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Abstract

In this thesis, we consider the problem of estimating position and orientation
(6D pose) using inertial sensors (accelerometers and gyroscopes). Inertial sen-
sors provide information about the change in position and orientation at high
sampling rates. However, they suffer from integration drift and hence need to be
supplemented with additional sensors. To combine information from the inertial
sensors with information from other sensors we use probabilistic models, both
for sensor fusion and for sensor calibration.

Inertial sensors can be supplemented with magnetometers, which are typically
used to provide heading information. This relies on the assumption that the mea-
sured magnetic field is equal to a constant local magnetic field and that the mag-
netometer is properly calibrated. However, the presence of metallic objects in the
vicinity of the sensor will make the first assumption invalid. If the metallic object
is rigidly attached to the sensor, the magnetometer can be calibrated for the pres-
ence of this magnetic disturbance. Afterwards, the measurements can be used
for heading estimation as if the disturbance was not present. We present a practi-
cal magnetometer calibration algorithm that is experimentally shown to lead to
improved heading estimates. An alternative approach is to exploit the presence
of magnetic disturbances in indoor environments by using them as a source of
position information. We show that in the vicinity of a magnetic coil it is possible
to obtain accurate position estimates using inertial sensors, magnetometers and
knowledge of the magnetic field induced by the coil.

We also consider the problem of estimating a human body’s 6D pose. For this,
multiple inertial sensors are placed on the body. Information from the inertial
sensors is combined using a biomechanical model which represents the human
body as consisting of connected body segments. We solve this problem using an
optimization-based approach and show that accurate 6D pose estimates are ob-
tained. These estimates accurately represent the relative position and orientation
of the human body, i.e. the shape of the body is accurately represented but the
absolute position can not be determined.

To estimate absolute position of the body, we consider the problem of indoor
positioning using time of arrival measurements from an ultra-wideband (uwb)
system in combination with inertial measurements. Our algorithm uses a tightly-
coupled sensor fusion approach and is shown to lead to accurate position and
orientation estimates. To be able to obtain position information from the uwb
measurements, it is imperative that accurate estimates of the receivers’ positions
and clock offsets are known. Hence, we also present an easy-to-use algorithm to
calibrate the uwb system. It is based on a maximum likelihood formulation and
represents the uwbmeasurements assuming a heavy-tailed asymmetric noise dis-
tribution to account for measurement outliers.
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Populärvetenskaplig sammanfattning

I denna licentiatsavhandling betraktar vi problemet att skatta position och ori-
entering med hjälp av tröghetssensorer (accelerometrar och gyroskop). Tröghets-
sensorer tillhandahåller information om förändringar i position och orientering
vid höga samplingshastigheter. Nackdelen med denna typ av sensor är att skatt-
ningarna driver över tid (integrationsdrift) och behöver därför kompletteras med
ytterligare sensorer. För att kombinera information från tröghetssensorer med
information från andra sensorer använder vi probabilistiska modeller, både för
sensorfusion och för sensorkalibrering.

Tröghetssensorer kan kompletteras medmagnetometrar, som typiskt används för
att erhålla riktningsinformation. Detta bygger på antaganden att det uppmätta
magnetfältet är lika med ett konstant lokalt magnetfält och att magnetometern
är korrekt kalibrerad. Närvaron av metalliska föremål i närheten av sensorn kom-
mer att göra det första antagandet ogiltigt. Om det metalliska föremålet och mag-
netometern sitter ihop utan att kunna röra sig inbördes så kan magnetometern
kalibreras med avseende på denna magnetiska störning. Efteråt kan mätningar-
na användas för riktningsskattning som om störningen inte var närvarande. I
denna avhandling presenterar vi en praktisk algoritm för kalibrering av en mag-
netometer och visar att den leder till förbättrade skattningar av orientering. Ett
alternativt tillvägagångssätt är att utnyttja närvaron av magnetiska störningar i
inomhusmiljöer genom att använda dem som en källa till positionsinformation.
Vi visar att i närheten av en magnetisk spole är det möjligt att erhålla precisa
positionsskattningar med användning av tröghetssensorer, magnetometrar och
kunskap om det magnetfält som induceras av spolen.

Vi ställer också upp problemet att skatta position och orientering hos en mänsk-
lig kropp. För detta ändamål placeras flera tröghetssensorer på kroppen, och in-
formation från dessa kombineras med en biomekanisk modell som representerar
den mänskliga kroppen. Denna modell består av kroppssegment som är knutna
till varandra. Vi löser det resulterande problemet genom att använda en opti-
meringsbaserad metod vilket resulterar i korrekta relativa positions- och oriente-
ringsskattningar. Detta betyder att formen på kroppen är rätt representerad men
den absoluta positionen kan inte fastställas.

För att skatta den absoluta positionen av kroppen formulerar vi inomhuspositio-
neringsproblemet med hjälp av time of arrival mätningar från ett ultra-wideband
(uwb) system i kombination med tröghetsmätningar. Vår algoritm använder ett
angreppssätt baserat på tightly-coupled sensorfusion och leder till goda positions-
och orienteringsskattningar. För att kunna få positionsinformation från uwbmät-
ningar är det nödvändigt att känna till uwb mottagarnas positioner och tidsför-
skjutningar. För detta ändamål presenterar vi en lättanvänd algoritm för att ka-
librera ett uwb system. Den är baserad på en maximum likelihood formulering
som modellerar bruset hos uwb mätningar med hjälp av en asymmetrisk fördel-
ning med heavy tails för att hantera orimliga mätningar.
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Notation

Symbols and operators

Notation Meaning

n Navigation frame
b Body frame
xt State vector at time t
x1:N Set of states from time t = 1 to t = N
ut Known input vector at time t
yt Measurements at time t
y1:N Set of measurements from time t = 1 to t = N
ft( · ) State update equation at time t
ht( · ) Measurement equation at time t
x̂t|t State estimate at time t given measurements up to and

including time t
Pt|t State covariance at time t given measurements up to

and including time t
θ Parameter vector
θ̂ Parameter estimate

p (a | b) Conditional probability of a given b
pθ(b) Probability of b parametrized by θ
N (µ, σ2) Gaussian distribution with mean µ and covariance σ2

Cauchy(µ, γ) Cauchy distribution with location parameter µ and
scale parameter γ

∅ Empty set
∈ Is a member of

A ⊆ B A is a subset of or is included in B
R Set of real numbers

argmax Maximizing argument
argmin Minimizing argument
‖a‖2 Two-norm of the vector a
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Symbols and operators

Notation Meaning

In n × n identity matrix
, Defined as
∂y
∂x

Partial derivative of y with respect to x
detA Determinant of the matrix A
AT Transpose of the matrix A
[a×] Cross product matrix of the vector a
A−1 Inverse of the matrix A
⊙ Quaternion multiplication
qL Left quaternion multiplication of the quaternion q
qR Right quaternion multiplication of the quaternion q
qv Vector part of the quaternion q

Abbreviations

Abbreviation Meaning

bfgs Broyden-Fletcher-Goldfarb-Shanno
ekf Extended Kalman filter
gps Global positioning system
imu Inertial measurement unit
kf Kalman filter
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mekf Multiplicative extended Kalman filter
mems Micro-machined electromechanical system
ml Maximum likelihood
nlos Non-line-of-sight
pdf Probability density function
pf Particle filter

pf-map Maximum a posteriori estimate for the particle filter
rbpf Rao-Blackwellized particle filter

rbpf-map Maximum a posteriori estimate for the Rao-
Blackwellized particle filter

slam Simultaneous localization and mapping
toa Time of arrival
uwb Ultra-wideband
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Background





1
Introduction

In this thesis, we consider the problem of estimating position and orientation
using inertial sensors (accelerometers and gyroscopes). Throughout the thesis,
the inertial measurements are used in combination with other sensors, namely
magnetometers and time of arrival (toa) measurements from an ultra-wideband
(uwb) system. We also consider the problem of using multiple inertial sensors
placed on the human body to estimate the body’s position and orientation (6D
pose). Information from the inertial sensors is in that case combined using a
biomechanical model which represents the human body as consisting of body
segments that are attached to each other. To efficiently combine information from
different sensors and different models, we rely on probabilistic models.

Part I of this thesis serves as background material to Part II in which four papers
are presented. Hence, in Part I we will frequently refer to the different papers
in Part II. In Section 1.1 of this chapter, we will first give a short description
of the different sensors used throughout this thesis. Subsequently, the topic of
probabilistic modeling will be introduced in Section 1.2. In the remainder we
will discuss some example applications and summarize the contributions of this
thesis.

1.1 Sensors

In this section we will introduce the sensors that are used throughout this thesis.
In all four papers in Part II, our algorithms make use of inertial measurements
from an inertial measurement unit (imu). The imus we use are based on micro-
machined electromechanical system (mems) technology and are equipped with
both inertial sensors (see Section 1.1.1) and with a three-axis magnetometer (see

3



4 1 Introduction

Figure 1.1: Example sensors. Left and right: an inertial measurement unit
(imu) with and without casing. Middle: an ultra-wideband (uwb) transmit-
ter. By courtesy of Xsens Technologies.

Section 1.1.2). An example of an imu can be found in Figure 1.1.

1.1.1 Inertial sensors

The term inertial sensor is used to denote the combination of a three-axis ac-
celerometer and a three-axis gyroscope. A gyroscope measures the sensor’s angu-
lar velocity, i.e. the rate of change of the sensor’s orientation. Hence, integration
of the gyroscope signals provides information about the orientation of the sensor.

An accelerometer measures the external specific force acting on the sensor. The
specific force consists of both the sensor’s acceleration and the earth’s gravity.
The earth’s gravity is of the order of 9.81 m/s2, while the sensor’s acceleration
is generally of much smaller magnitude. The accelerometer measurements will
therefore typically consist of a large contribution from the earth’s gravity and a
relatively small contribution due to the motion of the sensor. After subtraction
of the earth’s gravity, double integration of the accelerometer signals provides
information about the sensor position. To subtract earth’s gravity, however, it
is necessary that the orientation of the sensor is known. Hence, estimation of
the sensor’s position and orientation are inextricably linked when using inertial
sensors. The combined estimation of both position and orientation is sometimes
called pose estimation. The process of estimating position and orientation using
inertial sensors is summarized in Figure 1.2.

The integration steps from angular velocity to rotation and acceleration to posi-
tion introduce integration drift. Hence, errors in the measurements have a large
impact on the quality of the estimated position and orientation using inertial sen-
sors only. This is specifically the case for position, which relies both on double
integration of the acceleration and on accurate orientation estimates to subtract
the earth’s gravity. Because of this, inertial sensors need to be supplemented with
other sensors to lead to accurate position and orientation estimates. The inertial
measurements can for instance be combined with toameasurements from auwb
system. uwb will be introduced in Section 1.1.3.
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∫

rotate
remove
gravity

"

angular
velocity orientation

external spe-
cific force acceleration position

Figure 1.2: Schematic illustration of the process of determining position and
orientation from the accelerometer measurements (external specific force)
and the gyroscope measurements (angular velocity), assuming a known ini-
tial position and orientation.

In case we are interested in orientation estimation only, it is possible to use in-
ertial sensors in combination with a magnetometer. For this, however, we need
an additional model assumption concerning the acceleration. One can recognize
that when the sensor is (almost) not accelerating, the accelerometer (almost) only
measures the gravity. Using this model assumption, the accelerometer measure-
ments can provide an estimate of the vertical direction (aligned with the gravity
vector). The angle of deviation from the vertical is called the inclination. The ac-
celerometer measurements can hence be said to stabilize the inclination estimates
from the gyroscope. They do, however, not provide any information about the
heading, i.e. the rotation around the vertical axis. Information about this can be
obtained from magnetometers, which will be introduced in Section 1.1.2. Since
imus often consist of both inertial sensors and magnetometers, it is for many
applications possible to obtain accurate orientation estimates using an imu.

1.1.2 Magnetometers

Amagnetometer measures the strength and the direction of themagnetic field. In
combination with inertial sensors, magnetometers typically serve the purpose of
a compass and are used to determine the sensor’s heading. This approach relies
on the assumption that the magnetic field is at least locally constant and that
it points in the direction of a local magnetic north. This is specifically the case
when there are no magnetic objects in the vicinity of the sensor. In that case the
magnetometer only measures the earth’s magnetic field. Both the magnitude and
the direction of the earth’s magnetic field depend on the location on the earth, as
depicted in Figure 1.3. However, the horizontal component of the magnetic field
always points towards the earth’s magnetic north.

