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Abstract

In recent years, probabilistic approaches have
found many successful applications to mobile robot
localization, and to object state estimation for ma-
nipulation. In this paper, we propose a unified
approach to these two problems that dynamically
models the objects to be manipulated and local-
izes the robot at the same time. Our approach
applies in the common setting where only a low-
resolution (10cm) grid-map of a building is avail-
able, but we also have a high-resolution (0.1cm)
model of the object to be manipulated. Our method
is based on defining a unifying probabilistic model
over these two representations. The resulting algo-
rithm works in real-time, and estimates the position
of objects with sufficient precision for manipulation
tasks. We apply our approach to the task of navigat-
ing from one office to another (including manipu-
lating doors). Our approach, successfully tested on
multiple doors, allows the robot to navigate through
a hallway to an office door, grasp and turn the door
handle, and continuously manipulate the door as it
moves into the office.

1 Introduction
Many believe that general-purpose robots will soon inhabit
home/office environments and carry out a large variety of
tasks, for example fetching items, delivering messages, or
cleaning up a room. At a bare minimum, such robots must
navigate in these environments as well as interact with them.
In this paper, we present a unified probabilistic approach to
state estimation for simultaneous manipulation (of objects in
the environment) as well as global navigation. Using this ap-
proach, we successfully enable a mobile manipulation plat-
form to navigate from far away up to a door, manipulate the
door handle so as to open the door, and enter an office while
simultaneously continuing to manipulate the door. This work
was done as part of the STAIR (STanford Artificial Intelli-
gence Robot) project, which has the long-term goal of build-
ing a useful robotic assistant that can carry out home/office
tasks such as those described above.

Over the last decade, probabilistic techniques have found
great success in mobile robot navigation (e.g.,[Fox et al.,

Figure 1:STAIR robot platform manipulating a door during one of
our experiments.

1999a]). In much of this literature, the environment is mod-
eled as static (unchanging), and there is no interaction be-
tween the robot and the environment. More recently, a num-
ber of authors have developed models for non-static environ-
ments. For example,[Biswaset al., 2002; Anguelovet al.,
2004; 2002; Ḧahnelet al., 2003] use an off-line EM algo-
rithm to differentiate between static and non-static partsof an
environment. A few algorithms also perform on-line mapping
while taking into account non-static information.[Wolf and
Sukhatme, 2004] use separate occupancy grids for dynamic
obstacles (e.g., moving people) and static obstacles;[Stach-
niss and Burgard, 2005] maintain clusters of local grid maps
corresponding to different observed configurations of the en-
vironment; and[Biber and Duckett, 2005] model temporal
changes of local maps.

Robots typically interact with the environment using ma-
nipulators. Most work on manipulation focuses on properties
of specific objects to be manipulated, rather than on moving
in or understanding the global environment (e.g.[Shekhar,
1986; Moll and Erdmann, 2003]). With a few exceptions
(e.g., [Petrovskayaet al., 2006; Slaetset al., 2004]), most
of this literature also does not have probabilistic basis, and
thus at first blush it appears difficult to derive a single unify-
ing model that seamlessly integrates navigation and manipu-
lation.



The task of mobile manipulation combines both navigation
and manipulation. Most current work in mobile manipulation
treats these as two tasks to be solved separately: First, mobile
robotics techniques are used to navigate to a specific point;
then, a separate set of techniques is used to localize objects to
be manipulated. For example, in the context of door opening,
navigation and manipulation of the door handle were consid-
ered in[Rheeet al., 2004] and [Peterssonet al., 2000]. In
both approaches, navigation to the door was performed as a
separate task. The door handle is then localized only after
the robot is already in front of the door, and a combination
of visual servoing and tactile feedback is then used to grasp
the door handle, and finally the door is opened by having the
robot follow (with some compliance) a pre-scripted set of mo-
tions. Localization during door opening or while entering the
doorway was not considered.

