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Abstract
To enable risk informed decisions in the simulation-based design and development of 
novel combustors, uncertainties in the simulation results must be considered. However, due 
to the high computational costs for their quantification, these uncertainties are commonly 
not taken into account. Therefore, this work aims at applying an efficient methodology for 
uncertainty quantification based on Polynomial Chaos Expansion to a semi-technical spray 
burner reflecting characteristics typically found in modern aeroengine combustors. This 
requires accurate treatment of the multicomponent liquid fuel, a combustion model rely-
ing on finite rate chemistry and a scale resolving hybrid turbulence model to account for 
highly unsteady flow features and combustion. To overcome the need for costly experi-
mental data for the spray boundary conditions, an algebraic primary breakup model is uti-
lized. The resulting reduction in a priori information is compensated through probabilistic 
modeling and uncertainty quantification. Due to their importance in the design process, 
temperature distribution in the gas phase as well as the flame position are considered as 
the primary quantities of interest. For these quantities of interest, moderate uncertainties 
are found in the probabilistic simulation results. Further, the predictive capability of the 
simulation model under uncertainties is quantitively assessed by defining accurary metrics 
for the gas phase temperature prediction. The study further reveals that the imposed input 
uncertainties affect quantities of interest in both the dispersed and the gas phase through 
phase coupling effects.
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1 Introduction

Anthropogenic emissions from combustion systems are widely recognized as a leading 
contributor to global climate change. To mitigate the environmental impact of aviation and 
comply with increasingly strict regulatory policies, improving the performance of com-
bustion systems in aeroengines has become a key challenge. In this regard, virtual simu-
lation tools play an important role for the efficient exploration of the design space when 
considering novel combustor concepts in the design process. As such design processes are 
inherently exploratory, many input parameters to the simulation tools are uncertain or even 
unknown beforehand due to lack of knowledge regarding the final design. This induces 
uncertainties in the simulation results which should be quantified and taken into considera-
tion. Only on the basis of this additional information, risk-informed decisions can be made 
to ensure optimal and safe operation.

A key aspect regarding aeroengine safety and emissions is fuel injection and distribution 
in the combustor (Dryer 2015; Hubbard and Denny 1975; Lefebvre 2010), i.e. the reliable 
atomization of the liquid fuel into a spray of droplets. Subsequent processes from evapora-
tion up to pollutant formation strongly depend on the quality of the spray (Lefebvre 1988). 
In simulations, this must be reflected in accurate boundary conditions regarding droplet 
size, velocity and local volume flux. However, this data is difficult to acquire from experi-
ments (Tropea 2011) and often relies on expert opinion and experience in early stages of 
the design process. The influence of incomplete knowledge regarding the spray bound-
ary condition on simulation results was mentioned for example by Eckel and Grohmann 
(2019), Ruoff et al. (2019), or Pei and Davis (2015), but no systematic assessment in terms 
of uncertainties in the simulation results was reported.

For this purpose, uncertainty quantification (UQ) aims at quantitatively character-
izing the uncertainties in simulation results. In recent times, probabilistic methods have 
become increasingly popular for the treatment and quantification of uncertainties (Loeven 
et  al. 2007; Red-Horse and Benjamin 2004). In this approach, uncertain input quantities 
are treated as random variables which can be characterized by probability density func-
tions or intervals to portray their probabilistic behavior. Uncertainties in the output, i.e. the 
simulation results, are then derived as random variables. As a result, minimum/maximum 
or confidence intervals can be reported in addition to the simulation results to support the 
decision makers.

While Monte Carlo simulations are a straightforward method for analyzing the complex 
mapping between input and output uncertainties, the computational cost of each simulation 
run in the case of reacting multiphase flows is prohibitively high. Therefore, surrogate mod-
els must be used in lieu of the high fidelity simulation model for the propagation of the input 
uncertainties. An adequate representation of the forward model observables as well as com-
putational efficiency are the main characteristics of such surrogate models. Among the vari-
ous models proposed in the literature (Forrester and Keane 2008; Yondo and Andrés 2018), 
Polynomial Chaos Expansion (PCE) in combination with sparse quadrature approaches (Le 
Maître and Knio 2010) have drawn increasing attention for the use in UQ (Najm 2009; Sheen 
and Wang 2011; de Souza and Colaço 2014). While the prediction accuracy of data-driven 
approaches such as Gaussian process regresssion depends on the underlying sampling strategy 
of the high fidelity simulation model, the PCE and sparse quadrature combination already dic-
tates the most efficient sampling strategy through the quadrature points for PCE construction. 
Although the PCE methodology is applicable for both intrusive and non-intrusive UQ, the 
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work at hand is focused on the latter approach, in which an existing simulation code is treated 
as a black box rather than reformulating the governing equations in a stochastic framework.

Early results of UQ studies for reacting flow simulations were reported for example 
by  Reagan and Najm (2003) and  Duraisamy and Alonso (2012), but were limited to gas 
phase combustion. Pei and Davis (2015) investigated the sensitivity of spray distribution in the 
Engine Combustion Network (ECN) experimental configuration on parameters of the spray 
boundary condition under non-reacting conditions. In a similar study, Van Dam and Rutland 
(2016) analyzed the uncertainties in the LES results for liquid and vapor penetration from a 
multi-hole gasoline injector. They considered selected parameters for the primary breakup 
model as input uncertainties to the LES. Further UQ results from the field of combustion sim-
ulation covering sub-phenomena such as thermoacoustic  (Guo et al. 2018), chemical kinet-
ics (Mueller and Iaccarino 2013) and droplet evaporation (Ruoff et al. 2020) are available in 
the literature. The use of PCE in detailed combustion simulations for a laboratory-scale tur-
bulent methane/hydrogen bluff-body flame was demonstrated by Khalil and Lacaze (2015), 
focusing on uncertainties in LES modeling parameters. Furthermore, Masquelet et al. (2017) 
reported PCE-based UQ results for an industrial scale aviation gas turbine combustor. How-
ever, due to the assumption of fast evaporation of the fuel, the multiphase spray regime was 
not explicitly simulated. A comprehensive UQ study of spray combustion simulations includ-
ing detailed modeling of the multiphase regime with a distinct focus on the specification of 
spray boundary conditions is available from (Enderle and Rauch 2020). In this work, a well 
characterized laboratory-scale spray flame for liquid ethanol was studied. Uncertainties and 
sensitivities in temperature profiles over the reaction zone were analyzed using PCE. It was 
shown that these uncertainties mainly arise from the imprecise knowledge concerning the 
spray cone angle in the spray boundary condition.

The objective of this study is to extend the PCE-based UQ methodology to a complex, 
semi-technical use case of spray combustion, which is critical for developing innovative aero-
engine combustors. The approach employs uncertainty quantification and probabilistic mode-
ling to improve the accuracy of a simulation model when only limited information is available 
on the spray boundary condition. Hence, this work addresses the aforementioned challenges in 
the design process, where some inputs to the simulation model are uncertain due to the lack of 
knowledge regarding the final design, thereby demonstrating the practical applicability of the 
proposed methodology. Resolving unsteady and non-linear features in flow fields is crucial for 
(semi)-technical use cases, which necessitates a scale-resolving simulation approach. To this 
end, the present study aims to demonstrate the feasibility of the proposed UQ methodology 
in dealing with simulation problems that have high computational costs, thus highlighting its 
practical utility in such cases.

The remainder of this paper is organized as follows. A brief summary of the methodology 
for the simulation of turbulent spray combustion is given in Sect. 2, followed by the methods 
used for PCE-based uncertainty quantification in Sect. 3. These methods are then applied to 
the DLR Standard Spray Burner (Grohmann and Rauch 2017) in Sect. 4 in which the simula-
tion setup is briefly validated against experimental data for the non-reacting case, followed by 
detailed UQ results for the reacting multiphase flow. Finally, concluding remarks are drawn in 
Sect. 5.
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2  Methodology for the Simulation of Turbulent Spray Combustion

For the simulation of turbulent spray combustion a computational platform consisting 
of separate simulation codes for the gaseous and dispersed phase is utilized. Data is 
exchanged online via two-way coupling of both phases.