Magnetometers typically provide accurate measurements of the magnetic field at
high sampling rates. The measured magnetic field is, however, often not equal to
the earth’s magnetic field due to the presence of metallic objects in the vicinity
of the sensor. The presence of objects causing magnetic disturbances is typically
considered to be undesirable since they negatively affect the heading estimates.
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Figure 1.3: Schematic of the earth magnetic field lines (green) around the
earth (blue).

However, if the metallic object is rigidly attached to the sensor the magnetometer
can be calibrated for the presence of this disturbance. Afterwards, the measure-
ments can be used for heading estimation as if the disturbance was not present.
Example scenarios for which this calibration can be used are when a magnetome-
ter is attached to e.g. a smartphone, a car or an aircraft. Magnetometer calibration
is the topic of Paper A, where a practical magnetometer calibration algorithm is
derived.

An alternative approach is to exploit the presence of magnetic disturbances in
indoor environments by using them as a source of position information, see e.g.
Angermann et al. (2012); Frassl et al. (2013). This approach assumes that knowl-
edge of the magnetic field is represented as a map in which we want to localize
the sensor. For instance, the strength and/or direction of the magnetic field at a
specific location can be compared with a magnetic field map of the environment
to estimate possible sensor locations. This is the topic of Paper D.

1.1.3 Ultra-wideband

A third type of measurements used in Part II of this thesis is based on toa mea-
surements from a uwb system. The uwb system consists of a number of station-
ary uwb receivers and a number of mobile transmitters, as depicted in Figure 1.4.
The uwb transmitter (see also Figure 1.1) sends out a uwb pulse. The receivers
measure the time of arrival of the pulse. Ideally, the time it takes for the pulse
to reach the receivers is proportional to the distance between the transmitter and
the receiver. However, due to multipath or non-line-of-sight (nlos) conditions,
the pulse can be delayed leading to a measurement outlier. In Paper B we con-
sider the problem of indoor positioning using uwb measurements in combina-
tion with inertial measurements. The paper focuses on sensor fusion between
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UWB transmitter

UWB receiver

pulse

Figure 1.4: The UWB setup consists of a number of stationary receivers mak-
ing TOA measurements of signal pulses originating from a mobile transmit-
ter.

the uwbmeasurements and the inertial measurements. It also presents a calibra-
tion algorithm that determines the positions and clock offsets of the receivers and
a novel approach to obtain position estimates using only the uwbmeasurements.

1.2 Probabilistic modeling

In this thesis we use measurements from the sensors discussed in Section 1.1 in
combination with models to estimate the sensor’s position and orientation. Both
the measurements and the models provide uncertain information, for instance
due to measurement noise or measurement outliers, but also due to model im-
perfections. Hence, we reason about our problem in terms of random variables
with a probability density function (pdf). Combining information from different
sensors based on a probabilistic framework is called sensor fusion, see e.g. Gustafs-
son (2012).

We typically describe our problems in the form of a state-space model,

xt+1 = ft(xt , ut , θ, vt), (1.1a)

yt = ht(xt , θ, et), (1.1b)

where (1.1a) is the dynamics or state update equation and (1.1b) is themeasurement
equation. The dynamics model how the state changes over time, i.e. they describe
the state x at time t + 1, denoted xt+1, in terms of a possibly nonlinear and time-
varying model ft( · ). The model ft( · ) depends on the state x, the input u and the
process noise v at time t, and on a constant parameter vector θ. The measure-
ment equation models the measurements yt as a function ht( · ) of the state xt , i.e.
it describes which information about the state can be inferred from the measure-
ments. The function ht( · ) also depends on a constant parameter vector θ and
the measurement noise et . The noise terms vt and et can reflect our confidence
in the models and in the measurements, respectively. They can also be used to
model different noise distributions to for instance take into account the presence
of measurement outliers.

State-space models (1.1) are often used for state estimation, where we estimate
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the state x1:N = {x1, . . . , xN }. State estimation is often done using a maximum a
posteriori (map) approach,

x̂MAP
1:N = argmax

x1:N

p(x1:N | y1:N ), (1.2)

where p(a | b) denotes the conditional probability of a given b. Hence, the es-
timated state x1:N is chosen to be the one most likely from the measurements
y1:N = {y1, . . . , yN }. Various techniques exist to obtain themap estimate. In Chap-
ter 2 we will discuss background to the state estimation techniques that are used
in the papers presented in Part II of this thesis.

In specific situations, the model parameters θ are unknown and need to be esti-
mated from data. An example of this is sensor calibration where for instance the
presence of an unknown measurement bias could be modeled as an unknown
parameter in the measurement equation (1.1b). Estimation of parameters in a
state-space model is also called grey-box system identification (Ljung, 1999; Bohlin,
2006). It can be done using maximum likelihood (ml) estimation,

θ̂ML = argmax
θ∈Θ

pθ(y1:N ), (1.3)

where pθ(b) denotes the probability of b parametrized by θ. The parameter vector
θ is an nθ-dimensional vector which can be limited to a subset Θ of Rnθ , i.e. the
optimization is performed over θ ∈ Θ with Θ ⊆ R

nθ . The problem of sensor
calibration will be discussed in more detail in Chapter 3 and will be the subject
of Paper A and of part of Paper B.

1.3 Example applications

Position and orientation estimation is of interest for a wide range of applications.
One can think of for instance aircraft or car localization, but also of pedestrian
localization (Hol, 2011; Woodman, 2010; Grzonka, 2011; Callmer, 2013). For
outdoor applications, it is typically possible to make use of measurements from
a global positioning system (gps). For indoor positioning, however, gps signals
are not available.

As discussed in Section 1.1.1, inertial sensors provide information about the
change in orientation and position at high sampling rates. With the develop-
ment of mems technology, small inertial sensors which can be worn on the hu-
man body have become available. This has applications in for instance pedestrian
tracking (Woodman, 2010) which often focuses on estimating the position of first-
responders such as fire-fighters (Grzonka, 2011; Callmer, 2013). It also has appli-
cations for human body motion capture which is the subject of Paper C. There, a
subject wears a suit with 17 imus on different body segments. The inertial mea-
surements are used in combination with a biomechanical model to estimate the
pose of the body. This biomechanical model is used to represent the assumption
that the different body segments are (and remain) attached to each other. An ex-
ample of pose estimates using inertial sensors is shown in Figure 1.5. The motion
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Figure 1.5: Example of inertial human body motion capture. Left: olympic
and world champion speed skating Ireen Wüst wearing an inertial motion
capture suit with 17 inertial sensors. Right: graphical representation of the
estimated position and orientation of the body segments. By courtesy of
Xsens Technologies.

Figure 1.6: Example of inertial motion capture using 17 inertial sensors as
well as 3 uwb transmitters on the head and on the feet. The estimated pose
is shown in orange. By courtesy of Xsens Technologies.

capture suit can also be used in combination with uwb measurements. Paper B
focuses on the use of uwbmeasurements and the sensor fusion of uwbmeasure-
ments with inertial measurements. In Figures 1.6 and 1.7 a subject is shown who
wears 17 inertial sensors as well as 3 uwb transmitters, on both his feet and his
head.

1.4 Thesis outline

The thesis is divided into two parts, with edited versions of published and unpub-
lished papers in Part II. In Part I, we will give background information relevant
to the different papers.

Part I – Background

In Chapter 2, we describe the subject of pose estimation using inertial sensors
and magnetometers. We focus on different algorithms/algorithm implementa-
tions to estimate the sensor’s orientation. This serves as background material to
Papers A, B and C. We also discuss some issues related to particle filtering for
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Figure 1.7: Example of inertial motion capture using 17 inertial sensors as
well as 3 uwb transmitters on the head and on the feet. The estimated pose
is overlaid on the body. As discussed in Section 1.1.3, uwb does not require
line-of-sight. Hence, it is also possible to get good pose estimates when the
subject is covered by for instance a box (right plot).

pose estimation using the magnetic field as a source of position information as
in Paper D. In Chapter 3, we discuss the topic of sensor calibration. It provides
background to the magnetometer calibration problem in Paper A and the uwb
calibration algorithm presented in Paper B. Part I concludes with a summary of
the contributions of the papers and a discussion of possible directions for future
work.

Part II – Publications

Part II of the thesis consists of edited versions of four papers. These papers con-
tain the following main contributions of this thesis:

• A novel magnetometer calibration algorithm which uses inertial sensors to
calibrate the magnetometer for the presence of magnetic disturbances, for
magnetometer sensor errors and for misalignment between the magnetome-
ter and the inertial sensor axes [Paper A].

• A novel approach to combine inertial measurements with toa measure-
ments from a uwb system for indoor positioning. We present a tightly-
coupled sensor fusion approach to combine the inertial measurements and
theuwbmeasurements, an easy-to-use algorithm to calibrate theuwb setup
and a novel multilateration approach to estimate the transmitter’s position
from the uwbmeasurements [Paper B].

• A novel inertial human body motion capture approach which solves the
motion capture problem using an optimization-based approach [Paper C].

• A novel algorithm for 6D pose estimation where inertial measurements are
complemented with magnetometer measurements assuming that a mag-
netic field map is known. In this approach, the magnetometer measure-
ments are hence used as a source of position information [Paper D].
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Below we provide a summary of each paper together with a discussion of the
background and of the author’s contributions.

Paper A: Magnetometer calibration using inertial sensors

Paper A is an edited version of

M. Kok and T. B. Schön. Magnetometer calibration using inertial sen-
sors. Preprint, 2014b.

Earlier versions of this work were presented in

M. Kok and T. B. Schön. Maximum likelihood calibration of a mag-
netometer using inertial sensors. In Proceedings of the 19th World
Congress of the International Federation of Automatic Control (ac-
cepted for publication), Cape Town, South Africa, August 2014a,

M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge. Cali-
bration of a magnetometer in combination with inertial sensors. In
Proceedings of the 15th International Conference on Information Fu-
sion, Singapore, July 2012.

Summary: In this work we present a practical calibration algorithm that cali-
brates a magnetometer using inertial sensors. The calibration corrects for mag-
netometer sensor errors, for the presence of magnetic disturbances and for mis-
alignment between the magnetometer and the inertial sensor axes. It is based on
a maximum likelihood formulation and is formulated as an offline method. It is
shown to give good results using data from two different commercially available
sensor units. Using the calibrated magnetometer measurements in combination
with the inertial sensors to determine orientation, is shown to lead to significantly
improved heading estimates.

Background and contributions: Before the author of this thesis started her work
as a PhD student at Linköping University, she worked at Xsens Technologies. Dur-
ing this time she studied the topic of magnetometer calibration. Hence, the mag-
netometer calibration problem provided a good starting point for research dur-
ing her PhD. A first paper on this subject has therefore been co-authored with
Dr. Jeroen Hol and Dr. Henk Luinge from Xsens Technologies. Later work has
mainly been done in cooperation with Prof. Thomas Schön. Dr. Henk Luinge and
Laurens Slot from Xsens Technologies and Dr. Gustaf Hendeby from Linköping
University have been so kind as to help in collecting the data sets presented in
the paper. The author of this thesis has implemented the calibration algorithm
and has written a major part of the paper.

Paper B: Indoor positioning using ultra-wideband and inertial

measurements

Paper B is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. Indoor positioning using ultra-
wideband and inertial measurements. Preprint, 2014b.



12 1 Introduction

Summary: In this work we present an approach to combine measurements from
accelerometers and gyroscopes (inertial sensors) with time of arrival measure-
ments from an ultra-wideband system for indoor positioning. Our algorithm
uses a tightly-coupled sensor fusion approach and is shown to lead to accurate 6D
pose (position and orientation) estimates as compared to data from an optical ref-
erence system. To be able to obtain position information from the ultra-wideband
measurements, it is imperative that accurate estimates of the receivers’ positions
and clock offsets are known. Hence, we also present an easy-to-use algorithm
to calibrate the ultra-wideband system. It is based on a maximum likelihood
formulation and represents the ultra-wideband measurements assuming a heavy-
tailed asymmetric noise distribution to account for measurement outliers. Using
the heavy-tailed asymmetric noise distribution and the calibration results, it is
shown that accurate position estimates can be obtained from the ultra-wideband
measurements using a novel multilateration approach.