In this paper, we present a unified, real-time, algorithm that
simultaneously models the position of the robot within the en-
vironment, as well as the objects to be manipulated. It allows
us to consider manipulation of large objects, such as doors,
filing cabinets and chairs. When the state of these objects
changes, it significantly impacts navigation tasks. Thus our
goal is to simultaneously model a dynamic environment as
well as localize ourselves within it. Because this objective
is reminiscent to that of simultaneous localization and map-
ping (SLAM), we will find that we can borrow many ideas
from SLAM ([Thrunet al., 2005]). However, our objective is
also different in two significant ways: First, the environment
changes very significantly as we interact with (manipulate)
it, and second, the precision required (1-5mm) for manipula-
tion is 1-2 orders of magnitude higher than is typical for most
SLAM applications.

Tested successfully on multiple doors, our approach en-
ables our robot to navigate towards, manipulate, and move
through a door. (Figure 1.) In contrast to prior art on door
opening, we are able to estimate parameters with high pre-
cision even during motion of the robot. Thus no additional
delay is required to locate the door handle once the robot
reaches the door. Further, using the same, seamlessly inte-
grated probabilistic model, the robot is able to precisely esti-
mate the position of the door even while the robot and/or door
are in motion, so that the robot can continuously manipulate
the door even while it is passing through it.

2 Representation
2.1 Probabilistic model and notation
One of our tasks is to determine the robot’s position and ori-
entation within an environment. We denote the robot’s pose
by X = (x, y, θ). In this paper we will restrict our attention
to manipulating a single dynamic object placed in the envi-
ronment. Concretely, consider an example where the position
of the object is known (a reasonable assumption for doors,
filing cabinets, elevators, etc.), but whose shape is governed
by an object state parameterα. For exampleα could be the
angle at which a door is open, or the extent to which a drawer
is pulled out of a filing cabinet.1

1In our door-opening application,α ∈ ℜ is a real number denot-
ing the angle of the door. The generalization to vector-valuedα ∈

Figure 2:Dynamic Bayesian network model of the robot poseXt,
object stateαt, measurementszt, and controlsut.

At each time stept, we give the robot a new motion com-
mand,ut, and obtain a new measurementzt from its sensors.
The robot pose and the object state evolve over time, and at
time t are denoted byXt andαt respectively. We modelXt,
αt, zt, andut jointly using the dynamic Bayesian network
shown in Figure 2. In detail, given the robot pose and a new
control, the pose evolves according to a probabilistic motion
model derived from robot kinematics:

p(Xt|Xt−1, ut).

The object state evolves according to:

p(αt|αt−1).

Similarly, sensor measurements are governed by a measure-
ment model (discussed in section 2.3 in more detail):

p(zt|αt,Xt).

We define the robot trajectory to be a vector of all robot poses
up to the current time step, writtenXt = (X1,X2, ...,Xt).
Similarly, we writezt andut to denote all measurements and
controls up to timet.

2.2 Representation of environment
Following standard practice in mobile robot navigation, we
represent the environment using an occupancy grid map (Fig-
ure 3a) of the form typically constructed by mobile robots us-
ing SLAM. These coarse maps typically use grid cells that
are 10cm x 10cm, and are thus well suited to navigation
where 10cm resolution is acceptable. However, manipulation
tasks require 1-5mm precision, and constructing a 2mm grid
map of an entire building is clearly impractical—both from
a memory storage point of view, and because these maps are
typically built using noisy sensors. Consequently, we choose
to use a combination of high and low resolution maps. We use
a high resolution map only for the parts of environment (i.e.,
the objects) we are interested in manipulating. In the present
paper, we use models comprising polygonal objects (“poly-
gon models”) to represent these objects at high-resolution;

ℜ
n, including settings whereα also captures the position/orientation

of the object being manipulated, offers no special difficulties.



(a) (b) (c)
Figure 3:(a) Occupancy grid map. (b) Actual environment. (c) Our representation: polygon model is “pasted” onto a grid map. The green
box shows the bounding box of the polygon model; and the black lines showthe polygon model. (Best viewed in color.)

