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Abstract. The probabilistic modal μ-calculus pLμ (often called the
quantitative μ-calculus) is a generalization of the standard modal μ-
calculus designed for expressing properties of probabilistic labeled tran-
sition systems. The syntax of pLμ formulas coincides with that of the
standard modal μ-calculus. Two equivalent semantics have been studied
for pLμ, both assigning to each process-state p a value in [0, 1] represent-
ing the probability that the property expressed by the formula will hold
in p: a denotational semantics and a game semantics given by means of
two player stochastic games. In this paper we extend the logic pLμ with
a second conjunction called product, whose semantics interprets the two
conjuncts as probabilistically independent events. This extension allows
one to encode useful operators, such as the modalities with probability
one and with non-zero probability. We provide two semantics for this ex-
tended logic: one denotational and one based on a new class of games
which we call tree games. The main result is the equivalence of the two
semantics. The proof is carried out in ZFC set theory extended with
Martin’s Axiom at the first uncountable cardinal.

1 Introduction

The modal μ-calculus Lμ [10] is a very expressive logic, for expressing properties
of reactive systems (labeled transition systems), obtained by extending classical
propositional modal logic with least and greatest fixed point operators. In the last
decade, a lot of research has focused on the study of reactive systems that exhibit
some kind of probabilistic behavior, and logics for expressing their properties
[14,5,9,6,8]. Probabilistic labeled transition systems (PLTS’s) [15] are a natural
generalization of standard LTS’s to the probabilistic setting, as they allow both
(countable) non-deterministic and probabilistic choices.

The probabilistic modal μ-calculus pLμ, introduced in [14,9,5], is a generaliza-
tion of Lμ designed for expressing properties of PLTS’s. This logic was originally
named the quantitative μ-calculus, but since other μ-calculus-like logics, designed
for expressing properties of non-probabilistic systems, have been given the same
name (e.g. [7]), we adopt the probabilistic adjective. The syntax of the logic pLμ
coincides with that of the standard μ-calculus. The denotational semantics of
pLμ [14,5] generalizes that of Lμ, by interpreting every formula F as a map
�F � : P → [0, 1], which assigns to each process p a degree of truth. In [12], the
authors introduce an alternative semantics for the logic pLμ. This semantics,
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given in term of two player stochastic (parity) games, is a natural generalization
of the two player (non-stochastic) game semantics for the logic Lμ [16]. As in Lμ
games, the two players play a game starting from a configuration 〈p, F 〉, where
the objective for Player 1 is to produce a path of configurations along which the
outermost fixed point variable X unfolded infinitely often is bound by a greatest
fixed point in F . On a configuration of the form 〈p, G1 ∨ G2〉, Player 1 chooses
one of the disjuncts Gi, i∈ {1, 2}, by moving to the next configuration 〈p, Gi〉.
On a configuration 〈p, G1 ∧ G2〉, Player 2 chooses a conjunct Gi and moves to
〈p, Gi〉. On a configuration 〈p, μX.G〉 or 〈p, νX.G〉 the game evolves to the con-
figuration 〈p, G〉, after which, from any subsequent configuration 〈q, X〉 the game
again evolves to 〈q, G〉. On configurations 〈p, 〈a〉G〉 and 〈p, [a] G〉, Player 1 and
2 respectively choose a transition p

a−→ d in the PLTS and move the game to
〈d, G〉. Here d is a probability distribution (this is the key difference between pLμ
and Lμ games) and the configuration 〈d, G〉 belongs to Nature, the probabilistic
agent of the game, who moves on to the next configuration 〈q, G〉 with proba-
bility d(q). This game semantics allows one to interpret formulae as expressing,
for each process p, the (limit) probability of a property, specified by the formula,
holding at the state p. In [12], the equivalence of the denotational and game se-
mantics for pLμ on finite models, was proven. The result was recently extended
to arbitrary models by the present author [13].

In this paper we consider an extension of the logic pLμ obtained by adding to
the syntax of the logic a second conjunction operator (·) called product and its De
Morgan dual operator called coproduct (�). We call this extension the probabilis-
tic modal μ-calculus with independent product, or just pLμ�. The denotational
semantics of the product operator is defined as �F · G�(p) = �F �(p) · �G�(p),
where the product symbol in the right hand side is multiplication on reals. Such
an operator was already considered in [9] as a possible generalization of standard
boolean conjunction to the lattice [0, 1]. Our logic pLμ� is novel in containing
both ordinary conjunctions and disjunctions (∧ and ∨) and independent prod-
ucts and coproducts (· and �). While giving a denotational semantics to pLμ�
is straightforward, the major task we undertake in this paper is to extend the
game semantics of [12] to the new connectives. The game semantics implements
the intuition that H1 · H2 expresses the probability that H1 and H2 both hold
if verified independently of each other.

