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Abstract

In recent years, probabilistic approaches have
found many successful applications to mobile robot
localization, and to object state estimation for ma-
nipulation. In this paper, we propose a unified
approach to these two problems that dynamically
models the objects to be manipulated and local-
izes the robot at the same time. Our approach
applies in the common setting where only a low-
resolution (10cm) grid-map of a building is avail-
able, but we also have a high-resolution (0.1cm)
model of the object to be manipulated. Our method
is based on defining a unifying probabilistic model
over these two representations. The resulting algo-
rithm works in real-time, and estimates the position
of objects with sufficient precision for manipulation Figure 1:STAIR robot platform manipulating a door during one of
tasks. We apply our approach to the task of navigat- our experiments.

ing from one office to another (including manipu-
lating doors). Our approach, successfully tested on
multiple doors, allows the robot to navigate through
a hallway to an office door, grasp and turn the door
handle, and continuously manipulate the door as it
moves into the office.

19994). In much of this literature, the environment is mod-
eled as static (unchanging), and there is no interaction be-
tween the robot and the environment. More recently, a num-
ber of authors have developed models for non-static environ
ments. For exampldBiswaset al, 2002; Anguelowet al.,

) 2004; 2002; Hhnelet al, 2003 use an off-line EM algo-

1 Introduction rithm to differentiate between static and non-static paitmn

Many believe that general-purpose robots will soon inhabinvironment. A few algorithms also perform on-line mapping
home/office environments and carry out a large variety owhile taking into account non-static informatiofWolf and
tasks, for example fetching items, delivering messages, opukhatme, 2004use separate occupancy grids for dynamic
cleaning up a room. At a bare minimum, such robots musgbstacles (e.g., moving people) and static obsta¢&sich-
navigate in these environments as well as interact with theriss and Burgard, 2008naintain clusters of local grid maps
In this paper, we present a unified probabilistic approach t&orresponding to different observed configurations of the e
state estimation for simultaneous manipulation (of olsiget ~ vironment; andBiber and Duckett, 20d5model temporal
the environment) as well as global navigation. Using this apchanges of local maps.
proach, we successfully enable a mobile manipulation plat- Robots typically interact with the environment using ma-
form to navigate from far away up to a door, manipulate thenipulators. Most work on manipulation focuses on propsrtie
door handle so as to open the door, and enter an office whilef specific objects to be manipulated, rather than on moving
simultaneously continuing to manipulate the door. Thiskvor in or understanding the global environment (d8hekhar,
was done as part of the STAIR (STanford Artificial Intelli- 1986; Moll and Erdmann, 2008 With a few exceptions
gence Robot) project, which has the long-term goal of build<{e.g., [Petrovskayeet al, 2006; Slaetst al, 2004), most
ing a useful robotic assistant that can carry out home/officef this literature also does not have probabilistic basigl a
tasks such as those described above. thus at first blush it appears difficult to derive a single yif
Over the last decade, probabilistic techniques have founthg model that seamlessly integrates navigation and manipu
great success in mobile robot navigation (el§ox et al, lation.



The task of mobile manipulation combines both navigation
and manipulation. Most current work in mobile manipulation
treats these as two tasks to be solved separately: Firstlanob
robotics techniques are used to navigate to a specific point;
then, a separate set of techniques is used to localize shect
be manipulated. For example, in the context of door opening,
navigation and manipulation of the door handle were consid-
ered in[Rheeet al, 2004 and[Peterssoret al, 200d. In

ix1 j X3
both approaches, navigation to the door was performed as a
ij (g a)

separate task. The door handle is then localized only after
the robot is already in front of the door, and a combination
of visual servoing and tactile feedback is then used to grasp
the door handle, and finally the door is opened by having the
robot follow (with some compliance) a pre-scripted set of mo
tions. Localization during door opening or while enterihg t
doorway was not considered.

