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Abstract 

This article presents a probabilistic framework to characterize the dynamic and stability parameters of 

composite laminates with spatially varying micro and macro-mechanical system properties. A novel 

approach of stochastic representative volume element (SRVE) is developed in the context of two 

dimensional plate-like structures for accounting the correlated spatially varying properties. The physically 

relevant random field based uncertainty modelling approach with spatial correlation is adopted in this 

paper on the basis of Karhunen-Loève expansion. An efficient coupled HDMR and DMORPH based 

stochastic algorithm is developed for composite laminates to quantify the probabilistic characteristics in 

global responses. Convergence of the algorithm for probabilistic dynamics and stability analysis of the 

structure is verified and validated with respect to direct Monte Carlo simulation (MCS) based on finite 

element method. The significance of considering higher buckling modes in a stochastic analysis is 

highlighted. Sensitivity analysis is performed to ascertain the relative importance of different 

macromechanical and micromechanical properties. The importance of incorporating source-uncertainty in 

spatially varying micromechanical material properties is demonstrated numerically. The results reveal that 

stochasticity (/ system irregularity) in material and structural attributes influences the system performance 

significantly depending on the type of analysis and the adopted uncertainty modelling approach, affirming 

the necessity to consider different forms of source-uncertainties during the analysis to ensure adequate 

safety, sustainability and robustness of the structure. 

Keywords: composite laminate; micromechanical random field; spatially correlated material properties; 

stochastic natural frequency; stochastic buckling load; stochastic mode shape  
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1. Introduction 

Composite structures are widely used in modern aerospace, construction, marine and automobile 

applications because of high strength and stiffness with lightweight and tailorable properties. Even though 

laminated composite structures have the advantage of modulating large number of design parameters to 

achieve various application-specific requirements, this concurrently brings the challenge of manufacturing 

the structure according to exact design specifications. Large-scale production of such structures according 

to the requirements of industry is often subjected to large amount of variability arising from unavoidable 

manufacturing imperfections (such as intra-laminate voids and excess matrix voids, excess resin between 

plies, incomplete curing of resin, porosity, variations in lamina thickness and fibre properties), lack of 

experiences and complexity of the structural configuration. The issue aggravates further due to uncertain 
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operational and environmental factors and the possibility of incurring different forms of damages and 

defects during the service life. In general, uncertainties can be broadly classified into three categories, 

aleatoric (due to variability in structural parameters), epistemic (due to lack of adequate information about 

the system) and prejudicial (due to absence of stochasticity characterization of the structural system) 

(Agarwal et al. (2004), Oberkampf et al. (2001), Sriramula and Chryssanthopoulos (2009), Dey et al. 

(2018a)). Composite structures being susceptible to multiple forms of uncertainties, the structural 

performances are often subjected to a significant element of risk. Thus it is of prime importance in case of 

composite structures to quantify the effect of source-uncertainties so that an inclusive design paradigm 

could be adopted to avoid any compromise in the aspects of safety and serviceability.  

Composite structures have received immense attention from the engineers and scientists 

concerning their static, dynamic and stability behaviour (Chakrabarti et al. (2011, 2013), Biswal et al. 

(2016), Dey et al. (2016d), Mandal et al. (2017), Kumari and Behera (2017). Recent studies on the 

vibration and buckling analysis of advanced lightweight structures (like composites and FGM) in the 

deterministic regime include non-homogeneity, non-linear behaviour, shear deformation, rotary inertia 

and effect of elastic foundation in the analysis (Sofiyev et al. (2012, 2017), Sofiyev and  Kuruoglu 

(2014), Haciyev et al. (2018)). Following several decades of deterministic studies, the aspect of 

considering the effect of uncertainty in material and structural attributes have recently started receiving 

due attention from the scientific community. Both probabilistic (Sakata et al. (2008), Goyal and Kapania, 

(2008), Manan and Cooper (2009), Dey et al. (2016a, 2016e, 2018b, 2019), Naskar et al. (2017b), Naskar 

and Sriramula (2017a, 2017b, 2017c), Naskar (2017)) as well as non-probabilistic (Dey et al. (2016b), 

Pawar et al. (2012)) approaches have been investigated to analyse the influence of variability in the 

material and structural attributes of composite structures. Plenty of researches have been reported based 

on intrusive methods to quantify the uncertainty of composite structures (Lal and Singh (2010), Scarth 

and Adhikari (2017)), wherein the major drawback can be identified as the requirement of intensive 

analytical derivation and lack of the ability to obtain complete probabilistic description of the response 

quantities for systems with spatially varying attributes. A non-intrusive method based on Monte Carlo 

simulation, as adopted by many researchers (Dey et al. (2016a, 2016g, 2015d), Mukhopadhyay and  
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Fig. 1  (a) Typical distribution of a material property E1 along a cross-sectional view (X-Z plane) of two 
laminae for a random realization in case of the layer-wise random variable approach (b) Typical 
distribution of a material property E1 along a cross-sectional view (X-Z plane) of two laminae for a 
random realization in case of the random field approach 
 

Adhikari (2016c)), can obtain comprehensive probabilistic descriptions for the response quantities of 

composite structures. Besides consideration of random variability in material and structural attributes, 

recent studies related to uncertainty quantification of laminated composite structures include the effect of 

environmental (Dey et al. (2015a)), operational (Dey et al. (2015b)) and service life conditions (Naskar et 

al. (2017), Karsh et al. (2018a)) following the non-intrusive approach. A careful consideration of 

available scientific literature unveils that most of the studies conducted so far to quantify the effect of 

uncertainty in composite structures are based on a ply-level random variable based approach, where the 

spatial variation of stochastic parameters in the laminae is neglected. In the previous studies, the material 

and structural properties of a lamina are assumed constant spatially (i.e. along the x-y plane) for a 

particular realization (refer to figure 1(a)). Modelling of uncertainty in composite structures based on such 

random variable based approach is of limited practical resemblance. Therefore, it is essential to consider 
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the effect of spatial variability in the material properties (Kazimierz and Kirkner (2001)) of the laminae to 

quantify the effect of uncertainty accurately. 

We aim to quantify the effect of spatially varying lamina properties in this article to characterize 

the probabilistic descriptions for the dynamics and stability characteristics of composite plates. The aspect 

of spatial variation of lamina properties is illustrated in figure 1(b) for a random realization (i.e. a typical 

sample of the Monte Carlo simulation), wherein it can be noticed that the stochastic attributes vary in the 

x-y plane as well as along the z-axis (i.e. for different laminae). Most of the previous investigations in this 

field have not considered the spatial variation of stochastic attributes as shown in figure 1 (Dey et al. 

(2016a)). In practical situations, the stochastic attributes often being spatially correlated, it is essential to 

account for the effect of such correlation to create a physically realistic model of uncertainty. We aim to 

consider the spatially correlated material attributes in composite laminates based on Karhunen-Loeve 

expansion (Karhunen (1947), Loève (1977)). However, even after ensuring a physically relevant 

uncertainty model of composite laminates, as discussed above, the issue of propagation of uncertainty 

following a computationally viable framework still remains to be addressed. The aspect of 

computationally efficient uncertainty propagation in context to composite laminates is discussed in the 

next paragraph. 

Uncertainty quantification based on Monte Carlo simulation is a popular approach because of the 

ability to obtain a comprehensive probabilistic description of the response quantities. However, the major 

lacuna of this approach is that a Monte Carlo simulation requires thousands of expensive finite element 

(FE) simulations to be carried out corresponding to the random realizations. Thus, direct Monte Carlo 

simulation has limited practical use due to the computational intensiveness. To mitigate this lacuna we 

have developed a surrogate modelling approach based on the high dimensional model representation 

(HDMR) technique coupled with the diffeomorphic modulation under observable response preserving 

homotopy (DMORPH) algorithm (Li and Rabitz (2012)) for accounting correlated spatially varying 

attributes, wherein the uncertainty propagation can be realized following an efficient mathematical 

medium. 
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In the present analysis, uncertainty of the system properties is considered in the elementary 

micromechanical level to comprehensively analyse the dynamic and stability characteristics of composite 

laminates. Thus a probabilistic approach is followed, wherein the effect of uncertainty is included in the 

elementary micromechanical-level first and then the effects are propagated towards the global responses 

via an efficient surrogate of the actual finite element model. For this purpose, the idea of stochastic 

representative volume element (SRVE) is proposed in the context of two-dimensional plate-like 

structures. This article hereafter is organized as, section 2: governing equations for analysing the 

stochastic dynamics and stability of composite laminates; section 3: brief description of the surrogate 

model based on HDMR coupled with the DMORPH algorithm; section 4: description of the SRVE 

approach of uncertainty quantification considering spatially correlated material properties hinged upon the 

Karhunen-Loève expansion; section 5: results and discussion demonstrating the influence of spatially 

varying properties on the global responses of composite laminates; section 6: summary and perspective of 

the present study in context to the available scientific literature; section 7: conclusion. 

2. Stochastic dynamics and stability analysis of composite plates  

In present article, a laminated composite plate with thickness h, length L and width b is analysed 

as shown in figure 2 and 3. The governing equation for stochastic free vibration analysis of a composite plate 

without damping can be expressed as (refer to the APPENDIX for detail formulation) 

       ( ) ( ) 0M K              (1) 

where      )()()(  ee KKK  . In the finite element formulation of this study, an eight noded element is 

considered, wherein each node has five degrees of freedom (two rotations and three translations). The natural 

frequencies  k  and mode shapes ( )f

k
S  of the composite plate are obtained by solving an eigenvalue 

problem based on QR iteration algorithm (Bathe (1990), Rayleigh (1945)) 

  2( ) ( ) [ ( )] [ ( )] ( )f f

k k k
K S M S       (2) 

where nk ,....,3,2,1 . The superscript f is used to denote the frequency analysis. Here the orthogonality 

relationship is satisfied as 
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(a)                                                                             (b) 

Fig. 2 (a) Force acting on the plate  (b) Moment acting on the plate 

 

Fig. 3 Laminated composite plate with layer number 

[ ( )] [ ( )] ( )f T f

i k ik
S M S    and 2[ ( )] [ ( )] ( ) [ ( )]f T f

i k k ik
S K S       (3) 

where nki ,....3,2,1,   and the Kronecker delta functions ik
 =0 for ki  ; ik

 =1 for ki  . The problem of 

stability analysis is solved through another eigenvalue problem as: 

 ( ) ( )[ ( )] ( )b b b

e k e k
K S K S                                                                   (4) 

where ( )b  is the stochastic buckling load factor and  b

k
S  gives the buckling modeshapes. The 

superscript b is used to denote the buckling analysis. 
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3. HDMR based surrogate modelling coupled with DMORPH algorithm  

In this section, a brief overview is given for the surrogate modelling approach on the basis of high 

dimensional model representation (HDMR) coupled with the diffeomorphic modulation under observable 

response preserving homotopy (DMORPH) algorithm. In general, the surrogate models (Dey et al.  