To capture formally this intuition we introduce a game semantics for the logic
pLμ� in which independent execution of many instances of the game is allowed.
Our games build on those for pLμ outlined above. Novelty arises in the game
interpretation of the game-states 〈p, H1 ·H2〉 and 〈p, H1 � H2〉: when during
the execution of the game one of these kinds of nodes is reached, the game is
split into two concurrent and independent sub-games continuing their execu-
tions from the states 〈p, H1〉 and 〈p, H2〉 respectively. The difference between
the game-interpretation of product and coproduct operators is that on a prod-
uct configuration 〈p, H1 ·H2〉, Player 1 has to win in both generated sub-games,
while on a coproduct configuration 〈p, H1 � H2〉 Player 1 needs to win just one
of the two generated sub-games.
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Fig. 1. Illustrative example

To illustrate the main ideas, let us consider the PLTS of figure 1(a) and
the pLμ formula F = 〈a〉〈a〉tt which asserts the possibility of performing two
consecutive a-steps. The probability of F being satisfied at p is 1

2 , since after the
first a-step, the process 0 is reached with probability 1

2 and no further a-step is
possible. Let us consider the pLμ� formula H =μX.F �X . Figure 1(b) depicts
a play in the game starting from the configuration 〈p, H〉 (fixed-point unfolding
steps are omitted). The branching points represent places where coproduct is
the main connective, and each Ti represents play in one of the independent
subgames for 〈p, F 〉 thereupon generated. We call such a tree, describing play on
all independent subgames, a branching play. Since all branches are coproducts,
and the fixpoint is a least fixpoint, the objective for Player 1 is to win at least
one of the games Ti. Since the probability of winning a particular game Ti is 1

2 ,
and there are infinitely many independent such games, almost surely Player 1
will win one of them. Therefore the game semantics assigns H at p the value 1.

The above example illustrates an interesting application of the new operators,
namely the possibility of encoding the qualitative probabilistic modalities P>0F
(F holds with probability greater than zero) and P=1F (F holds with probability
one), which are equivalent to the pLμ� formulae μX.F � X and νX.F · X re-
spectively. These encodings, which are easily seen to be correct denotationally,
provide a novel game interpretation for the qualitative probabilistic modalities,
which makes essential use of the new branching features of pLμ� games (giv-
ing a direct game interpretation to the qualitative modalities seems no easier
than giving the game semantics for the whole of pLμ�.) Moreover, they show
that the interpretation of pLμ� formulae is, in general, not continuous on the
free variables: P>0Y is an example of pLμ� formula discontinuous on Y , since
�P>0Y �ρ(p)=1 if ρ(Y )(p)>0 and �P>0Y �ρ(p)=0 otherwise, where ρ interprets
every variable Y as a map from process-states to [0, 1]. Other useful proper-
ties can be expressed by using these probabilistic modalities in the scope of
fixed point operators. Some interesting formulae include μX.

(
〈a〉X ∨ (P=1H)

)
,

νX.
(
P>0〈a〉X

)
and P>0

(
νX.〈a〉X

)
: the first assigns to a process p the probabil-

ity of eventually reaching, by means of a sequence of a-steps, a state in which
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H holds with probability one; the second, interpreted on a process p, has value
1 if there exists an infinite sequence of possible (in the sense of having proba-
bilty greater than 0) a-steps starting from p, and 0 otherwise; the third formula,
express a stronger property, namely it assigns to a process p value 1 if the prob-
ability of making (starting from p) an infinite sequence of a-steps is greater than
0, and value 0 otherwise. Moreover, every property expressible in the qualitative
fragment of PCTL [8] can be formulated as a pLμ� formula.

Formalizing the pLμ� games outlined above is a surprisingly technical un-
dertaking. To account for the branching plays that arise, we introduce a general
notion of tree game which is of interest in its own right. Tree games generalize
2-player stochastic games, and are powerful enough to encode certain classes of
games of imperfect information such as Blackwell games [2]. Tree games can also
be used to formulate other notions that appear in the literature on stochastic
games such as qualitative determinacy [3,1] and branching-time winning objec-
tives [4]. This, as well as the encoding of qualitative PCTL mentioned above,
will appear in the author’s forthcoming PhD thesis.

A further level of difficulty arises in expressing when a branching play in a
pLμ� game is considered an objective for Player 1. This is delicate because
branching plays can contain infinitely many interleaved occurrences of product
and coproduct operations (so our simple explanation of such nodes above does
not suffice). To account for this, branching plays are themselves considered as
ordinary 2-player (parity) games with coproduct nodes as Player 1 nodes, and
product nodes as Player 2 nodes. Player 1’s goal in the outer pLμ� game is
to produce a branching play for which, when itself considered as a game, the
inner game, he has a winning strategy. To formalize the class of tree games
whose objective is specified by means of inner games, we introduce the notion
of 2-player stochastic meta-game.

Our main technical result is the equivalence of the denotational semantics and
the game semantics for the logic pLμ�. As in [13] the proof of equivalence of
the two semantics is based on the unfolding method of [7]. However there are
significant complications, notably, the transfinite inductive characterization of
the set of winning branching plays in a given pLμ�-game (section 6) and the
lack of denotational continuity on the free variables taken care by the game-
theoretic notion of robust Markov branching play (section 7). Moreover, because
of the complexity of the objectives described by means of inner games, the
proof is carried out in ZFC set theory extended with MAℵ1 (Martin’s Axiom at
ℵ1) which is known to be consistent with ZFC. We leave open the question of
whether our result is provable in ZFC alone; we do not know if this is possible
even restricting the equivalence problem to finite models.