In this paper, we present a unified, real-time, algorithni thaFigure 2:Dynamic Bayesian network model of the robot pdsg
simultaneously models the position of the robot within the e object statex;, measurements;, and controls,.
vironment, as well as the objects to be manipulated. It alow . . .
us to consider manipulation of large objects, such as doors, At €ach time step, we give the robot a new motion com-

filing cabinets and chairs. When the state of these object&and:us, and obtain a new measuremenfrom its sensors.
changes, it significantly impacts navigation tasks. Thus ou 1 he robot pose and the object state evolve over time, and at

goal is to simultaneously model a dynamic environment adime? aregenc_)t_edtlby(t _andt?]t rgspecti_veg. We_mode)gltv, ‘
well as localize ourselves within it. Because this objextiv ¢ #t» @1du; Jointly using the dynamic bayesian networ
is reminiscent to that of simultaneous localization and mapShown in Figure 2. In detail, given the robot pose and a new
ping (SLAM), we will find that we can borrow many ideas control, the pose evolves according t.o a probabilistic aroti
from SLAM ([Thrunet al, 2005). However, our objective is Model derived from robot kinematics:
also different in two 'significant ways: First, the envirqn'me P(Xe| X1, ue).
changes very significantly as we interact with (mampulate)_l_ ) i _
it, and second, the precision required (1-5mm) for manipula ! € object state evolves according to:
tion is 1-2 orders of magnitude higher than is typical for mos plag]ae_1).
SLAM applications. o

Tested successfully on multiple doors, our approach enSlmllarly,ds?ns_or meazu_remen_ts azresgovemetij by_zla\.measure-
ables our robot to navigate towards, manipulate, and movE'ent model (discussed in section 2.3 in more detail):
through a door. (Fti)?ure 1.) In contrast to prior aLt ﬁ_n r(]joor p(ze|ae, Xo).
opening, we are able to estimate parameters with high pre- _ _
cision even during motion of the robot. Thus no additionalwetdetfr']”e the ro?(t)'t trajetctory t(')ttbe(]aci a vec(t;)(r o;(all VOb)?t)pOSGS

i i o the current time step, wri = , Xo, o Xy).

delay is required to locate the door handle once the ro-bd#pmilarl honlitiniutes tpto oot al melasu?ementts nd
reaches the door. Further, using the same, seamlessly intel Y, niez u
grated probabilistic model, the robot is able to precisslj-e controls up to time.
mate the position of the door even while the robot and/or doo : ;
are in motion, so that the robot can continuously manipulat(.?'2 Repr tation of environment

the door even while it is passing through it. Following standard practice in mobile robot navigation, we
represent the environment using an occupancy grid map (Fig-

2 Representation ure 3a) of the form typically constructed by mobile robots us
o . ing SLAM. These coarse maps typically use grid cells that

2.1 Probabilistic model and notation are 10cm x 10cm, and are thus well suited to navigation

One of our tasks is to determine the robot’s position and oriwhere 10cm resolution is acceptable. However, manipuiatio
entation within an environment. We denote the robot’s poseasks require 1-5mm precision, and constructing a 2mm grid
by X = (z,y,6). In this paper we will restrict our attention map of an entire building is clearly impractical—both from

to manipulating a single dynamic object placed in the envi-a memory storage point of view, and because these maps are
ronment. Concretely, consider an example where the positiotypically built using noisy sensors. Consequently, we cgoo

of the object is known (a reasonable assumption for doorgp use a combination of high and low resolution maps. We use
filing cabinets, elevators, etc.), but whose shape is gegern a high resolution map only for the parts of environment (i.e.
by an object state parameter For examplex could be the the objects) we are interested in manipulating. In the ptese
angle at which a door is open, or the extent to which a drawepaper, we use models comprising polygonal objects (“poly-
is pulled out of a filing cabinet. gon models”) to represent these objects at high-resolution

1In our door-opening application;, € R is a real number denot-  R", including settings where also captures the position/orientation
ing the angle of the door. The generalization to vector-vatued of the object being manipulated, offers no special difficulties.