(a) (b)

Figure 4:Example of laser ray traveling through grid cells.

this representation is well-suited to modeling doors, filing
cabinets, straight walls, etc. Figure 3c shows an example
polygon model of a door together with the surrounding grid
map. Our polygon models also allow us to model the changes
in the shape of articulated objects (e.g., opening doors or fil-
ing cabinets) in a very natural and efficient manner, simply
by letting the position or orientation of some of the polygons
be parameters.

Thus, a complete representation of the environment con-
sists of a combination of an occupancy grid map and a poly-
gon model. Further, the polygon model’s shape is governed
by object’s state parameterα.

Our choice of this combination of models is motivated by
our goal of having the robot be able to open any door (and en-
ter any office) in our office building. Since all offices in our
building are built on a common theme, all doors are essen-
tially identical, and thus it suffices to build only a single poly-
gon model of a door (via careful measurement). Wherever a
door is present in the building, this same polygon model can
then be rapidly “pasted” onto a 10cm-resolution grid map that
has been built via standard SLAM techniques. This allows us
to very rapidly acquire a map of the entire building, including
0.1cm-resolution models of all the doors in it.

2.3 Measurement model
This section describes the measurement modelP (zt|Xt, αt)
used in our approach. For this work, we focused on us-
ing a single sensor: a SICK laser scanner. Because our
map comprises both low-resolution (10cm-grid cells) and
high-resolution (1-mm, polygon model) components, we de-
sire a measurement model that has a consistent interpreta-
tion regardless of the resolution at which the map is repre-
sented. Specifically, we know that the 10cm grid cells are

inaccurate—the building walls, chairs, etc., are unlikely to
be aligned with the global 10cm grid—and thus we wish to
model the 10cm grid map as probabilistically impeding the
laser ray in a way that is noisier than the more precise poly-
gon model.

In detail, the 10cm grids are usually only partially occu-
pied, and thus there is a chance of the laser passing through it
entirely. Thus, rather than simply modeling each grid cell as
occupied or unoccupied, we will instead associate with each
grid cell a probability that a laser ray terminates within that
grid cell. Because our map has multiple resolutions, it is in-
sufficient to associate with each grid cell (depending on the
type of material, say) a probability of that grid cell impeding
the laser. To understand this, consider the toy map shown in
Figure 4, which we can choose to represent via either a low-
resolution (10cm x 10cm) grid, or a higher-resolution (5cm x
5cm) grid. If we model a grid-cell as having a probabilityp of
impeding a laser, then the chance of the laser being impeded
by the 10cm x 10cm region in Figure 4a isp, whereas the
chance for the map on the right isp3 (since it passes through
three grid-cells). Clearly, it is undesirable that the measure-
ment model change just because we chose to represent an ob-
ject at a different resolution.

There are a variety of solutions to this, but we consider the
most natural one to be the probabilistic interpretation of occu-
pancy grid maps proposed by[Eliazar and Parr, 2004]. Their
interpretation was motivated by the observation that the more
naive model (using a fixed probabilityp for each grid cell)
shows anomalous effects depending on the angle at which
a laser travels relative to the grid lines, even if all the grid
cells are the same resolution. However, the same interpreta-
tion turns out to also elegantly address our problem of using
multi-resolution maps.

In this model, each cell of a grid map is associated with an
opacity ρ.2 The probability of a laser ray being interrupted
by this cell depends both on the opacity and on the distance
the ray travels within the cell. In detail, the probability of a
ray terminating (i.e., being interrupted) while travelingfrom

2The chance of a laser terminating/being interrupted is a decreas-
ing function ofρ, so this parameter is perhaps better thought of as
“transparency” rather than “opacity.” However, for consistency we
will use [Eliazar and Parr, 2004]’s terminology.



point r1 to pointr2 in a medium of opacityρ is defined as:

P (terminate(ρ, r1, r2)) = 1 − e−
||r1−r2||

ρ

Immediately, we see that the probabilities of the ray termi-
nating under the maps in Figure 4a or 4b are the same, since
the total distance is the same in either case (assuming that
all the grid-cells have the same opacityρ). Thus, this model
allows us to give a consistent probabilistic interpretation to
multi-resolution maps.