2.1  Gas Flow Solver

The Favre filtered transport equations for mass, momentum, enthalpy and species mass 
fractions in the gas phase are solved by means of the DLR in-house code THETA (Tur-
bulent Heat Release Extension of the TAU Code) (Di Domenico et al. 2011; Domenico 
2008). THETA is an incompressible 3D finite volume solver for structured and unstruc-
tured dual grids. A second order accurate solution method is achieved by combining the 
Crank-Nicolson time discretization scheme with central differencing for the convective 
and diffusive fluxes. The pressure–velocity coupling is based on a projection method.

To account for the complex three-dimensional and unsteady flow features typically 
found in swirling flames, a hybrid URANS/LES method based on the Scale Adaptive 
Simulation (SAS) approach as introduced by Menter et al. (2003a) is utilized. The gen-
eral SAS concept relies on dynamic transitioning between URANS and LES based on 
the ratio of turbulent lenth scale Lt to the von Karman length scale LvK . The transition 
is achieved by introducing a source term to the transport equation of the dissipative tur-
bulence scale in the underlying URANS turbulence model. The SAS model for the work 
at hand relies on the k − �-SST turbulence model  (Menter and Egorov 2005; Menter 
et al. 2003b). The additional source term FSST−SAS for the � transport equation reads

CF,i are modeling constants, Lt =
√
k∕� is the turbulent length scale, S denotes the norm 

of the strain tensor and LvK is the von Karman length scale with

This formulation allows LvK to adjust to the already resolved scales in a simulation (Menter 
and Egorov 2005) and provides a length-scale which is proportional to the size of the 
resolved eddies with consideration of the local grid spacing � . In high turbulence regions, 
the source term FSST−SAS therefore increases and the modeled turbulent viscosity is damped 
by � . Ultimately, the dissipating effect of the turbulent viscosity on the resolved fluctua-
tions is reduced.
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2.1.1  Combustion Modeling

Chemical reactions of the gas phase species are modeled by a finite-rate combustion 
(FRC) approach in which a separate transport equation is solved for each species � (Ger-
linger 2005). Reaction rate coefficients are calculated during the simulation instead of a 
priori tabulation. The chemical source term from the FRC model is given by

M� is the molar mass of species � , Nr the number of reactions and � are the stochiometric 
coefficients. Terms in square brackets denote sources of reactions which are controlled by 
the forward and backward rate coefficients kf  and kb . They are calculated using the Arrhe-
nius law (Poinsot and Veynante 2005).

For the application of the FRC model in the context of hybrid URANS/LES, a filtered 
formulation of the source term from Eq. (3) and a closure for the subgrid contribution is 
required. For this purpose, subgrid-scale turbulence-chemistry interaction is included using 
an assumed PDF model (APDF) following Girimaji (1991). This requires the solution of 
two additional transport equations for the temperature variance and the sum of species var-
iances, as detailed in the work of Gerlinger (2005). The filtered chemical source term then 
reads

where P is an assumed PDF and ∙̂ denotes a random variable. It is assumed that the tem-
perature fluctuation follows a clipped Gaussian PDF while the species’ mass fraction fluc-
tuations follow a multivariate �-PDF (Domenico 2008). For further analysis of the APDF 
model in the context of Scale Adaptive Simulations, the reader is referred to the work of 
Lourier et al. (2015).

2.1.2  Chemical Reaction Mechanism

After vaporization, species from the CTM fuel families are mapped to equivalent species in 
the gas phase. Normal-alkanes, cyclo-alkanes and mono-aromatics are assigned to normal-
decane, iso-octane and toluene, respectively. These species form the main fuel species in a 
detailed reaction mechanism comprising 49 species and 300 reactions. The mechanism is 
based on the work of Slavinskaya (2008) and has been optimized for enhanced stability and 
computational speed using a linear transformation method (Methling 2017). Furthermore, 
a sub-mechanism for the formation of the OH∗ radical by Kathrotia (2011) is included.

2.2  Dispersed Phase Solver

The dispersed phase, i.e. the evaporating fuel droplets, is computed using the DLR in-house 
simulation code SPRAYSIM which is based on particle tracking in a Lagrangian reference 
frame. Subsets of physical fuel droplets with equal properties are approximated by numeri-
cal particles and treated as point sources. In this simplification, particles are assumed to be 
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discrete points providing point sources and point forces to the gas field  (Jenny and Roe-
kaerts 2012). The coupled ordinary differential equations for the particles’ position x⃗p , 
velocity u⃗p , diameter dp , and temperature Tp along their trajectories are solved by a predic-
tor-corrector scheme.

Secondary breakup of the particles is modeled by the Cascade Atomization and Breakup 
(CAB) model (Tanner 2003). Unresolved subgrid scale velocity fluctuations of the particles 
are accounted for using the droplet dispersion model proposed by Bini and Jones (2008).

2.2.1  Multicomponent Vaporization Model

In order to capture the complex composition of aviation fuels (Dryer 2015), a multicompo-
nent vaporization model based on Continuous Thermodynamics (CTM) (Doué et al. 2006) 
is selected. It approximates the properties of the wide range of liquid species typically 
found in Jet A-1 via distribution functions and representative fuel families. A � -PDF is 
chosen as distribution function and three species families are considered, namely normal-
alkanes, cyclo-alkanes and mono-aromatics. The three PDFs were calibrated to match the 
corresponding two-dimensional gas chromatography (GCxGC) data for Jet A-1. A com-
parison between experimental data (bars) and CTM approximation (lines) is shown in 
Fig. 1 for the distribution of mole fraction over the normal boiling point. By this approach, 
the number of degrees of freedom which need to be calculated in the vaporization model 
reduces by orders of magnitude. The underlying vaporization model resembles the model 
by Abramzon and Sirignano (1989) in which rapid mixing within the droplet is assumed. 
Transformed equations of the vaporization model for the use with CTM are detailed in the 
work of  Eckel and Grohmann (2019).

The mass change due to evaporation leads to mass source terms in the gas field equa-
tions which are exchanged between the solvers at each time step.

2.2.2  Modeling of Prefilming Airblast Atomization

The PAMELA (Primary Atomization Model for prEfilming airbLAst injector) model as 
introduced by Chaussonnet and Vermorel (2016) and Chaussonnet (2014) provides a drop-
let size distribution characteristic for the spray from prefilming airblast atomizers. An over-
view of such an atomizer is given in Fig.  2a.

In this phenomenological model, a Rosin-Rammler (RR) function

Fig. 1  Continuous description of 
Jet A-1 composition using three 
� -PDFs. GCxGC data (bars), 
CTM fuel families (lines)
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is assumed for the distribution of the droplet diameter. More specifically, Eq. (5) denotes 
the cumulative volume distribution function for a Rosin-Rammler distribution with the two 
parameters m and q being the mean value and its spread. These parameters are calculated 
from geometrical features of the atomizer, namely the thickness ha of the atomizing edge, 
the film length Lf  and the mean air velocity UG alongside the film. Figure 2b illustrates 
these parameters as a detail of the pre-filming airblast atomizer. For the work at hand, the 
global formulation of the PAMELA model is utilized, i.e. calculations based on steady-
state mean values.

Constitutive equations for the PAMELA model were derived from the analysis of an 
academic experiment of liquid film breakup at an atomizing edge (Müller and Meier 2004) 
consisting of a planar wing-shaped pre-filmer over which a liquid film was atomized. 
Simultaneous measurements of the film length, air velocity and resulting spray established 
a database for a wide range of operating conditions (Gepperth et al. 2010).

In this database, a correlation between D32∕ha and Weha is observed:

Weha denotes the Weber number with respect to the atomizing edge ha

and r� is the ratio of liquid and gas densities:

As aforementioned, it is assumed that the spray after the atomizing edge follows a Rosin-
Rammler distribution with parameters qPAM and mPAM . In this case, a relation between D32 
and the distribution parameters is given by
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Fig. 2  Typical airblast atomizer as considered in the PAMELA model
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see Lefebvre (2010). Combining Eqs. (9) and (6) yields:

in which C1 is a calibration constant. As mentioned before, q describes the dispersion of the 
drop size in the spray. Therefore, this parameter cannot be formally linked to a single meas-
urement value (Chaussonnet 2014). A correlation function for q is obtained from fitting of 
the Rosin-Rammler distribution to the sprays from the database and comparison with the 
aerodynamic Weber number We� based on the boundary layer thickness � at the atomizing 
edge,

The thickness � is defined according to the work of  Gepperth et al. (2010) as

The correlation for qPAM finally reads

Again, C2,C3 and C4 are calibration constants. Constants for the PAMELA model from fit-
ting against the experimental database are summarized in Table 1.