(a) (b) (c)
Figure 3:(a) Occupancy grid map. (b) Actual environment. (c) Our repradiem: polygon model is “pasted” onto a grid map. The green
box shows the bounding box of the polygon model; and the black lines stepolygon model. (Best viewed in color.)

model the 10cm grid map as probabilistically impeding the
y laser ray in a way that is noisier than the more precise poly-

gon model.
In detail, the 10cm grids are usually only partially occu-

/] /] pied, and thus there is a chance of the laser passing through i
entirely. Thus, rather than simply modeling each grid cell a
@ (®) occupied or unoccupied, we will instead associate with each
Figure 4:Example of laser ray traveling through grid cells. ~ 9rid cell a probability that a laser ray terminates withiatth
grid cell. Because our map has multiple resolutions, itis in
this representation is well-suited to modeling doors, dilin sufficient to associate with each grid cell (depending on the
cabinets, straight walls, etc. Figure 3c shows an exampleype of material, say) a probability of that grid cell impegi
polygon model of a door together with the surrounding gridthe laser. To understand this, consider the toy map shown in
map. Our polygon models also allow us to model the changeEigure 4, which we can choose to represent via either a low-
in the shape of articulated objects (e.g., opening doors-or fi resolution (10cm x 10cm) grid, or a higher-resolution (5cm x
ing cabinets) in a very natural and efficient manner, simply5cm) grid. If we model a grid-cell as having a probabilitgf
by letting the position or orientation of some of the polygon impeding a laser, then the chance of the laser being impeded
be parameters. by the 10cm x 10cm region in Figure 4aps whereas the
Thus, a complete representation of the environment conehance for the map on the rightz$ (since it passes through
sists of a combination of an occupancy grid map and a polythree grid-cells). Clearly, it is undesirable that the nueas
gon model. Further, the polygon model’'s shape is governe¢éhent model change just because we chose to represent an ob-
by object’s state parameter ject at a different resolution.
Our choice of this combination of models is motivated by - There are a variety of solutions to this, but we consider the
our goal of having the robot be able to open any door (and enyyost natural one to be the probabilistic interpretationaio
ter any office) in our office building. Since all offices in our pancy grid maps proposed bigliazar and Parr, 2004 Their
building are built on a common theme, all doors are essenperpretation was motivated by the observation that thesmo
tially identical, and thus_ it suffices to build only a singlaly naive model (using a fixed probability for each grid cell)
gon model of a door (via careful measurement). Wherever @nhos anomalous effects depending on the angle at which
door is present in the building, this same polygon model cany |aser travels relative to the grid lines, even if all thedgri
then be rapidly “pasted” onto a 10cm-resolution grid map thacg||s are the same resolution. However, the same interpreta
has been built via standard SLAM techniques. This allows Ugjon turns out to also elegantly address our problem of using
to very rapidly acquire a map of the entire building, inchgli  yti-resolution maps.
0.1cm-resolution models of all the doors in it.

é é inaccurate—the building walls, chairs, etc., are unlikely t
/ be aligned with the global 10cm grid—and thus we wish to

In this model, each cell of a grid map is associated with an
2.3 Measurement model opacity p.2 The probability of a laser ray being interrupted

This section describes the measurement matie} | X;, a;) by this cell depends both on the opacity and on the distance

used in our approach. For this work, we focused on us:[he tray t_ravgls W.'th'nt}h.e C‘?”i In d?t%'l’ t?ﬁ p;()batl)ilillllwa)
ing a single sensor: a SICK laser scanner. Because oy terminating (i-e., being interrupted) while travelifigm

map comprises both low-resolution (10cm-grid cells) and

high-resolution (1-mm, polygon model) components, we de-  27he chance of a laser terminating/being interrupted is a decreas-
sire a measurement model that has a consistent interpretgy function of p, so this parameter is perhaps better thought of as

tion regardless of the resolution at which the map is represtransparency” rather than “opacity.” However, for consistency we

sented. Specifically, we know that the 10cm grid cells arewill use [Eliazar and Parr, 2004 terminology.



