
� Pj(Stþ1). Here,

Q defines the sum of probabilities of all

possible parses of the sequence S having a

coding subsequence from position

t � d + 1 to t. codi denotes the ith state

(corresponding to ith phase, I ¼ 1, 2, 3)

of a codon sub-model; non stands for the

non-coding state. The forward variable Æ
and backward variable � can be

determined using equations (4) and (5).

To get a coding measure for an ORF,

The forward-backward
algorithm can be used
to measure the coding
potential of an ORF
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Figure 2: The posterior probability of coding hidden states as determined by the
GeneMark.fba program implementing the FB algorithm. The probability values are shown for
the six reading frames of the E. coli DNA sequence. Each 12th data point of the actual FB
algorithm output was used for plotting. In the GenBank annotation there is one annotated
gene nhaR (18715–19620) in the direct strand and three annotated genes insB1, insA1, rpsT
(19811–20314, 20233–20508 and 20815–21078) in the complementary strand
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we compute Q for the subsequence

St�dþ1, . . . , St corresponding to the

ORF (without stop codon) and also for

all possible sequence segments of the

ORF (with minimum length of 3),

having the same phase as the ORF. Thus

we take into account coding potential

associated with the ORF as well as with

its in-phase segments. We sum the Qs

thus obtained to get the coding potential

measure, QT, for the ORF in question.

The ORFs are scored using one strand

only approach;11 the score Q for the

ORFs in the complementary strand is

computed by replacing coding state by

shadow state in (7). This procedure gives

good practical results, though it can be

improved further. If QT is greater than a

threshold, then the ORF is predicted as a

gene. The threshold is set at 0:75 � P0.

P0 is the probability of the test set

sequence (including the ORF), given the

model.

We tested the performance of QT

scores computed by the GeneMark.fba

algorithm for gene prediction in complete

genomes of Archaeoglobus fulgidus, Bacillus

subtilis, E. coli, Haemophilus influenzae,

Helicobacter pylori, Methanococcus jannaschii,

Methanobacterium thermautotrophicum and

Synechocystis. The genomic sequences and

annotations were downloaded from the

NCBI database.49

For these tests, we used a six-fold cross-

validation procedure: the models were

built from the training set of sequences

with genes annotated as given in

GenBank and then the program was used

to predict genes in the test set non-

overlapping with the training set. Here

we assumed that the GeneBank

annotation is accurate. This assumption is

Accuracy tests require
cross-validation
approach

Figure 3: The
posterior probabilities of
a protein-coding
property (protein-coding
potential) as computed
by GeneMark in six
reading frames for the
same E. coli DNA
sequence as in Figure 2.
A window of 96 nt
moves at a step of 12 nt
and the posterior
probability is plotted at
sequence position
corresponding to the
centre of the window
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not entirely valid, but it was sufficient for

our purposes.

The genes were identified by the

GeneMark.fba algorithm as follows. Since

for a given stop codon, there can be more

than one upstream in-frame start codon,

the region where a gene can be residing is

bounded by the stop codon and the

furthest in-frame start codon (ie the

longest ORF between two in frame stop

codons). We measured the QT

corresponding to this region and if the

value QT exceeded the established

threshold, the ORF identified by its stop

codon was predicted as gene.

Table 1 shows the results of gene

prediction accuracy assessment. The

performance (in terms of average value of

Sn and Sp) of GeneMark.fba was better

than GeneMark for all the genomes

shown in Table 1 except ones ofM.

thermautotrophicum and M. jannaschii.

GeneMark.fba performed better than

GeneMarkS for the genome of E. coli,M.

jannaschii and Synechocystis, while

GeneMarkS performed better for A.

fulgidus, B. subtilis and H. influenzae

genomes; both algorithms performed

equally well for H. pylori and M.

thermautotrophicum genomes. Note that

GeneMarkS uses a different training

procedure and has a more developed

HMM architecture including besides

models of protein-coding sequence and

non-coding sequence additional two-

component models of RBS to identify

gene starts. One of our objectives was to

draw a parallel between the Bayesian

methodology used in GeneMark program

and the HMM theory as implemented in

GeneMark.fba program. Comparison of

performance of GeneMark.fba with

GeneMarkS is of interest since we

compare two mainstream types of HMM

algorithms for hidden state prediction: the

forward–backward algorithm and the

Viterbi algoriothms (though for HMM

with a bit different architecture). The

comparison shows that GeneMark.fba

performs comparably with GeneMarkS

The forward-backward
algorithm implemented
in the GeneMark.fba
program improves the
gene prediction
accuracy compared to
the GeneMark program

Table 1: Comparison of the gene prediction accuracy of the GeneMark.fba program employing forward–backward
algorithm with prediction accuracy of GeneMark and GeneMarkS programs

Organism Prediction
algorithm

Genes
annotated

Genes
predicted

Annotated
genes detected

Sn (%) Sp (%) (Sn+Sp)/2
(%)

A. fulgidus GeneMark 2406 2389 2260 93.93 94.60 94.26
GeneMarkS 2462 2309 95.96 93.78 94.87
GeneMark.fba 2545 2341 97.29 91.98 94.64

B. subtilis GeneMark 4105 3759 3651 88.94 97.12 93.03
GeneMarkS 4217 3968 96.66 94.09 95.37
GeneMark.fba 4294 3939 95.95 93.91 94.93