Background and contributions: The co-authors of this paper, Dr. Jeroen Hol
and Prof. Thomas Schön, have been working on the subject of indoor positioning
using ultra-wideband measurements and inertial measurements, resulting in the
two papers Hol et al. (2009, 2010) and in the results presented in Hol (2011). The
author of this thesis has extended the calibration and multilateration algorithms
from Hol (2011); Hol et al. (2010) by assuming a heavy-tailed asymmetric distri-
bution to represent the outliers in the ultra-wideband measurements. The pre-
sented sensor fusion results are based on previous results from Hol et al. (2009).
The paper has been written together with Dr. Jeroen Hol.

Paper C: An optimization-based approach to human body motion

capture using inertial sensors

Paper C is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. An optimization-based approach to
human body motion capture using inertial sensors. In Proceedings of
the 19thWorld Congress of the International Federation of Automatic
Control (accepted for publication), Cape Town, South Africa, August
2014a.

Summary: In inertial human motion capture, a multitude of body segments are
equipped with inertial measurement units, consisting of 3D accelerometers, 3D
gyroscopes and 3D magnetometers. Relative position and orientation estimates
can be obtained using the inertial data together with a biomechanical model. In
this work we present an optimization-based solution to magnetometer-free iner-
tial motion capture. It allows for natural inclusion of biomechanical constraints,
for handling of nonlinearities and for using all data in obtaining an estimate. As a
proof-of-concept we apply our algorithm to a lower body configuration, illustrat-
ing that the estimates are drift-free and match the joint angles from an optical
reference system.
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Background and contributions: The co-authors Dr. JeroenHol and Prof. Thomas
Schön came up with the idea of solving the human body motion capture problem
as an optimization problem. The implementation of the optimization algorithm
has been done using a framework developed by Xsens Technologies. With this
framework, it is possible to define the optimization problem at a high level. The
author of this thesis has been involved in developing and implementing the algo-
rithm, in the data collection and has written a major part of the paper.

Paper D: MEMS-based inertial navigation based on a magnetic

field map

Paper D is an edited version of

M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson. MEMS-based
inertial navigation based on a magnetic field map. In Proceedings
of the 38th International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), pages 6466–6470, Vancouver, Canada, May
2013.

Summary: This paper presents an approach for 6D pose estimation wheremems
inertial measurements are complemented with magnetometer measurements as-
suming that a model (map) of the magnetic field is known. The resulting esti-
mation problem is solved using a Rao-Blackwellized particle filter. In our exper-
imental study the magnetic field is generated by a magnetic coil giving rise to a
magnetic field that we can model using analytical expressions. The experimental
results show that accurate position estimates can be obtained in the vicinity of
the coil, where the magnetic field is strong.

Background and contributions: The idea of looking into pose estimation using
magnetometers as a source of position information was started through discus-
sions with Dr. Slawomir Grzonka during the CADICS “Learning World Models”
workshop in 2010 in Linköping. The experiments used in the paper were per-
formedwhile the author of this thesis was working at Xsens Technologies. During
this time, a first implementation of the pose estimation algorithm was made, us-
ing an extended Kalman filter. During the author’s time at Linköping University,
the work has been extended with an implementation using a Rao-Blackwellized
particle filter. The author of this thesis wrote a major part of this paper.

Publications of related interest, but not included in this thesis

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger.
Real-time video based lighting using GPU raytracing. In Proceedings
of the 2014 European Signal Processing Conference (EUSIPCO), Lis-
bon, Portugal, September 2014. (submitted, pending review).

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling mag-
netic fields using Gaussian processes. In Proceedings of the 38th In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3522–3526, Vancouver, Canada, May 2013.





2
Pose estimation using inertial

sensors and magnetometers

As discussed in Chapter 1, position and orientation estimation are closely related
in the case of inertial sensors. Pose estimation denotes the simultaneous estima-
tion of position and orientation. One can use standard estimation techniques for
this. However, due to the nonlinear nature of the orientation and the different
orientation representations, it is not obvious what is the best technique to use
to estimate the orientation. In the different papers we use a variety of different
techniques for orientation estimation, depending on the particular situation. In
this chapter we will discuss a few different approaches and their pros and cons.

We start by introducing different representations of orientations in Section 2.1.
Subsequently, two different extended Kalman filter (ekf) implementations are dis-
cussed in Section 2.2. Ekfs can be used to solve themap problem (1.2) introduced
in Chapter 1. Section 2.3 will introduce an alternative way of solving the map
problem (1.2) using optimization techniques. In Section 2.4, some details with
respect to particle filtering will be discussed.

2.1 Orientation representations

The orientation of an object is defined as the rotation between its coordinate
frame with respect to a second coordinate frame. In this thesis we will mostly
make use of the body coordinate frame b and the navigation coordinate frame n.
The body frame b has its origin in the center of the accelerometer triad and its
axes are aligned with the inertial sensor axes. The navigation frame n is aligned
with the earth’s gravity and the local magnetic field.

Orientation can be represented in many different ways (Shuster, 1993). Perhaps
the most intuitive representation is to make use of Euler angles. Rotation in
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Figure 2.1: Definition of the Euler angles with left: rotation ψ around the
z-axis, middle: rotation θ around the y-axis and right: rotation φ around the
x-axis.

terms of Euler angles is defined as a consecutive rotation around the three axes.
We use the convention (z, y, x) which first rotates around the z-axis, subsequently
around the y-axis and finally around the x-axis. The rotations around the three
axes, often denoted as the roll φ, the pitch θ and the yaw ψ angles, are depicted in
Figure 2.1. Although Euler angles are an intuitive representation of orientation,
they suffer from ambiguities. For instance, any addition of 2π to the different
angles results in the same orientation. Another ambiguity is sometimes called
gimbal lock where certain rotation sequences lead to the same orientation, for
instance the rotation (0, π/2, π) is equal to the rotation (−π, π/2, 0).

An alternative way to represent orientation is to use rotation matrices where the
rotation matrix representation of the Euler angle rotation (ψ, θ, φ) is given by

R =



1 0 0
0 cosφ sinφ
0 − sinφ cosφ






cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ






cosψ sinψ 0
− sinψ cosψ 0

0 0 1




=




cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


 .

(2.1)

Rotation matrices are a useful orientation representation and they will frequently
be used throughout this thesis. For orientation estimation purposes, however,
rotation matrices are less suitable. The reason is that they would lead to a 9-
dimensional state vector subject to the following constraints

RRT = RTR = I3, detR = 1, (2.2)

where I3 denotes a 3 × 3 identity matrix.

A commonly used alternative orientation representation is that of unit quater-
nions. Quaternions were first introduced by Hamilton (1844) and are widely
used in orientation estimation algorithms, see e.g. Kuipers (1999); Hol (2011).
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Quaternions use a 4-dimensional description of the orientation

q =
(
q0 q1 q2 q3

)T
=

(
q0
qv

)
, (2.3)

with the constraint that ‖q‖2 = 1. The rotation matrix R and the quaternion q are
related by

R = qvq
T

v + q
2
0I3 + 2q0[qv×] + [qv×]2

=




2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1


 , (2.4)

where [qv×] denotes the cross product matrix

[qv×] =


0 −q3 q2
q3 0 −q1
−q2 q1 0


 . (2.5)

Special quaternion algebra is available, see e.g. Kuipers (1999); Hol (2011). In
this chapter, we will only introduce the quaternion algebra needed to derive the
algorithms.

Note that a rotation is always represented from one coordinate frame to another.
Hence, we use a double superscript on the rotation matrix R and the quaternion
q as

mn = Rnbmb, (2.6)

where mb is a vector in the body frame b and the rotation matrix Rnb rotates the
vector to the navigation frame n. Equivalently,

mb =
(
Rnb

)T
mn = Rbnmn. (2.7)

where a vector mn in the navigation frame n is rotated to the body frame b using
the rotation matrix (Rnb)T = Rbn.

2.2 Extended Kalman filters for orientation estimation

Orientation estimation is a state estimation problem, where the state x1:N in a
state-space model (see (1.1)) is estimated from a time update and a measurement
model. As discussed in Section 1.2, state estimation aims at obtaining a map es-
timate of the state. In the case of linear models this can be done using a Kalman
filter (kf). Kfs were first introduced by Kalman (1960) and are the best linear un-
biased filters in the sense that they minimize the variance of the state estimation
error. The ekf is an extension of the Kalman filter which makes the filter also ap-
plicable to nonlinear models. Unlike kfs, ekfs are not guaranteed to minimize
the variance of the state estimation error. Actually, no guarantees for the quality
of the ekf estimates can be given (Rawlings and Mayne, 2009). However, in cases
where the model is not “too” nonlinear, they typically work well. Ekfs are widely
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used due to their simplicity and computational efficiency, see e.g. Xsens Technolo-
gies B.V. (2014); Gustafsson (2012). For our case of estimating orientation using
inertial measurements, ekfs are known to work quite well. The reason is that
due to the high sampling rates of the imu, each update in the ekf is typically not
very nonlinear.

In the case of orientation estimation, the state in the ekf represents the orienta-
tion. Hence, a choice needs to be made which of the orientation representations
(see Section 2.1) to use to represent the state. In this section, we will introduce
two different ekf implementations for orientation estimation. To introduce the
problem, in Section 2.2.1 we will first introduce the well-known ekf equations.
Sections 2.2.3 and 2.2.4 will subsequently introduce ekf implementations to es-
timate orientation. The first uses a 4-dimensional quaternion state vector, the
second uses a 3-dimensional state vector representing the orientation deviation
from a linearization point. These discussions will focus on the simplest model to
estimate orientations, i.e. we focus on an ekf implementation with only orienta-
tion states.

2.2.1 The extended Kalman filter

An ekf uses a nonlinear state-space model (1.1) as introduced in Section 1.2. We
typically assume that the measurement noise is additive, and that both the pro-
cess and the measurement noise are zero-mean Gaussian with constant covari-
ance, i.e.

xt+1 = ft(xt , ut , vt), (2.8a)

yt = ht(xt) + et , (2.8b)

with vt ∼ N (0, Q) and et ∼ N (0, R).

The ekf estimates the state by performing a time update and ameasurement update.
The time update uses the model (2.8a) to “predict” the state to the next time step
according to

x̂t+1|t = ft(x̂t|t , ut), (2.9a)

Pt+1|t = AtPt|tA
T

t + GtQG
T

t , (2.9b)

with

At =
∂ft (xt ,ut ,vt )

∂xt

∣∣∣∣
xt=x̂t|t ,vt=0

, Gt =
∂ft (xt ,ut ,vt )

∂vt

∣∣∣∣
xt=x̂t|t ,vt=0

. (2.10)

Here, x̂ is used to distinguish the estimated state from the “true” state x. The
matrix P denotes the state covariance. The double subscripts on x̂t+1|t and Pt+1|t
denote the state estimate and the state covariance at time t + 1 given measure-
ments up to time t. Similarly, x̂t|t and Pt|t denote the state estimate and the state
covariance at time t given measurements up to time t.

The measurement update uses the measurement model (2.8b) in combination
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with the measurements yt to update the “predicted” state estimate as

x̂t|t = x̂t|t−1 + Pt|t−1C
T

t

(
CtPt|t−1C

T

t + R
)−1 (

yt − ŷt|t−1
)
, (2.11a)

Pt|t = Pt|t−1 − Pt|t−1CT

t

(
CtPt|t−1C

T

t + R
)−1

CtPt|t−1, (2.11b)

with

ŷt|t−1 = h(x̂t|t−1), Ct =
∂ht (xt )
∂xt

∣∣∣∣
xt=x̂t|t−1

. (2.12)

Note that in (2.11) we have shifted our notation by one time step as compared to
the notation in (2.9) to avoid cluttering the notation. The measurement update is
often expressed in terms of the Kalman gain Kt , the residual εt and the residual
covariance St

εt = yt − ŷt|t−1, St = CtPt|t−1C
T

t + R, Kt = Pt|t−1C
T

t S
−1
t . (2.13)

The ekf iteratively performs a time update and a measurement update to esti-
mate the state and the state covariance.

Design choices in the ekf are the choice of the state and of the dynamic and
the measurement models. In Sections 2.2.2 – 2.2.4 we will focus on these design
choices for the case of orientation estimation using inertial sensors and magne-
tometers. Hence, we will focus on the derivation of the models, the choice of the
state x and the derivation of the corresponding ft( · ), ht( · ), At , Ct , and Gt .

2.2.2 Modeling the orientation estimation problem

In this section we consider the problem of estimating orientation using inertial
sensors and magnetometers. We use a measurement model where the gyroscope
measurements yω,t are modeled as (Titterton and Weston, 1997)

yω,t = ωt + eω,t , (2.14)

where ωt denotes the angular velocity and eω,t ∼ N (0,Σω). For simplicity we
assume that the gyroscope measurements are bias-free.