3  Methodology for Uncertainty Quantification

Uncertainty quantification aims at identifying the variance in the vector of quantities of inter-
est q = {q1, q2, q3, ..} calculated from a simulation model M  with

Equation  (14) describes the deterministic mapping of the inputs x = {x1, x2, x3, .., xnx} 
to the quantities of interest. In practical applications, M  may have arbitrary complexity, 
including several sub-models Ms,i with Ms,i ⊂ M .

Possible sources of uncertainties in the mapping from Eq.  (14) are gener-
ally subdivided into model form uncertainties, numerical uncertainties and input 
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Table 1  Fitting constants in the 
PAMELA model

C
1
[−] C

2
[−] C

3
[mm] C

4
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2.01 9.74 5.99 1.77 × 10−2
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uncertainties  (Roy and Oberkampf 2011). While model form uncertainties stem from 
the approximation of the physical system by M  , numerical uncertainties are introduced 
by the numerical solution methods for the underlying set of non-linear differential equa-
tions. Finally, input uncertainties describe variations in the vector x comprising initial 
and boundary conditions as well as model parameters. The present work exclusively 
focuses on the latter type of uncertainties, since input uncertainties are the dominant 
type in the design process of aeroengine combustors.

For this purpose, a probabilistic approach is adopted in which uncertainties in x and 
q are characterized by random variables X and Q over a sample space � . Statistical 
measures regarding the simulation results can then be derived from Q . Hence, the prob-
abilistic formulation of Eq. (14) reads

A straight-forward technique to explore this mapping is the well established Monte Carlo 
method (Fishman 2013), in which Eq. (15) is reconstructed from a series of deterministic 
model evaluations

In this approach, the evaluation points x(i) are drawn at random from � or placed follow-
ing sampling strategies such as Latin Hypercube Sampling (McKay and Beckman 1979) 
or low discrepancy series (Sobol and Asotsky 2011). Major drawbacks of these sampling-
based methods are the relatively low convergence rate of higher moments in Q (Le Maître 
and Knio 2017) and the curse of dimensionality (Bengtsson et al. 2008) when facing high 
dimensional random variables for X . This requires a large set of model evaluations which 
may be infeasible for computationally expensive models. As an alternative to the direct 
sampling approach, stochastic spectral methods based on non-intrusive polynomial chaos 
expansion (PCE) are utilized in the work at hand for the evaluation of Eq. (15).

3.1  Polynomial Chaos Expansion

In contrast to the direct sampling approach, PCE aims at directly reconstructing the 
functional dependence of the output quantity Q on the stochastic input X (Sudret 2007) 
making it popular for the use in uncertainty quantification and probabilistic mode-
ling (Najm 2009; Reagan and Najm 2004).

PCE utilizes the fact that the random variable Q can be expressed as a spectral 
expansion in terms of orthogonal functions of a vector of standard random variables 
� = {�1, �2, .., �n} conditional on X  (Ghanem and Spanos 1991). The polynomial chaos 
expansion of Q then reads

where �k are deterministic expansion coefficients and � k are multivariate polynomials of � , 
forming a complete orthogonal basis with respect to the measure on � (Khalil and Lacaze 
2015). For practical computations, the infinite series from Eq. (17) is typically truncated to 
a certain order, hence

(15)X ∶↦ Q = M(X).

(16)x(i) ∶↦ q(i) = M(x(i)).

(17)Q(�) =

∞∑
k=0

�k� k

(
�1, �2, ...

)
,
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Applying a projection method  (Ghanem and Ghiocel 1998) and taking advantage of the 
orthogonality constraint on � k , the expansion coefficients are given as

Since the inner product ⟨� k,� k⟩ is known analytically from the choice of �k , the primary 
computational effort resides in evaluating the multidimensional integral over � . The order 
of accuracy of the numerical integration directly provides a measure for the accuracy of the 
PCE. For the work at hand, multidimensional numerical integration based on the Smolyak 
sparse grid tensorization method (Le Maître and Knio 2010) in combination with a nested 
Gauss-Patterson quadrature rule (Davis and Rabinowitz 2007) is used. This involves evalu-
ating Eq. (14) at each integration point, i.e. running the actual CFD simulation.

While expectation � and standard deviation �  of Q can be directly computed from the 
expansion coefficients by

the full posterior distribution P(Q) is inferred from space filling sampling of the PCE fol-
lowing the density assumed for �i.

3.2  Accuracy Metrics for Uncertain Predictions

The quantitative comparison of observations and uncertain predictions, i.e. experimen-
tal data and uncertain simulation results, demands for validation metrics which take into 
account the probabilistic structure of the uncertain predictions. Two validation metrics 
are utilized to evaluate the quality of uncertain predictions:

3.2.1  Deterministic Observations

In the case of deterministic observations, for example experimental data without meas-
urement uncertainties, the Continous Rankend Probabibilty Score (CRPS)  (Gneiting 
and Raftery 2007) evaluates the difference between the CDF of the uncertain prediction 
and the idealized perfect observation. The CRPS is defined as

where CQ is the CDF of the uncertain prediction of a QoI q, qobs is the certain observation 
of q and ℍ denotes the Heaviside function. Therefore, the CRPS yields a generalized mean 
absolute error in case of uncertain predictions.

(18)Q = M(�) ≈

P∑
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(21)CRPS = ∫
∞

−∞
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CQ(�) − ℍ(� − qobs)

)2
d� ,
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3.2.2  Uncertain Observations

In contrast, the Wasserstein-1 metric W1 is utilized to compare the probability structure of 
an uncertain prediction Q with an uncertain observation Qobs . A typical example for an 
uncertain observation could be experimental data with measurement errors. In the Euclid-
ian space, the quantity W1

(
Q,Qobs

)
 can be interpreted as the minimum amount of work that 

is required to turn the respective distribution CQ into CQobs
 (Johnson and Wu 2017). In case 

of one-dimensional distributions on the real line, W1 can be written in explicit form as

In this equation C−1
Q

 and C−1
Qobs

 are the corresponding inversions of CQ and CQobs
 . For further 

derivations, the reader is referred to the work of Bobkov and Ledoux (2014).

3.3  Sensitivity Analysis: Sobol’ Indices

Variance-based sensitivity methods such as Sobol’ indices (Sobol 1993) offer insight into 
the sensitivity structure of a given quantity of interest Q. Through this approach, the sen-
sitivity of the simulation results to the different uncertainties in the input can be assessed. 
Sobol’ indices are based on the decomposition of the total variance �  of a model output 
M(�) into contributions from the different inputs � [M(�)|�i] . We consider the first order 
indices Si which account for the direct contribution to the variance of M  from �i , and the 
total-effect index ST

i
 (Homma and Saltelli 1996) which also includes interaction effects of 

�i with �≠i:

Note that S1,i ≤ ST
i
 . In the case of a Polynomial Chaos Expansion for Q, first order and 

total Sobol’ indices can be computed directly from the expansion coefficients �k exploiting 
Eq. (20).

4  Application

4.1  Test Case

The DLR Standard Spray Burner (SSB) (Grohmann and Rauch 2017) reflects characteris-
tics typically found in aero-engine combustors, while keeping the geometrical complexity 
on a semi-technical level. These characteristics include, among others, a complex multi-
component fuel, pre-filming airblast atomization, flame confinement through combustor 
walls and a swirl-dominated flow field for the purpose of flame stabilization. Grohmann 
and Rauch (2017) and Cantu and Grohmann (2018) reported detailed experimental results 
for a variety of single component fuels as well as conventional Jet A-1.

Figure 3 provides an overview of the experimental apparatus and a detail of the airblast 
atomizer. The combustor consists of two distinct components: an air nozzle equipped with 
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a pre-filming airblast atomizer and a rectangular combustion chamber with a cross section 
of 85 mm × 85 mm and a height of 169 mm facilitating optical access to the reaction zone 
through four quartz glass windows. At the top, the cross section of the combustion cham-
ber reduces to a duct (chimney) with 40 mm in diameter to ensure well defined outflow 
conditions. In the air nozzle, an inner and outer swirler consisting of quadratic swirl vanes 
provide air for atomization and the formation of a co-rotating swirling flow inside the com-
bustion chamber. Geometrical swirl numbers of Swi = 1.17 and Swo = 1.22 were reported 
for the inner and outer swirler, respectively (Grohmann et al. 2016). In the center of the air 
nozzle, a primary pressure-swirl injector (Schlick Mod. 121) ejects fuel droplets onto the 
pre-filmer surface on which a liquid film evolves and finally disintegrates into a fine spray 
at the atomizing edge. At the exit plane, the inner and outer air nozzles have a diameter of 
Di = 8 mm and Do = 11.6 mm , respectively.