(2016a, 2016f, 2018, 2015e), Mukhopadhyay (2019), Mukhopadhyay et al. (2016b, 2016c), Karsh et al. 

(2018b), Maharshi et al. (2018), Mahata et al. (2016), Metya et al. (2017)) are employed to reduce the 

number of function evaluations based on actual simulation/ experimental models in a Monte Carlo 

simulation (refer to figure 4) or a process involving iterative simulations (such as optimization), which 

need large number of realizations corresponding to random set of input parameters. The surrogate models 

can encompass any prospective combination of all the input variables within the analysis domain. 

Thousands of sets of the design input parameters can be generated and pseudo analyses for each set can be 

efficiently executed by adopting the corresponding surrogate based prediction models. The development 

of surrogate models is performed in three typical steps: selection of optimal sample points (which are able 

to collect information of the whole design space) to construct surrogate model, evaluation of responses 

(i.e. output) corresponding to each of the sample points and formulation of the mathematical/ statistical 

prediction model to obtain an efficient input-output relationship based on the sample set (containing a set 

of input parameters and corresponding output parameters). 

The present HDMR (Dey et al. (2015c, 2016c, 2017) Mukhopadhyay et al. (2015, 2016a)) based 

surrogate modelling algorithm is particularly suitable for high dimensional systems (i.e. large number of 

input parameters) and correlated system properties. The HDMR can form an efficient model to predict the 

random output responses (e.g. natural frequency and buckling load) in the stochastic analysis domain. 

This approach is able to treat both independent as well as correlated input variables. The function of D-

MORPH here is to verify the component function orthogonality following a hierarchical approach. The 

present formulation decomposes function )(S  with the component functions by input parameters,

),...,,( 21 kkSSSS  . As the input parameters are considered to be independent in nature, the component 

functions can be projected by vanishing condition. In the present analysis, the component functions is 

portrayed, wherein a unified framework for general HDMR dealing with both correlated as well as  
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Fig. 4 Surrogate based analysis of stochastic system (Here ( )x   and ( ( ))y x   are the symbolic 

representation of stochastic input parameters and output responses respectively.   denotes the 
stochasticity of parameters.) 

independent variables is developed. For various stochastic input parameters, the output quantity is 

calculated as follows (Li and Rabitz (2012), Li et al. (2002a, 2002b)) 

).,....,,(.......),()()( 21.......12
1 1

0 kkkk

kk

i kkji

jiijii SSSSSSS    
 

 (5) 

   





kku

uu SS )()(   (6) 

 
where 0  is the zero-th order component function, which represents the mean value. )( ii S  and 

),( jiij SS  represent first and second order component functions, respectively. The expression

).,....,,( 21.......12 kkkk SSS  is the residual contribution by input parameters. Here },....,2,1{ kku  

indicates the subset wherein kku . Note that u  includes   ( u ), which is an empty set. According 

to Hooker’s definition, the correlated variables can be expressed as 
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    0)()(,, uiuu dSdSSwSuikku   (8) 

 

   0)(,)()()()(:, vvuuvvuuv SgSdSSwSgSguv   (9) 

The parameter )(S  is obtained from the design points. Assuming H’ to be a Hilbert space on the basis of 

{h
’
1, h

’
2, . . . , h

’
kk}, the bigger subspace '

H (⊃ '
H ) can be expanded by the extended basis {h

’
1, h

’
2, . . . , 

h
’
kk, h

’
kk+1, . . . , h

’
m}. Then the subspace '

H  is decomposed as 

 ' ' '
H H H

   (10) 

where '
H

  represents the orthogonal complement subspace of '
H within the subspace '

H . Component 

functions of a second order HDMR expansion can be obtained from basis functions }{  (Li et al. 

(2006)), 
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The HDMR based expansions for sampN  sample points of S  is represented by a linear system of 

algebraic equations 

 RJ ˆ  (13) 
 
where  represents a matrix (

sampN  × t
~ ), where the elements are basis functions at 

sampN  values of S ; J 

denotes a vector having t
~

 dimension of all the unknown combination coefficients; R̂  is a vector having 

sampN dimension, where the l -th element is 0
)( )(  l

S . )(l
S  is the l -th sample of S , and 0  represents 

the average value of all )( )(l
S . Regression equation for the least squares can be written as  

 
R

N
J

N

T

samp

T

samp

ˆ11    (14) 

 
Because of using extended bases, some of the rows of the above expression become identical and these 

can be removed for obtaining an underdetermined algebraic system of equation 

 VJA ˆ  (15) 
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This has many solutions for J  composing a manifold t
Y

~
 . Thus a solution J  from Y  is found to force 

the HDMR component functions that satisfy hierarchical orthogonal condition. DMORPH regression can 

provide a solution for ensuring the additional condition  

 
)()()(

)(
lvAAIlv

dl

ldJ
t

   (16) 

 
where   is an orthogonal projector having the following properties 

 2     and         T  (17) 
   

 T 2  (18) 
 
The free function vector can be adopted for ensuring the wide domain for )(lJ  and to reduce the cost 

))(( lJ  simultaneously 
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The cost function is obtained in a quadratic form  

 
JBJ

T

2

1
  (21) 

 
where, B denotes a positive definite symmetric matrix and J  is expressed as 
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Here the last columns )~( rt  in U and V  are obtained as 

rt
U ~  and 

rt
V ~ which is obtained by 

decomposition of B   
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S
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00

0
  (23) 

 
The solution J in Y , which is unique, indicates the minimized cost function. Here DMORPH regression 

is adopted to obtain J ensuring the HDMR component functions’ orthogonality in a hierarchical manner.  
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4. Stochastic representative volume element based framework for uncertainty quantification 

4.1. Concept of SRVE 

In this paper a concept of stochastic representative volume element (SRVE) is proposed for two-

dimensional plate-like structures to account for the effect of spatial randomness of material properties. 

According to this approach, each of the representative units (structural element) is considered to be 

stochastic in nature, instead of considering the homogenized mechanical properties of a conventional 

representative volume element (RVE) throughout the entire solid domain. As per the traditional approach, 

one RVE is analysed typically and the assumption is that a single RVE can represent the entire analysis 

domain (Sriramula and Chryssanthopoulos (2009), Mukhopadhyay et al. (2017a, 2017b, 2018a)). 

However, this approach of analysis can lead toeroneous outcomes, specially in case of stochastic systems 

with spatial randomness in material and other attributes. To analyse such systems, it is essential to account 

for the effect of the distribution of stocahstic mechanical properties along the spatial location of different 

zones of a plate-like structure.  

According to the present approach, the entire plate is assumed to be consisted of a finite number of 

SRVEs. Thus mechanical properties of a SRVE are dependent on its stochastic material and structural 

properties. Following this framework, it becomes feasible to consider the spatial randomness in a 

structural system more realistically. The global responses (such as natural frequencies and buckling loads) 

of the plate are computed by propagating the mechanical information acquired in the elementary local 

level (SRVEs) towards the global level by combing (/assembling) the SRVEs applying the principles of 

solid mechanics (finite element approach in the present study). Recently, a similar concept has been 

proposed for analyzing hexagonal honeycomb-like lattices having spatial irregularity (Mukhopadhyay and 

Adhikari (2016a, 2016b, 2017a), Mukhopadhyay et al. (2018a), Mukhopadhyay (2017)), wherein multiple 

representative unit cell elements (RUCE) are analysed instead of the conventional approach of considering 

a single unit cell. The entire lattice structure is assumed to be consisted of several RUCEs and the global  
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Fig. 5 SRVE based approach for analyzing spatially random two dimensional systems 

mechanical properties of the entire irregular lattice can be computed by assembling the RUCEs based on 

equilibrium and compatibility conditions. The concept of SRVE for analyzing one dimensional beam-like 

structures with random material properties and crack density is first adopted by Naskar et al. (2017). In 

this paper, we have generalized the concept for stochastic analysis of two-dimensional plate-like 

structures with randomly inhomogeneous form of uncertainty (Mukhopadhyay and Adhikari (2017b)). It 

can be noted that spatially correlated material properties can be conveniently accounted in this approach 

based on the Karhunen-Loève expansion. The adoption of SRVEs in a plate-like structure is shown in the 

figure 5, wherein the two-dimensional space is divided into a finite number of stochastic elements 

(SRVEs) having dimensions of l1 and l2 in two mutually perpendicular directions of the two-dimensional 

structure. Each of the SRVEs possesses different material and structural properties. Here, a parameter 

characteristic length ( r ) can be defined as: 1 2

1 2

1

d

l l
r

L L N
    , where d

N  denotes the number of divisions 

along the two dimensions of the plate. As per the proposed concept of SRVE, the size (/number) of SRVE 

is independent of the discretization in a finite element based numerical solution that could be adopted for 

dynamic/ stability analysis of the composite plate. The size (/number) of SRVE would normally be 

govorned by the spatial distribution of structural and material attributes along with the correlation length. 