More generally, suppose a laser travels in a direction that
(if it were unimpeded) would take it throughN different re-
gions in the map. Here, a “region” can be a grid cell (from
the low-resolution map) or a polygonal region (from the poly-
gon map), such as a polygon that represents the shape of
a door, or one that represents part of the door-frame. We
let r0, r1, . . . , rN denote the points at which the laser ray
would transition from one region to another (if it were to pass
through all regions unimpeded), withr0 denoting the origin
of the laser ray. We also letρ1, . . . , ρN denote the opacities of
these regions. The probability of the ray terminating within
thei-th region is then:

P (terminate(ρi, ri−1, ri))

i−1
Y

k=1

(1− P (terminate(ρk, rk−1, rk)))

= (1− e
−||ri−1−ri||/ρi )

i−1
Y

k=1

e
−||rk−1

−rk||/ρk .

This allows us to define the probability that the laser termi-
nates at any specific ranger. Finally, if the laser terminates
at a certain ranger, we model the actual observed laser mea-
surementz to be the range corrupted by Gaussian noise:

z = r + N (0, σ2
rng) (1)

3 Inference
3.1 Rao-Blackwellization
We now describe an inference algorithm that reasons about
the robot trajectory and the object state based on a set of mea-
surements and controls. Specifically, we compute the follow-
ing belief:

Belt = p(αt,X
t|zt, ut).

Note that the belief includes the entire robot trajectory upto
time t, but only the latest object state. This choice turns out
to be important for deriving an efficient Rao-Blackwellized
filter. (This is a consequence of the fact that the current be-
lief about the state of the door depends on the entire past
trajectory—which, e.g., indicates which of the past sensor
measurements were directed at the door. A similar deriva-
tion is also used in[Montemerlo, 2003; Murphy and Russell,
2001].)

In detail, we apply a Rao-Blackwellized particle filter
(RBPF), where in each particle we encode the entire robot tra-
jectory and a posterior distribution of the object state. Thus,
we split up the belief into two conditional factors:

Belt = p(Xt|zt, ut)p(αt|X
t, zt, ut).

The first factor encodes the robot trajectory posterior:

Rt = p(Xt|zt, ut).

The second factor encodes object state posterior, conditioned
on the robot trajectory:

St = p(αt|X
t, zt, ut).

The factorRt will be approximated using a set of particles;
the factorSt, which estimates the angle of the door, will be
approximated using a Gaussian distribution (one Gaussian
per particle).

3.2 Robot trajectory estimation
Within each particle we record a guess of the robot trajec-
tory Xt, and a Gaussian approximationSt to the object state.
We will denote a particle byqt

m = (Xt,[m], S
[m]
t ) and a col-

lection of particles at timet by Qt = {qt
m}m. We compute

Qt recursively fromQt−1. Suppose that at time stept, parti-
cles inQt−1 are distributed according toRt−1. We compute
an intermediate set of particles̄Qt by sampling a guess of
robot pose at timet from the motion model. Thus, particles
in Q̄t are distributed according to the robot trajectory predic-
tion distribution:

R̄t = p(Xt|zt−1, ut).

To ensure that particles inQt are distributed according to
Rt (asymptotically), we generateQt by sampling fromQ̄t

with replacement in proportion to importance weights given
by wt = Rt/R̄t. Section 3.4 explains how these weights are
computed. For now, we note that since only the latest robot
pose is used in the update equations, we do not need to actu-
ally store entire trajectories in each particle. Thus the memory
storage requirements per particle do not grow witht.

3.3 Object state estimation
We use a Gaussian/extended Kalman filter (EKF) approxima-
tion to estimate the object state posterior,St. Thus we keep
track of the meanµt and varianceσt of the approximating
Gaussian in each particle:qt

m = (Xt,[m], µ
[m]
t , σ

[m]
t ).