The comprehensive experimental database for the SSB includes a characterization of 
the flow field from PIV, temperature profiles over the reaction zone obtained by CARS and 
dispersed phase data from PDA. Furthermore, a qualitative portrayal of the reaction zone 
is available from the line-of-sight integrated signal of CH∗ chemiluminescence. Due to the 
challenges for PIV in the presence of additional fine fuel droplets, PIV was only conducted 

Fig. 3  Sketch and detail of the swirl-stabilized Standard Spray Burner 
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for the non-reacting flow field. For the work at hand, the baseline case for Jet A-1 as sum-
marized in Table 2 is considered.

4.2  Computational Domain and Numerical Setup

The computational domain for the simulation comprises the air nozzle, the quadratic com-
bustion chamber and the outlet chimney. In addition, the air plenum from which the pre-
heated air is fed to the swirler stages is included to obtain a well defined inflow region at 
the plenum inlet.

An unstructured grid consisting of approximately 1.2 million nodes, corresponding to 
5.7 million cells, provides the spatial discretization of the aforementioned computational 
domain. The grid mainly consists of tetrahedral cells augmented with 4 prismatic layers 
alongside the walls and hexahedron cells in regions with a distinct flow region (inlet ple-
num, swirler vanes, outlet duct). Cell sizes range between 0.4 mm in the swirler region and 
3.0 mm towards the outlet. The flame zone contains a mesh refinement in the magnitude of 
0.75 mm . Figure 4 provides an overview of the grid in a central plane including a detail at 
the atomizing edge of the air nozzle.

Inlet boundary conditions for the gas phase are given in Table 2. Wall temperatures of 
the combustion chamber were experimentally determined by phosphor thermometry (Nau 
et al. 2019). Following the results of Eckel and Grohmann (2019), the bottom plate of the 
combustion chamber is divided into three zones. According to the measured tempera-
tures in these zones, the temperatures are set to a constant value of T = 717 K , T = 901 K 
and T = 831 K in the central part, the glowing ring and the corners of the bottom plate, 

Table 2  Operating conditions of 
the baseline Jet A-1 case

Fuel Jet A-1

Fuel temperature Tf 303 [K]

Fuel mass flow rate ṁf 850 [g∕h]

Oxidizer Air
Air pressure pair 1.0 [bar]
Air temperature Tair 323 [K]

Air volume flow rate V̇air
200 [l/min]

Global equivalence ratio � 0.8 [−]

Thermal input Pth 10.2 [kW]

Fig. 4  Distribution of cell sizes in a central plane
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respectively. Based on the thermometry data, a temperature profile in dependence of the 
axial direction is imposed at the combustor sidewalls. Resulting temperature profiles for 
the axial and lateral direction of the combustion chamber and a detail of the baseplate from 
the experiments are shown in Fig. 5. At the outlet of the chimney, an outflow boundary 
condition is imposed. Here, velocity and all transport equations are extrapolated whereas 
the pressure is fixed to atmospheric conditions.

A constant time step �t = 5 × 10−6 s is set ensuring CFL numbers below unity. For all 
cases, the simulation is initialized over �init = 0.1 s before temporal statistics are collected 
over consecutive �avg = 0.1 s . This is based on an estimation of the mean residence time 
�res ≈ 0.005 s inside the combustor and previous test simulations which analyzed the con-
vergence of statistical moments in the gaseous and the dispersed phase during averaging.

4.3  Spray Boundary Condition from the PAMELA Model

The PAMELA primary breakup model as detailed in Sect. 2.2.2 is used for the definition 
of the spray boundary condition. Droplets start from an annulus with ri = 3.5 mm and 
ro = 4.5 mm , placed at an axial offset �z = 1.5 mm with respect to the atomizer edge. The 
PAMELA model provides an SMD D32 and a spread factor q for a Rosin-Rammler distri-
bution as defined in Eq.  (5). Inputs to the model are the atomizer edge thickness ha , the 
length of the liquid film Lf  along the prefilmer and the mean gas velocity UG parallel to the 
liquid film.

For the SSB, the atomizer edge thickness is reported as ha,SSB = 0.1 mm  Grohmann 
(2019). Based on the geometry of the prefilmer (see right part of Fig.  3) and the nom-
inal opening angle of the primary pressure-swirl atomizer ( � = 60◦ ), the location where 
droplets from the primary atomizer impinge the prefilmer surface can be reconstructed and 
hence the liquid film length estimated as Lf ,SSB = 3.8 mm . Mean gas velocity UG,SSB along-
side the liquid film is extracted from preliminary simulations of the mean gas field and 
ranges between 70 and 85 ms−1 as the air flow is accelerated within the inner air nozzle.

Fig. 5  Temperature profiles for the isothermal boundary condition in the combustion chamber
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The PAMELA model does not provide data for the velocity components of the droplets 
after primary atomization. Therefore, it is assumed that the droplets rapidly couple to the 
local gas flow at the starting annulus. This is supported by findings from previous simula-
tions. It was found that close to the starting annulus, most droplets had a Stokes number 
below 10. Therefore, the velocity vector U⃗D of a droplet starting at the boundary condi-
tion is derived from the local vector of the gas velocity. The definition of U⃗D is depicted 
in Fig. 6: In the local polar coordinate system of the droplet, U⃗D is determined by the axial 
angle �D , the swirl angle �D and the velocity magnitude UD.

4.4  Identification of Input Uncertainties

Sources of uncertainties are identified by analyzing the simulation model for the SSB 
with respect to input uncertainties. They might arise from uncertainties in the geometry, 
the modeling constants, as well as boundary conditions for the continuous and dispersed 
phases.

4.4.1  Geometry

All geometric dimensions and quantities of the SSB, e.g. the combustor length or the 
dimensions of the channels in the swirler, are documented in the work of Grohmann 
(2019). Furthermore, the reduced complexity of the geometry in comparison to a full-scale 
aero-engine enables the resolution of all geometric features in the computational grid.

The atomizer edge thickness ha serves as an input to the primary atomization model. As 
detailed in Sect. 4.3, this parameter is known for the SSB. In a preliminary study using the 
PAMELA model, uncertainties within the reported manufacturing tolerance have shown 
to have no significant effect on the droplet size distribution calculated by the PAMELA 
model. For example, the SMD varied by ±1% due to ha = 0.1 ± 0.05 mm , which is the 
reported manufacturing tolerance for ha.

4.4.2  Modeling Constants

The simulation case under consideration involves a number of sub-models and thus 
numerous modeling constants which might affect the simulation results. For example, 

Fig. 6  Definition of the velocity 
vector U⃗D at the spray boundary 
condition. Black system: Global 
coordinate system. Green system: 
Local coordinate system. Blue 
dots: Droplet starting annulus
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the choice of the Smagorinsky constant Cs in the SAS turbulence model influences the 
turbulent damping in the LES regions (Ivanova 2012).

In the present study, all modeling constants are set to their respective reference 
values for which they were validated. This includes modeling constants for the CTM 
vaporization model, the hybrid turbulence model and the PAMELA primary breakup 
model. Since uncertainties in modeling constants are beyond the scope of this study, 
impact of uncertainties in these parameters are not further investigated.

4.4.3  Initial and Boundary Conditions of the Gas Phase

Regarding the boundary condition for the gaseous phase, a simplification applies to the 
inlet at the plenum, at which the turbulence intensity It was not measured in the experi-
ments. Therefore, a uniform inlet velocity rather than synthetic turbulence  (Klein and 
Sadiki 2003) is imposed. In view of the fact that the flow undergoes a strong contraction 
and most of the turbulence is generated in the swirler stages, this uncertainty should not 
affect the flow inside the combustion chamber. Measurement uncertainties below 1.2% 
have been reported for the mass flow rate of the air (Grohmann 2019).