Once the size of a SRVE is decided, they could be discretized following conventional finite element 

analysis using a mesh convergence study. In the present analysis, we have only considered spatial 
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variation of material properties; but future studies could include random spatial variation of 

microstructural properties (such as micro-scale damage) using the proposed SRVE based framework. In 

such problems, appropriate finite element meshing schemes would need to be adopted for each of the 

SRVEs. 

4.2. Characterization of correlated material properties based on  Karhunen-Loève expansion  

Random fields are useful for modelling variables which have correlated spatial randomness. When 

spatial variation of structural and material properties are considered in a randomly inhomogeneous 

structural system, the properties are often found to be spatially correlated. The conventional approach to 

deal with such random fields is to discretize it into different finite number of random variables. Available 

schemes for discretizing the random fields can be classified into three groups, point discretization (e.g., 

midpoint (Klintworth and Stronge  (1988)), shape function (Liu et al. (1986a, b)), integration point 

method (Matthies et al. (1997)), optimal linear estimate (Li and Der (1993))); series expansion (e.g., 

orthogonal series expansion (Zhang and Ellingwood (1994))), and average discretization (e.g., spatial 

average (Vanmarcke (1983), Vanmarcke and Grigoriu (1983)), weighted integral (Deodatis (1991), 

Deodatis and Shinozuka (1991))).  

The beneficial alternative for discretizing the random field is representing it in a generalized 

Fourier type of series such as Karhunen-Loève (KL) expansion (Karhunen (1947); Loève, (1977)). Let us 

consider a random field  ,x  with covariance function 1 2( , ) x x  defined in the probability space

( , , )F P . The KL expansion for  ,x  can be expressed in the following form 

        
1

, i i i

i

   




  x x x               (24) 

where   i
   represents a set of random variables with no correlation.  i and   i

 x  denote the 

eigenvalues and eigenfunctions of the covariance kernel 1 2( , ) x x , satisfying the integral equation 

    1 2 1 1 2( , )
N

i i id 


   


x x x x x                  (25) 

In practice, the infinite series in Equation (24) is truncated as 
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1

,
N

i i i

i

f   


 x x x               (26) 

The above expression approaches to  ,x  in a mean square sense for N  .  The finite element 

method (Huang et al. (2001)) can be applied to compute the eigensolutions for any covariance function 

and domain in the random field.  In case of linear and exponential covariance functions along with a 

simple domain, the eigen solutions are feasible to be obtained analytically (Huang et al (2001)). Once 

( ) s  and its eigen solutions are computed, the parameterization of  ,x  is carried out by the KL 

approximation of Gaussian image,  

        
1

,
N

i i i

i

G f   


    
x x x                  (27) 

As per Equation (27), the KL approximation gives a parametric representation of  ,x  with M 

random variables.  It can be noted that this is not the only available method for discretizing the random 

field  ,x .  However, KL expansion has uniqueness and error minimization properties that make it a 

superior choice over the other methods (Huang et al. (2001)). 

In the present article, the stochastic material properties (micro/ macro-mechanical) are modelled as 

random fields and these are discretized using the KL expansion. To be specific, lognormal random fields 

are considered for modelling the correlated material properties. The covariance function is expressed as 

    1 2 1 22 e y zy y b z z b

z z 
                     (28) 

where 
y

b and zb

 

represent the two planar directions. These parameters control the rate of covariance decay. 

The eigensolutions of the covariance function can be obtained by solving the integral analytically (refer to 

Equation 25) 

    
1

2

1

2

2 2 1 1 2 2 1 1 1 1, ( , ; , ) ,

a

a

i i i

a

a

y z y z y z y z dy dz




   



              (29) 

where, 
1 1a y a    and 

2 2a z a    . Assuming that the eigen-solution can be separated in y and z 

directions and substituting the covariance function  
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                                                                  2 2 2 2, y z

i i i
y z y z                    (30) 

          2 2 2 2, y z

i i i
y z y z                   (31) 

, the solution of equation (29) can be reduced to the product of the solutions of two equations having the 

form 

                                              

         
1

1 2

1

( )

1 2 2
y

a

y y by y y

i i i

a

y e y dy  



                 (32) 

Solution of the above equation, which is the eigensolution of an exponential covariance kernel with a one-

dimensional random field, can be obtained as 
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2 2

* 2
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sin 2

2

sin 2
for even

sin 2

2

z

z
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ii

i

i

i i

i
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b
a

b
i

b
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                            (33) 

Where 1
y

b
b

  or 1
zb

 and 
1a a  or

2a . The parameter   is either y or z. Here 
i  and *

i
  are computed 

from the solutions of the following equations tan( ) 0
i i

b a  
 
and tan( ) 0

i i
b a    , respectively. It 

can be noted that the KL expansion was formulated for discretization following gaussian random fields. In 

case of lognormal random fields, as considered in the present study, the KL expansion is formulated on its 

gaussian image. In the current study of laminated composite plates, the spatially correlated properties are 

parameterized by the respective mean values (considered to be same as the deterministic value of a 

particular parameter), the coefficient of variation (COV) and two correlation parameters. The degree of 

stochasticity is defined as the coefficient of variation ( ) of a particular stochastic input parameter. 
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4.3. Description of the uncertainty quantification framework 

4.3.1. Monte Carlo simulation 

Uncertainty quantification is part of modern structural analysis problems. Practical structural 

systems need to face uncertainty, variability and ambiguity on a constant basis. Even after having 

unprecedented access to the information due to recent improvement in various technologies, it is 

impossible to accurately predict future structural behaviour during its service life. Monte Carlo 

simulation, a computerized mathematical technique, lets us realize all the possible outcomes of a 

structural system leading to better and robust designs for the intended performances. This technique was 

first used by the engineers and scientists developing the atom bomb and it was named after a Monaco 

resort town Monte Carlo. Since the introduction during World War II, this technique has been applied to 

model various physical and conceptual systems across different fields covering engineering, 

manufacturing, energy, finance, insurance, project management, transportation and environment.  

Monte Carlo simulation (MCS) furnishes a range of prospective outcomes along with their 

respective probability of occurrence. This technique performs uncertainty quantification by forming 

probabilistic simulations of all prospective results accounting a wide range of values from the probability 

distributions of any factor having an inherent uncertainty. This method simulates the outputs multiple 

times, using a different set of random values each time, drawn from the probability distribution of 

stochastic input parameters. Depending upon the nature of stochasticity, a Monte Carlo simulation may 

involve thousands or tens of thousands of realizations (/function evaluations) before it can provide a 

converged result depicting the distributions of possible outcome values of the response quantities of 

interest.  Thus Monte Carlo simulation provides not only a comprehensive idea of what could happen, but 

also how likely it is to happen i.e. the probability of occurrence.  

The mean (/expected) value of a function ( )f x  having an n dimensional vector of random variables 

and a joint probability density function ( )x ,  is expressed as 

    ( )
f

E f x f x x dx 


    
 

(34) 



18 

 

The variance of the function ( )f x  is given as, 

    2
2 ( )
f f

Var f x f x x dx  


     
 

(35) 

The multidimensional integrals, as shown in equation (34) and (35) are difficult to compute analytically 

various types of joint density functions. Moreover, the integrand function ( )f x  may not always be 

available in an analytical form for the problem under consideration. Thus the only alternative way is to 

calculate it by numerical means. It can be computed using the MCS approach, wherein N number of 

sample points is generated following a suitable sampling scheme in the random variable space of n-

dimensions. The N number of samples drawn from a dataset must follow the same distribution as ( )x . 

The function ( )f x is computed at each of the sampling points  of the sample set  1,............, N
x x  . 

Thus, the integral for the expected value can be expressed in the form of averaging operator as  

   
1

1 N

if
i

E f x f x
N




    
 

(36) 

In a similar manner, using sampled values of MCS as above, the equation (35) leads to 

    2
2

1

1

1

N

if f
i

Var f x f x
N

 


      
 

(37) 

Thus the statistical moments can be obtained using a brute force MCS based approach, which is often 

computationally very intensive due to the evaluation of function ( )
i

f x corresponding to the N-sampling 

points , where N ~ 104. The noteworthy fact in this context is the adoption of a surrogate based Monte 

Carlo simulation approach in the present study that reduces the computational burden of traditional (i.e. 

brute force) Monte Carlo simulation to a significant extent. 

4.3.2. Modelling of source-uncertainty at the input level 

The stochasticity in material properties (micro/ macro- mechanical properties) and geometric 

properties (like ply-orientation angle and thickness of plate) are considered as stochastic input parameters 

for analyzing the probabilistic dynamic and buckling characteristics of laminated composite plates. In the 

ix

ix
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present article, two separate forms of analysis have been performed considering the stochasticity in micro-

mechanical and macro-mechanical properties to understand and ascertain the cascading effect in 

uncertainty propagation on a comparative basis. For analysing the effect of various source-uncertainties, 

the following four cases of stochasticity are considered 

(i) Compound effect for the simultaneous variation of macro-mechanical material properties (such as 

Young’s moduli, shear moduli, mass density and Poisson’s ratio) and geometric properties (such as ply-

orientation angle and thickness of laminae) 

 1 2 12 13 23

1 2 3
1(1,1) 1( , ) 2(1,1) 2( , ) 12(1,1) 12( , )

4 5
13(1,1) 13( , ) 23(1,1) 23(

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )

( .... ), ( .... ), ( .... ),

( .... ), ( ....

macro e l macro e l macro e l

macro e

C

macro

l macro

E E G G G t

E E E E G G

G G G

g

G

          

  

   6
, ) (1,1) ( , )

7 8 9
(1,1) ( , ) (1,1) ( , ) (1,1) ( , )

), ( .... ),

( .... ), ( .... ), ( .... )

e l macro e l

macro e l macro e l macro e l
t t 

 
     
 
      

               (38) 

(ii) Compound effect for the simultaneous variation of micro-mechanical material properties such as 

Young’s moduli of fibre and matrix, shear moduli of fibre and matrix, Poisson ratios of fibre and matrix, 

mass densities of fibre and matrix and volume fraction along with geometric properties (ply orientation 

angle and thickness of laminae) 