The rest of the paper is organized as follows: in section 2, we fix some termi-
nology and discuss the property MAℵ1 . In section 3, we define the syntax and
the denotational semantics of the logic pLμ�. In section 4, the class of stochastic
tree games, and its sub-class given by two player stochastic meta-parity games,
are introduced in detail. In section 5, the game semantics of pLμ� is defined
in terms of two player stochastic meta-parity games. In section 6, we provide
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a transfinite inductive characterization of the objective of the game associated
with a formula μX.F . In section 7, we sketch the main ideas of the proof of the
main theorem, which states the equivalence of the two semantics.

2 Background Definitions and Notation

Definition 1 (Probability distributions). A probability distribution d over
a set X is a function d : X → [0, 1] such that

∑
x∈X d(x) = 1. The support of d,

denoted by supp(d) is defined as the set {x ∈ X | d(x) > 0}. We denote with
D(X) the set of probability distributions over X .

Definition 2 (PLTS [15]). Given a countable set L of labels, a Probabilistic
Labeled Transition System is a pair 〈P, { a−→}a∈L〉, where P is a countable set of
states and a−→⊆P×D(P ) for every a ∈ L. In this paper we restrict our attention
to those PLTS such that for every p∈P and every a∈L, the set {d | p

a−→ d} is
countable. We refer to the countable set

⋃
a∈L

⋃
p∈P {d | p

a−→ d} as the set of
probability distributions of the PLTS.

Definition 3 (Lattice operations). Given a set X , we denote with 2X the
set of all subsets Y ⊆ X . Given a complete lattice (X, <), we denote with⊔

: 2X →X and
�

: 2X →X the operations of join and meet respectively.

In the following we assume standard notions of basic topology and basic measure
theory. The topological spaces we consider will always be 0-dimensional Polish
spaces. We specify a probability measure on such a space by assigning compatible
values in [0, 1] to basic clopen sets. Such an assignment extends, using standard
technology, to a probability measure μ on Borel sets, whence to a complete
probability measure, again called μ, on all μ-measurable sets.

Martin’s Axiom (MA), from set theory, states that, for every infinite cardi-
nal κ < 2ω, a certain property MAκ holds. In this paper we use the property
MAℵ1as an axiom. This is implied by MA+¬CH (where CH is the Continuum
Hypothesis), itself implies ¬CH, and is relatively consistent with ZFC set the-
ory. Rather than explaining MAℵ1 in detail, we instead list the consequences of
it that we need. Let μ be a σ-finite Borel measure on a Polish space X , and let
Ω be the collection of μ-measurable sets; then every Σ1

2 subset of X is in Ω and
for every {Xα}α<ω1 increasing ⊆-chain of sets Xα ∈Ω indexed by the ordinals
α<ω1 (where ω1 is the first uncountable ordinal), the statements

⋃
α<ω1

Xα∈Ω
(ω1-completeness) and μ(

⋃
α<ω1

Xα) =
⊔

α<ω1
μ(Xα) (ω1-continuity) hold. We

refer [11] for a detailed proof of equivalent properties, in the special case of
the Lebesgue measure on reals. As asserted there, the proofs generalize to the
measure spaces considered in this paper.

3 The Logic pLμ�
Given a set Var of propositional variables ranged over by the letters X , Y and
Z, and a set of labels L ranged over by the letters a, b and c, the formulae of
the logic pLμ� are defined by the following grammar:
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F, G ::= X | [a] F | 〈a〉F | F ∧ G | F ∨ G | F · G | F � G | νX.F | μX.F

which extends the syntax of the standard μ-calculus with a new kind of conjunc-
tion (·) and disjunction (�) operators called product and coproduct respectively.
As usual the operators νX.F and μX.F bind the variable X in F . A formula is
closed if it has no free variables.

Given a PLTS 〈P, { a−→}a∈L〉 we denote with (P → [0, 1]) and with (D(P )→
[0, 1]) the complete lattices of functions from P and from D(P ) respectively, to
the real interval [0, 1] with the pointwise order. Given a function f : P → [0, 1],
we denote with f :D(P )→ [0, 1] the lifted function defined as follows:

f
def= λd.

(∑
p∈P d(p)·f(p)

)
.