pointr to pointr, in a medium of opacity is defined as:

Ly —rall
P(terminate(p,r1,7m2)) =1 — e~ T

Immediately, we see that the probabilities of the ray termi-
nating under the maps in Figure 4a or 4b are the same, sin
the total distance is the same in either case (assuming th

The second factor encodes object state posterior, conddio
on the robot trajectory:

S = plag| X1, 2%, ub).

e factorR; will be approximated using a set of particles;
e factorS;, which estimates the angle of the door, will be

approximated using a Gaussian distribution (one Gaussian

all the grid-cells have the same opacity Thus, this model per particle).

allows us to give a consistent probabilistic interpretatio

multi-resolution maps. : . .
More generally, suppose a laser travels in a direction tha?"_2 _ Robot traj_ectory estimation _

(if it were unimpeded) would take it through different re-  Within each particle we record a guess of the robot trajec-

gions in the map. Here, a “region” can be a grid cell (fromtory X", and a Gaussian approximatiShto the object state.

the Iow—resolun?]n map) orla poly%orgal region (Iro?k]] thehpoly e will denote a particle by!, = (X%, St[m]) and a col-

gon map), such as a polygon that represents the shape ;o of particles at time by Q; = {¢,},». We compute

a door, or one that represents part of the door-frame. W , recursively fromQ, . Suppose that at time stepparti-

let rq,71,...,rn denote the points at which the laser ray . L .
would transition from one region to another (if it were topas cles inQ;—, are distributed according ;. We compute
an intermediate set of particl€g; by sampling a guess of

through all regions unimpeded), witly denoting the origin . ¢ :
robot pose at time from the motion model. Thus, particles

of the laserray. We also legt, . . ., py denote the opacities of )C
these regions. The probability of the ray terminating withi in Q. are distributed according to the robot trajectory predic-
tion distribution:

thei-th region is then:

i—1
P(terminate(pi,ri—1,7:)) H (1 — P(terminate(pr,Tk—1,7Tk)))
k=1

Ry = p(X'|2 1 ut).

To ensure that particles i), are distributed according to

R: (asymptotically), we generai®; by sampling fromQ),

with replacement in proportion to importance weights given
by w; = R:/R;:. Section 3.4 explains how these weights are
computed. For now, we note that since only the latest robot
pose is used in the update equations, we do not need to actu-
ally store entire trajectories in each particle. Thus thenory
storage requirements per particle do not grow with

=(1— e Mri—i=mill/edy ﬁ e NTe—1—"kIl/PK
k=1
This allows us to define the probability that the laser termi-
nates at any specific range Finally, if the laser terminates
at a certain range, we model the actual observed laser mea-
surement to be the range corrupted by Gaussian noise:

Z=T +N(0>U$ng) 1)

3.3 Object state estimation

We use a Gaussian/extended Kalman filter (EKF) approxima-
o tion to estimate the object state posterigy, Thus we keep
3.1 Rao-Blackwellization track of the mean:; and variancer; of the approximating
We now describe an inference algorithm that reasons abo 5 ,ssian in each particlg! = (X" [m] [m])

¢ .

the robot trajectory and the object state based on a set of mea gj;ce S, involves only the latest ol:;jlétct ’Staatm (and not

surements and controls. Specifically, we compute the fellowpe entire object state history’), storage and computation
ing belief: requirements here also do not grow with\Ve have:

St plae] X*, 24 uf)

p(zt|atu Xta Zt_1> ut) p(at|Xta Zt_l? ut)

p(ztlat7 Xt) p(at|Xt7 Zt_la ut)'

3 Inference

Bel; = plag, X*|24, ub).