 1 2

1 2 3 4
1 (1,1) 1 ( , ) 2 (1,1) 2 ( , ) (1,1) ( , ) (1,1) ( , )

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )
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f f m f m f m f m f

micro f f e l micro f f e l micro m m e l micr
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o f f e l
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c

o

r

E E E G G V t

E E E E E E G G

g                

   

 5 6 7 8
(1,1) ( , ) (1,1) ( , ) (1,1) ( , ) (1,1) ( , )

9 10 11
(1,1) ( , ) (1,1) ( , ) (1,1) ( , )

( .... ), ( ...., ), ( ...., ), ( .... ),

( .... ), ( .... ), ( .... ),

o m m e l micro f f e l micro m m e l micro f f e l

micro m m e l micro f f e l micro f f e l micr

G G

V V  

        

     12
(1,1) ( , )( .... )o f f e lt t

 
  
 
 
  

  (39) 

(iii) Individual effect for the variation of a single macro-mechanical property 

   1
(1,1) ( , )( ) ( .... )I

macro M macro M M e l
g     

                                               

(40) 

(iv) Individual effect for the variation of a single micro-mechanical property 

   1
(1,1) ( , )( ) ( .... )I

micro m micro m m e l
g                                                                   (41) 

Here   is a symbolic operator that generates a set of input parameters for carrying out the Monte Carlo 

simulation. The parameters          1 , 2 , 12( , ) 13 , 23 , , , ,( ) ( ) ( ) ,,  , , , , ,,,i j i j i j i j i j i j i j i j i j
E E G G G t   denote the longitudinal 

Young’s modulus, transverse Young’s modulus, shear moduli, Possoin’s ratio, mass density, ply 
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orientation angle and thickness of lamina respectively (with conventional notations) for the i
th SRVE 

situated in the j
th layer, where i = 1, 2, 3,…, e and j = 1, 2, 3, …, l. For the stochasticity in micro-

mechanical properties, 1 ( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ), , , , , , , , , , ,
f i j f i j m i j f i j m i j f i j m i j f i j m i j f i j i j i j

E E E G G V t     

denote (following conventional notations) Young’s moduli of fibre in longitudinal and transverse 

directions, Young’s modulus of matrix, shear modulus of fibre and matrix, Poisson’s ratio of fibre and 

matrix, mass density of fibre and matrix and volume fraction, ply orientation angle and thickness 

respectively corresponding to th
i layer, respectively for the ith SRVE situated in the jth layer, where i = 1, 2, 

3,…, e and j = 1, 2, 3, …, l. The quantities M
  and m  denote any one of the macromechanical and 

micromechanical properties. The material properties are considered to vary spatially (correlated variation 

following the KL expansion) for both the macromechanical and micromechanical analyses. However, 

considering practical aspects of modelling uncertainty in the geometric parameters, spatial variation is not 

considered for ply orientation angle and thickness of lamina; rather a layer-wise uncorrelated random 

variation is considered for the two geometric parameters (i.e. (1, ) (2, ) (3, ) ( , )...
j j j e j

        and 

(1, ) (2, ) (3, ) ( , )...
j j j e j

t t t t    , for the jth lamina).  

4.3.3. Propagation of uncertainty based on HDMR coupled with DMORPH algorithm 

In a typical problem of uncertainty analysis, there are normally three aspects that need to be dealt 

with. The first aspect is source-uncertainty modelling at the input level, which is discussed in the 

preceding subsection. After the uncertainty in material and structural attributes is modelled in a 

practically relevant way, the next concern is propagating the effect of uncertainty from the local input-

level to the global level of quantifying output responses following a bottom-up framework. As discussed 

in section 1, direct Monte Carlo simulation being a computationally intensive approach, we have adopted 

a surrogate based uncertainty propagation scheme for the present analysis. To achieve computational 

efficiency, a HDMR based surrogate modelling framework coupled with the DMORPH algorithm is 

developed in conjunction with the probabilistic finite element model of composite plates as presented in 

figure 6. 
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Fig. 6 Flowchart for stochastic macro and micro mechanical analysis of laminated composites based on 

surrogate models (Representative figures of finite element analysis, sobol’s quasi-random sampling, 

surrogate modelling and uncertainty quantification are shown corresponding to the respective steps) 

The surrogate models are constructed by choosing the sample points optimally from a domain R
n. 

All input variables are rescaled in the range of 0 ≤ xi ≤ 1, where xi denotes the i
th input parameter. 

Generation of the random sample points is an important aspect to form the HDMR model because the 

quality of the random sample points governs the convergence rate and prediction accuracy. Quasi-random 
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sequences (Niederreiter (1992)) (such as Halton (Halton (1960)), Sobol’ (Sobol (1967)), Faure (Faure 

(1992))) having low discrepancy are often used for generating random sample points that ensures a 

uniform distribution of input sample points in the design domain. It essentially results in a faster 

convergence rate compared to pseudo-random sample points. In this work, Sobol’ sequence is used to 

generate the input sample set as it shows a better convergence rate than Faure and Halton sequences 

(Galanti and Jung (1997)). It can be noted in this context that in a surrogate based approach, first the 

surrogate model is constructed using few optimally chosen design points. The same number (number of 

design points) of finite element simulations (\function evaluations) is required to be performed for the 

surrogate model formation. Here the HDMR model replaces the original finite element model (expensive) 

effectively by an efficient mathematical/statistical model. After the HDMR based surrogate model is 

constructed, thousands of virtual simulations can be conducted for various random combinations of the 

input parameters using the efficient HDMR model. 

5. Results and discussion 

In this article, numerical results for stochastic dynamic and stability analyses are presented for a 

three layered graphite-epoxy angle-ply ([45o/-45o/45o]) composite square plate, unless otherwise 

mentioned. A practically relavent randomly inhomogeneous (Mukhopadhyay and Adhikari (2017b)) 

model of stochasticity with spatially correlated system parameters are considered for characterizing the 

first three modes of vibration and buckling of composite plates. Results are presented for two distinct 

cases: stochasticity in micromechanical and macromechanical material properties (refer to equation 38 – 

41). The deterministic micromechanical properties (E-glass 21 43xK Gevetex/ 3501 6 epoxy) of 

composite material are shown in Table 1 (Soden et al. (1998)). Applying Halpin-Tsai principle (Jones 

(1999)) the deterministic macromechanical material properties are obtained with a volume fraction (
f

V ) 

of 0.61 (refer to Table 2). Thus, for the case of stochasticity in micromechanical properties, the material 

atributes presented in Table 1 are assumed as the source of stochasticity along with the uncertain 

geometric parameters ( C

micro
g ) and thereby the macromechanical material properties are obtained based on 

Halpin- Tsai principle to perform further analysis for quantifying uncertainty. For the case of stochasticity  
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Table 1 Deterministic micromechanical material properties of composites 

Property Value 

Longitudinal Young’s modulus of fibre ( 1 f
E ) 80 GPa 

Transverse Young’s modulus  of fibre ( 2 f
E ) 80 GPa 

Poisson's ratio of fibre  (
f

 ) 0.2 

Shear modulus  of matrix (
f

G ) 33.33 GPa 

Mass density of fibre (
f

 ) 2.55 gm/cc 

Mass density of matrix ( m ) 1.265 gm/cc 

Young’s modulus of matrix ( mE ) 4.2 GPa 

Shear modulus  of matrix ( mG ) 1.567 GPa 

Poisson's ratio of matrix ( m ) 0.34 

Fibre volume fraction (
f

V ) 0.61 

 

Table 2 Deterministic macro-mechanical material properties of composites (
f

V = 0.61) 

 

 

 

 

 

 

 

 

 

Property Value 

Longitudinal  Young’s modulus ( 1E ) 50.438 GPa 

Transverse  Young’s modulus ( 2E ) 9.952 GPa 

Poisson's ratio ( 12 ) 0.2546 

In-plane shear modulus ( 12G ) 3.742 GPa 

Mass density (  ) 2.049 gm/cc 

Shear modulus ( 13G ) 3.742 GPa 

Transverse shear modulus ( 23G ) 2.094 GPa 
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in macromechanical material properties, the analysis commences one step ahead in the hierarchy i.e. the 

source-uncertainty is assumed in the macromechanical properties (as shown in Table 2) along with 

uncertain geometric parameters ( C

macro
g ). Subsequently, the results obtained from these two different types 

of analyses are compared to ascertain the cascading effect in stochasticity. Non-dimensional results are 

presented following the scheme mentioned in the caption of Table 3 and 4. 

5.1. Stochastic dynamic analysis 

5.1.1. Validation and convergence study 

In the surrogate assisted stochastic analysis of laminated composites, two different forms of 

validation and convergence study are needed to be carried out. The first validation is for the finite element 

model of composite plate along with mesh convergence study. A second type of validation is also needed 

here concerning the performance (efficiency and accuracy) of the surrogate model in predicting the 

responses along with a convergence study for minimizing the number of design points required for 

forming surrogate models.  

The results for validation and convergence study of the finite element code of a composite plate are 

shown in Table 3, wherein non-dimensional natural frequencies are validated with the results available in 

scientific articles (Liew and Huang (2003)). Based on the results presented in Table 3, a mesh size of 99 

is adopted for the finite element analysis hereafter. The optimum number of samples (drawn from Sobol 

sequence) to construct the surrogate models are decided based on the comparative performance (four 

different statistical parameters: minimum value, maximum value, mean value and standard deviation) 

with respect to direct Monte Carlo simulation. The convergence results for macro and micro mechanical 

analyses showing the values of absolute error with different sample size are presented in figure 7 and 8. 

From the figures it is evident that a sample size of 1024 provides reasonably accurate results for the 

natural frequencies. To further examine the prediction capabilities of the surrogate models, scatter plots 

are presented for the macro and micro mechanical analyses in figures 9(a-c) and 10(a-c), respectively. 