A function ρ :Var→(P → [0, 1]) is called an interpretation of the variables. Given
a function f :P → [0, 1] we denote with ρ[f/X ] the interpretation that assigns f
to the variable X , and ρ(Y ) to all other variables Y . The denotational semantics
�F �ρ : P → [0, 1] of the pLμ� formula F , under the interpretation ρ, is defined
by structural induction on F as follows:

�X�ρ = ρ(X)
�G ∨ H�ρ = �G�ρ � �H�ρ

�G ∧ H�ρ = �G�ρ � �H�ρ

�G � H�ρ = λp.
(
�G�ρ(p) � �H�ρ(p)

)

�G · H�ρ = λp.
(
�G�ρ(p) · �H�ρ(p)

)

�〈a〉G�ρ = λp.
(⊔

{ �G�ρ(d) | p
a−→ d}

)

�[a] G�ρ = λp.
(�

{ �G�ρ(d) | p
a−→ d}

)

�μX.G�ρ = least fixed point of λf.(�G�ρ[f/X])
�νX.G�ρ = greatest fixed point of λf.(�G�ρ[f/X])

where the symbols · and � in the definitions of �G · H�ρ and �G � H�ρ are
standard multiplication on reals and the function x� y=x+y−xy, which is the
De Morgan dual of multiplication with respect to the negation ¬x=1−x. Since
the interpretation assigned to every pLμ� operator is monotone, the existence of
the least and greatest fixed points is guaranteed by the Knaster-Tarski theorem.
Moreover the least and the greatest fixed points can be computed inductively
as follows: �μX.G�ρ =

⊔
α�μX.G�α

ρ and �νX.G�ρ =
�

α�νX.G�α
ρ where α, β are

ordinals and �μX.G�α
ρ and �νX.G�α

ρ are defined as follows:

�μX.G�α
ρ =

⊔
β<α�G�ρ[�μX.G�β

ρ /X] and �νX.G�α
ρ =

�
β<α�G�ρ[�νX.G�β

ρ /X]

4 Stochastic Tree Games

In this (unavoidably long) section we introduce a new class of games which we
call stochastic two player tree games, or just 2 1

2 -player tree games. Stochastic
tree games generalizes standard two player stochastic games by allowing a new
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class of branching nodes on which the execution of the game is split in indepen-
dent concurrent sub-games. Formally, stochastic tree games are infinite duration
games played by Player 1, Player 2 and a third probabilistic agent named Na-
ture, on a Arena A=〈(S, E), (S1, S2, SN , B), π〉, where (S, E) is a directed graph
with countable set of vertices S and transition relation E, (S1, S2, SN , B) is a
partition of S and π : SN →D(S). The states in S1, S2, SN and B are called
Player 1 states, Player 2 states, probabilistic states and branching states respec-
tively. We denote with E(s), for s∈S, the set {s′ | (s, s′) ∈ E}. As a technical
constraint, we require that supp(π(s))⊆E(s), for every s∈SN .

Definition 4 (Paths in A). We denote with Pω and P<ω the sets of infinite
and finite paths in A. Given a finite path s∈P<ω we denote with last(s) the
last state s ∈ S of s. We denote with P<ω

1 and P<ω
2 the sets of finite paths

s such that last(s) ∈ S1 and last(s) ∈ S2 respectively. We write s � s′, with
s, s′ ∈P<ω, if s′ = s.s, for some s∈ S, where as usual the dot symbol denotes
the concatenation operator. We denote with Pt the set of terminated paths, i.e.
the set of paths s such that E(last(s))=∅. We denote with P the set Pω ∪ Pt

and we refer to this set as the set of completed paths in A. Given a finite path
s∈P<ω, we denote with Os the set of all completed paths having s as prefix.
We consider the standard topology on P where the countable basis for the open
sets is given by the clopen sets Os, for s∈P<ω.

Definition 5 (Tree in A). A tree in the arena A is a collection C ={si}i∈I of
finite paths si∈P<ω , such that

1. C is down-closed: if s∈C and s′ is a prefix of s, then s′∈C.
2. C has a root: there exists exactly one finite path {s} of length one in C. The

path {s}, denoted by root(C), is called the root of the tree C.

We consider the nodes s of C as labeled by the last function.

Definition 6 (Uniquely and fully branching nodes of a tree). A node s
in a tree T is said to be uniquely branching in T if either E(last(s))=∅ or s has
a unique successor in T . Similarly, s is fully branching in T if, for every s∈E(s),
it holds that s.s∈T .

An outcome of the game in A, which we call a branching play, is a possibly
infinite tree T in A defined as follows:

Definition 7 (Branching play in A). A branching play in the arena A is a
tree T in A such that, for every node s∈T the following conditions holds:

1. If last(s)∈S1 ∪ S2 ∪ SN then s branches uniquely in T .
2. If last(s)∈B then s branches fully in T .

We denote with T the set of branching plays T in the arena A.

A branching play T represents a possible execution of the game from the state s
labeling the root of T . The nodes of T with more than one child are all labeled
with a state s ∈ B and are the branching points of the game; their children
represent the independent instances of play generated at the branching point.
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Definition 8 (Topology on T ). Given a finite tree F in A, we say that F is
a branching-play prefix, if there exists some T ∈ T , such that F ⊆ T . Given a
branching-play prefix F , we denote with OF ⊆ T the set of all branching plays
T , such that F ⊆ T . We fix the topology on T , where the basis for the open sets
is given by the clopen sets OF , for every branching-play prefix F . It is routine
to show that this is a 0-dimensional Polish space.

As usual when working with stochastic games, it is useful to look at the possible
outcomes of a play up-to the behavior of Nature. In the context of standard
two player stochastic games this amounts at considering Markov chains. In our
setting the following definition of Markov branching play is natural:

Definition 9 (Markov branching play in A). A Markov branching play in
A is a tree M in A such that for every node s ∈ M , the following conditions
holds:

1. If last(s)∈S1 ∪ S2 then s branches uniquely in T .
2. If last(s)∈SN ∪ B then s branches fully in T .

A Markov branching play, is similar to a branching play except that probabilistic
choices of Nature have not been resolved.