Note that the belief includes the entire robot trajectorjtap
time ¢, but only the latest object state. This choice turns out
to be important for deriving an efficient Rao-Blackwellized @)
filter. (This is a consequence of the fact that the current be-
lief about the state of the door depends on the entire pasthe first step above follows from Bayes' rule; the second step
trajectory—which, e.g., indicates which of the past sensofollows from the conditional independence assumptions of
measurements were directed at the door. A similar derivaeur model (Figure 2). The expression (2) is a product of a
tion is also used iiMontemerlo, 2003; Murphy and Russell, measurement likelihood term and an object state (dynamical
2001.) model) prediction term, which is defined (similarly &) as:

In detail, we apply a Rao-Blackwellized particle filter b i1t
(RBPF), where in each particle we encode the entire robot tra ~* pla X7, 2777, )
jectory and a posterior distribution of the object stateu§;h / (lae1)p(a_r| XL, 2471 ut)da
we split up the belief into two conditional factors: . Plat|d-1)p\ai—1 e =1

Bely = p(X'|2", u")p(oe | X, 2", u).

X

Becausep(a;_1| Xt~ 2171 ut) is already approximated as

a Gaussian (represented by a Rao-Blackwellized particle
from the previous timestep) and we use a linear-Gaussian
model forp(a;|a;—1), we can easily compute the mean and

The first factor encodes the robot trajectory posterior:
Ry = p(X*|2",ub).



a product of two Gaussians, and can thus be carried out in
closed form.

3.5 Using Scaling Seriestoincrease precision

For mobile robot navigation, 10cm precision is usually ac-
ceptable and gives reasonable performance. Thus in deploye
implementations it is fairly common practice to assume a
large laser noise variance and use only a few laser rays per
measurement update, which results in an approximation to
the next-stateR; that has fairly large variance. However, to
perform manipulation tasks we require sub-centimeteriprec
sion in localization. Achieving this requires that we usesino
of the laser measurements in every update, and assume a re-
alistic (small) variance in the laser readings. This rasinlta
very peaked measurement model, in which most of the prob-
ability mass of our robot’s position estimate is supportgd b
a very small region (of perhaps 1-5mm diameter). A con-
sequence of this is that it becomes difficult during the usual
importance sampling step to draw a sufficient number of par-
ticles from this region to represent it well.
In [Petrovskayaet al., 2004, a tactile localization appli-
(b) cation was considered that also had the similar problem of
a very sharply peaked measurement model. They proposed
a “Scaling series algorithm” to efficiently produce a much
more informed proposal distribution, one that is conceatta
around the areas of high probability mass. We refer the reade
to [Petrovskayat al, 2004 for details on the scaling series,
but briefly, the algorithm works by performing a series of-suc
cessive refinements, generating an increasingly infoumati
proposal distribution at each step of the series. The sasees
refinements are performed by gradually annealing the noise
variance parameter within the measurement model from an
artificially high value down to a realistic variance setting
© In our setting, we applied the scaling series algorithm to
Figure 5: Robot localization with estimation of door state. The choose the proposal distribution on each step of importance
robot is denoted via the small rectangle; the rays emanating fron§@mpling in our particle filter. To do this, we annealed the
the robot show the laser range scans; and the estimated door andglReéasurement noise variance parametey, in Equation 1
is also shown in the figures. The sequence of three images show ti@d performed a series of successive refinements. This re-
robot approaching, opening, and having passed through the door. Sulted in a much more informed proposal distribution, which
allowed us to perform localization using only about 100 par-
variance ofS, above in closed form. Similarly, by using a ticles per step.
Laplace approximation to obtain a Gaussian approximation

to the measurement modg(z;|o:, X;), using Equation (2) 4 Experimental Results
we can also compute the mean and variancs;ah closed

form. We apply our algorithm to the task of manipulating door
handles and doors. The STAIR (STanford Atrtificial Intelli-
3.4 Computing importance weights gence Robot) project is an ambitious, long-term (10-15)year

project that seeks to build a useful home/office roboticsassi
tant. Thus the ability to use doors and enter offices and con-
ference rooms is of great practical importance to the robot.