Mercier and Schmitt (2015) demonstrated that uncertainties in wall temperatures and 
associated heat losses can have a significant impact on local and global temperature 
distribution. In the present study, temperature profiles from thermometry measurements 
are utilized. For this data, Grohmann (2019) estimated an error of ± 2%.

4.4.4  Initial and Boundary Conditions of the Dispersed Phase

Since the velocity vector of the droplets at the dispersed phase boundary condition is 
derived from the gas field trajectories, uncertainties are introduced from the variation 
of the trajectory angle � and � over the starting annulus. In the flow field, � ranges 
between 55◦ and 63◦ while � varies between 26◦ and 29◦ . Furthermore, by applying the 
absolute velocity U ≈ 60 ms−1 of the gas phase at the starting annulus to the dispersed 
phase, droplets start with a significantly too high momentum and mostly impinge at the 
combustion chamber walls. Therefore, the droplets’ absolute velocity UD is assumed to 
be between 25 and 30 ms−1 . This is inferred from similar atomizer configurations (Set-
zwein et al. 2019; Jones and Marquis 2014). As mentioned in the previous section, the 
mean gas velocity UG alongside the liquid film ranges between 70 and 80 ms−1.

Finally, uncertainties exist regarding the temperature of the liquid droplets at 
the boundary condition. In the experiments, the temperature of the fuel in the sup-
ply system was measured at a location close to the primary pressure-swirl atomizer 
( Tliq,exp = 303 K ). However, the fuel might undergo additional heating during pre-film-
ing atomization due to the surrounding air flow ( Tair = 323 K ) as well as radiative heat 
transfer from the reaction zone. Accordingly, the droplets’ temperature is estimated to 
range between Tliq,exp = 303 K and Tair = 323 K.

Table 3 provides an overview of the most relevant sources of input uncertainties as 
identified in this section. Note that depending on the scope of the analysis, additional 
quantities could be included.
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4.5  Probabilistic Modeling and PCE Construction

From the possible uncertainties identified in the previous section, only the uncertainties 
in the spray boundary condition will be analyzed in detail, since these parameters play 
a key role in the early stage design process of novel combustor systems. In a previous 
study (Enderle and Rauch 2020), uncertainties in the spray boundary condition demon-
strated a significant effect on the flame position and temperature distribution over the 
reaction zone. Thus, the input parameters to the PAMELA model are seen as uncertain 
inputs to the simulation model.

For simplicity, they are all interpreted as uncorrelated uncertainties and character-
ized by a joint uniform distribution function with the respective minimum and maxi-
mum from the previous analysis. The choice of uniform distribution functions for the 
marginal distributions in case of minimum/maximum data is derived from the principle 
of maximum entropy (Kapur and Kesavan 1992; Sudret 2007). Thus, precise probability 
theory is applied, resulting in a probabilistic simulation model of the SSB, enabling 
insight into the probabilistic structure of the uncertainties in the simulation results. 
Table  4 provides a summary of the uncertain input parameters which form the input 
space �SSB = [�D × �D × UD × UG × Tliq] . Note that the uncertainty in the mean gas 

Table 3  Relevant sources of input uncertainties in the simulation model

Quantity Value Unit Description

Geometry
ha 0.1 ± 0.05 [mm] Atomizer edge thickness

Modeling constants
Cs 0.145 [−] Smagorinsky constant

BC gas phase
It Not reported [−] Turbulence intensity
ṁair 4.3 × 10−3 ± 1.2% [kg∕s] Air mass flow rate
Twall T(x, y, z) ± 2% [K] Wall temperature

BC dispersed phase
�D [26, 29] [◦] Droplet axial angle
�D [55, 63] [◦] Droplet swirl angle
UD [25, 30] [ms−1] Droplet absolute velocity
UG [70, 85] [ms−1] Mean gas velocity
Tliq [303, 320] [K] Droplet liquid temperature

Table 4  Parameter space �
SSB

 of 
the input uncertainties

Description marginal PDF Unit Source

�D Axial angle U(26, 29) [◦] CFD flow field
�D Swirl angle U(55, 63) [◦] CFD flow field
UD Absolute velocity U(25, 30) [ms−1] Estimated
UG Mean gas velocity U(70, 85) [ms−1] CFD flow field
Tliq Liquid temperature U(303, 320) [K] Grohmann (2019)
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velocity UG results in SMDs D32 = 29 − 35 μm and MMDs D50 = 35 − 41 μm calculated 
by the PAMELA model.

Output uncertainties in the probabilistic simulation model are quantified through PCE. 
The present study specifically focuses on gas phase temperature as quantity of interest, 
since its accurate prediction plays a crucial role in combustor design  (Lefebvre 2010). 
However, additional quantities of interest from the gas phase as well as the dispersed phase 
are considered in order to get insight into the phase-coupling dynamics under the given 
uncertainties. Formally, the truncated PC expansion of a Quantity of Interest Q from the 
probabilistic simulation model reads:

Since all uncertainties in Table 4 follow a uniform distribution function, Legendre poly-
nomials form the basis � k  (Xiu and Karniadakis 2002). Multidimensional integration on 
a Smolyak sparse grid is utilized for the computation of series coefficients �k . A Level-2 
expansion is considered, requiring 71 evaluations of the simulation model. The distribution 
of the integration points over the the parameter space �SSB is shown exemplarily for the 
�D subspace in Fig. 7. Since a single model evaluation requires approximately 22000 CPU 
hours, the total computational cost for this study is in the order of 1.5 × 106 CPU hours.

The fact that precise distribution functions are assigned to all input uncertainties allows 
for a computation of probability distribution functions for the Quantities of Interest from 
space filling sampling of �SSB . For this purpose, 105 samples are drawn from the respective 
PC expansion.

4.6  Results and Discussion

4.6.1  Cold Flow Validation

In order to validate the modeling setup, a deterministic simulation of the cold flow is 
conducted. Only main features for which experimental data is available are discussed. 

(24)Q =

P∑
k=0

�k� k(�) =

P∑
k=0

�k� k

(
��D

, ��D
, �UD

, �UG
, �Tliq

)
.

Fig. 7  Level-2 PCE quadrature points ( 
 ) of a Smolyak sparse grid over the parameter space �SSB using a Gauss-Patterson rule
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For a thorough analysis of the SSB baseline case, the reader is referred to the work of 
Eckel (2018) and Grohmann (2019).

Since the quality of Scale Adaptive Simulations strongly depends on the ability of 
the grid to locally resolve turbulent fluctuations and thereby switch into LES mode, the 
local spatial resolution must be reassessed for each problem under consideration. For 
this purpose, a first criterion is given by the ratio rk of resolved to total turbulent kinetic 
energy. It is defined as

where u′
i
u′
i
 denotes the time-averaged product of velocity fluctuations u′

i
 , whereas kmod is 

the modeled turbulent kinetic energy from the SST turbulence model. According to Pope 
(2004), in a well-resolved LES this ratio should be at least 0.8, meaning that 80% of the 
local turbulent kinetic energy budget is being resolved. The criterion is satisfied for the 
most parts of the computational domain, with exception of the inlet plenum and the swirler 
vanes, where a URANS solution is obtained.

As a further criterion, the ratio of turbulent to molecular viscosity r� = �t∕� is calcu-
lated. In LES regions, this ratio should not exceed O(101) (Ivanova 2012; Menter 2012). 
Similar to the turbulent kinetic energy criterion this is not the case for the core region of 
the air nozzle, whereas in the combustion chamber, the criterion is met.
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Fig. 8  Simulation results for absolute velocity and streamtraces of the non-reacting flow field
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An overview of the structure of the non-reacting flow field is given in Fig. 8 by means of 
contours of absolute velocity in the central y − z plane. In the transient snapshot (Fig. 8a), 
highest velocities are found inside the air nozzle, specifically at the nozzle exit where the 
flow reaches a maximum of |U|max ≈ 120 ms−1 . This corresponds to a local Mach number 
of Ma ≈ 0.34 which is close to the limit of the incompressibility assumption (Poinsot and 
Veynante 2005). The superimposed streamlines (gray lines) display a strongly turbulent 
and three-dimensional flow field with vortices shedding from the shear layer caused by the 
high local velocities at the exit of the air nozzle.