Definition 10 (Probability measure MM). Every Markov branching play
M determines a probability assignment MM to every basic clopen set OF ⊆T ,
for F a branching-play prefix, defined as follows:

MM (OF ) def=

{∏
{π(s, s′) | s.s.s′∈F ∧ s∈SN} if F ⊆ M

0 otherwise

It is the above definition that implements the probabilistic independence of the
sub-branching plays that follows a branching node s. The assignment MM ex-
tends to a unique complete probability measure MM on the measurable space
ΩM of all MM -measurable sets. By MAℵ1 , the collection ΩM is ω1-complete,
and the probability measure MM is ω1-continuous.

Definition 11 (Measurable space of branching plays in A). We define the
measurable space (T , Ω) of branching plays in A taking Ω =

⋂
M ΩM , where M

ranges over Markov branching plays in A. We say that a set X⊆T is measurable
if X ∈ Ω. The fact that the σ-algebra Ω is closed under arbitrary ω1-unions
follows from the remark above that ΩM , for every M , is ω1-complete. Given any
Markov branching play M in A, the (ω1-continuous) probability measure MM ,
induced by M on the measurable space ΩM restricts to a unique (ω1-continuous)
probability measure on the smaller space Ω, which we denote again with MM .

Definition 12 (Two player stochastic tree game). A two player stochastic
tree game (or a 2 1

2 -player tree game) is given by a pair 〈A, Φ〉, where A is a
stochastic tree game arena as described above, and Φ ⊆ T , which is the objective
for Player 1, is a measurable set of branching plays in A.
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Definition 13 (Expected value of a Markov branching play). Let 〈A, Φ〉
be a 2 1

2 -player tree game, and M a Markov branching play in A. We define the
expected value of M as: E(M) = M(Φ). The value E(M) should be understood
as the probability for Player 1 to win the play.

As usual in game theory, players’ moves are determined by strategies.

Definition 14 (Deterministic strategies). An (unbounded memory deter-
ministic) strategy σ1 for Player 1 in A is defined as a function σ1 :P<ω

1 →S∪{•}
such that σ1(s)∈E(last(s)) if E(last(s)) �=∅ and σ1(s)=• otherwise. Similarly a
strategy σ2 for Player 2 is defined as a function σ2 :P<ω

2 →S∪{•}. A pair 〈σ1, σ2〉
of strategies, one for each player, is called a strategy profile and determines the
behaviors of both players.

Note that the above definition of strategy captures the intended behavior of the
game; both players when acting on a given instance of the game, know all the
history of the actions happened on that sub-game, but have no knowledge of the
evolution of the other independent parallel sub-games.

Definition 15 (M s0
σ1,σ2

). Given an initial state s0 ∈ S and a strategy profile
〈σ1, σ2〉 a unique Markov branching play M s0

σ1,σ2
is determined:

1. the root of M is labeled with s0,
2. For every s∈M s0

σ1,σ2
, if last(s)=s with s∈S1 not a terminal state, then the

unique child of s in M s0
σ1,σ2

is s.
(
σ1(s)

)
.

3. For every s∈M s0
σ1,σ2

, if last(s)=s with s∈S2 not a terminal state, then the
unique child of s in M s0

σ1,σ2
is s.

(
σ2(s)

)
.

Definition 16 (Upper and lower values of a 2 1
2 -player tree game). Let

G = 〈A, Φ〉 be a 2 1
2 -player tree game. We define the lower and upper values of

G on the state s, denoted by V als↓(G) and V als↑(G) respectively, as follows:

V als↓(G) =
⊔

σ1

�
σ2

E(M s
σ1,σ2

) V als↑(G) =
�

σ2

⊔
σ1

E(M s
σ1,σ2

)

V als↓(G), represents the limit probability of Player 1 winning, when the game
begins in s, by choosing his strategy σ1 first and then letting Player 2 pick an
appropriate counter strategy σ2. Similarly V als↑(G) represents the limit proba-
bility of Player 1 winning, when the game begins in s, by first letting Player 2
choose a strategy σ2 and then picking an appropriate counter strategy σ1. In
case V als↓(G)=V als↑(G), we say that the game G at s is determined.