Briefly, following the derivation in[Montemerlo, 2008 it
is straightforward to show that the importance weiglis

should be: We obtained 10cm resolution occupancy grid map by us-
_ p(X*tzt ut) ing standard SLAM algorithms with a mobile robot equipped
wy, = Ry/R = p(XE21, ) = Eg, [ p(z]ou, Xo) ] with a laser. (See Figure 3a.) Further, as discussed in Sec-

tion 2.2, because all doors in our building are essentidéyi
In words, the importance weights are the expected valuécal, it is possible to build a single precise polygon maoafel
(over the object state prediction distribution) of the mgas  a door, and then rapidly “paste” the same model into the grid
ment likelihood. Since the two terms z;|a:, X;) and S; map at all places where a door exists. Our polygon model in-
are already approximated as Gaussians (as described in Setdades the door itself, the door frame, and a small surround-
tion 3.3), this expectation can be expressed as an integgal o ing region, and also encodes the position of the door hinge.



Algorithms problem of going through doors in our building, we now also
Datasets AMCL RBPF | RBPF-SS present a more formal evaluation of its performance.
1 20.158cm| 1.639cm| 0.239cm For the experiments presented below, we collected several
2 29.557cm| 0.599cm| 0.392cm minutes of laser and odometry data of the robot’s approach
3 52.167cm| 1.335cm| 0.272cm towards a door in twelve distinct test situations. We consid
4 04.582cm| 1.263cm| 0.115cm ered 4 different doors (in different parts of the buildingle
5 14.956cm| 1.668cm| 0.446cm considered each door in 3 different positions (closed, ppen
6 88.873cm| 2.597cm| 0.550cm half-open). The purpose of this set of experiments was to tes
7 04.653cm| 1.481cm| 0.253cm our approach against others in identical conditions. To en-
8 08.925cm| 1.329cm| 0.102cm sure fairness of comparison, the same real-time compatatio
9 08.993cm| 1.610cm| 0.172cm requirements were imposed on all three algorithms. Since
10 13.589cm| 3.052cm| 0.499cm the algorithms considered are non-deterministic, we rah ea
11 05.921cm| 1.524cm| 0.273cm algorithm 10 times for each dataset. To give a quantitative
12 98.063cm| 1.962cm| 0.560cm evaluation we computed (for each algorithm) the root-mean-
Overall RMS || 42.975cm| 1.779cm| 0.358cm square (RMS) error with respect to ground truth among 10

o . runs for each test situation, and then averaged over alvével
Table 1: Positioning RMS error comparison of threetest situations (summarized in Table 1). For the groundhtrut
localization algorithms: Adaptive MCL (AMCL), Rao- e used the maximum a posteriori estimate of the door and
Blackwellized Particle Filter (RBPF), and full proposed al rohot position using a fine (2mm) grid within a 10cm area
gorithm (RBPF-SS). Each of the 12 experiments shown waground the robot's final position in each test case.
an average over 10 runs of each algorithm; final row shows 14 provide a baseline comparison, we used the Adap-
the overall RMS error. tive MCL localization algorithm implemented in Player