Negligible deviation of the sample points from the diagonal line corresponding to the sample size of 1024 

indicates the accuracy of prediction. The comparative probability density function plots on the basis of 
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Table 3 The convergence study of frequency parameters [
2

2
0

( ) ( )hb
D

  , where

3
2

0
12 2112(1 )

E h
D    ] for cross-ply (0 / 90 / 0 )o o o

 simply supported (SSSS) rectangular laminates 

t/b Mesh 

Mode 1 Mode 2 Mode 3 

Present 
FEM 

Liew (1996) 
Present 
FEM 

Liew (1996) 
Present 
FEM 

Liew (1996) 

0.001 

5×5 6.8817 

6.6253 

9.7192 

9.4653 

24.4234 

22.4607 

6×6 6.7864 9.6212 24.0928 

7×7 6.7056 9.5312 23.4168 

8×8 6.6258 9.4684 22.4802 

9×9 6.6251 9.4644 22.4520 

10×10 6.6210 9.4401 22.2811 

0.20 

5×5 3.6867 

3.5940 

6.1626 

5.7784 

8.1347 

7.3972 

6×6 3.6314 6.0189 7.9167 

7×7 3.6145 5.9180 7.6512 

8×8 3.5978 5.7337 7.3368 

9×9 3.5913 5.7331 7.3345 

10×10 3.5839 5.7036 7.2366 

 

surrogate based MCS corresponding to the sample size of 1024 and direct MCS are presented for the 

macro and micro mechanical analyses in figures 9(d-f) and 10(d-f), respectively. A good agreement 

between the probabilistic descriptions of natural frequencies corroborates the accurate prediction 

capability of the surrogate models for further analyses. It can be noted in this context that computational 

time required is exorbitently high for evaluating the probabilistic responses through full scale MCS 

because of the involvement of large number of finite element simulations (~104). However, in case of the 

present surroagate based method, although a same sample size as the direct MCS is considered, the 

requirement of carrying out actual finite element simulations is much lesser compared to the direct MCS 

approach. Here it is equal to the number of samples required to form the HDMR based surrogate model 

(i.e. 1024). Hence, the computational intensiveness (time and effort) in terms of finite element analyses  
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(a) Maximum (b) Minimum 

  
(c) Mean (d) Standard Deviation 

Fig. 7 Absolute percentage error in minimum value, maximum value, mean value and standard deviation 
with respect to direct Monte Carlo simulation for macromechanical material properties for a coefficient of 

variation of 0.6 in the stochastic input parameters ( C

macro
g ). 

are decreased significantly in comparison to full-scale direct MCS. 

5.1.2. Results for stochastic dynamic analysis 

Having the FE model and the surrogate model validated, as shown in the preceding subsection, 

stochastic results are presented in this subsection for the first three modes of vibration for a  composite 

plate with correlated spatially varying material properies ( C

macro
g and

 

C

micro
g ). Figure 11 shows the 

probabilistic descriptions for first three natural frequencies considering different degrees of stochasticity 

for macro-mechanical and micro-mechanical material properties. For both the micro and macro 

mechanical analyses, response bounds are noticed to substantially increase with the increasing degree of 

stochasticity along with a marginal change in mean values. The probabilistic descriptions of the natural 

frequencies differ from each other on the basis of the adopted type of analysis. A micromechanical 

analysis, which is more accurate for considering the source uncertainty at a more elementary level, shows 

higher degree of variability in the global responses due to the cascading effect in stochasticity.   
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(a) Maximum (b) Minimum 

  
(c) Mean (d) Standard Deviation 

Fig. 8 Absolute percentage error in maximum, minimum, mean and standard deviation with respect to 

original MCS considering a coefficient of variation of 0.6 in the stochastic input parameters ( C

micro
g ). 

The probabilistic variations for first three natural frequencies are investigated for various laminate 

configurations considering the  / /  
 
family of composites for stochasticity in micro-mechanical 

properties. The probabilistic descriptions presented in figure 12 show that the mean values, depending on 

the effective stiffness of the structure, decrease up to a critical value of 45o  , and after this point they 

increase again for higher values of   . Figure 13 shows the influence of different boundary conditions on 

the stochastic natural frequencies of composite plates. Results are presented for simply supported (SSSS) 

and fixed (CCCC) boundaries at all the four edges considering stochasticity in micro-mechanical 

properties. The range of natural frequencies is found to vary depending on the stiffness of the system, 

following a similar trend as deterministic analysis. Figure 14 shows the effect of aspect ratio of the 

composite laminated plates on the probabilistic variation of natural frequencies considering stochasticity 

in micro-mechanical material properties. The stochastic natural frequencies are noticed to reduce with the 

increase in aspect ratio. 
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(c) (f) 

Fig.  9 (a-c) Scatter plots for HDMR based analysis (normalized on the basis of respective deterministic 
values) for various sample sizes of Sobol sequence considering the stochasticity in macro-mechanical 

attributes ( C

macro
g ) with respect to direct MCS (with coefficient of variation of 0.6 in the stochastic input 

parameters) ; (d-f) Probability density function (pdf) of natural frequencies (normalized with respect to 

the corresponding deterministic values) for macro-mechanical attributes ( C

macro
g ) obtained by direct MCS 

and HDMR model based on a sample size of 1024 (with coefficient of variation of 0.6 in the stochastic 
input parameters)  
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(c) (f) 

Fig. 10  (a-c) Scatter plots for HDMR based analysis (normalized on the basis of respective deterministic 
values) for various sample sizes of Sobol sequence considering the stochasticity in micro-mechanical 

attributes ( C

micro
g ) with respect to direct MCS (with coefficient of variation of 0.6 in the stochastic input 

parameters) ; (d-f) Probability density function (pdf) of natural frequencies (normalized with respect to 

the corresponding deterministic values) for micro-mechanical attributes ( C

micro
g ) obtained by direct MCS 

and HDMR model based on a sample size of 1024 (with coefficient of variation of 0.6 in the stochastic 
input parameters) 
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(a) (b) 

 

(c) 

Fig.  11 Probability density function (pdf) plots for macro ( C

macro
g ) and micro ( C

micro
g ) mechanical analyses 

of natural frequencies for different degree of stochasticity ( ). Normalized results are used with respect to 
the corresponding deterministic values for plotting the pdfs. The bar plots in the inset indicate the 
percentage increase of stochastic bounds for a micromechanical analysis with respect to the 
macromechanical analysis.  

Figure 15 presents the relative coefficient of variation (RCOV) for individual stochastic effect of 

different uncertain input parameters considering both the macro ( I

macro
g ) and micro ( I

macro
g ) mechanical 

analyses. To obtain these figures, MCS are carried out for the variation of each of the micro and macro 

mechanical material parameters individually. The figures can provide a clear understanding regarding the 

relative sensitivity of various stochastic system parameters (input) to the output natural frequencies in the 

macro and micro mechanical analyses. For stochasticity in macro-mechanical material properties, it is 

observed that mass density, longitudinal Young’s modulus and transverse Young’s modulus (in 

decreasing order of sensitivity) are most sensitive to the first three natural frequencies, while the shear  
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(a) (b) 

 

(c) 

Fig. 12 Probability density function (pdf) plots for natural frequencies considering different ply 

orientation angle ( ) for stochasticity in micro-mechanical properties ( C

micro
g ) 

moduli and Poisson’s ratio are comparatively less sensitive. For the micro-mechanical analysis, it is found 

that the most sensitive system parameters (stochastic input) according to decreasing order of sensitivity 

are mass density of fibre, longitudinal Young’s modulus of fibre and volume fraction, while transverse 

Young’s modulus of fibre, Poisson’s ratio of fibre and shear modulus of fibre are the least sensitive 

parameters. Two different forms of analyses, as carried out here considering macro and micro mechanical 

material properties, render an in-depth understanding regarding the relative influence of various stochastic 

input parameters (source-uncertainty). For example, the macromechanical analysis (refer to figure 15(a)) 

shows that mass density of composites is the most sensitive parameter for low frequency vibration modes; 

however, the micromechanical analysis (refer to figure 15(b)) provides information in more depth 

showing that mass density of fibre is the most sensitive parameter. Outcomes of such sensitivity analyses 

serve as an important guideline for efficient uncertainty quantification (including dimensionality 

reduction) and subsequent analysis/ design and quality control of input parameters. 
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(f) 

 

Fig. 13 (a-c) Probability density function (pdf) plots of natural frequencies for micro mechanical analysis 

( C

micro
g ) considering clamped boundary condition (CCCC) (d-f) Probability density function (pdf) plots of 

natural frequencies for micro mechanical analysis ( C

micro
g ) considering simply supported boundary 

condition (SSSS) 
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(a) (b) 

 

(c) 

Fig. 14 Probability density function (pdf) plots of natural frequencies for different values of aspect ratios 

(AR) considering micro-mechanical properties ( C

micro
g ) 

The random field of the stochastic micro and macro mechanical material properties depend on the 

correlation length considered in the analysis. We have investigated the effect of correlation length on the 

first three modes of vibration. Depending on the value of correlation length, the random field of all the 

micro and macro mechanical properties would vary; representative plots are presented in figure 16 

showing the spatial distribution of micro and macro mechanical material properties concerning the 

longitudinal Young’s modulus for a single random realization considering different values of correlation 

length. It can be noted that two extreme cases can be realized when the correlation length tends to the 

upper and lower limits. The system becomes a randomly homogenous system (analogous to the random 

variable based approach) when the correlation length is very high, while it becomes an uncorrelated 

randomly inhomogeneous system when the correlation length is very low. The typical probability 

distribution of a representative micromechanical property (E1f) and a macromechanical property (E1) for a 

randomly chosen SRVE having three different laminae is shown in figure 17 considering a correlation  
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(a) 

 

(b) 