SinceSt involves only the latest object stateαt (and not
the entire object state historyαt), storage and computation
requirements here also do not grow witht. We have:

St = p(αt|X
t, zt, ut)

∝ p(zt|αt,X
t, zt−1, ut) p(αt|X

t, zt−1, ut)

= p(zt|αt,Xt) p(αt|X
t, zt−1, ut). (2)

The first step above follows from Bayes’ rule; the second step
follows from the conditional independence assumptions of
our model (Figure 2). The expression (2) is a product of a
measurement likelihood term and an object state (dynamical
model) prediction term, which is defined (similarly tōRt) as:

S̄t = p(αt|X
t, zt−1, ut)

=

∫
αt−1

p(αt|αt−1)p(αt−1|X
t−1, zt−1, ut)dαt−1

Becausep(αt−1|X
t−1, zt−1, ut) is already approximated as

a Gaussian (represented by a Rao-Blackwellized particle
from the previous timestep) and we use a linear-Gaussian
model forp(αt|αt−1), we can easily compute the mean and
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Figure 5: Robot localization with estimation of door state. The
robot is denoted via the small rectangle; the rays emanating from
the robot show the laser range scans; and the estimated door angle
is also shown in the figures. The sequence of three images show the
robot approaching, opening, and having passed through the door.

variance ofS̄t above in closed form. Similarly, by using a
Laplace approximation to obtain a Gaussian approximation
to the measurement modelp(zt|αt,Xt), using Equation (2)
we can also compute the mean and variance ofSt in closed
form.

3.4 Computing importance weights
Briefly, following the derivation in[Montemerlo, 2003], it
is straightforward to show that the importance weightswt

should be:

wt = Rt/R̄t =
p(Xt|zt, ut)

p(Xt|zt−1, ut)
= ES̄t

[ p(zt|αt,Xt) ]

In words, the importance weights are the expected value
(over the object state prediction distribution) of the measure-
ment likelihood. Since the two termsp(zt|αt,Xt) and S̄t

are already approximated as Gaussians (as described in Sec-
tion 3.3), this expectation can be expressed as an integral over

a product of two Gaussians, and can thus be carried out in
closed form.

3.5 Using Scaling Series to increase precision
For mobile robot navigation, 10cm precision is usually ac-
ceptable and gives reasonable performance. Thus in deployed
implementations it is fairly common practice to assume a
large laser noise variance and use only a few laser rays per
measurement update, which results in an approximation to
the next-stateRt that has fairly large variance. However, to
perform manipulation tasks we require sub-centimeter preci-
sion in localization. Achieving this requires that we use most
of the laser measurements in every update, and assume a re-
alistic (small) variance in the laser readings. This results in a
very peaked measurement model, in which most of the prob-
ability mass of our robot’s position estimate is supported by
a very small region (of perhaps 1-5mm diameter). A con-
sequence of this is that it becomes difficult during the usual
importance sampling step to draw a sufficient number of par-
ticles from this region to represent it well.

In [Petrovskayaet al., 2006], a tactile localization appli-
cation was considered that also had the similar problem of
a very sharply peaked measurement model. They proposed
a “Scaling series algorithm” to efficiently produce a much
more informed proposal distribution, one that is concentrated
around the areas of high probability mass. We refer the reader
to [Petrovskayaet al., 2006] for details on the scaling series,
but briefly, the algorithm works by performing a series of suc-
cessive refinements, generating an increasingly informative
proposal distribution at each step of the series. The successive
refinements are performed by gradually annealing the noise
variance parameter within the measurement model from an
artificially high value down to a realistic variance setting.

In our setting, we applied the scaling series algorithm to
choose the proposal distribution on each step of importance
sampling in our particle filter. To do this, we annealed the
measurement noise variance parameterσrng in Equation 1
and performed a series of successive refinements. This re-
sulted in a much more informed proposal distribution, which
allowed us to perform localization using only about 100 par-
ticles per step.