(seelGerkeyet al, 2003). This implements the KLD MCL

(Figures 3b and 3¢ show a door and its polygon model repremethod proposed ifFox, 2001, and uses a 10cm occupancy
sentation.) Although not part of the polygon model, we notegrid map. In agreement with results reported[Byachniss
that the door handle is also at a fixed (known) position negati and Burgard, 2005 we noticed that if the actual door state
to the surface of the door, and can thus be straightforwardlgloes not correspond to the mapped door state, the robot gets
computed if the position of the door (including the opening lost,” which manifests itself as increased positioningoer
anglea of the door) is known. If the door state does correspond to the map, the robot is able
The STAIR mobile manipulation platform comprises a to localize with a RMS error of 12.6cm.
Segway mobile platform, a Harmonic Arm manipulator, and We also tested an “intermediate” algorithm that uses the
a SICK laser. The arm has a fairly limited operational rangepolygon map and grid map combination, also using a Rao-
(workspace), and has barely enough power to turn the dodBlackwellized particle filter, but without the scaling sial-
handles—it is able to do so only from certain configurations gorithm to choose its proposal distributions. Empiricatys
where the load is spread more evenly among its motors—anglgorithm is able to localize and estimate the door statéyfai
thus there is only a very small 3cm x 3cm region from whereaccurately. The RMS error of robot pose in this scenario was
the robot is physically capable of opening the door. Evenl.78cm, which is insufficient accuracy for manipulating the
within this region, localization accuracy of about 1-5mm is door handle.
necessary to correctly grasp, turn, and manipulate theldand Our full algorithm, using the scaling series proposal distr
Several videos showing results of the robot opening a doobputions (and the same update rate as the intermediate algo-
are available at the website rithm) is able to estimate robot pose with an RMS error of
about 3mm. Using this algorithm, we were able to reliably
open multiple doors.
The robot navigates to the door, turns the handle and opens
the door .slightly; then.as it is moving through. the door, the5 Discussion and Conclusions
arm continues to manipulate the door by continuously push-
ing it open in front of the robot. Our state estimation algo-One frequently discussed difficultly of Rao-Blackwellizael
rithm is used in real-time to continuously estimate the po-gorithms, specifically of FastSLAM, is that of extinction of
sition of the robot and the opening angle of the door, andparticles. In FastSLAM, if a robot does not visit part of a
thereby control the arm to continuously push the middle ofmap for a long time, then because the magtatic, through
the door. Even though the map changes drastically each time normal death of particles there will be very little disigy
the robot opens the door and moves through it (see Figure 5n its posterior representation of that part of the map. Less
in our experiments the proposed approach invariably giveormally, the algorithm becomes overly confident in its es-
precise state estimates and results in successfully matipu timate of the map, which makes it difficult for the robot to
ing and navigating through the door. Tested 12 times (3 timeaccurately estimate that part of the map if it later retuonis. t
on each of 4 doors), the algorithm succeeded each time in giSee discussion ilMontemerlo, 200B) In contrast, because
ing sufficiently accurate state estimates to open, contislyo we are estimating dynamicparameter—namely the opening
manipulating, and move through the door. angle of the door, which is modeled as a dynamic, changing,
Although our algorithm allowed us to solve the practical variable—this is not a problem for our algorithm. Specifi-

http://cs.stanford.edw/anya/stair/



cally, if the robot wanders away from the door for a long time, [Eliazar and Parr, 2004A. Eliazar and R. Parr. DP-SLAM 2.0. In

then its posterior estimate of the door’s distribution widh- Proc. of ICRA 2004.

verge to its stationary (uncertain) distribution, and thlus  [Foxetal, 19992 D. Fox, W. Burgard, F. Dellaert, and S. Thrun.
particle filter will correctly capture the fact that we shoble Monte carlo localization: Efficient position estimation for mobile
very uncertain about the state of a door that we have not seen robots. InProc. of the National Conference on Atrtificial Intelli-

for some time. gence 1999.