Fig. 15 (a) Relative coefficient of variation (RCOV) for the natural frequencies considering macro-
mechanical material properties  (b) Relative coefficient of variation (RCOV) for the natural frequencies  
considering micro-mechanical material properties 

length of 1/50. The effect of correlation length on the probability density function plots of the first three 

natural frequencies is presented in figure 18, wherein a clear difference is noticed between the lower and 

higher values of correlation lengths.  This, in turn indicates the difference in the probabilistic 

characteristics of the natural frequencies corresponding to random field (lower values of correlation 

length) and random variable (higher value of correlation length) approach. The figure shows that the 

mean and response bound decrease in case of the random field based modelling of source-uncertainty 

compared to the random variable based modelling. 
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 CoL = 1 CoL = 1/20 CoL = 1/50 CoL = 1/100 CoL = 1/200 

E1f 
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Em 

 

  

 
 

 (f) (g) (h) (i) (j) 

Vf 

 

 

 

 

 

 (k) (l) (m) (n) (o) 

E1 

  

   

 (p) (q) (r) (s) (t) 

Fig. 16 Representative plots showing the spatial distribution of micro and macro mechanical properties concerning the longitudinal Young’s modulus for a random 
realization considering different values of correlation length (CoL). Here X and Y axes in the figures are the two spatial directions of a lamina, while the Z axis shows 
the value of corresponding material property. 
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(a) (b) 

Fig. 17 Probability distribution of a representative micromechanical property (E1f) and a 
macromechanical property (E1) for a randomly chosen SRVE having three different laminae considering a 
correlation length of 1/50 

 

 

(a) (b) 
 

 

(c) 

Fig. 18 Effect of correlation length (CoL) on the probability distribution of the first three natural 
frequencies of a composite laminate 

The effect of stochasticity in micro and macro mechanical material properties are studied on the 

vibration mode shapes considering two different boundary conditions (SSSS and CCCC). The results are 

presented in figure 19 for first three modes of vibration. Stochastic mode shapes for first three modes of  
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Fig. 19 Stochastic modeshapes and representative probability distribution of the normalized eigenvectors 
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vibration considering a single random realization are presented in case of: a clamped (CCCC) composite 

plate with stochasticity in the macromechanical ( C

macro
g ) properties (refer to figure 19(a – c)), a simply 

supported (SSSS) composite plate with stochasticity in the macromechanical ( C

macro
g ) properties (refer to 

figure 19(d – f)), a clamped (CCCC) composite plate with stochasticity in the micromechanical ( C

micro
g ) 

properties (refer to figure 19(g – i)) and a clamped (CCCC) composite plate with stochasticity in the 

micromechanical ( C

micro
g ) properties (refer to figure 19(j – l)). From the mode shapes presented in figure 

19(a – l), it can be observed that the basic global pattern of the stochastic mode shapes remains similar to 

the corresponding deterministic case. However, the value of normalized eigenvectors becomes stochastic 

in nature for each of the elements in the composite plate. Probability distribution of the normalized 

eigenvectors of first three vibration modes for the elements indicated in figure 19(o) are shown 

considering a clamped (CCCC) boundary condition (refer to figure 19(m)) and a simply supported (SSSS) 

boundary condition (refer to figure 19(n)). The results for micro and macro mechanical analyses are 

shown using lighter and darker shades of respective colours indicated in figure 19(o). It can be noticed 

that the probability density function plots depend significantly on the type of analysis (micro and macro 

mechanical) and location of the element under consideration. 

5.2. Stochastic stability analysis 

5.2.1. Validation and convergence study 

The FE code and the surrogate model are validated first for analysing the buckling loads similar to 

the case of dynamic analysis as discussed in section 5.1.1. The results of convergence study and 

validation of the finite element code of a composite plate is furnished in Table 4, wherein the non-

dimensional first buckling load is validated with the results available in scientific literature. Based on the 

results presented in Table 4, a mesh size of 99 is found to be adequate for the finite element model. The 

optimum number of samples (drawn from Sobol sequence) to form the surrogate models of buckling 

loads are decided based on the comparative performance (four different statistical parameters: minimum 

value, maximum value, mean value and standard deviation) with respect to direct MCS. The results of 

convergence study for macro and micro mechanical analyses showing the values of absolute error with  
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Table 4 The convergence study of uniaxial buckling load of four layer (0 / 90 / 90 / 0 )o o o o
 simply 

supported SSSS rectangular laminates 2 3
2( ( ), 0, 0)xx xy yyN N b E h N N    

t/b Mesh 
Buckling load 

Present FEM Reference results 

0.001 

5×5 23.3511 

 

23.2928  (Neves and Ferreira (2016)) 

23.463 (Liew and Huang (2003)) 

 

6×6 23.3217 

7×7 23.3190 

8×8 23.2940 

9×9 23.2927 

10×10 23.2885 

 

  

(a) Maximum (b) Minimum 

  

(c) Mean (d) Standard Deviation 

Fig. 20 Absolute percentage error in minimum value, maximum value, mean value and standard deviation 
with respect to direct MCS for macro-mechanical analysis considering a coefficient of variation of 0.6 in 

the stochastic input parameters ( C

macro
g ) 
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(a) Maximum (b) Minimum 

  
(c) Mean (d) Standard Deviation 

Fig. 21 Absolute percentage error in minimum value, maximum value, mean value and standard deviation 
with respect to direct MCS for micro-mechanical analysis considering a coefficient of variation of 0.6 in 

the stochastic input parameters ( C

micro
g ) 

different sample size are presented in figure 20 and 21. From the figures it is evident that a sample size of 

1024 provides reasonably accurate results for predicting the buckling loads. To further examine the 

prediction capabilities of the surrogate models, scatter plots are presented for the macro and micro 

mechanical analyses in figures 22(a-c) and 23(a-c), respectively. Negligible deviation of the sample 

points from the diagonal line corresponding to the sample size of 1024 indicates the accuracy of 

prediction. The comparative probability density function plots on the basis of surrogate based MCS 

corresponding to the sample size of 1024 and direct MCS are presented for the macro and micro 

mechanical analyses in figures 22(d-f) and 23(d-f), respectively. A good agreement between the 

probabilistic descriptions of natural frequencies corroborates the accurate prediction capability of the 

surrogate models for further analyses. 

In this section, we have presented the results of stochastic stability analysis considering the first 

three buckling modes for the sake of completeness (as presented in previous scientific literatures like Patel  
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Fig. 22 (a-c) Scatter plots for HDMR based analysis (normalized on the basis of respective deterministic 
values) for various sample sizes of Sobol sequence considering the stochasticity in macro-mechanical 

attributes ( C

macro
g ) with respect to direct MCS (with coefficient of variation of 0.6 in the stochastic input 

parameters) ; (d-f) Probability density function (pdf) of buckling loads (normalized with respect to the 

corresponding deterministic values) for macro-mechanical attributes ( C

macro
g ) obtained by direct MCS and 

HDMR model based on a sample size of 1024 (with coefficient of variation of 0.6 in the stochastic input 
parameters) 
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Fig. 23 (a-c) Scatter plots for HDMR based analysis (normalized on the basis of respective deterministic 
values) for various sample sizes of Sobol sequence considering the stochasticity in micro-mechanical 

attributes ( C

micro
g ) with respect to direct MCS (with coefficient of variation of 0.6 in the stochastic input 

parameters) ; (d-f) Probability density function (pdf) of buckling loads (normalized with respect to the 

corresponding deterministic values) for micro-mechanical attributes ( C

micro
g ) obtained by direct MCS and 

HDMR model based on a sample size of 1024 (with coefficient of variation of 0.6 in the stochastic input 
parameters) 
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(a) (b) 

 

(c) 

Fig. 24 Probability density function (pdf) plots for macro ( C

macro
g ) and micro ( C

micro
g ) mechanical analyses 

of first three buckling loads considering different degree of stochasticity (  ). Normalized results are used 
with respect to the corresponding deterministic values for plotting the pdfs. The bar plots in the inset 
indicate the percentage increase of stochastic bounds for a micromechanical analysis with respect to the 
macromechanical analysis. 

and Sheikh (2016)).  Besides that, in case of stochastic stability analysis, the buckling loads are found to 

have a response bound (depending on the degree of stochasticity) with respect to the corresponding 

deterministic values. Thus there exists a possibility of overlap in the stochastic responses of the buckling 

loads corresponding to different modes of buckling resulting in a non-unique critical buckling mode with 

the minimum value of buckling load. For this reason, it is essential to consider higher buckling modes in 

case of stochasticity in the system parameters. 

5.2.2. Results of stochastic stability analysis 

Having the finite element model and the surrogate model validated, as shown in the preceding 

subsection, stochastic results are presented in this subsection for the first three modes of buckling for a   
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(a) (b) 

 

(c) 

Fig. 25 Probability density function plots (pdf) for buckling loads considering different ply orientation 

angle ( ) for stochasticity in micro-mechanical properties ( C

micro
g ) 

composite plate with correlated spatially varying material properies ( C

macro
g and 

C

micro
g ). Figure 24 shows 

the probabilistic descriptions for first three buckling loads considering different degree of stochasticity for 

macro-mechanical and micro-mechanical material properties. For both the micro and macro mechanical 

analyses, response bounds of the buckling loads are found to increase with the increasing degree of 

stochasticity. For a particular degree of stochasticity, similar to the case of dynamic analysis, it can be 

noticed that the response bound is higher in case of micromechanical analysis than that of the 

macromechanical analysis. Thus the probabilistic descriptions of the buckling loads differ from each other 

on the basis of the adopted type of analysis. A micromechanical analysis, which is more accurate for 

considering the source uncertainty at a more elementary level, shows substantially higher degree of 

variability in the global responses (both natural frequencies and buckling loads) due to the cascading 

effect in stochasticity.   
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Fig. 26 (a-c) Probability density function (pdf) plots of buckling loads for micro mechanical analysis (
C

micro
g ) considering clamped boundary condition (CCCC) (d-f) Probability density function (pdf) plots of 

buckling loads for micro mechanical analysis ( C

micro
g ) considering simply supported boundary condition 

(SSSS) 
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(a) (b) 

 

(c) 

Fig.  27 Probability density function (pdf) plots of buckling loads for different values of aspect ratios 

(AR) considering micro-mechanical properties ( C

micro
g ) 

The probabilistic descriptions of the first three buckling loads are presented in figure 25 for 

various laminate configurations considering the  / /  
 
family of composite for stochasticity in micro 

mechanical properties. Figure 26 shows the effect of different boundary conditions on stochastic buckling 

loads of laminated composite plates. Results are furnished for simply supported (SSSS) and fixed (CCCC) 

boundaries at all the four edges considering stochasticity in micro-mechanical properties. Figure 27 shows 

the effect of aspect ratio of the composite plates on stochastic buckling loads considering stochasticity in 

micro-mechanical properties. The buckling loads are found to reduce with the increase in aspect ratio. 