The accelerometermeasurements ya,t aremodeled as (Titterton andWeston, 1997)

ya,t = R
bn
t (ant − gn) + ea,t

≈ −Rbn
t g

n + ea,t , (2.15)

where ea,t ∼ N (0,Σa) and Rbn
t denotes the rotation from the navigation frame

n to the body frame b at time t as described in Section 2.1. As discussed in
Chapter 1, the accelerometer measures both the sensor’s acceleration, denoted by
ant and the earth’s gravity, denoted by gn. In the case of using only inertial sensors
and magnetometers to estimate the orientation, it is necessary to stabilize the
inclination by assuming something about the sensor’s acceleration. A possible
model for this is to assume that the mean of the acceleration is zero, as in Paper C
and Luinge (2002). In this section and in Paper A we use a simpler model, where
it is assumed that the acceleration ant is approximately zero for all t.
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The magnetometer measurements ym,t are modeled as

ym,t = R
bn
t m

n + em,t , (2.16)

where em,t ∼ N (0,Σm). The local magnetic field is denoted by mn. It is assumed
to be constant and its horizontal component is assumed to be in the direction of
the local magnetic north.

As discussed in Gustafsson (2012), it is possible to use the gyroscope measure-
ments either as an input to the dynamic equation (2.8a) or as a measurement
in (2.8b). In this thesis, we use an estimate of the angular velocity as a motion
model for the orientation, i.e. we use the gyroscope measurements as an input
to (2.8a). The noise vt in (2.8a) hence represents the measurement noise of the
gyroscope.

2.2.3 Quaternion states

Using the model from Section 2.2.2, we will now derive an ekf to estimate the ori-
entation using quaternions as a state vector. The state-space model (recall (2.8))
is for this case given by

qnbt+1 = ft(q
nb
t , yω,t , eω,t), (2.17a)

yt = ht(q
nb
t ) + et , (2.17b)

where eω,t ∼ N (0,Σω) and et ∼ N (0, R). The measurement model uses the ac-
celerometer and magnetometer measurement models (2.15) and (2.16).

The dynamic equation is given by (Gustafsson, 2012; Törnqvist, 2008)

qnbt+1 = exp
(
− T2 S(ωt)

)
qnbt (2.18a)

≈
(
I4 + T

2 S(ωt)
)
qnbt (2.18b)

=
(
I4 + T

2 S(ω̂t)
)
qnbt + T

2 S̄(q
nb
t )vt , (2.18c)

where exp denotes the matrix exponential, T denotes the sampling time and

ω̂t = yω,t = ωt + eω,t . (2.19)

The matrices S̄(q) and S(ω) are given by

S̄(q) =




−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0



, S(ω) =




0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0



. (2.20)

To obtain (2.18b), a first order approximation is used. Subsequently, (2.18c) is
obtained using the gyroscope measurement model (2.14). Note that without loss
of generality we have changed the sign in front of the zero-mean Gaussian noise-
term in (2.14).

The state-space model (2.8) used to obtain the basic ekf equations, is therefore
more explicitly given in terms of its dynamic equation (2.18) and its measure-
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Algorithm 1 ekf estimating orientation using quaternion states
1. Time update

q̂nbt+1|t = exp
(
− T2 S(ω̂t)

)
q̂nbt|t , (2.21a)

Pt+1|t = AtPt|tA
T

t + GtQG
T

t , (2.21b)
with

At = I4 + T
2 S(ω̂t), Gt =

T
2 S̄(q̂

nb
t ), Q = Σω.

2. Measurement update

q̂nbt|t = q̂
nb
t|t−1 + Pt|t−1C

T

t

(
CtPt|t−1C

T

t + R
)−1 (

yt − ŷt|t−1
)
, (2.22a)

Pt|t = Pt|t−1 − Pt|t−1CT

t

(
CtPt|t−1C

T

t + R
)−1

CtPt|t−1, (2.22b)
with

ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 , Ct =




− ∂Rbn
t|t−1

∂qnbt|t−1

∣∣∣∣∣
qnbt|t−1=q̂

nb
t|t−1

gn

∂Rbn
t|t−1

∂qnbt|t−1

∣∣∣∣∣
qnbt|t−1=q̂

nb
t|t−1

mn



, R =

(
Σa 0
0 Σm

)
.

3. Renormalize the quaternion q̂nbt|t .

ment models (2.15) and (2.16). Using the results from Section 2.2.1, the ekf im-
plementation for estimating orientation using quaternion states can be derived.
It is given in Algorithm 1. Note that to avoid cluttering notation, the time indices
are again shifted between the time and the measurement update.

Due to the norm 1 constraint of the quaternions, we expect the state covariance
matrix P in Algorithm 1 to be rank deficient. Due to linearization, however, the
matrix P in the ekf is typically not rank deficient. Hence, the actual interpre-
tation of the covariance matrix is problematic. To avoid problems with a rank
deficient state covariance matrix, in Section 2.2.4 we will derive a different ekf
implementation.

2.2.4 Orientation error states

A second possible ekf implementation makes use of a 3-dimensional state vector
ηt representing the orientation deviation from a linearization point q̃nbt . This ekf
implementation is sometimes referred to as a multiplicative ekf (mekf) (Cras-
sidis et al., 2007; Markley, 2003). Its derivation is slightly more involved than
the one using quaternions. However, its implementation is computationally at-
tractive since it only uses a 3-dimensional state (compared to the 4-dimensional
state in Section 2.2.3). Furthermore, the interpretation of the state covariance is
more intuitive since it is not expected to be rank-deficient as was the case for the
quaternion implementation.

The linearization point q̃nbt is encoded using a unit quaternion. Defining without
loss of generality1 that the orientation deviation is in the body frame b, the ori-

1A similar derivation can be done assuming an orientation deviation in the navigation frame n.
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entation qnbt can be defined in terms of a linearization point q̃nbt and the state ηbt
as

qnbt = q̃nbt ⊙ δq(ηbt ). (2.23)

Here, ⊙ denotes the quaternion multiplication defined as

p ⊙ q ,
(

p0q0 − pv · qv
p0qv + q0pv + pv × qv

)
, (2.24)

which can equivalently be written as the following matrix-vector multiplications

p ⊙ q =
(
p0 −pTv
pv p0I3 + [pv×]

)

︸                   ︷︷                   ︸
pL

(
q0
qv

)
=

(
q0 −qTv
qv q0I3 − [qv×]

)

︸                  ︷︷                  ︸
qR

(
p0
pv

)
. (2.25)

The notation δq(a) denotes the quaternion representation of a vector a according
to

δq(a) =




cos ‖a‖2
a
‖a‖ sin

‖a‖
2


 ≈

(
1
a
2

)
, (2.26)

where the second equality uses a first order approximation, assuming that the
vector a is small.

Based on (2.23), the dynamic and measurement models and the resulting ekf
time and measurement update equations of the state ηbt can be derived. In the
remainder, the superscript b will be omitted for brevity.

Time update

To determine the ekf time update equations, we need to derive the dynamic equa-
tion

ηt+1 = ft
(
ηt , yω,t , eω,t

)
. (2.27)

To derive the dynamic model (2.27), we start from (2.23) for two different time
steps

qnbt+1 = q̃nbt+1 ⊙ δq(ηt+1), (2.28a)

qnbt = q̃nbt ⊙ δq(ηt). (2.28b)

The dynamics of the orientation is defined in terms of the angular velocity ωt as
(see e.g. Shuster (1993); Hol (2011))

qnbt+1 = qnbt ⊙ δq(Tωt), (2.29)

where δq(Tωt) is defined as in (2.26).

Comparing (2.28) and (2.29), we can use the gyroscope measurements to either
update the linearization point q̃nbt or to update the state ηt . Assuming that the
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gyroscope measurements are used to update the linearization point,

q̃nbt+1 = q̃nbt ⊙ δq(T ω̂t), (2.30)

where ω̂t is defined in (2.19). Combining (2.28) – (2.30),

δq(ηt+1) =
(
q̃nbt+1

)−1 ⊙ q̃nbt ⊙ δq(ηt) ⊙ δq(Tωt)
= (δq(T ω̂t))

−1 ⊙ δq(ηt) ⊙ δq(Tωt)

≈
(

1
− T2 ω̂t

)L (
1

T
2ωt

)R
δq(ηt)

=

(
1

− T2
(
ωt + eω,t

)
)L (

1
T
2ωt

)R
δq(ηt), (2.31)

where we used the definition (2.25), the gyroscope measurement model (2.14)
and the definition of the inverse quaternion as

q−1 =

(
q0
−qv

)
. (2.32)

Note that in (2.32) we implicitly assume that the norm of the quaternion q is
equal to one. For a more general definition, see e.g. Hol (2011); Törnqvist (2008).
Defining

M ,

(
1

− T2
(
ωt + eω,t

)
)L (

1
T
2ωt

)R
, (2.33)

and using the first-order approximation from (2.26), (2.31) can be written as
(
1
ηt+1
2

)
≈ M

(
1
ηt
2

)
. (2.34)

Hence, the dynamic model can be written as

ηt+1 = ft(ηt , yω,t , eω,t) ≈ 2M21 +M22ηt , (2.35)

where M21 and M22 denote the (2, 1) and (2, 2) components of the matrix M , re-
spectively, with

M21 = − T2
(
ωt + eω,t

)
+

(
I3 − T

2 [
(
ωt + eω,t

)×]
)
T
2ωt , (2.36a)

M22 = T 2

4
(
ωt + eω,t

)
ωT

t +
(
I3 − T

2 [
(
ωt + eω,t

)×]
) (
I3 − T

2 [ωt×]
)
. (2.36b)

We assume that η̂t = 0 and hence that the ekf time update affects the lineariza-
tion point directly, i.e. η̂t+1 = 0 and

q̂nbt+1|t = q̂
nb
t|t ⊙ δq(T ω̂t), (2.37a)

Pt+1|t = AtPt|tA
T

t + GtQG
T

t , (2.37b)
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where q̂nbt|t denotes the ekf estimate of the linearization point and

At =
∂ft (ηt ,yω,t ,eω,t )

∂ηt

∣∣∣∣
ηt=η̂t ,eω,t=0

= T 2

4 ω̂tω̂
T

t +
(
I3 − T

2 [ω̂t×]
) (
I3 − T

2 [ω̂t×]
)

≈ I3 − T [ω̂t×], (2.38)

Gt =
∂ft (ηt ,yω,t ,eω,t )

∂eω,t

∣∣∣∣
ηt=η̂t|t ,eω,t=0

= −TI3 + T 2

4 [ω̂t×]
≈ −TI3. (2.39)

Note that the approximations in (2.38) and (2.39) are not required, but are used
for notational convenience.

Measurement update

In the measurement update of the ekf, the state ηt is updated using the ac-
celerometer and magnetometer measurements. Hence, the measurement equa-
tions (2.15) and (2.16) need to be formulated in terms of the state ηt . For this, it
is possible to write

R(qnbt ) = R(q̃nbt ⊙ δq(ηbt )) = R(q̃nbt )R(δq(ηbt )), (2.40)

whereR(q) denotes the rotation matrix representation of the quaternion q. Using
the relation between a rotation matrix and a quaternion (2.4) and the first order
approximation (2.26) of the quaternion describing the orientation error,

R(δq(ηbt )) = (δq)v (δq)
T

v + δq
2
0I3 + 2δq0[(δq)v ×] + [(δq)v ×]2

= ηtη
T

t
4 + I3 + [ηt×] + 1

4 [ηt×]2

≈ I3 + [ηt×], (2.41)

where for notational simplicity we have omitted the explicit dependence of δq on
ηbt and the superscript b on the ηt .