4 Experimental Results
We apply our algorithm to the task of manipulating door
handles and doors. The STAIR (STanford Artificial Intelli-
gence Robot) project is an ambitious, long-term (10-15 year)
project that seeks to build a useful home/office robotic assis-
tant. Thus the ability to use doors and enter offices and con-
ference rooms is of great practical importance to the robot.

We obtained 10cm resolution occupancy grid map by us-
ing standard SLAM algorithms with a mobile robot equipped
with a laser. (See Figure 3a.) Further, as discussed in Sec-
tion 2.2, because all doors in our building are essentially iden-
tical, it is possible to build a single precise polygon modelof
a door, and then rapidly “paste” the same model into the grid
map at all places where a door exists. Our polygon model in-
cludes the door itself, the door frame, and a small surround-
ing region, and also encodes the position of the door hinge.



Algorithms
Datasets AMCL RBPF RBPF-SS
1 20.158cm 1.639cm 0.239cm
2 29.557cm 0.599cm 0.392cm
3 52.167cm 1.335cm 0.272cm
4 04.582cm 1.263cm 0.115cm
5 14.956cm 1.668cm 0.446cm
6 88.873cm 2.597cm 0.550cm
7 04.653cm 1.481cm 0.253cm
8 08.925cm 1.329cm 0.102cm
9 08.993cm 1.610cm 0.172cm
10 13.589cm 3.052cm 0.499cm
11 05.921cm 1.524cm 0.273cm
12 98.063cm 1.962cm 0.560cm
Overall RMS 42.975cm 1.779cm 0.358cm

Table 1: Positioning RMS error comparison of three
localization algorithms: Adaptive MCL (AMCL), Rao-
Blackwellized Particle Filter (RBPF), and full proposed al-
gorithm (RBPF-SS). Each of the 12 experiments shown was
an average over 10 runs of each algorithm; final row shows
the overall RMS error.

(Figures 3b and 3c show a door and its polygon model repre-
sentation.) Although not part of the polygon model, we note
that the door handle is also at a fixed (known) position relative
to the surface of the door, and can thus be straightforwardly
computed if the position of the door (including the opening
angleα of the door) is known.

The STAIR mobile manipulation platform comprises a
Segway mobile platform, a Harmonic Arm manipulator, and
a SICK laser. The arm has a fairly limited operational range
(workspace), and has barely enough power to turn the door
handles—it is able to do so only from certain configurations,
where the load is spread more evenly among its motors—and
thus there is only a very small 3cm x 3cm region from where
the robot is physically capable of opening the door. Even
within this region, localization accuracy of about 1-5mm is
necessary to correctly grasp, turn, and manipulate the handle.

Several videos showing results of the robot opening a door
are available at the website

http://cs.stanford.edu/∼anya/stair/

The robot navigates to the door, turns the handle and opens
the door slightly; then as it is moving through the door, the
arm continues to manipulate the door by continuously push-
ing it open in front of the robot. Our state estimation algo-
rithm is used in real-time to continuously estimate the po-
sition of the robot and the opening angle of the door, and
thereby control the arm to continuously push the middle of
the door. Even though the map changes drastically each time
the robot opens the door and moves through it (see Figure 5),
in our experiments the proposed approach invariably gives
precise state estimates and results in successfully manipulat-
ing and navigating through the door. Tested 12 times (3 times
on each of 4 doors), the algorithm succeeded each time in giv-
ing sufficiently accurate state estimates to open, continuously
manipulating, and move through the door.

Although our algorithm allowed us to solve the practical

problem of going through doors in our building, we now also
present a more formal evaluation of its performance.