Definition 17 (ε-optimal strategies). Let G = 〈A, Φ〉 be a 2 1
2 -player tree

game. We say that a strategy σ1 for Player 1 in G is ε-optimal, for ε> 0, if for
every state s, the following inequality holds:

�
σ2

E(M s
σ1,σ2

) > V als↓(G) − ε.
Similarly we say that a strategy σ2 for Player 2 in G is ε-optimal, for ε>0, if for
every state s, the following inequality holds:

⊔
σ1

E(M s
σ1,σ2

) < V als↑(G) + ε.
Clearly ε-optimal strategies for Player 1 and Player 2 always exist for every ε>0.
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An interesting class of 2 1
2 -player tree games is given by what we call meta-

games. A meta-game is a 2 1
2 -player tree game G, which we refer to as the outer

game, in which branching plays are themselves interpreted as (ordinary) two
player games and the objective Φ of G is defined as the set of branching plays
T in which this inner game is winnable for a given player taking part in it. We
illustrate this notion by formalizing the class of 2 1

2 -player meta-parity games.
A 2 1

2 -player meta-parity game G is specified by a 2 1
2 -player tree game arena

A=〈(S, E), {S1, S2, SN , B}, π〉 and a parity structure P which is a pair 〈Pr, P l〉,
where Pr :S→{0, ..., n}, for some n ∈ N, and Pl :B→{1, 2}. The function Pr
assigns a priority to each state s ∈ S. This is needed to define the set W ⊆ P ,
of completed paths s such that

– if s is finite, then Pr(last(s)) is even,
– if s is infinite, then the least priority among those that appear (assigned by

Pr to the states of s) infinitely often in s is even.

The function Pl assigns a player identifier to each state s ∈B. This allows to
consider each branching play T in A as the game GT played by Player 1 and
Player 2 on the tree T : Player 1 moves on a node s of T , such that Pl(last(s)) =
1, by choosing a successor in the (possibly empty) set of children of s. Similarly
Player 2 moves on the node s of T such that Pl(last(s)) = 2. The result of a play
in the game GT is a completed path in T . We say that Player 1 wins a play if the
resulting path is in W ; Player 2 wins otherwise. Since W is a parity objective
we have that GT is a parity game. The meta-parity game G can therefore be
defined formally as a stochastic two player tree game, as follows:

Definition 18 (Two player stochastic meta-parity game). A two player
stochastic meta-parity game specified by the pair 〈A, P〉, is formally defined as
the 2 1

2 -player tree game 〈A, Φ〉 where Φ is defined as follows:

Φ = {T | T ∈ T and Player 1 has a winning strategy in GT }
The definition is good because the measurabilty of Φ follows from MAℵ1and the
following Lemma.

Lemma 1. The set Φ is a Δ1
2 set and hence a Σ1

2 set in T .

5 Game Semantics of pLμ�
In this section we describe the pLμ� game GF

ρ associated to each triple con-
sisting of a PLTS 〈P, { a−→}a∈L〉, a (possibly open) pLμ� formula F , and an
interpretation of the variables ρ. For convenience, we assume that F is normal
[16], i.e., every occurrence of a μ or ν binder binds a distinct variable, and no
variable appears both free and bound. The game GF

ρ is a 2 1
2 -player meta-parity

game specified by the arena AF
ρ = 〈(S, E), (S1, S2, SN , B), π〉 and parity struc-

ture P = 〈Pr, P l〉 defined as follows. The countable set S of vertices of the
directed graph (S, E) is given by the set.

S = (P×Sub (F )) ∪ (D×Sub (F )) ∪ {⊥,�}
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where P is the set of processes, Sub(F ) is the set of sub-formulae of F (defined as
usual, e.g. [16]), D is the set of distributions in the PLTS (see definition 2) and
{⊥,�} are two special states. The relation E is defined as follows: E(〈d, G〉)=
{〈p, G〉 | p∈ supp(d)} for every d ∈D; E(〈p, G〉) is defined by case analysis on
the outermost connective of G as follows:

1. if G=X , with X free in F , then E(〈p, G〉)={⊥,�}.
2. if G=X , with X bound in F by the subformula �X.H , with � ∈ {μ, ν}, then

E(〈p, G〉)={〈p, H〉}.
3. if G=�X.H , with �∈{μ, ν}, then E(〈p, G〉)={〈p, H〉}.
4. if G=〈a〉H then E(〈p, G〉)={〈d, H〉 | p

a−→ d}.
5. if G=[a] H then E(〈p, G〉)={〈d, H〉 | p

a−→ d}.
6. if G=H ∗ H ′ with ∗ ∈ {∨,∧,�, ·} then E(〈p, G〉)={〈p, H〉, 〈p, H ′〉}

The relation E is defined on the two special game states � and ⊥ as E(�) =
E(⊥) = ∅. This makes � and ⊥ terminal states of the game. The partition
(S1, S2, SN , B) of S is defined as follows: every state 〈p, G〉 with G’s main con-
nective in {〈a〉,∨, μX} or with G = X where X is a μ-variable, is in S1; dually
every state 〈p, G〉 with G’s main connective in {[a] ,∧, νX} or with G = X where
X is a ν-variable, is in S2. Every state of the form 〈d, G〉 or 〈p, X〉, with X free
in F , is in SN . Every state 〈p, G〉 whose G’s main connective is · or � is in B.
Lastly we define the terminal states ⊥ and � to be in S1 and S2 respectively.
The function π : SN → D(S) assigns a probability distribution to every state
under the control of Nature (thus specifying its indended probabilistic behavior)
and it is defined as π(〈d, G〉)(〈p, G〉) = d(p) on all states of the form 〈d, G〉; all
other states in SN are of the form 〈p, X〉, with X free in F ; the function π is
defined on these states as follows:

π(〈p, X〉)(s) def=

⎧
⎨

⎩

ρ(X)(p) if s = �
1 − ρ(X)(p) if s = ⊥
0 otherwise

The priority assignment Pr : S → {0, ..., n} is defined, by picking a sufficiently
large n, as usual in μ-calculus games: an odd priority is assigned to the states
〈p, X〉 with X a μ-variable and dually an even priority is assigned to the states
〈p, X〉 with X a ν-variable, in such a way that if Z subsumes Y in F then
Pr(〈p, Z〉) < Pr(〈p, Y 〉). Moreover, for every terminal state s ∈ S, we define
Pr(s) = 1 if s ∈ S1, and Pr(s) = 0 if s ∈ S2. Lastly, the fuction Pl : B →{1, 2}
is defined as Pl(〈p, G1�G2) = 1 and Pl(〈p, G1 ·G2) = 2 for every p ∈ P and
G1, G2∈Sub(F ).

Note that if no (co)product operators occur in F , then B = ∅, and the game
is equivalent to the one in [12,13] for the logic pLμ. We are now ready to state
our main result.

Theorem 1 (MAℵ1). Given a PLTS 〈P, { a−→}a∈L〉, for every process p ∈ P ,
interpretation of the variables ρ and pLμ� formula F , the equalities

V al
〈p,F 〉
↓ (GF

ρ ) = V al
〈p,F 〉
↑ (GF

ρ ) = �F �ρ(p)

hold. In particular the game GF
ρ is determined.
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6 Inductive Characterization of the Objective of GμX.F
ρ

In this section we provide a transfinite inductive characterization of the set ΦμX.G

of winning branching plays of the game GμX.F
ρ needed in the proof of Theorem

1. Let us consider the game GF
ρ , where X appears free in F . Note that the two

arenas AF
ρ and AμX.F

ρ are similar as they differ only in the following aspects:

1. The set of states SμX.F of AμX.F
ρ is the same as the set of states SF of AF

ρ ,
plus the set of states of the form 〈p, μX.F 〉, which however play almost no
role in the game because these nodes have only one successor (〈p, F 〉) and
are not reachable by any other state.

2. More significantly, the nodes of the form 〈p, X〉, which are present in both
game arenas, are Player 1 states in GμX.F

ρ (they have unique successor
〈p, F 〉), and Nature states in GF

ρ (they have two terminal successors � and
⊥ reachable with probabilities ρ(X)(p) and 1−ρ(X)(p) respectively).

Moreover observe that the player assignments PlF and PlμX.F are identical,
and the priority assigments PrF and PrμX.F differ only on the game-states s
of the form 〈p, X〉: PrF (s) = 0 and PrμX.F (s) = m for some odd m∈N. A GF

ρ

branching play T , rooted in 〈p, F 〉 can be depicted as in figure 2(a), where the
triangle represents the set of paths in T never reaching a state of the form 〈q, X〉,
for q ∈ P , and the other edges represents the, possibly empty, collection of paths
{si}i∈I⊆N reaching a state of the form 〈pi, X〉 which is (necessarily) followed by
a terminal state bi ∈ {�,⊥}. Similarly a branching play T in GμX.F

ρ , rooted in
〈p, F 〉, can be depicted as in figure 2(b). We extract the common part between
the branching plays GF

ρ and GμX.F
ρ by defining the notion of branching pre-play.

Definition 19 (Branching pre-play). Let T be a branching play in GF
ρ and

let I index the (necessarily countable) collection of nodes of the form 〈pi, X〉 in
T . The branching pre-play T [xi]i∈I , which can be depicted as in figure 2(c), is
the tree obtained from the branching play T by removing all subtrees rooted in
states of the form 〈pi, X〉.
Given a I-indexed family {bi}i∈I , where bi∈{�,⊥}, we denote with T [bi]i∈I the
branching play in GF

ρ obtained by adding, for every i ∈ I, the child bi to the
leaf 〈pi, X〉 of T [xi]i∈I . Similarly given a family {Ti}i∈I of branching plays in
GμX.F , where each Ti is rooted at 〈pi, G〉, we denote with T [Ti]i∈I the branching
play in GμX.F

ρ obtained by adding the subtree Ti after the leaf 〈pi, X〉. Clearly
every branching play T rooted at 〈p, F 〉 in GF

ρ is uniquely of the form T ′[bi]i∈I

for appropriate T ′[xi]i∈I and {bi}i∈I . Similarly every branching play T rooted
at 〈p, F 〉 in GμX.F

ρ is of the form T ′[Ti]i∈I for appropriate T ′[xi]i∈I and {Ti}i∈I .

Definition 20. The function mX :T μX.F →T F , from branching plays in GμX.F
ρ

to branching plays in GF
ρ , is defined for every subset X ⊆ T μX.F as follows:

mX(T [Ti]i∈I) = T [Ti∈X ]i∈I where Ti∈X
def=

{
� if Ti ∈ X
⊥ otherwise
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Fig. 2. Branching plays and pre-plays

Lemma 2. If X ⊆ T μX.F is a measurable set, then mX is a measurable map.

We now define the operator R, of which ΦμX.G is the least fixed point.