Using (2.40) and (2.41), the accelerometer measurement equation (2.15) can be
written in terms of the state ηbt as

ya,t =
(
R(qnbt )

)T
(ant − gn) + ea,t

≈ −
(
R(qnbt )

)T
gn + ea,t

= −
(
R(δq(ηbt ))

)T (
R(q̃nbt )

)T
gn + ea,t

≈ −
(
I3 − [ηbt ×]

)
R̃bn
t g

n + ea,t

= −R̃bn
t g

n − [R̃bn
t g

n×]ηbt + ea,t , (2.42)

where R̃bn
t is the rotation matrix representation of q̃bnt .
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The magnetometer measurement equation (2.16) can be written in terms of the
state ηbt as

ym,t = R(qnbt )Tmn + em,t

= R(δq(ηbt ))T
(
R(q̃nbt )

)T
mn + em,t

≈
(
I3 − [ηbt ×]

)
R̃bn
t m

n + em,t

= R̃bn
t m

n − [ηbt ×]R̃bn
t m

n + em,t

= R̃bn
t m

n + [R̃bn
t m

n×]ηbt + em,t . (2.43)

The ekfmeasurement update equations can hence be written as

η̂t = Pt|t−1C
T

t

(
CtPt|t−1C

T

t + R
)−1 (

yt − ŷt|t−1
)
, (2.44a)

P̃t|t = Pt|t−1 − Pt|t−1CT

t

(
CtPt|t−1C

T

t + R
)−1

CtPt|t−1, (2.44b)

with

yt =

(
ya,t
ym,t

)
, ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 ,

Ct =
(
−[R̂bn

t|t−1g
n×] [R̂bn

t|t−1m
n×]

)
. (2.45)

Note that we do not use a double subscript for the state η̂t since the state is not
updated in the time update of the filter. The covariance after the measurement
update is denoted as P̃t|t since Pt|t will be determined in the subsequent relin-
earization step.

Relinearization

After the measurement update, the orientation deviation η̂t is non-zero. In ob-
taining the ekf time update equations, however, we assumed that the state ηt
was equal to zero. Hence, to not violate this assumption, we need to update the
linearization point and reset the state after the measurement update. In our al-
gorithm, we consider the relinearization as the “measurement update” for the
linearization point, i.e. we assume that we update the estimate of the lineariza-
tion point q̂nbt|t−1 to q̂

nb
t|t .

Defining the reset state as χt , we model the relinearization as

χt = gt(ηt). (2.46)

Note the similarity with the ekf time update. Similar to the dynamic model ft( · )
we now have a function gt( · ) relating the current linearization point ηt to a new
linearization point χt . The two linearization points are related by

q̂nbt|t ⊙ δq(χt) = q̂
nb
t|t−1 ⊙ δq(ηt). (2.47)
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and hence

δq(χt) =
(
q̂nbt|t

)−1 ⊙ q̂nbt|t−1
︸             ︷︷             ︸
,(δq(a))−1

⊙δq(ηt). (2.48)

Assuming that χ, η and a are small, we can use the first-order approximation (2.26)
and rewrite (2.48) as

(
1
χt
2

)
=

(
1
− a2

)L (
1
ηt
2

)
, (2.49)

and the relinearization model can be written as

χt = gt(ηt) ≈ −a +
(
I3 − 1

2 [a×]
)
ηt . (2.50)

Hence, the Jacobian of the relinearization can be determined as

Jt =
∂gt (ηt )
∂ηt

∣∣∣∣
ηt=η̂t

≈ I3 − 1
2 [a×]. (2.51)

Since the relinearization step is used to reset the state, we choose χ̂t =
(
0 0 0

)T
,

i.e. a = η̂t . This leads to the following relinearization equations

q̂nbt|t = q̂
nb
t|t−1 ⊙ δq(η̂t), (2.52a)

Pt|t = Jt P̃t|t J
T

t , Jt = I3 − 1
2 [η̂t×]. (2.52b)

The resulting ekf is summarized in Algorithm 2.

2.3 Smoothing

An alternative approach to obtain a map estimate of the state is to solve the
problem (1.2) as a smoothing problem. Using such an approach, an estimate
of the state vector x1:N using the measurements y1:N is obtained for instance us-
ing nonlinear optimization techniques (Boyd and Vandenberghe, 2004; Nocedal
and Wright, 2006).

Optimization problems iteratively compute a smoothing estimate x̂1:N . An ad-
vantage of solving the state estimation problem using an optimization approach
is that a relinearization is done after each iteration in the optimization problem.
Hence, optimization problems can better handle nonlinearities than an ekf. It is
also possible to include for instance constraints or non-Gaussian noise assump-
tions in the optimization problem.

The representation of the orientation in terms of an orientation deviation from
a linearization point is particularly suitable for a smoothing implementation be-
cause of its low state dimension. Also, it does not require imposing a norm 1
constraint as is the case for quaternions.

As will be discussed in more detail in Chapter 3, solving optimization problems
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Algorithm 2 ekf with orientation error states
1. Time update

q̂nbt+1|t = q̃
nb
t|t ⊙ δq(T ω̂t), (2.53a)

Pt+1|t = AtPt|tA
T

t + GQG
T, (2.53b)

with
At = I3 − T [ω̂t×], G = TI3, Q = Σω.

2. Measurement update

η̂t = Pt|t−1C
T

t

(
CtPt|t−1C

T

t + R
)−1 (

yt − ŷt|t−1
)

(2.54a)

P̃t|t = Pt|t−1 − Pt|t−1CT

t

(
CtPt|t−1C

T

t + R
)−1

CtPt|t−1, (2.54b)
with

yt =

(
ya,t
ym,t

)
, ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 ,

Ct =
(
−[R̂bn

t+1|tg
n×] [R̂bn

t+1|tm
n×]

)
, R =

(
Σa 0
0 Σm

)
.

3. Relinearize

q̂nbt|t = q̂
nb
t|t−1 ⊙




cos ‖η̂t‖2
η̂t
‖η̂t‖ sin

‖η̂t‖
2


 , (2.55a)

Pt|t = Jt P̃t|t J
T

t , (2.55b)
with

Jt = I3 − 1
2 [η̂t×].
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Figure 2.2: Sparseness pattern of the matrix that needs to be inverted to
solve the motion capture problem in Paper C. The parts of the matrix that
are non-zero are depicted in blue. The diagonal line represents the non-zero
elements due to the dynamic and measurement models. The horizontal and
vertical lines represent the sensor biases which wemodeled as constants. The
outermost diagonal lines represent the constraints based on the assumption
that the body segments remain attached to each other at all times. Only
0.56% of the elements in the matrix are non-zero.

typically involves inversion of a matrix. For smoothing applications, this ma-
trix grows with the number of measurements y1:N and the number of states x1:N
and can hence be of fairly large dimension. Due to the specific structure of the
state-space models, however, the number of non-zero elements in the matrix is
typically relatively small, i.e. the matrix is sparse. This is because the state is mod-
eled only in terms of the state at the previous time. Matrices that are sparse, and
specifically matrices whose non-zero elements are ordered according to certain
patterns, can be inverted efficiently (Boyd and Vandenberghe, 2004).

In Paper C we use an optimization approach to solve an inertial motion capture
problem. It estimates the body’s 6D pose using information from a number of
sensors attached to the body. The inertial measurements from these sensors are
combined with the assumption that the body segments remain attached to each
other at all times. This leads to a large optimization problem. However, as illus-
trated in Figure 2.2, the matrix that needs to be inverted to solve the optimization
problem is very sparse and structured and can hence be inverted efficiently.

2.4 Particle filters

An alternative state estimation technique is the particle filter (pf) (Gordon et al.,
1993; Doucet and Johansen, 2011). Contrary to ekfs, pfs do not rely on a lin-
ear approximation of the dynamic and measurement functions in the state-space
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model. Hence, they can successfully be used for state estimation using nonlinear
models. Pfs use N particles to represent different hypotheses as

p̂N (xt | y1:t) =
N∑

t=1

witδxit
(xt), (2.56)

where wit denotes the weight of particle i at time t. In case the state-space model
contains a conditionally linear Gaussian substructure, a Rao-Blackwellized parti-
cle filter (rbpf) (Schön et al., 2005) can be used instead. The rbpf treats the con-
ditionally linear states using a kf, thereby reducing the dimension of the state
vector used in the pf.

In this section we will not give a general description of a particle filter. Good
descriptions can be found in for instance Doucet and Johansen (2011). Instead,
we focus on two subproblems of relevance to Paper D. In Section 2.4.1 we will
discuss the problem of using a pf to represent the state in a partially unobservable
state-space model. In Section 2.4.2 we will discuss how a point estimate can be
obtained from a pf describing a multimodal distribution.

2.4.1 Representing a circle of possible sensor positions

In Paper D, we use an rbpf to estimate the sensor’s position and orientation us-
ing the magnetic field induced by a magnetic coil as a source of position infor-
mation. Since the magnetic field strength is proportional to the distance to the
coil, information about the magnetic field strength leads to information about
the distance of the sensor to the coil. Hence, a sphere of possible position esti-
mates is obtained. Based on the assumption that the inclination is known from
the accelerometer measurements and assuming that the sensor is above the coil,
the possible positions are reduced to a circle. Hence, the state-space model can
be said to be unobservable, with the unobservable space in the shape of a circle.
Although you would theoretically expect the particles in a pf to represent the
unobservable space, i.e. you would expect a circle of particles, in practice this is
not the case for a finite number of particles, as illustrated in Example 2.1.

Example 2.1: Particle filter estimating a partially unobservable state
Consider the following state-space model

xt+1 = xt + vt , (2.57a)

yt =
√
x2t,1 + x

2
t,2 + et , (2.57b)

where xt is a 2-dimensional state and xt,i denotes the ith component of xt . We
model vt ∼ N (0, Q) and et ∼ N (0, R). For our simulations we choose Q = 1 ×
10−4I2 and R = 1 × 10−4 and we use N = 500 particles.

According to the dynamic model (2.57a), the state xt remains approximately con-
stant. The measurement model (2.57b) provides information about the state xt ,
but any position on a circle with radius yt is equally likely. Hence, if we initialize
the particles on a circle as in the left plot in Figure 2.3, we would expect the parti-
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Figure 2.3: Particles of the pf used to estimate the state xt in Example 2.1.
Left: the particles at t = 1. The colors indicate the particles’ weights. Middle:
the particles at t = 50. Right: particles at t = 500.

cles to remain spread out over the circle. However, as depicted in the middle and
right plots in Figure 2.3, as time progresses, the particles start clustering more
and more on parts of the circle. How soon this clustering happens depends for
instance on the particular choices of Q, R and the number of particles N .

Note that although in Example 2.1 the particles at later time steps do not rep-
resent the whole circle, they do still give good estimates of a solution. The hy-
potheses only don’t include all solutions. The problem illustrated in Example 2.1
is a special case of particle degeneracy. As discussed in Lindsten (2013), after a
certain time all particles will share a common ancestor at t = 1. This results in
all particles being clustered at one part of the circle.

2.4.2 Obtaining a point estimate

A particle filter uses N particles and weights to represent the filtering density.
Each particle is assigned a weight w indicating how likely this hypothesis is. In
practice, however, one often wants to represent the estimated state as a point
estimate. For this, the weighted mean of the particles is commonly used. As
argued in Driessen and Boers (2008); Saha et al. (2009), for some applications
the weighted mean is not the most informative point estimate. An important
example of this are multi-modal distributions where the point estimate based on
the weighted mean is uninformative. For the Example 2.1, the weighted mean
at the initial time point is clearly uninformative, since it is the circle’s origin.
Driessen and Boers (2008); Saha et al. (2009) therefore derive a map estimate for
the particle filter, a so-called pf-map. Saha et al. (2013) derives a map estimate
for a particle smoother. In Paper D we determine the position and orientation of
an imu in a magnetically disturbed environment using an rbpf. To determine
a map estimate for the rbpf, the definition of the pf-map estimate needs to be
extended. We will therefore in this section first introduce the pf-map as derived
by Driessen and Boers (2008); Saha et al. (2009). Subsequently, we will introduce
the rbpf-map. We use this rbpf-map in Paper D to determine a point estimate
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of the estimated sensor position to compare this to estimates from an optical
reference system.