For the experiments presented below, we collected several
minutes of laser and odometry data of the robot’s approach
towards a door in twelve distinct test situations. We consid-
ered 4 different doors (in different parts of the building);we
considered each door in 3 different positions (closed, open,
half-open). The purpose of this set of experiments was to test
our approach against others in identical conditions. To en-
sure fairness of comparison, the same real-time computation
requirements were imposed on all three algorithms. Since
the algorithms considered are non-deterministic, we ran each
algorithm 10 times for each dataset. To give a quantitative
evaluation we computed (for each algorithm) the root-mean-
square (RMS) error with respect to ground truth among 10
runs for each test situation, and then averaged over all twelve
test situations (summarized in Table 1). For the ground truth,
we used the maximum a posteriori estimate of the door and
robot position using a fine (2mm) grid within a 10cm area
around the robot’s final position in each test case.

To provide a baseline comparison, we used the Adap-
tive MCL localization algorithm implemented in Player
(see[Gerkeyet al., 2003]). This implements the KLD MCL
method proposed in[Fox, 2001], and uses a 10cm occupancy
grid map. In agreement with results reported by[Stachniss
and Burgard, 2005], we noticed that if the actual door state
does not correspond to the mapped door state, the robot gets
“lost,” which manifests itself as increased positioning error.
If the door state does correspond to the map, the robot is able
to localize with a RMS error of 12.6cm.

We also tested an “intermediate” algorithm that uses the
polygon map and grid map combination, also using a Rao-
Blackwellized particle filter, but without the scaling series al-
gorithm to choose its proposal distributions. Empirically, this
algorithm is able to localize and estimate the door state fairly
accurately. The RMS error of robot pose in this scenario was
1.78cm, which is insufficient accuracy for manipulating the
door handle.

Our full algorithm, using the scaling series proposal distri-
butions (and the same update rate as the intermediate algo-
rithm) is able to estimate robot pose with an RMS error of
about 3mm. Using this algorithm, we were able to reliably
open multiple doors.

5 Discussion and Conclusions
One frequently discussed difficultly of Rao-Blackwellizedal-
gorithms, specifically of FastSLAM, is that of extinction of
particles. In FastSLAM, if a robot does not visit part of a
map for a long time, then because the map isstatic, through
the normal death of particles there will be very little diversity
in its posterior representation of that part of the map. Less
formally, the algorithm becomes overly confident in its es-
timate of the map, which makes it difficult for the robot to
accurately estimate that part of the map if it later returns to it.
(See discussion in[Montemerlo, 2003].) In contrast, because
we are estimating adynamicparameter—namely the opening
angle of the door, which is modeled as a dynamic, changing,
variable—this is not a problem for our algorithm. Specifi-



cally, if the robot wanders away from the door for a long time,
then its posterior estimate of the door’s distribution willcon-
verge to its stationary (uncertain) distribution, and thusthe
particle filter will correctly capture the fact that we should be
very uncertain about the state of a door that we have not seen
for some time.

One possible direction for future work is consideration of
highly crowded environments. While we did have occasional
passersby during our experiments (and our algorithm was re-
silient to these effects), overall the amount of unmodeled ef-
fects was low and the map provided a good representation
of the environment. Unmodeled effects can be considerably
more frequent in highly crowded or cluttered environments,
e.g. high traffic public areas such as a museum or cinema
theater. These environments have been considered (from a
mobile robot localization perspective) by[Fox et al., 1999b],
who proposed a range data filtering technique to improve ro-
bustness of localization. Similar techniques can be added to
our algorithm to increase robustness for mobile manipulation
in these environments.

While designing the algorithm, we also had in mind the
applications of manipulating (opening/closing) a filing cabi-
net sliding drawer, and moving a piece of furniture (e.g., a
chair). Either of these fit into our framework very naturally
(α = drawer position; orα = chair position), and we believe
our approach will extend straightforwardly to such applica-
tions as well.

In summary, we have presented a single, unified, proba-
bilistic model for simultaneously localizing a mobile manip-
ulator robot and estimating the state of an object being ma-
nipulated. Our algorithm uses a combination of a high- and
a low-resolution map, and was successfully applied to door
manipulation, a task which requires very precise state estima-
tion.
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