E. coli GeneMark 4255 3734 3655 85.89 97.88 91.89
GeneMarkS 4069 3919 92.10 96.31 94.20
GeneMark.fba 4153 3993 93.84 96.14 94.99

H. influenzae GeneMark 1687 1712 1631 96.68 95.26 95.97
GeneMarkS 1762 1657 98.22 94.04 96.13
GeneMark.fba 1766 1656 98.16 93.77 95.96

H. pylori GeneMark 1572 1514 1461 92.93 96.49 94.71
GeneMarkS 1593 1510 96.05 94.78 95.42
GeneMark.fba 1590 1509 95.99 94.90 95.44

M. jannaschii GeneMark 1723 1750 1688 97.96 96.45 97.21
GeneMarkS 1834 1709 99.18 93.18 96.18
GeneMark.fba 1821 1709 99.18 93.84 96.51

M. thermautotrophicum GeneMark 1872 1802 1762 94.12 97.78 95.95
GeneMarkS 1825 1767 94.39 96.82 95.60
GeneMark.fba 1909 1807 96.52 94.65 95.59

Synechocystis GeneMark 3166 2942 2891 91.31 98.26 94.79
GeneMarkS 3005 2922 92.29 97.23 94.76
GeneMark.fba 3143 3048 96.27 96.97 96.62
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(Table 1). Additionally, for the genome of

H. pylori we have compared performance

of the GeneMark.fba program with

performances of the EasyGene and

Glimmer 2.0 program. The Sn and Sp

values obtained for EasyGene program

were 94.52 and 97.25 per cent

respectively. For the Glimmer 2.0

program, Sn and Sp values were 96.6 and

84.3 per cent respectively. The Sn and Sp

values observed for the GeneMark.fba

program (95.99 and 94.90 per cent) were

comparable to EasyGene and Glimmer

2.0.

In Table 2, we show the results of the

programs testing on three sets of

annotated B. subtilis genes shorter than

300 nt with at least one, at least two and

at least ten significant similarities to

known proteins determined by BLAST

analysis (Besemer et al.;44 the data are

available at the website.50 GeneMarkS

performed the best on all three sets,

consistent with its best performance

shown on the set of annotated B. subtilis

genes (see Table 1).

On a set of experimentally verified set

of 850 genes of E. coli genome (see

Rudd,51 the data are available at the

website52), GeneMarkS and

GeneMark.fba performed equally well,

identifying 842 genes. The GeneMark

program identified 825 genes. The

computational time of GeneMark.fba

program is, however, greater than ones of

GeneMark and GeneMarkS programs.

For example, for the E. coli genome (4.6

Mbp), GeneMark.fba computations take

about one hour.

A comparison of the Bayesian method

implemented in GeneMark with the FB

algorithm implemented in GeneMark.fba

shows that GeneMark provides a

computationally efficient procedure to

generate a posteriori probability values that

are approximations to a posteriori

probabilities determined by a rigorous

HMM method implemented in

GeneMark.fba. For this reason, we

believe the GeneMark method was

characterised as ‘HMM-like’ one by

Durbin et al.34 (page 75) although

GeneMark did not explicitly used an

HMM approach. The ORF scores

determined by the FB algorithm as

implemented in GeneMark.fba improved

the gene prediction accuracy in several

genomes as compared to GeneMark. The

extra computational time required for

GeneMark.fba program is currently

within reasonable limits and should

further decrease as the speed of computers

increases (not mentioning room for the

code optimisation).

CONCLUSION
Statistical pattern recognition methods

have achieved a high level of accuracy in

prokaryotic gene finding. A number of

algorithms using Markov models or

hidden Markov models for gene

identification have emerged and have

been improved over the years. The latest

algorithms have been reporting above 90

per cent sensitivity and specificity values

in gene detection accuracy. As the perfect

method that would correctly identify all

protein-coding genes in a genome

without false positives has not been

invented yet, there is a point to try to deal

with this challenge. However, this

problem may not be precisely defined

unless we have experimental evidence for

all the genes in the genome. Absence of

this information creates an uncertainty in

the exact level of the performance of the

best prokaryotic gene finders. With this

caveat we believe that there is still a need

to introduce new methods or improve

existing methods to raise both the

sensitivity and specificity bars firmly

The GeneMark.fba
program performs
comparably with other
existing HMM based
prediction programs

Table 2: Comparison of gene prediction accuracy of GeneMark,
GeneMarkS and GeneMark.fba programs tested on three sets of B. subtilis
genes shorter than 300 nt with at least one (Set 1), at least two (Set 2), at
least ten (Set 3) significant sequence similarities to known proteins as
determined by BLAST analysis (Besemer et al.44). The number of genes
identified by each program in each of the three test sets is shown

Test set GeneMark GeneMarkS GeneMark.fba
4th order 2nd order 2nd order

Set 1 (123 genes) 84 113 99
Set 2 (72 genes) 54 68 61
Set 3 (51 genes) 39 48 42
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above 95 per cent level. The accuracy of

prediction of gene starts in prokaryotic

genomes is yet to be improved as well,

though such programs as GeneMarkS and

EasyGene have already raised the level of

gene start prediction accuracy to 90 per

cent level. As the amount of DNA

sequences in the databases grows further,

in concert use of extrinsic and intrinsic

methods and further innovations should

bring us in a rather short term to solving

the prokaryotic gene-finding problem in a

practical sense, though reaching perfect

100 per cent limit (with no false positives)

would require indefinite time.
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