PF-MAP

In this section we will summarize the derivation of the pf-map introduced in
Driessen and Boers (2008); Saha et al. (2009). The pf-map obtains amap estimate
of the state at each time instance from the particles in the pf. The map estimate
is defined as

x̂MAP
t|t = argmax

xt

p(xt | y1:t), (2.58)

i.e. it maximizes the posterior (filtering) density. Using Bayes’ rule and theMarkov
property, this posterior density can be written as

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
∝ p(yt | xt)p(xt | y1:t−1), (2.59)

where the denominator can be neglected since it is independent of xt . The map
estimate can hence be written as

x̂MAP
t|t = argmax

xt

p(yt | xt)p(xt | y1:t−1). (2.60)

The predictive density p(xt | y1:t−1) can be rewritten through marginalization as

p(xt | y1:t−1) =
∫
p(xt | xt−1)p(xt−1 | y1:t−1) dxt−1. (2.61)

This density is in the particle filter approximated as

p(xt | y1:t−1) ≈
N∑

j=1

p(xt | x
j
1:t−1)w

j
t−1, (2.62)

where w
j
t−1 denotes the weight of particle j at time t − 1. The map estimate can

be obtained by substituting (2.62) into (2.60)

x̂MAP
t|t = argmax

xt

p(yt | xt)
N∑

j=1

p(xt | x
j
1:t−1)w

j
t−1. (2.63)

To obtain the map estimate, (2.63) can be solved using optimization techniques
as discussed in e.g. Boyd and Vandenberghe (2004); Nocedal and Wright (2006).
An alternative is to use the pf-map. It approximates the map estimate as

x̂PF-MAP
t|t = argmax

xit

p(yt | xit)
N∑

j=1

p(xit | x
j
1:t−1)w

j
t−1, (2.64)

i.e. it selects the particle with the highest density. Note that computation of the
pf-map estimate is of the order of N2 and it is hence quite expensive.
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RBPF-MAP

An rbpf splits the state vector in (2.8) into a nonlinear state xnt and a condition-
ally linear state xlt as

xnt+1 = f nt (x
n
t ) + A

n
t (x

n
t )x

l
t + v

n
t , (2.65a)

xlt+1 = f lt (x
n
t ) + A

l
t(x

n
t )x

l
t + v

l
t , (2.65b)

yt = ht(x
n
t ) + Ct(x

n
t )x

l
t + et , (2.65c)

with Q =



Qnn Qnl

(
Qnl

)T
Qll


. Note that for notational simplicity we here consider a

slightly less general model than in (2.8). Note also that in this section we will
switch notation from the rest of the chapter and use the superscript n for “non-
linear” instead of “navigation frame”. In this section we will derive the map for
the rbpf in a similar way as the pf-map was derived in the previous section.

Following (2.58)–(2.60), and explicitly introducing the nonlinear and linear states,

xt =

(
xnt
xlt

)
, (2.66)

the map estimate can be written as

x̂MAP
t|t = argmax

xnt ,x
l
t

p(xnt , x
l
t | y1:t)

= argmax
xnt ,x

l
t

p(yt | xnt , xlt)p(xnt , xlt | y1:t−1). (2.67)

The predictive density can for the case of a rbpf be rewritten as

p(xnt , x
l
t | y1:t−1) =

∫
p(xnt , x

l
t | xlt−1, xnt−1)p(xn1:t−1, xlt−1 | y1:t−1) dxlt−1dxn1:t−1, (2.68)

where, using Bayes’ rule,

p(xn1:t−1, x
l
t−1 | y1:t−1) = p(xlt−1 | xn1:t−1, y1:t−1)p(xn1:t−1 | y1:t−1). (2.69)

Here,

p(xlt−1 | xn1:t−1, y1:t−1) = N
(
xlt−1; x̂

l
t−1|t−1(x

n
1:t−1), P

l
t−1|t−1(x

n
1:t−1)

)
, (2.70)

and p(xn1:t−1 | y1:t−1) can be recognized as the particles’ weights. This leads to

p(xnt , x
l
t | y1:t−1) ≈

N∑

j=1

∫
p(x

n,j
t , x

l,j
t | x

l,j
t−1, x

n,j
t−1)

N
(
xlt−1; x̂

l,j
t−1|t−1, P

l,j
t−1|t−1

)
w
j
t−1 dx

l
t−1, (2.71)
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where we have introduced short-hand notation

x̂
l,j
t−1|t−1 , x̂

l
t−1|t−1(x

n,j
1:t−1), (2.72a)

P
l,j
t−1|t−1 , P

l
t−1|t−1(x

n,j
1:t−1). (2.72b)

The integral is computed similarly to the time update in a Kalman filter, see e.g.
Lindsten and Schön (2013); Törnqvist (2008); Gustafsson (2012),

p(xnt , x
l
t | y1:t−1) ≈

N∑

j=1

w
j
t−1N

(
xt ; x̄

j
t|t−1, P̄

j
t|t−1

)
, (2.73)

with

x̄
j
t|t−1 =



f nt−1(x

n,j
t|t−1)

f lt−1(x
n,j
t|t−1)


 +



An
t−1(x

n,j
t|t−1)

Al
t−1(x

n,j
t|t−1)


 x

l,j
t−1|t−1, (2.74a)

P̄
j
t|t−1 =



An
t−1(x

n,j
t|t−1)

Al
t−1(x

n,j
t|t−1)


 P

j
t−1|t−1



An
t−1(x

n,j
t|t−1)

Al
t−1(x

n,j
t|t−1)




T

+ Q. (2.74b)

Substituting (2.73) into (2.67), we obtain

x̂MAP
t|t = argmax

xnt ,x
l
t

p(yt | xnt , xlt)
N∑

j=1

w
j
t−1N

(
xt ; x̄

j
t|t−1, P̄

j
t|t−1

)
. (2.75)

This can again be solved by any optimization technique, but it can also be solved
approximately by optimizing over the finite set of particles, i.e.

x̂RBPF-MAP
t|t = argmax

xn,it ,xl,it

p(yt | xn,it , xl,it )
N∑

j=1

w
j
t−1N

(
xit ; x̄

j
t|t−1, P̄

j
t|t−1

)
. (2.76)

As can be seen, this is very similar to the pf-map results. This expression is used
in Paper D.





3
Sensor calibration

In the pose estimation algorithms discussed in Chapter 2, we implicitly assumed
that the sensors were properly calibrated. In this chapter, we will instead focus on
the problem of sensor calibration. Hence, we will assume that our models contain
unknown model parameters that need to be determined from data. The process
of determining a model from data is commonly referred to as system identifica-
tion. In our problems, we typically know the model structure but to calibrate the
sensor, certain model/calibration parameters need to be estimated. This is called
grey-box system identification (Bohlin, 2006).

We formulate the sensor calibration problem as an ml problem, where based on
N measurements y1:N = {y1, . . . , yN } we find the sensor calibration parameters θ
that maximize the likelihood function (1.3). The ml problem (1.3) is repeated
here for the reader’s convenience,

θ̂ML = argmax
θ∈Θ

pθ(y1:N ), (3.1)

where Θ ⊆ R
nθ . Using the fact that the logarithm is a monotonic function, (3.1)

has the following equivalent formulation,

θ̂ML = argmin
θ∈Θ

− log pθ(y1:N ). (3.2)

An example of a sensor calibration problem is themagnetometer calibration prob-
lem which is the topic of Paper A. In this paper, we calibrate the magnetometer
for the presence of magnetic disturbances rigidly attached to the sensor, for mag-
netometer sensor errors and for misalignment between the magnetometer and
the inertial sensor axes. In Chapter 2 we modeled the magnetometer measure-
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ments ym,t as (2.16). For the reader’s convenience, we repeat the model

ym,t = R
bn
t m

n + em,t , (3.3a)

where Rbn
t denotes the matrix rotating the local magnetic field mn from the nav-

igation frame n to the body frame b and em,t is assumed to be Gaussian noise.
The measurement model (3.3a) was discussed in more detail in Section 2.2.2. In
Paper A, we instead model the magnetometer measurements as

ym,t = DR
bn
t m

n + o + em,t , (3.3b)

where D denotes the calibration matrix and o denotes the offset vector. The cali-
bration matrix D and the offset vector o are both part of the parameter vector θ
determined in the calibration algorithm presented in Paper A. When the model
parameters D and o have been determined, they can be used to correct the magne-
tometer measurements, i.e. they can be used to calibrate the magnetometer. With-
out magnetometer calibration, the orientation estimation algorithms discussed in
Chapter 2 give inaccurate heading estimates for instance when the magnetometer
is attached to a metallic object.

In this chapter, we will provide background to the sensor calibration problems
in Papers A and B. In Section 3.1, we will first discuss the nonlinear optimiza-
tion techniques we use to solve our sensor calibration problems, i.e. to obtain ml
estimates of the sensor calibration parameters. In Sections 3.2 and 3.3, we subse-
quently discuss two different cases of sensor calibration. In Section 3.2 we discuss
parameter estimation in a static sensor model. In Section 3.3, we instead focus
on obtaining anml estimate of the sensor calibration parameters in a state-space
model. In that case, it is necessary to know the state to estimate the sensor cali-
bration parameters. Hence, both the state and the calibration parameters need to
be estimated to calibrate the sensor.

3.1 Nonlinear optimization techniques

To obtain an ml estimate, an optimization problem is solved which finds a lo-
cally minimizing argument (3.2). The specific form of the minimization problem
depends on the model assumptions. However, in general it can be said that the
parameters are chosen such that they best describe the data. Hence, defining the
predicted measurements to be ŷ(θ), we try to minimize the difference

ǫt(θ) = yt − ŷt(θ) (3.4)

according to a criterion which is based on the pdf pθ(y1:N ). The function that
needs to be minimized is denoted the cost function. Examples of cost functions
can be found in Examples 3.1 and 3.2 for the cases of Gaussian and Cauchy
distributed noise, respectively. The Cauchy distribution is a special case of the
Student’s-t distribution (Bishop, 2006). The Gaussian and Cauchy distributions
will both be used in Part II of this thesis. More background about these distribu-
tions will be given in Section 3.2.
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Figure 3.1: Blue: example of a cost function with multiple local minima.
Black: example gradient. If we use the gradient information to find a direc-
tion in which the function decreases, any starting point between the two red
dashed lines will lead us to the global minimum.

In our models, ŷt typically depends nonlinearly on θ. Hence, our problems typ-
ically have multiple (local) minima and proper initialization of the optimization
problem is of essence. An example of a cost function is depicted in Figure 3.1.
Since we aim at minimizing the cost function, it can intuitively be understood
that we want our algorithm to step in a direction in which the objective function
decreases. Hence, gradient information can be used to find a search direction.
The cost function in Figure 3.1 has one global minimum, but also has two other
local minima. If we use the gradient information to find a direction in which
the function decreases, any starting point between the two red dashed lines will
lead us to the global minimum. Starting points outside these two lines, however,
would lead us to one of the other local minima instead. Initialization is therefore
important for our problems to converge to the desired minimum and consider-
able effort is put into obtaining good initial estimates in Papers A and B.

Optimization algorithms based on only gradient information typically converge
very slowly (Nocedal and Wright, 2006). Hence, most algorithms make use of
both the gradient and an (approximate) Hessian to find the step direction. The
general structure of the optimization algorithms used in this thesis is summa-
rized in Algorithm 3. They start from an initial estimate θ̂0 and update their
estimate θ̂ until convergence.

Different types of algorithms use different (approximate) Hessians in Algorithm 3.
A first type are the Newton methods which use the exact Hessian. A second com-
monly used approach uses a positive definite approximation of the Hessian as
in (3.7b) and (3.10b). A third approach are the quasi-Newton methods. Quasi-
Newton methods estimate the Hessian based on the change of the gradient (No-
cedal and Wright, 2006). Hence, they do not require the user to supply any an-
alytical (approximate) Hessian. An example of a quasi-Newton method is the
Broyden-Fletcher-Goldfarb-Shanno (bfgs) method which is used in Paper A to
determine the magnetometer calibration parameters.
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Example 3.1: Gaussian pdf with known and constant variance
For the scalar case of a Gaussian pdf with a known and constant variance σ2

pθ(y1:N ) =
(

1√
2πσ2

)N
exp


−

N∑

t=1

ǫ2t
2σ2


 , (3.5)

with ǫt as defined in (3.4). Taking the logarithm of (3.5) and omitting constant
terms, leads to the optimization problem

θ̂ML = argmin
θ∈Θ

V (θ) = argmin
θ∈Θ

1
2

N∑

t=1

ǫ2t . (3.6)

Note that in our problems, (3.6) can not be solved explicitly since we assume
that ǫ depends nonlinearly on θ. To solve the optimization problem (3.6) we
typically need the gradient ∇V and an approximate Hessian H which in the case
of a Gaussian are given by

∇V =
N∑

t=1

ǫt
∂ǫt
∂θ
, (3.7a)

H ≈
N∑

t=1

(
∂ǫt
∂θ

)T ∂ǫt
∂θ
. (3.7b)

Example 3.2: Cauchy pdf with known and constant scale parameter
For the scalar case of a Cauchy pdfwith a known and constant scale parameter γ ,

pθ(y1:N ) =
N∏

t=1

1
πγ2

(
1 +

(
ǫt
γ

)2)−1
. (3.8)

Taking the logarithm of (3.8) and omitting constant terms, leads to the optimiza-
tion problem

θ̂ML = argmin
θ∈Θ

V (θ) = argmin
θ∈Θ

N∑

t=1

log
(
1 +

(
ǫt
γ

)2)
. (3.9)

The gradient ∇V and a positive definite approximation of the Hessian are given
by

∇V =
N∑

t=1

2
∂ǫt
∂θ
ǫt

γ2 + ǫ2t
, (3.10a)

H ≈
N∑

t=1

2

(
∂ǫt
∂θ

)T ∂ǫt
∂θ

γ2 + ǫ2t
. (3.10b)
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Algorithm 3 Obtaining an ml estimate

1. Find/choose an initial estimate θ̂0
2. Set i = 0 and repeat,

(a) Determine the gradient ∇Vi and the (approximate) Hessian Hi of the
cost function.