Figure 8b displays the flow field averaged over the simulation runtime. Flow patterns 
typical for confined swirling flows (Lucca-Negro and O’Doherty 2001) are observable: A 
small central recirculation zone (CRZ) is formed around z = 0 mm reducing the effective 
outflow area of the inner nozzle. As a consequence, velocity is increased along the pre-
filmer. Furthermore, a negative pressure gradient along the z-axis causes a backflow and 
thus a large inner recirculation zone (IRZ) with a stagnation point at z ≈ 110 mm . Finally, 
the back-pressure of the walls and the strong shear layer from the air nozzle establish a 
counter-rotating outer recirculation zone (ORZ).

Radial profiles of the velocity components from PIV enable a quantitative validation 
of the simulation results. Figure 8b indicates the region for which PIV data is available in 
the y − z plane. A comparison of the time-averaged axial velocity and the respective RMS 
fluctuation is given in Fig. 9 by means of profiles along the lateral y-axis. Axial positions 
between z = 5 mm and 40 mm are considered as this region contains the main reaction 
zone in the following simulation of the reacting flow. For the mean velocity w , simulation 
and experiment are in excellent agreement regarding magnitude and radial distribution. 
As aforementioned, a backflow along the z-axis ( y = 0 mm ) is visible. Regarding fluctua-
tions w′ , the simulation overestimates the fluctuation intensity, specifically at z = 5 mm , 
z = 10 mm and z = 20 mm . Note that for the simulation, the displayed fluctuation is the 
total budget of resolved and modeled fluctuations:

Fig. 9  Time-averaged profiles of axial (w) velocity component at different axial positions from cold flow 
measurements and simulation. Mean (left column) and RMS (right column)
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Thus, the overestimation could be a potential imbalance between resolved and modeled 
fluctuations as a result of the transition from URANS to LES mode of the SAS model, 
which was identified in the previous section, especially since the resolved part of the fluc-
tuations agrees well with the experimental data.

Further comparison between experiment and simulation is shown in Figs. 20 and 21 in 
the appendix for the v and u velocity components, respectively. Again, mean data is accu-
rately reproduced by the simulation, while fluctuations are slightly too low, especially at 
the first axial position.

From the inspection of the two criteria rk and r� as well as the comparison with PIV data 
for the flow field, it is concluded that the spatial resolution of the simulation setup is suf-
ficient for a Scale Adaptive Simulation of the SSB.

4.6.2  Reacting Flow Under Uncertainties—Gas Phase

At first, a single realization from the probabilistic simulation model is considered to provide 
an overview of the combustion process. For this purpose, the central point of the PC expansion 
over �SSB with �D = 22.5 ◦,�D = 59 ◦,UD = 27.5 ms−1,UG = 77.5 ms−1, Tliq = 311.5 K 
is analyzed. An impression of the combustion process is given by means of contours of gas 
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Fig. 10  Deterministic simulation results for gas phase temperature of the reacting flow field at the central 
point of �SSB . Gray lines indicate heat release
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phase temperature in Fig. 10. The transient snapshot in Fig. 10a shows a wrinkled flame 
front, indicated by gray contour lines of heat release. In this flame front, fuel that has been 
transferred to the gas phase is consumed and local temperature increases significantly. The 
reaction zone extends from z = 5 mm up to z = 40 mm . Hot gases from the flame front 
accumulate in the outer recirculation zone and are partly transported back to the centerline 
by large eddies from the inner recirculation. Close to the exit of the air nozzle, these hot 
gases mix with the cold air flow. With increasing axial distance from the reaction zone, 
the temperature field becomes more homogeneous. Maximum temperature ranges in the 
magnitude of Tmax = 2000 K which is well below the theoretical maximum temperature 
Tadi
max

≈ 2250 K in case of an adiabatic equilibrium. To further illustrate the influence of 
heat losses due to the isothermal walls and the influence of finite rate chemistry, Fig. 11 
displays the different states of the reacting system in the mixture fraction - temperature 
space. Each scatter represents a positions within the computational domain with its respec-
tive mixture fraction Z and transient temperature T. Scatter color corresponds to the axial 
position. The black line represents the limit of infinitely fast chemistry under adiabatic 
conditions calculated by an adiabatic equilibrium computation with CANTERA  (Good-
win et  al. 2018). This limit cannot be reached as the system suffers from heat losses at 
the isothermal walls. Instead, an upper limit is found approximately 250 K below the adi-
abatic limit (gray line). This new upper limit can be met in the equilibrium computation 
with CANTERA by reducing the thermal input by 1.75 kW or 17% . This value can be seen 
as an approximation of the heat loss due to the isothermal walls. As also evident from 
Fig. 11, a significant number of states in the main reaction zone (red and purple dots) devi-
ate from the gray equilibrium line, indicating that these states are governed by a finite rate 

Fig. 11  Transient state of the reacting multiphase flow characterized by mixture fraction and temperature. 
Colors indicate axial position
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chemistry. In such states, fuel and oxidizer can coexist since the diffusion and flow time-
scales are significantly larger than the chemical timescales.

In the time-averaged field of gas phase temperature (Fig. 10b), an M-shaped cold inner 
zone with axially increasing temperature is visible as well as local hot spots in the outer 
recirculation zone. In the vicinity of the walls, the influence of the isothermal boundary 
condition is observable.

In the following, probabilistic results from space filling sampling of the PC expansion 
over �SSB are taken into consideration. Hence, the full probabilistic strucuture of all quanti-
ties of interest can be investigated. Gas phase temperature from the probabilistic simulation 
is investigated by means of axial and radial profiles over the combustion chamber in the 
y − z plane, following the CARS measurement locations as indicated in Fig. 8b. Result-
ing temperature profiles from the PCE over �SSB are shown in Fig. 12a–e. The probability 
structure of the uncertain simulation results is characterized by probability intervals: light 
gray areas indicate regions with 5% < Pr(T) < 95% , whereas dark gray areas represent 
25% < Pr(T) < 75% . The median realization is given by cyan lines. Red squares show the 
mean temperature �(Texp) from the CARS measurements while the error bars indicate the 
corresponding standard deviation �(Texp) . Most notably, the probability intervals clearly 

Fig. 12  Non-deterministic simulation results for time-averaged profiles of gas phase temperature. Error bars 
(

) indicate standard deviation of the experimental measurements
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reveal a non-uniform distribution of output uncertainties, despite the fact that all input 
uncertainties were defined as uniformly distributed. This highlights the non-linear propaga-
tion of uncertainties through the simulation model.

Over all positions, moderate uncertainties in the magnitude of 100−200 K regarding 
the [5%;95%] intervals are visible. In the z-profiles (Fig. 12d, e), highest uncertainties are 
located at the high temperature regions (y ≈ ±30 mm) where most of the combustion reac-
tions take place. These processes are closely connected to the supply of fuel components 
through spray evaporation, which is ultimately linked to the input uncertainties at the spray 
boundary conditions. At the first two axial positions, the non-deterministic simulation is 
able to bracket almost all experimental data. However, at z = 35 mm (Fig. 12c) the tem-
perature profile is still overestimated in the simulation results.

Although the spray boundary condition is symmetric with respect to the z-axis, the 
uncertain simulation results in the z-profiles appear slightly asymmetric, especially regard-
ing the [5%;95%] intervals. This could be caused by noisy data for the construction of 
the PCE due to incomplete time-averaging in the numerical simulation, insufficient PCE 
accuracy or an insufficient sample size for the precise computation of the local PDF. Since 
the influence of time-averaging was investigated in detail for the reference simulation, the 
asymmetry is most likely due to local PCE accuracy. In Enderle and Rauch (2020) it was 
identified that the quality of the PC expansion can vary along a profile of QoIs for a com-
plex simulation problem.

Along the axial profile at y = 0 mm (Fig.  12d), all measurement data except for the 
last one are included in the uncertainty region. However, the fact that the axial gradient in 
the experimental data is almost zero over the last few measurement positions whereas the 
temperature in the simulation still rises up to 1800 K indicates that the temperature in the 
upper half of the combustor is systematically overestimated in the simulation. This could 
be caused by deficient thermal losses at the combustor walls due to the thermal boundary 
condition. Furthermore, it could also stem from a general modeling error.