Definition 21. The operator R : 2T
μX.F →2T

μX.F

is defined as follows:

R(X) def= m−1
X (ΦF ) = {T [Ti]i∈I | T [Ti∈X ]i∈I ∈ ΦF }

Theorem 2. The set ΦμX.F is the least fixed point of the monotone operator R,
which is guaranteed to exists by the Knaster-Tarski theorem. Hence the set ΦμX.F

ρ

can be defined as
⋃

α Rα where Rα is defined for every ordinal α as
⋃

β<α R(Rβ).

The following lemma, which is essential for our proof of Theorem 1, states that
the fixed points is reached in at most ω1 steps.

Lemma 3.
⋃

α Rα =
⋃

α<ω1
Rα.

7 Proof of Theorem 1

In this section we sketch the main ideas of the proof of Theorem 1. We first
introduce a property that is going to be useful in proving the main result:

Definition 22 (Robust Markov branching plays). Fix a pLμ� game GF
ρ ,

a free variable X in F and an N-indexed collection {εn}n∈N of reals in (0, 1]. Let
M be a Markov branching play in GF

ρ . Let {xi}i∈I⊆N be the set of vertices in
M labeled with states of the form 〈p, X〉. Since X is free in F , these vertices are
necessarily connected to the two leafs ⊥ and � by two edges e�i and e⊥i marked
with the probabilities λi and 1−λi respectively. Let M+ be the same Markov
branching play where, for each i ∈ I, the probability attached to the edge e�i
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is replaced with min{1, λi + εi}, and the probability attached to the edge e⊥i is
replaced by max{0, (1−λi)− εi}. Similarly let M− be as M where, for all i ∈ I,
the probabilities attached to the edge e�i is replaced with max{0, λi − εi}, and
the probability attached to the edge e⊥i is replaced by min{1, (1− λi) + εi}. We
say that M is robust if and only if both inequalities E(M+)≤E(M)+

∑
i∈I εi

and E(M−)≥E(M)−
∑

i∈I εi hold, for every collection {εn}n∈N.

The notion of robustness can be informally described as follows: in the Markov
branching play M+ we increase the probability associated with the branching
plays having paths ending in � immediately following a configuration 〈p, X〉;
by doing so we increase the value, see Definition 13, of the original M and,
in a similar way we decrease the value of M by moving to M−. A Markov
branching play is robust if small changes (either in the direction of M+ or M−)
in the probabilities (labeling the edges e�i and e⊥i , i ∈ I) produce bounded (by∑

i∈I εi) changes in the overall value of the Markov branching play. Note that
altering the probabilities in M uniformly (i.e. taking {εi}i∈I such that for every
i �= j, εi = εj), may produce, in general, unbounded changes in the value of M ;
this reflect the discontinuity of the denotational interpretation of pLμ� formulae
on the free variables.

In order to prove Theorem 1, we prove the following stronger theorem:

Theorem 3 (MAℵ1). Given a PLTS 〈P, { a−→}a∈L〉, for every pLμ� formula
F and for every interpretation ρ, the following assertions hold for every p∈P :

1. �F �ρ(p) ≥ V al
〈p,F 〉
↑ (GF

ρ )

2. �F �ρ(p) ≤ V al
〈p,F 〉
↓ (GF

ρ )
3. Every Markov branching play M rooted in 〈p, F 〉 in GF

ρ is robust.

The proof is by induction on the structure of F , and resembles the unfold-
ing method of [7,13]. The most difficult case in proving point 1 is when F is
of the form μX.H (and dually the case νX.H is difficult for point 2). This is
proven showing that, for every ε > 0, there exists a strategy σε

2 for Player 2
in GμX.H

ρ , such that for every counter-strategy σ1 for Player 1, the inequality

E(M 〈p,μX.G〉
σ1,σε

2
)<�μX.H�ρ(p)+ε holds. As in [7,13], the strategy σε

2 is constructed
using δ-optimal strategies for Player 2 in the game GH

ργ (where ργ = �μX.H�ρ)
which exist by induction hypothesis. The idea behind the construction of σε

2

is the following: initially the strategy σε
2 behaves as some δ0-optimal strategy

τ0 for Player 2 in GH
ργ ; if at some point of the play the game reaches a con-

figuration of the form 〈p, X〉, then Player 2 improves his play and, depend-
ing on the history of the previously played moves, starts behaving as some
δ1-optimal strategy τ1 for Player 2 in GH

ργ and so on; the strictly decreasing
sequence {δi}i∈N is carefully chosen, so that the desired ε-bound follows from
the induction hypothesis of robustness for Markov branching plays of GH

ργ . The

desired inequality E(M 〈p,μX.G〉
σ1,σε

2
)<�μX.H�ρ(p)+ε, thanks to Theorem 2, Lemma

3 and the fact that M〈p,μX.H〉
σ1,σε

2
is ω1-continuous under MAℵ1 , is equivalent to
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⊔
α<ω1

M〈p,μX.H〉
σ1,σε

2
(Rα) < �μX.H�ρ(p)+ ε. The proof that this last inequality

holds, is by ordinal induction.
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