Figure 28 presents the relative coefficient of variation (RCOV) considering individual probabilistic 

variation of the stochastic input parameters considering both the macro ( I

macro
g ) and micro ( I

macro
g ) 

mechanical analyses. To obtain these figures, MCS are performed for the variation of each of the macro 

and micro mechanical material parameters individually. The figures give a clear understanding regarding  



47 

 

 

(a) 

 

 

(b) 

Fig. 28 (a) Relative coefficient of variation (RCOV) for the buckling loads considering macro-mechanical 
material properties (b) Relative coefficient of variation (RCOV) for the buckling loads considering micro-
mechanical material properties 

the relative sensitivity of various stochastic input parameters (source-uncertainty) to the buckling loads in 

the macro and micro mechanical analyses. For stochasticity in macro-mechanical material properties, it is 

observed that longitudinal Young’s modulus and transverse Young’s modulus are most sensitive to the 

first and second buckling load, while the mass density and out-of-plane shear moduli are the least 

sensitive parameters. The Poisson’s ratio is found to be most sensitive in case of the third buckling load.  
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(a) 

 

(b) 

 

 

(c) 

Fig. 29 Effect of correlation length (CoL) on the probability distribution of the first three buckling loads 
of a composite laminate 

For the micro-mechanical analysis, it is noticed that the most sensitive properties are volume fraction, 

longitudinal Young’s modulus of fibre, Young’s modulus of matrix, and shear modulus of matrix (in a 

decreasing order) while the sensitivity of the other parameters are negligible. 

The probabilistic distribution of the buckling loads depend on correlation length of the random 

field considered for the macro and micromechanical properties. The spatial distribution and probabilistic 

descriptions of the material properties are discussed in the preceding section (refer to figure 16 and 17). 

The effect of correlation length on the probability distribution of the first three buckling loads of the 

composite laminate is presented in figure 29, wherein a clear difference can be noticed between the lower 

and higher values of correlation lengths. The figure shows that the mean and response bound decrease in 

case of the random field based modelling of source-uncertainty compared to the random variable based 

modelling. The effect of stochasticity in micro and macro mechanical attributes is studied on the buckling 

mode shapes considering two different boundary conditions (SSSS and CCCC). The results are presented  
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Fig. 30 Stochastic modeshapes and representative probability distribution of normalized eigenvectors 
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in figure 30 for first three modes of vibration. Stochastic mode shapes for first three modes of buckling 

considering a single random realization are presented in case of: a clamped (CCCC) composite plate 

with stochasticity in the macromechanical ( C

macro
g ) properties (refer to figure 30(a – c)), a simply 

supported (SSSS) composite plate with stochasticity in the macromechanical ( C

macro
g ) properties (refer to 

figure 30(d – f)), a clamped (CCCC) composite plate with stochasticity in the micromechanical ( C

micro
g

)properties (refer to figure 30(g – i)) and a clamped (CCCC) composite plate with stochasticity in the 

micromechanical ( C

micro
g ) properties (refer to figure 30(j – l)). From the mode shapes presented in figure 

30(a – l), it can be observed that the basic global pattern of the stochastic mode shapes remains similar 

to the deterministic case. However, the value of normalized eigenvectors becomes stochastic in nature 

for each of the elements in the composite plate. Probability distribution of the normalized eigenvectors 

of first three buckling modes for the elements indicated in figure 30(o) are shown considering a clamped 

(CCCC) boundary condition (refer to figure 30(m)) and a simply supported (SSSS) boundary condition 

(refer to figure 30(n)). The results for micro and macro mechanical analyses are shown using lighter and 

darker shades of respective colours indicated in figure 30(o). It can be noticed that the probability 

density function plots depend significantly on the type of analysis (micro and macro mechanical) and 

location of the element under consideration. 

6. Summary and perspective 

This paper presents an efiicient stochastic bottom-up framework for analyzing the dynamics and 

stabilty of composite laminates with spatially varying correlated system properties (refer to figure 31). A 

novel idea of SRVE is proposed in the context of two dimensional plate-like structures to incorporate the 

spatially varying material properties in conjunction with FE analysis. It can be noted here that the 

conventional methods of representative volume element (RVE) based analyses and other available 

analytical solutions can not consider the effect of spatial randomness of system properties. In the 

proposed SRVE based approach, various other spatially varying system properties (such as varying 

intensity of matrix cracking, varying fibre properties, fibre breakage etc.) can also be easily accounted in 

future. However, a stochastic simulation involving finite element analysis becomes exorbitantly 
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computationally expensive. To mitigate this lacuna, a surrogate based approach (HDMR coupled with 

DMORPH), which has been proved to be suitable for modelling correlated input parameters (Li and 

Rabitz (2012)), is adopted to obtain computational efficiency (without compromising the accuracy of 

results) in the present analysis.  

In the stochastic micromechanical characterization of composite laminates, there exists three 

distinct stages of the analysis: uncertainty modelling at the input level, propagation of uncertainty to the 

global level and quantification of the global responses such as dynamics and stability characteristics. In 

most of studies concerning the uncertainty quantification of composite structures, due to simplicity of the 

approach in implementation, a random variable based strategy is found to be adopted for modelling the 

material properties, wherein the input material properties are considered to be constant along the two 

dimensional space (as discussed in the introduction section) for a particular realization of Monte Carlo 

simulation. However, in reality,  the material properties are not constant spatially in a plate-like structure; 

rather they are spatially varying. Moreover, a correlation often exists in the spatial distribution of the 

material properties. In the present study, we have adopted a practically relavant random field based 

uncertainty modelling strategy with correlated input parameter distribution. Two separate analyses have 

been performed considering the source-uncertainty in micro and macro mechanical properties to present a 

comparative perspective by higlighting the cascading effect in stochasticity. After modelling the 

uncertainty in a practically relavant way, the effect of uncertainty needs to be propagated towards the 

global responses from elementary input level. The propagation of uncertainty is carried out throgh a 

stochastic computational model of the structure based on Monte Carlo simulation. In general for complex 

composite laminated structures with spatially varying system properties, the performance functions are 

not normally available as explicit functions of the random input variables. Thus the performance 

functions or responses (such as natural frequencies and buckling loads) of the structure can only be 

computed numerically at the end of an intensive structural analysis procedure (such as the FE method), 

which is often exorbitantly time-consuming and computationally expensive. The surrogate based 

uncertainty propagation strategy, as adopted in this study, can develop a representative and predictive 

mathematical/ statistical metamodel relating the natural frequencies and buckling loads to a number of  
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Fig. 31 (a - c) Typical distribution of the representative micromechanical properties concerning the longitudinal Young’s modulus (d) Spatial variation of a 
representative micromechanical property corresponding to a random realization (e) Typical distribution of the representative macromechanical properties 
concerning the longitudinal Young’s modulus for macromechanical (in red colour) and micromechanical (in blue colour) analyses (f) Spatial variation of a 
representative macromechanical property corresponding to a random realization  (g –h) Representative results for the probability distributions of first natural 

frequency and first buckling load considering micro mechanical analysis for different degree of stochasticity (Here ( )f   and ( )b   denote the stochastic natural 

frequencies and stochastic buckling loads respectively) 
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stochastic input variables. Thereafter the metamodels (response surface) are used to compute the dynamic 

and stability characteristics corresponding to a given set of input variables, instead of having to simulate 

repeatedly the time-consuming FE analysis. The response surface here represents the results (or outputs) 

of the structural analyses encompassing (in theory) every prospective combination of the stochastic input 

variables. Hence, thousands of combinations of the stochastic input variables can be created and a pseudo 

analysis (efficient, yet accurate) for each variable set can be performed by adopting the corresponding 

surrogate model. The final step in the stochastic analysis is uncertainty quantification in the output 

responses, which is effectively carried out by deriving the probabilistic distributions and the statistical 

moments. 

In case of the micro-mechanical analysis, the source-uncertainty is accounted in the micro-

mechanical material properties (spatially varying with correlated attributes) of composites. On the basis 

of the SRVE approach, the equivalent macro-scale material properties are computed by considering the 

stochasticity in micro-mechanical properties as shown in figure 31. Thereby, the equivalent macro-scale 

material attributes are fed into the FE code to compute the global responses (like natural frequencies and 

buckling loads) of the composite plate. In the present paper, as we only deal with the spatial variation of 

material properties, there is no need for a finite element model at the micro-level to obtain the macro-

mechanical material properties, rather exploitation of the Halpin-Tsai principle is the most efficient way. 

However, if the problem involves other spatially varying micromechanical structural features (such as 

damage), then one will need to carry out a finite element modelling at the micro level to obtain the 

effective macromechanical properties. In the present micromechanical analysis, stochasticity is essentially 

accounted at the micro-scale level first, and then the effect is propagated to the macro-scale level to 

characterize the global responses of the structural system. It is common in scientific literature to refer this  

genre of analysis for composite materials and structures considering micro-mechanical properties (i.e. 

involving multiple length-scales) based on representative volume element (RVE) as multi-scale analysis 

(May et al. (2014)). As stochatic material and structural parameters are considered in the present analysis 

leading to probabilistic characterization of the structural responses, the study is referred as probabilistic 

micromechanical analysis in this paper. It can be noted in this context that various other micro-
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mechanical attributes (for example micro-scale spatially random damage) can be considered using the 

proposed framework of SRVE. Thus the concept of SRVE can be regarded as a generalization of the 

concept of conventional RVE in the stochastic regime involving randomly inhomogeneous systems. 