A significant increase in local uncertainty in the y = 0 mm profile (Fig. 12d) is found 
between z = 40 and z = 80 mm . This coincides with the axial position of possible spray-
wall impingement after which the droplets are reflected back towards the centerline region. 
Presumably, this impingement depends on the droplets’ starting velocity UD and their axial 
angle �D . Hence, uncertainties in these quantities might influence the spray impingement 
location and finally the temperature profiles downstream of the respective location.

The tendency in the z-profiles that highest uncertainties are found in the high tempera-
ture regions is also reflected in the y = −20 mm profile (Fig. 12e). Here, the mean of the 
experimental data is within or below the 5% quantile at all positions.

For a quantitative comparison of the non-deterministic simulations and the experi-
mental data, the accuracy metrics Continous Rankend Probabibilty Score (CRPS) from 
Eq. (21) and Wasserstein-1 ( W1 ) from Eq. (22) are calculated. In the calculation of the 
CRPS, the mean of the experimental data �exp at each location is interpreted as a certain 
observation. The CRPS yields a generalized mean absolute error in case of uncertain 
predictions and certain experimental observation. Thus, the measurement error from the 
experiment is not taken into account and the CRPS is calculated from the local cumula-
tive distribution function of the temperature from the non-deterministic simulation and 
the mean temperature from the experiment. The local CRPS for the temperature predic-
tions from the non-deterministic simulation is given in Fig. 13a–e. Note that the CRPS 
is only calculated at radial and axial positions for which experimental data is available. 
In order to compare the probability structure of the non-deterministic simulation results 
and the experimental data including measurement errors, the Wasserstein-1 metric for 
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the temperature results is calculated at the same positions as the CRPS. For this pur-
pose, the measurement uncertainty and hence the uncertain observation is assumed to 
follow a normal distribution N(�exp, �exp) . The standard deviation �exp is available from 
the experimental database Cantu and Grohmann (2018). Results for W1 are also included 
in Fig. 13a–e. At all positions, W1 > CRPS stemming from the fact that W1 compares the 
full probability structure of experiment and simulations, thereby including additional 
degrees of freedom compared to the point estimate in the CRPS. Key findings from 
the previous qualitative comparison are confirmed by the metrics: highest values for 
both metrics, and therefore highest uncertainties, are found around y = −20 mm and 
y = 0 mm for the radial profiles. Uncertainties in the simulation results increase along 
the axial profile. The mean absolute error under uncertainties given by the CRPS stays 
between 50 K and 200 K at all positions. The observation that W1 greatly exceeds CRPS 
at certain positions, such as y = −20 mm , z = 20 mm in Fig.  13e, implies that these 
positions not only exhibit an absolute deviation between the experimental and uncertain 
simulation results, but also a substantial disparity in the probability distribution’s shape.

Results for the axial component of gas phase velocity in Fig. 14a–e demonstrate that 
uncertainties in the temperature distribution couple with uncertainties in the gas phase 
velocity. As in the temperature profiles, highest uncertainties in the z-profiles are found 

Fig. 13  CRPS (   ) and Wasserstein metric W1 (   ) for the probabilistic temperature predictions
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around the reaction zone. Moreover, the width of the [5%, 95%] interval increases with 
increasing axial distance. This tendency is also present in the axial profiles ( y = 0 mm , 
y = −20 mm ; Fig. 14d–e) and might be an indicator that the backflow of hot combustion 
products is affected by the variations in the temperature field due to the input uncertain-
ties with respect to the spray boundary condition. Since experimental data for the veloc-
ity field in the reacting flow is not available, a final statement wether the varations in 
the velocity field are mainly driven by the input uncertainties or an amplification of the 
effect of general modeling choices is prohibitive.

4.6.3  Reacting Flow Under Uncertainties—Dispersed Phase

Statistics of the dispersed phase are collected in a two-dimensional registration plane at 
z = 15 mm which is parallel to the x − y plane. Hence, particles from the dispersed phase 
passing through the registration plane are registered with its respective properties (e.g. 
velocity, diameter) and time-averaged over the simulation runtime using a cartesian grid 
over the registration plane for spatial discretization. For each quantity of interest (e.g. 

Fig. 14  Non-deterministic simulation results for time-averaged profiles of axial velocity in the gas phase
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droplet velocity components, liquid volume flux) a PCE is then constructed and sam-
pled over �SSB as decscribed in Sect. 4.5. Figure 15 provides a comparison between the 
non-deterministic results and PDA data (experiment). The three velocity components are 
defined with respect to the global coordinate system. Thus, the axial, radial and tangential 
velocity is derived from the global z, y and x velocity, respectively. The droplets experience 
a swirling motion in the mathematical positive direction with respect to the z-axis, as they 
couple to the gas flow. Droplet data from the probabilistic simulation is subdivided into 
three distinct diameters ( 10, 30, 50 μm ) to display the droplet dispersion. A ± 10% margin 
is added for a better statistical convergence. Therefore, the three size classes are defined 
as 10 μm < d < 11 μm (small), 27 μm < d < 33 μm (medium), and 45 μm < d < 55 μm 
(large). In contrast, from the PDA measurements only averaged data regarding the droplet 

Fig. 15  Non-deterministic simulation results for time averaged profiles of droplet velocity components at 
z = 15 mm . Simulation data is split into small ( ), medium ( ), and large droplets ( ). Experimental data 
( ) is averaged over all diameters
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diameter is available. Note that probabilistic simulation results are only shown for locations 
at which sufficient time-averaged droplet data is available from all 71 simulations. Other-
wise, the PC expansion would be prone to high local approximation errors. As for the tem-
perature profiles, the probability structure is characterized by the two probability intervals 
[5%;95%] and [25%;75%] as well as the median realization.

Despite the fact that all input uncertainties from Table 4 are directly linked to the dis-
persed phase, output uncertainties in the components of droplet velocity are low, espe-
cially for the medium (blue) and large (green) droplets. The fact that the magnitude of 
uncertainty increases towards lower droplet diameters can be explained by their low Stokes 
number and thus higher tendencies to couple to the local gas velocity. As aforementioned, 
output uncertainties are also present in the velocity components of the gas field. Hence, 
these uncertainties might be passed on to the small droplets. In contrast, uncertainties in 
the velocity components of the large droplets simply reflect the input uncertainty in the 
absolute velocity UD of 5 ms−1.

In general, magnitude and profile of the velocity components are well reproduced by the 
probabilistic simulation. A slight dispersion in axial velocity is observable over the three 
size classes. Overall, the probabilistic simulation results for the droplet velocity verify the 
assumption made in the definition of the spray boundary condition that the droplet starting 
trajectories can be derived from the local gas velocities.

Figure 16 provides probabilistic simulation results for Sauter Mean Diameter and nor-
malized liquid volume flux through the registration plane at z = 15 mm . Although experi-
mental data for the SMD ranges between 17 μm and 32 μm , the probabilistic simulation 
predicts a maximum SMD in the magnitude of 40 μm and a minimum below 15 μm . How-
ever, the SMD profiles must be interpreted with respect to the volume flux data for which 
simulation and experiment are in good agreement and uncertainties in the simulation are 
low (see Fig.  16a). Close to the z-axis ( y = 0 mm ), the SMD in the simulation reaches 
its minimum while the volume flux drops to almost zero. Therefore, these droplets relate 

Fig. 16  Non-deterministic simulation results for time averaged profiles of Sauter Mean Diameter (SMD) 
and normalized liquid volume flux at z = 15 mm
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to a very low volume flux. In contrast, at the radial position of maximum volume flux 
( y ≈ ±17.5 mm ) the uncertainty level with respect to the [5%;95%] interval is in the mag-
nitude of 5 μm which is the range of SMDs provided by the PAMELA model under the 
given uncertainty for UG . The radial position of maximum volume flux in Fig. 16b appears 
almost unaffected by the input uncertainties, confirming that the distribution of droplets is 
dominated by the gas field in the SSB case.

For brevity, additional plots for droplet velocities and mean diameter at z = 25 mm are 
given in Figs. 22 and 23 in the appendix. Similar phenomena and tendencies as discussed 
for z = 15 mm can be identified.