(b) Determine a search direction p according to,
pi = −H−1i ∇Vi . (3.11)

(c) Determine a step length αi and update θ̂i
θ̂i+1 = θ̂i + αipi . (3.12)

(d) Set i := i + 1 and repeat from Step 2a until convergence.

3.2 Model parameters in the sensor models

In this section, we focus on determining model parameters in static sensor mod-
els. We model the measurements as

yt = ht(θ) + et , (3.13)

where ht( · ) is a possibly nonlinear function of the parameters θ and the noise et
is assumed to be additive.

An example of such a model is used in Paper B where we model the uwb mea-
surements as

yu,mk = τk + ‖rnm − tnk ‖2 + ∆τm + eu,mk , (3.14)

where τk is the time of transmission of pulse k, tnk is the position of the transmitter
at the time of transmitting the kth pulse expressed in the navigation frame n, rnm
is the position of the mth receiver and ∆τm is the clock-offset of the mth receiver.
The uwb calibration algorithm estimates the parameter vector θ, defined as

θ =
(
{tnk , τk}Kk=1, {rnm,∆τm}Mm=1

)
. (3.15)

The choice of the noise distribution et in (3.13) influences the likelihood func-
tion in (3.1) and hence the optimization problem (3.2). The most commonly used
noise model assumes that et is zero-mean Gaussian noise. The noise of the iner-
tial sensors and the magnetometers can typically be assumed to be Gaussian (Tit-
terton and Weston, 1997; Hol, 2011). Hence, the Gaussian cost function and its
gradient and approximate Hessian as given in Example 3.1 are frequently used
in Part II of this thesis.

For the uwb measurements considered in Paper B, however, we expect a small
number of measurements to be delayed due to multipath and/or nlos condi-
tions. A Gaussian pdf is depicted in blue in the left plot in Figure 3.2. As can
be seen, the likelihood far away from the mean is small and the log likelihood
cost function (right plot) far away from the mean is large. Hence, the presence of
outliers is not well described by a Gaussian distribution. In Paper B, we instead
use a Cauchy distribution to allow for the presence of outliers. The Cauchy pdf
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Figure 3.2: Left: pdf of a N (0, 1) distribution (blue) and a Cauchy(0, 1) dis-
tribution (red). Right: log likelihood cost function of the pdf N (0, 1) (blue)
and of the pdf Cauchy(0, 1) (red).

and its log likelihood cost function are depicted in red in Figure 3.2. The pdf has
heavy tails (left plot) and its log likelihood cost function (right plot) hence does
not severely punish the presence of outliers. To only allow for time delays of the
uwb pulses, in Paper B we assume that the noise is asymmetrically distributed,
with a Cauchy distribution on one side and a Gaussian distribution on the other.
In Example 3.3 we will illustrate the difference in handling outliers between a
Gaussian and a Cauchy distribution.

Example 3.3: Parameter estimation with/without measurement outliers
Consider the problem of estimating the parameter θ in the following regression
problem

yt = θt + et . (3.16)

Assuming et ∼ N (0, 1) and θ = 0.2 we simulate the measurements depicted in
Figure 3.3. In the left plot, 50 measurements yt are simulated at t = −25, . . . , 25.
In the right plot, we assume the presence of two outliers, yt = 20 at t = −15 and
yt = −20 at t = 15. An estimate of the parameter θ is obtained both assuming a
Gaussian (θ̂G) and a Cauchy distribution (θ̂C) for the noise et (see Examples 3.1
and 3.2, respectively). The lines drawn with the estimated parameters θ̂G and
θ̂C show that the presence of the outliers has a greater impact on the estimate θ̂G

than on the estimate θ̂C. This is due to the heavy tails of the Cauchy distribution,
as shown in Figure 3.2.

3.3 Model parameters in a state-space model

In (3.3) we described the magnetometer measurement function used in Paper A
to account for the case that the magnetometer is uncalibrated. Comparing (3.3b)
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Figure 3.3: Measurements yt (green) with (dashed black) the line θt
(see (3.16)), (dashed blue) the line θ̂Gt and (dashed red) θ̂Ct. Left: 50 mea-
surements at t = −25, . . . , 25. Right: 50measurements at t = −25, . . . , 25, but
at t = −15 and t = 15, we assume two measurement outliers yt = 20 and
yt = −20, respectively.

to (3.13), we note that there is a fundamental difference. The model (3.13) con-
sists of only known quantities and model parameters. However, the model (3.3b)
consists of both known quantities, model parameters and states Rnb

t from a state-
space model (1.1).

To fully define the magnetometer calibration problem, we therefore need to in-
clude the state-space model and determine D and o from

Rnb
t+1 = ft(R

nb
t , yω,t , eω,t), (3.17a)

ya,t = −Rbn
t g

n + ea,t , (3.17b)

ym,t = DR
bn
t m

n + o + em,t , (3.17c)

where we denote the state vector representing the orientation as Rnb
t . Note that

we implicitly assume that the state is parametrized by either a quaternion as
in Algorithm 1 or by an orientation deviation from a linearization point as in
Algorithm 2.

Equivalently to (3.4), we want to estimate the predictedmeasurements ŷt(θ) from
the model. The predicted measurements in (3.17), however, depend on the states.
Hence, using conditional probabilities and the fact that the logarithm is a mono-
tonic function, we have the following equivalent formulation of (3.2),

θ̂ML = argmin
θ∈Θ

−
N∑

t=1

log pθ(yt | y1:t−1), (3.18)

where we use the convention that y1:0 , ∅. In case the state-space model is non-
linear, there is typically no closed form solution available for the one step ahead
predictor pθ(yt | y1:t−1) in (3.18). In Paper A, we assume that the noise is Gaussian
and approximate the one step ahead predictor using an ekf, see also Section 2.2.
The result is

pθ(yt | y1:t−1) ≈ N
(
yt | ŷt|t−1(θ), St(θ)

)
, (3.19)
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where, ŷt|t−1 and St are estimated using an ekf. Inserting (3.19) into (3.18) and
neglecting all constants results in the following optimization problem,

min
θ∈Θ

1
2

N∑

t=1

(
‖yt − ŷt|t−1(θ)‖2S−1t (θ)

+ log det St(θ)
)
. (3.20)

As discussed in Section 3.1, we solve our optimization problems using the gradi-
ent and the (approximate) Hessian of the cost function. For the cases discussed in
Section 3.2, these expressions can be obtained relatively easy as shown in Exam-
ples 3.1 and 3.2. For the cost function (3.20), however, it is less straightforward
to obtain an expression for the gradient and the Hessian. Using the time and mea-
surement update equations (2.9) and (2.11) for a scalar parameter θ, the Jacobian
can be derived to be

∂ŷt+1|t
∂θ

= Ct
∂x̂t+1|t
∂θ

+
∂Ct
∂θ

x̂t+1|t (3.21a)

∂x̂t+1|t
∂θ

=
∂At
∂θ

x̂t|t + At
∂x̂t|t
∂θ

(3.21b)

∂x̂t|t
∂θ

=
∂x̂t|t−1
∂θ

+
∂

∂θ

(
Pt|t−1C

T

t

(
CtPt|t−1C

T

t + R
)−1 (

yt − ŷt|t−1
))

(3.21c)

∂Pt|t−1
∂θ

=
∂

∂θ

(
At−1Pt−1|t−1A

T

t−1 + Gt−1QG
T

t−1
)

(3.21d)

... (3.21e)

As can be seen from (3.21), the expression for the gradient of the objective func-
tion in (3.20) is defined recursively using the ekf time and measurement equa-
tions. Its computation is hence more involved than in the case discussed in Sec-
tion 3.2. In Åström (1980); Segal and Weinstein (1989), different approaches are
discussed to determine analytical gradients of the objective function in (3.20).
They, however, consider the case of a linear state-space model. In our problems,
we use an ekf implementation where the matrices At , Ct and Gt are based on
linear approximations of the dynamic and measurement model. Hence, these
methods only lead to approximate gradients of the objective function. Because
of this, in Paper A we solve (3.20) using numerical gradients and a Hessian esti-
mated using a bfgs algorithm. This approach is computationally quite expensive,
but the computations of the gradients can easily be parallelized.



4
Concluding remarks

In Part I of this thesis, we have given an introduction to the four papers that will
be presented in Part II. In Chapter 1, the different sensors that are used through-
out the thesis were introduced together with the subject of probabilistic model-
ing. Chapter 2 subsequently focused on pose estimation using inertial sensors
and magnetometers, introducing relevant background material for Papers A – D
in Part II. The subject of sensor calibration was discussed in Chapter 3. It pro-
vides background to the magnetometer calibration problem discussed in Paper A
and the calibration of the uwb setup in Paper B. In this chapter, we will summa-
rize the contributions of this thesis in Section 4.1 and discuss possible directions
for future work in Section 4.2.

4.1 Summary of the contributions

The main contributions of the thesis are within the domain of position and ori-
entation (pose) estimation using inertial sensors in combination with additional
(sensor) information. Since using uncalibrated sensors for pose estimation would
lead to inaccurate estimates, we focus both on pose estimation algorithms and
on sensor calibration. The problems are formulated based on probabilistic mod-
els of the sensor information and the model assumptions. The pose estimation
algorithms are solved using map estimation while the calibration problems are
solved using ml algorithms.

4.1.1 Sensor calibration

Sensor calibration problems are addressed in Papers A and B. In Paper A, we
consider the problem of combining the inertial sensors with a magnetometer for
orientation estimation. The magnetometer is not assumed to be calibrated. We
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present a practical calibration algorithm that calibrates the magnetometer for the
presence of magnetic disturbances rigidly attached to the sensor, for magnetome-
ter sensor errors and for misalignment between the inertial and the magnetome-
ter sensor axes. Using the calibrated magnetometer measurements to estimate
the sensor’s orientation is experimentally shown to lead to significantly improved
heading estimates.

Paper B focuses both on calibration and on state estimation. It addresses the prob-
lem of combining toa measurements from a uwb system with inertial measure-
ments for 6D pose estimation. We use a setup where a number of uwb receivers
are placed in an indoor environment and move a uwb transmitter through the
measurement volume. To be able to obtain position information from the uwb
measurements, it is imperative that accurate estimates of the receivers’ positions
and clock offsets are known. To avoid the typically labor-intensive and time-
consuming process of surveying the receivers’ positions, we present an easy-to-
use calibration method. We model the uwb measurements assuming an asym-
metric heavy-tailed noise distribution, which naturally handles measurement
outliers due to multipath and/or nlos conditions.

4.1.2 Pose estimation

After the uwb calibration discussed in Section 4.1.1, the uwb system considered
in Paper B can be used for pose estimation of a subject wearing inertial sensors
and uwb transmitters walking through the environment. We present a tightly-
coupled sensor fusion approach to combine the inertial measurements with the
toa measurements. It is shown to lead to accurate pose estimates as compared
to data from an optical reference system.

Paper C discusses the problem of inertial human body motion capture, where
a multitude of body segments are equipped with imus as shown in Figure 1.5.
Relative position and orientation estimates are obtained using the inertial mea-
surements together with a biomechanical model, which models the body in terms
of connected body segments. The problem is formulated as a map problem and
is solved using optimization-based techniques. As a proof-of-concept we apply
our algorithm to a lower body configuration, illustrating that the estimates are
drift-free and match the joint angles from an optical reference system.

Paper D presents an approach for 6D pose estimation where inertial measure-
ments are complemented with magnetometer measurements assuming that a
model (map) of the magnetic field is available. In our experimental study, the
magnetic field is generated by a magnetic coil, giving rise to a magnetic field that
we can model analytically. The experimental results show that accurate position
estimates can be obtained in the vicinity of the coil, where the magnetic field is
strong.
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4.2 Future work

In this section we will discuss ideas for future work for each of the papers. In
Section 4.2.1 we will first discuss ideas for future work in the field of sensor
calibration, related to Paper A. Subsequently, in Section 4.2.2 we will first discuss
ideas for future work in the field of pose estimation, related to Papers B – D.