One possible direction for future work is consideration of[Foxetal, 19994 D. Fox, W. Burgard, and S. Thrun. Markov lo-
highly crowded environments. While we did have occasional calization for mobile robots in dynamic environmentournal
passersby during our experiments (and our algorithm was re- ©Of Artificial Intelligence Researctio99. o
silient to these effects), overall the amount of unmodefed e [Fox, 2001 D. Fox. KLD-sampling: Adaptive particle filters. In
fects was low and the map provided a good representation Proc. of NIP$2001.
of the environment. Unmodeled effects can be considerabl{Gerkeyetal, 2003 B. Gerkey, Vaughan R. T., and A. Howard.
more frequent in highly crowded or cluttered environments, The player/stage project: Tools for multi-robot and distributed
e.g. high traffic public areas such as a museum or cinem[':\ sensor systems. Iﬁroc.“ofICAR 2003_'
theater. These environments have been considered (fromtganeletal, 2003 D. Hahnel, R. Triebel, W. Burgard, and
mobile robot localization perspective) byox et al, 19991, rso'n-lr:gﬁg Ima;gcbg'fl?gg Avgghogmb"e robots in dynamic envi-
who proposed a range data filtering technique to improve ro- ' ' ’ '
bustnpesg of Iocalizatgilon. Similar tegchniqueqs can bepadnled {Moll and Erdmann, 2043M. Moll and M. A. Erdmann. Recon-

. . ) . - structing the Shape and Motion of Unknown Objects with Active
our algorithm to increase robustness for mobile manipatati Tactile Sensorspages 293-310. Springer Verlag, 2003
in these environments. ’ ’

While desianing the alaorith Iso had i ind th [Montemerlo, 200B Michael Montemerlo.FastSLAM: A Factored
lle designing the algorithm, we also had in min € Solution to the Simultaneous Localization and Mapping Problem

applications of manipulating (opening/closing) a filindea with Unknown Data AssociatiorPhD thesis, Robotics Institute,
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Acknowledgments [Shekhar, 1986 Khatib O. Shimojo M. Shekhar, S. Sensor fusion

and object localization. Ifroc. of ICRA 1986.

We give warm thanks to Morgan Quigley, Jamie SChune’[SIaetset al, 2004 P. Slaets, J. Rutgeerts, K. Gadeyne, T. Lefeb-

Jimmy Zhang, David Lee and Francois Conti for their help ™ ™\, "guvni .

X ! . b , H. yninckx, and J. De Schutter. Construction of a ge-
with the STAIR robot, and to Pieter Abbeel, Sebastian Thrun,  gmetric 3-D model from sensor measurements collected during
Mike Montemerlo, and the anonymous reviewers for their in-  compliant motion. IrProc. of ISER2004.

sightful comments and suggestions. This work was supportegtachniss and Burgard, 200€. Stachniss and W. Burgard. Mo-
by DARPA under contract number FA8750-05-2-0249. Sup- bjle robot mapping and localization in non-static environments.
port from the Honda Research Institute is also gratefully ac  In Proc. of AAA] 2005.

knowledged. [Thrunet al, 2009 S. Thrun, W. Burgard, and D. FoRrobabilis-

tic Robotics MIT Press, 2005.
References [Wolf and Sukhatme, 2094D. Wolf and G. S. Sukhatme. On-
[Anguelovet al, 2004 D. Anguelov, R. Biswas, D. Koller, line simultaneous localization and mapping in dynamic environ-

B. Limketkai, S. Sanner, and S. Thrun. Learning hierarchical Ments. InProc. of ICRA2004.
object maps of non-stationary environments with mobile robots.
In Proc. of UAL 2002.

[Anguelovet al, 2004 D. Anguelov, D. Koller, E. Parker, and
S. Thrun. Detecting and modeling doors with mobile robots. In
Proc. of ICRA 2004.

[Biber and Duckett, 2045P. Biber and T. Duckett. Dynamic maps
for long-term operation of mobile service robots. Pnoc. of
Robotics: Science and Systems (R3&)5.

[Biswaset al, 2004 R. Biswas, B. Limketkai, S. Sanner, and
S. Thrun. Towards object mapping in dynamic environments with
mobile robots. IrProc. of IROS$2002.