The results in this article capture the influence of inevitable source-uncertainty across the length-

scales in a practically relavant manner. In-depth results are presented for the dynamic and stabilty 

analysis considering various structural configurations and stochasticity models. It is noted that the 

stochastic system, in two different limiting cases of the correlation length, tends to become a randomly 

homogeneous syestem (for very high value of correlation length) and randomly inhomogeneous  system 

with uncorrelated properties (for very low value of correlation length). A general proclivity of increasing 

response bound and standard deviation for the output quantities are observed with higher degree of 

stochasticity in the design parameters. For a particular degree of stochasticity, it is noticed that the 

standard deviation is higher in case of micromechanical analysis than that of the macromechanical 

analysis, affirming that the probabilistic descriptions of the response quantities substantially differ from 

each other on the basis of the adopted type of analysis. A micromechanical analysis, which is more 

accurate for considering the source uncertainty at a more elementary level, shows higher degree of 

variability in the global responses due to the cascading effect in stochasticity. The stochastic response 

bounds are found to be up to more than 60% higher in case of the micromechanical analyses compared to 

the respective macromechanical analyses (refer to figures 11 and 24). case of stochastic stability analysis, 

the buckling loads are found to have a response bound (depending on the degree of stochasticity) with 

respect to the corresponding deterministic values (for instance refer to figure 25). Thus there exists a 

possibility of overlap in the stochastic responses of the buckling loads corresponding to different modes 

of buckling resulting in a non-unique critical buckling mode with the minimum value of buckling load. 

For this reason, it is noted to be essential to consider higher buckling modes in case of considering 

stochasticity in the system parameters. 

For stochasticity in macro-mechanical attributes, it is observed that mass density, longitudinal 

Young’s modulus and transverse Young’s modulus (in decreasing order of sensitivity) are most sensitive 

to the first three modes of free vibration, while for the micro-mechanical analysis, it is observed that the 
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most sensitive atributes in decreasing order of sensitivity are mass density of fibre, longitudinal Young’s 

modulus of fibre and volume fraction. In case of the buckling analysis considering stochasticity in macro-

mechanical attributes, it is observed that longitudinal Young’s modulus, transverse Young’s modulus and 

Poisson’s ratio are most sensitive parameters, while for the micro-mechanical analysis, it is noted that the 

most sensitive parameters are volume fraction, longitudinal Young’s modulus of fibre, Young’s modulus 

of matrix and shear modulus of matrix. The parameters with negligible sensitivity to different response 

quantities are also identified. Two different forms of analyses, as carried out here accounting the macro 

and micro mechanical material properties, render an in-depth understanding regarding the relative 

influence of various stochastic input parameters (source-uncertainty). The results of sensitivity analyses 

will allow the manufacturers , designers and maintenace personnel to ensure an effective quality control 

for the structural system. 

7. Conclusion 

A bottom-up micromechanical probabilistic analysis is presented in this article for quantifying the 

effect of source-uncertainty in the dynamics and stability behaviour of composite plates considering 

spatially random system attributes. For this purpose, a physically relevant random field based modelling 

approach with correlated material properties is adopted based on the Karhunen-Loève expansion. A 

concept of stochastic representative volume element (SRVE) is adopted in the context of two dimensional 

plate-like structures to consider the spatially varying randomly inhomogeneous form of uncertainty. The 

probability distributions of the response quantities (such as natural frequencies and buckling loads) due to 

the source-uncertainty in micro-mechanical properties are compared with that arising from a same degree 

of stochasticity in the macro-mechanical properties to portray the cascading effect in the stochastic 

analysis involving different length-scales. The stochastic response bounds are found to be up to more than 

60% higher in case of the micromechanical analyses compared to the respective macromechanical 

analyses. Effect of the source-uncertainty is investigated on the modeshapes of composite plates. It is 

noted that the higher buckling modes may assume a critical role in stochastic analysis of composite plates. 

To understand the relative influence of different input parameters, sensitivity of the micro and macro 

mechanical material parameters are analysed for the dynamic and stability characteristics of the composite 
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plate. For achieving computational efficiency, a coupled HDMR and DMORPH based stochastic analysis 

algorithm is developed in conjunction with the probabilistic finite element model, wherein it is noted that 

the required number of original FE simulations can be remarkably reduced without compromising 

accuracy of results.  

It is found that the stochasticity/ source-uncertainty have significant influence on the dynamic 

and stability behaviour of composite structures. Thus it is imperative to consider the effect of these 

uncertainties in subsequent analyses/ design process to ensure the desired robust and sustainable system 

performance. Novelty of this paper includes the consideration of correlated spatial variation of material 

properties (micro/ macro) following the SRVE approach coupled with the HDMR algorithm in context to 

composite laminates. The idea of SRVE is quite generic in nature; this concept can be extended to other 

forms of structures and various stochastic systems with spatial randomness in two/ three dimensions. 

Moreover, the computationally efficient coupled HDMR and DMORPH based approach for uncertainty 

quantification in laminated composites can be extended further to other structures and mechanical 

systems to characterize various output responses in future.  
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APPENDIX 

In present article, a laminated composite plate with thickness h, length L and width b is analysed 

as shown in figure 2 and 3. According to the first-order shear deformation theory, the displacement field 

can be described as  

0( , , )[ ] ( , )[ ] ( , )[ ]
x

u x y z u x y z x y      

0( , , )[ ] ( , )[ ] ( , )[ ]
y

v x y z v x y z x y      

0( , , )[ ] ( , )[ ] ( , )[ ]w x y z w x y w x y     

(1) 
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where, u0( ), v0( ), and w0( ) denote displacements of the reference plane and ( )x   and ( )
y

   represent 

the rotations of cross section relative to x and y axes, respectively. Each fibre of laminae can have an 

arbitrary orientation angle ‘θ’ with respect to the x-axis. Here   is used to denote the stochastic character of  

the system parameters and matrices. The corresponding strain field is given by  
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The plane of elastic symmetry is given by  
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where )6,2,1,( jiQij
are the plane stress reduced stiffness components and )5,4,( jiQij

are the 

transverse shear stiffness components of the layer material. The force and moment resultants per unit 

length are given by (Bertholet (1999)) 
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(4) 

where xN , 
yN  and 

xyN are the in plane force resultants, xQ  and 
yQ are the transverse force resultants, 

xM  and 
yM  are bending moment resultants, and 

xyM  is the twisting moment resultants. The 

constitutive equation of laminates according to the shear deformation theory of first order associates the 

resultants and moments as follows:   
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 (5) 

The 
ijA , 

ijB and 
ijD matrices are given by 

1

2

1

[ ( ), ( ), ( )] [ ( )] [1, , ] , 1, 2,6
k

k

zn

ij ij ij ij k

k z

A B D Q z z dz i j   
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1

[ ( )] [ ( )] , 4,5
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ij s ij k

k z

S Q dz i j  




    (6b) 

where [ ]
ij k

Q are stiffness coefficients of the k-th layer and αs denotes the shear correction factor (= 5/6).  

To study the dynamic behaviour of composite laminates, Hamilton’s principle (Meirovitch 

(1992)) can be used. The principle for Lagrangian is defined as 

( ) ( ) ( ) ( )
f

L T U W       (7) 

where T( ), U( ) and W( ) denote the total kinetic energy, total strain energy and total potential of the 

applied load, respectively. The Hamilton’s principle for a non-conservative system is 

 ( ) ( ) ( ) ( ) 0
f

i

t

t

H T U W dt          
                                            

(8) 

The energy functional of Hamilton’s principle (Lagrangian (L( ))) includes kinetic energy (T( )) and 

potential strain energy (U( )) for an elastic body. The expression of the kinetic energy for an element is  

     1
( ) ( ) ( )

2

T

e e eT M        
                                              

(9) 

where  eM  represents the element-level mass matrix. The parameter  e  is the elemental displacement 

vector. The potential strain energy of an element can be expressed as, 
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           1 2

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

T T

e e e e e eU U U K K                       (10) 

where  ( )
e

K   and  ( )
e

K   are geometric stiffness matrix and elastic stiffness matrix respectively. The 

Langrange’s equation of motion can be expressed as 

 
( ) ( )

( )f f

e

e e

L Ld
F

dt

 


 
    

        
 (11) 

where  ( )
e

F   denote the external elemental force vector and ( )
f

L  represents the Lagrangian function. By 

replacing the value of 
fL , stochastic dynamic equilibrium expression for each of the elements is obtained as 

            ( ) ( ) ( )
e e e e e

M K K F                     (12) 

The governing equation for stochastic free vibration analysis without damping is expressed as 

       ( ) ( ) 0M K              (13) 

where      )()()(  ee KKK  . In the finite element formulation of this study, an eight noded element is 

considered, wherein each node has five degrees of freedom (two rotations and three translations). The natural 

frequencies  k  and mode shapes ( )f

k
S  of the composite plate are obtained by solving an eigenvalue 

problem based on QR iteration algorithm (Bathe (1990), Rayleigh (1945)) 

  2( ) ( ) [ ( )] [ ( )] ( )f f

k k k
K S M S       (14) 

where nk ,....,3,2,1 . The superscript f is used to denote frequency analysis. Here the orthogonality 

relationship is satisfied as 

[ ( )] [ ( )] ( )f T f

i k ik
S M S    and 2[ ( )] [ ( )] ( ) [ ( )]f T f

i k k ik
S K S       (15) 

where nki ,....3,2,1,   and the Kronecker delta functions ik
 =0 for ki  ; ik

 =1 for ki  . The problem of 

stability analysis is solved through another eigenvalue problem obtained by minimizing the total potential 

energy (refer to equation 10) as: 

 ( ) ( )[ ( )] ( )b b b

e k e k
K S K S                                                                   (16) 

where ( )b  is the stochastic buckling load factor and b

k
S  gives the buckling modeshapes. The 

superscript b is used to denote buckling analysis. 
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