4.6.4  Reacting Flow Under Uncertainties—Reaction Zone

Insight into the probability structure of integral quantities of interest under the given uncer-
tainties is provided by the examples of mean flame lift-off height hLO and mean flame 
length LF , since most other quantities are highly correlated with the location of the reac-
tion zone in the combustor. Both quantities are derived from the line-of-sight (here: y-axis) 
integrated and time-averaged OH∗ concentration in the YOH∗ simulations, as the OH∗ radical 
is primarily found in the reaction zone. Therefore, hLO is defined as the mean axial distance 
between the contour � ⋅max(YOH∗ ) and the exit plane of the air nozzle, while lF is defined 
as the difference between the mean extent of this contour minus hLO . In this definition, � is 
a threshold value which is set to 70% . A depiction of the parameters’ definition is available 
from Fig. 17a–c.

Figure 18 summarizes results from space filling sampling of the PCE over �SSB through 
histograms and the corresponding empirical CDFs ĈLF

 and ĈhLO
 . As evident from the his-

tograms, both QoIs follow a distribution function that resembles a normal distribution, 
despite the fact that all input uncertainties are uniformly distributed. As already discussed 
for the temperature profiles, this points out that the flame stabilization in the SSB follows a 
highly non-linear mechanism regarding the injection of liquid fuel droplets.

Fig. 17  Definition and extraction of flame lift-off height hLO and flame length lF from line of sight inter-
grated OH∗ simulation results
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Experimental results are indicated by orange dashed lines. In case of LF (Fig. 18b), the 
experimental value coincides with the mode of P̂LF

 , i.e. the most probable realization from 
the simulation. This should not be confused with the mean realization �LF

= 16 mm , which 
is greater than the experimental value. Regarding hLO most realizations underestimate the 
true lift-off height from the experiment (Fig. 18a). From ĈhLO

 it can be inferred that 80% of 
the realizations are below the experimental value.

To asses the sensitivity of the two global flame parameters hLO and LF to the uncertain-
ties in the input parameters, Sobol’ indices are derived from the Polynomial Chaos Expan-
sion. Figure 19 summarizes the first order Sobol’ indices S1,i and total Sobol’ indices ST

i
 

with respect to the five uncertain input parameters. Note that total order indices are indi-
cated by hatched color bars.

The flame lift-off height exhibits the most prominent first order indices, and hence the 
highest sensitivities, for two factors: the liquid fuel temperature Tliq , and the swirl angle 
of the droplets �D . The temperature of the liquid fuel droplets is closely linked with the 
time it takes for them to evaporate, affecting the transfer of fuel from the liquid to gas-
eous state. This impacts the axial position at which the flame becomes stable above the 
atomizer. The swirl angle of the droplets determines wether the droplets are injected in 
a wider or narrower swirl movement around the z-axis (see Fig. 6) and hence influcences 
the distribution of liquid and evaporated fuel in the reaction zone. This could explain the 
high sensitivity of the flame lift-off to this quantity. Although a similar effect should apply 
to the droplet’s axial angle, the first order index for �D with respect to the lift-off height is 
significantly lower then for �D . However, this could be a result of the smaller uncertainty 
in �D then in �D (see Table 4). Mean gas velocity along the prefilmer UG and especially the 
doplet’s injection velocity UD show a minor direct contribution to the variation in the flame 
lift-off height. The degree to which interaction between the input parameters contribute to 
this variation is indicated by the total Sobol’ indices. For all parameters, ST , i >> S1,i and 
ST , i − S1,i ≈ constant , indicating that there is a substantial but equal degree of interaction 
between all input parameters.

Regarding the flame length, first order Sobol’ indices in the right hand part of Fig. 19 
indicate that this quantify is mainly influenced by the two droplet inject angles �D and �D . 
Although the degree of uncertainty is distinctly different between the two inputs, 

Fig. 18  Non-deterministic simulation results for flame lift-off height and flame length with respect to a 
threshold value � = 50%
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S1,�D
= S1,�d

 as well as ST
�D

= ST
�d

 . Hence, the sensitivity and the degree of interaction is the 
same for both inputs (Fig. 19).

5  Summary and Conclusions

The present study succesfully demonstrated the application of probabilistic modeling to 
quantify uncertainties in the simulation of a complex, semi-technical combustor burning 
a multicomponent liquid fuel. The DLR Standard Spray Burner (SSB) constituted a sim-
ulation problem reflecting characteristics typically found in modern aeroengine combus-
tors. In order to resolve the complex three-dimensional and unsteady flow structure, hybrid 
URANS/LES was utilized. To overcome the dependency from the experimental data for 
the spray phase—i.e. the need for calibration against existing data, an algebraic primary 
breakup model was incorporated. The resulting reduction in prior knowledge was compen-
sated through probabilistic modeling and uncertainty quantification methods. The breakup 
model provided data for the mean diameter in the spray, but no information regarding the 
droplet velocities. The velocity vector of the droplets at the boundary condition was esti-
mated from the local gas field and treated as uniformly distributed uncertainties. Further 
uncertainties regarding the spray boundary condition resulted in a six-dimensional param-
eter space of uncertain inputs. Due to their importance in the design process, temperature 
distribution and flame position were considered as the main quantities of interest. Output 
uncertainties in the simulation were then quantified through Polynomial Chaos Expan-
sion. Moderate uncertainties were found in the results for the gas phase temperature as 
well as the droplet velocities. This was further confirmed by accuracy metrics comparing 
the probabilistic simulation results with the experimental data. A thorough analysis of the 
dispersed phase under uncertainties verified the assumption made in the definition of the 
spray boundary condition that the droplet starting velocities can be derived from the local 
gas velocities. Finally, a sensitivity analysis utilizing Sobol’ indices revealed that the vari-
ation in the flame lift-off height is mainly induced by the uncertainties in the temperature 
of the liquid droplets as well as the swirl angle of the droplets, while the flame length 
is mostly sensitive to the uncertainties in the droplet’s axial and swirl angle at the spray 
boundary condition.

Fig. 19  First order and total Sobol’ indices for flame lift-off height and flame length. Hatched bars indicate 
total indices
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On the basis of these results, the following conclusions are drawn:

– Propagation of uncertainties through coupling effects: The present work focused on 
input uncertainties in the spray boundary conditions. Hence, input uncertainties were 
primarily introduced to the dispersed phase of the reacting multiphase system. How-
ever, it was identified that these uncertainties affect quantities of interest in the dis-
persed and the continuous phase (e.g. gas phase temperature and velocity or flame posi-
tion). This highlighted the propagation of input uncertainties through coupling effects 
throughout the entire thermo-chemical process of multiphase combustion. In view of 
this fact it is important to note that other input uncertainties which were not consid-
ered in the present study should be analyzed. For example, uncertainties in the chemical 
reaction rates would alter the temperature field and thus influence the local evaporation 
of droplets.

– Interpretation of uncertain simulation results: Uniformly distributed uncertainties were 
presumed in the SSB case which enabled the calculation of probability intervals for the 
uncertain simulation results. This yielded a best estimated prediction of the quantities 
of interest under the given uncertainties. It should be pointed out that this best estimate 
purely relied on the assumption of uniform input uncertainties. In contrast, probabil-
ity bounds from Probabibilty Bounds Analysis as demonstrated in Enderle and Rauch 
(2020) are known to be larger (Oberkampf 2010) but always reflect the state of knowl-
edge without further assumptions. Therefore, the impact of the application of different 
UQ frameworks needs to be further studied.

– Potential of UQ in the simulation of spray combustion: The present study clearly dem-
onstrated the added value of uncertainty quantification when only limited data regard-
ing the spray boundary conditions is available. With the additional information con-
cerning the uncertainties in the simulation results, risks can be quantified by comparing 
the uncertainties with the performance targets. Thereby, decision-making in the design 
and development process can be supported and advanced towards risk-informed deci-
sion-making.

A: Additional Figures

See Figs. 20, 21, 22 and 23.
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Fig. 20  Time-averaged profiles of v velocity component at different axial positions from cold flow measure-
ments and simulation. Mean (left column) and RMS (right column)

Fig. 21  Time-averaged profiles of u velocity component at different axial positions from cold flow measure-
ments and simulation. Mean (left column) and RMS (right column)
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Fig. 22  Non-deterministic simulation results for time averaged profiles of droplet velocity components at 
z = 25 mm . Simulation data is split into small (   ), medium (   ), and large droplets (   ). Experimental 
data (   ) is averaged over all diameters

Fig. 23  Non-deterministic simulation results for time averaged profiles of Sauter Mean Diameter (SMD) 
and normalized liquid volume flux at z = 25 mm
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