4.2.1 Sensor calibration

In Paper Awe show that our calibration algorithm leads to significantly improved
heading estimates based onmeasurements from two different commercially avail-
able imus. An interesting line of future work is to apply the magnetometer
calibration algorithm to inertial and magnetometer measurements from a smart-
phone. Smartphones typically use their ownmagnetometer calibration algorithm,
thereby complicating the testing of other calibration algorithms. However, as of
Android API level 18 (Jelly Bean MR2), it is possible to log uncalibrated mag-
netometer data. Hence, it is be possible to apply our calibration algorithm to
measurements from a smartphone.

Another possible direction for future work extends the calibration algorithm to
also be able to include gps measurements in outdoor applications. In that case,
the extended Kalman filter (ekf) providing the measurement predictions to the
ml problem as discussed in Section 3.3 would have to be extended to include at
least a position and a velocity state. The additional gps information should sig-
nificantly help in calibrating the magnetometer. However, the algorithm would
be computationally more expensive due to the additional states in the ekf.

The calibration algorithm is now formulated as a batch, offline, method. It would
be interesting to extend it to an online approach. Using this approach, it might be
possible to automatically recalibrate the sensor once it enters a different magnetic
environment.

4.2.2 Pose estimation

Paper B uses a heavy-tailed asymmetric noise distribution to represent the pres-
ence of outliers in the uwb measurements. This distribution is used both in the
uwb calibration algorithm and in our approach to determine the transmitter’s
position using uwb multilateration. In future work we are planning to extend
the sensor fusion algorithm which combines the uwb measurements with iner-
tial measurements to also make use of the heavy-tailed asymmetric noise distri-
bution. We plan to implement the sensor fusion algorithm as an optimization
problem similar to our approach in Paper C. Using an optimization formulation,
different noise assumptions can straightforwardly be used.

In Paper C, we apply our motion capture algorithm to a lower body configura-
tion consisting of 7 imus places on the feet, lower legs, upper legs and pelvis.
An obvious direction of future work would of course be to include more body
segments.
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The algorithm relies on knowledge about the position and orientation of the sen-
sors on the body. This information can be regarded as calibration parameters. We
plan to extend the approach to also estimate these calibration parameters.

In Paper C, we focus only on estimating body’s relative pose. To estimate its
absolute position, it is possible to include foot step detection, see e.g. Callmer
(2013). It would also be possible to combine the approaches in Papers B and C
and use uwbmeasurements to estimate the position of the body.

Paper D discusses the problem of pose estimation assuming a known magnetic
field map. In experiments, we have used a magnetic coil to generate a known
magnetic field. We have also been working on an approach to estimate the mag-
netic field map (Wahlström et al., 2013). An interesting line of research would be
to combine both approaches. The ultimate goal would then be to do simultaneous
localization and mapping (slam) where we simultaneously build a magnetic map
of the environment and localize the sensor in the environment.
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Abstract

This paper presents an approach for 6D pose estimation where MEMS
inertial measurements are complemented with magnetometer mea-
surements assuming that amodel (map) of themagnetic field is known.
The resulting estimation problem is solved using a Rao-Blackwellized
particle filter. In our experimental study the magnetic field is gener-
ated by a magnetic coil giving rise to a magnetic field that we can
model using analytical expressions. The experimental results show
that accurate position estimates can be obtained in the vicinity of the
coil, where the magnetic field is strong.

1 Introduction

With the reducing cost of accelerometers and gyroscopes (inertial sensors) and
magnetometers, these sensor are becoming increasingly available in day-to-day
life. It is for instance common that these sensors are present in modern smart-
phones. Positioning based on inertial sensors alone suffers greatly from drift
and does not give reliable estimates for any but the highest quality sensors. Be-
cause of this, sensors such as GPS and ultra-wideband are often used as an aiding
source (Hol, 2011). While GPS solutions only work for outdoor applications, in-
door solutions are often highly dependent on additional infrastructure.

Magnetometers are a reliable source of information due to their high sampling
rates and reliable sensor readings. They measure the superposition of the local
earth magnetic field and the magnetic field induced by magnetic structures in
the vicinity. Magnetometers are widely used as a source of heading information,
relying on the assumption that no magnetic disturbances are present. Especially
in indoor applications this assumption is often violated due to the presence of
steel in the construction of buildings and objects like radiators, tables and chairs.

This paper presents a method to obtain accurate position and orientation esti-
mates based on inertial and magnetometer data assuming a map of the magnetic
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field is known. This enables positioning with widely available sensors, without
requirements on additional infrastructure.

In recent years, the idea of using the presence of magnetic disturbances as a
source of position information has started appearing in the literature. Most in-
terest is from the robot localization perspective where odometry information is
available (Suksakulchai et al., 2000; Navarro and Benet, 2009; Vallivaara et al.,
2011; Georgiou and Dai, 2010). Generally, in these applications localization is
only considered in 2D, and the sensor is assumed to be rotating around only one
axis. To the best of the authors’ knowledge, little work has been done on combin-
ing inertial and magnetometer measurements, for example Vissière et al. (2007);
Dorveaux et al. (2011). This is a more challenging problem compared to using
odometry information, since low grade inertial measurement units (IMUs) gener-
ally have poor dead-reckoning performance. The approach presented in Vissière
et al. (2007) is not based on magnetic field maps, but uses knowledge about the
physical properties of the magnetic field and its gradient to aid localization using
an extended Kalman filter approach. Other approaches focus on using sensors
in smartphones for localization (Chung et al., 2011; IndoorAtlas, 2012; Gozick
et al., 2011) and consider magnetometer data only or very limited information
from the inertial sensors. The direction of the magnetic field can, however, only
be derived from the magnetic field measurements when the sensor orientation
is known. Not estimating the full orientation therefore poses constraints on the
allowed sensor rotations. In our approach no constraints on the sensor rotations
are required since the full 6D pose is estimated.

To isolate the problem of localization inside a known magnetic field map from
the problem of obtaining the map, this work assumes that the magnetic field
map is known and is generated by a magnetic coil. The reason for using a mag-
netic coil is that it is one of the few cases for which the magnetic field can be
computed analytically. In other words, we have a perfect model describing the
magnetic field produced by the magnetic coil. The magnetic field measurements
can be described as a nonlinear function of the sensor position in this map and
its orientation with respect to the map.

2 Models

Before introducing the dynamic and measurement equations, the relevant coor-
dinate frames and the state vector will be introduced. All measurements are
assumed to be obtained in the body coordinate frame denoted by b, which is the
coordinate frame of the measurement unit with the origin in the center of the ac-
celerometer triad. The position is tracked in the earth coordinate frame denoted
by e, which is fixed in the world. The magnetic field map is represented in the
map coordinate frame denoted by m whose orientation is assumed to be aligned
with that of the coil. The origin of the earth coordinate frame e is assumed to co-
incide with that of the map coordinate frame and with the center of the magnetic
coil.
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Figure 1: Magnetometer measurements represented in the earth coordinate
frame. The measurements have been preprocessed by subtracting the earth
magnetic field. The magnitude is indicated by the colors and the direction
by the arrows.

The relevant state vector consists of the sensor’s position pe and velocity ve, its
orientation with respect to the earth frame expressed as a unit quaternion qeb =(
q0 q1 q2 q3

)T
and the gyroscope bias bbω. In our model we have used the

inertial measurements as inputs to the dynamic equations in order to not increase
the state dimension. For reasons that will become clear after the model has been
provided, we split the state vector into two parts xt =

(
(xnt )

T (xlt)
T
)T
, where

xnt =
(
(pet )

T (qebt )T
)T
, xlt =

(
(vet )

T (bbω)
T
)T
. (1)

2.1 Dynamical model

The dynamical equations can be derived by using the inertial measurements as
inputs. A commonly used, slowly time-varying random walk model is used for
the gyroscope bias (Hol, 2011). This leads to the following state update equations
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for the linear and nonlinear states (Hol, 2011; Törnqvist, 2008)

xnt+1 =
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I3 0
0 I4

)

︸    ︷︷    ︸
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TI3 0
0 − T2 S̃(qebt )

)

︸                 ︷︷                 ︸
Anl
t (xnt )

xlt+

(
T 2

2 R(qebt ) T 2

2 I3 0
0 0 T

2 S̃(q
eb
t )

)

︸                                ︷︷                                ︸
Bnt (x

n
t )

ut +

(
T 2

2 R(qebt ) 0
0 T

2 S̃(q
eb
t )

)

︸                      ︷︷                      ︸
Gn
t (x

n
t )

(
wb
a,t

wb
ω,t

)

︸ ︷︷ ︸
wn
t

(2a)
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)
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Here, Ik denotes the identity matrix of size k × k, R(qebt ) ∈ SO(3) is the rotation
matrix obtained from the unit quaternion qebt and1

S̃(qebt ) =




−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0



. (3)

The input vector ut is given by

ut =
(
(yba,t)

T (ge)T (ybω,t)
T
)T
, (4)

where ge denotes the gravity vector and the accelerometer and the gyroscope
measurements are denoted by yba and ybω, respectively. The latter are modeled as

yba,t = R
be
t (aet − ge) + wb

a,t , (5a)

ybω,t = ω
b
t + b

b
ω + wb

ω,t , (5b)

based on the fact that the accelerometer measures both the gravity vector and the
body’s free acceleration. The noise is modeled as

wb
a ∼ N (0, Qa), Qa = σ

2
a I3, (6a)

wb
ω ∼ N (0, Qω), Qω = σ2

ωI3, (6b)

wb
bω
∼ N (0, Qbω ), Qbω = σ2

bω
I3. (6c)

1Note that the propagation of the quaternion state in this way is an approximation, valid only
for high sampling rates. The algorithm does not prevent use of the exact update equation and the
approximation is only used to reduce computational complexity.
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The state noise is assumed to be distributed according to

wt =

(
wn
t

wl
t

)
∼ N (0, Q), (7a)

Q =

(
Qnn Qnl

(Qnl)T Qll

)
=




Qa 0 Qa 0
0 Qω 0 0
QT

a 0 Qa 0
0 0 0 Qbω



. (7b)

Note that the linear and nonlinear state noise is highly correlated since the ac-
celerometer noise acts on both the position and velocity states. This needs to be
taken into account in the implementation.

2.2 Magnetometer measurement model

The magnetometer measurements are modeled as

ybm,t = h(x
n
t ) + e

b
m,t , (8)

where ebm,t ∼ N (0, R) and h(xnt ) is a function of the position pet and orientation
qebt states. In practice this will be a superposition of the local earth magnetic
field and all magnetic disturbances present.

As discussed in the introduction, to isolate the problem of positioning inside
a map from the problem of making the map, we chose an experimental setup
where the magnetic field is generated by a magnetic coil. In this case a magnetic
field map is analytically known assuming the coil’s position and orientation are
known. The function h(xnt ) is given by

h(xnt ) = R(qbe)RemB(Rmepet ). (9)

The function B(Rmepet ) gives the magnetic field in the map coordinate frame at
a position pm. The expression for the magnetic field from the coil is given by
(Schepers, 2009)

B(pm) =
µ0NwI

2π

√(√
p2x + p2y + a

)2
+ p2z




pxpz
p2x+p2y

[
− K(k) + a2+p2x+p

2
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2
z(√
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)2

+p2z

E(k)
]

pypz

p2x+p2y
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2
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2
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E(k)
]

[
K(k) +

a2−p2x−p2y−p2z(√
p2x+p2y−a

)2
+p2z

E(k)
]




(10)

where pm =
(
px py pz

)
, µ0 is the magnetic permeability in vacuum, a is the

coil radius, Nw is the number of windings, I is the current through the coil and
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E(k) and K(k) are given by the following elliptic integrals

E(k) =

π/2∫

0

√
1 − k2 sin2 θdθ, (11a)

K(k) =

π/2∫

0

1√
1 − k2 sin2 θ

dθ, (11b)

where

k =

√√√√√√√√ 4a
√
p2x + p2y

(
√
p2x + p2y + a)2 + p2z

. (12)

These equations implicitly assume that the origin of the earth coordinate frame
coincides with that of the map coordinate frame. Note that our measurement
model assumes that no background field is present.

2.3 Some additional words about the magnetic field model

The magnetic field of a coil is generally described as a function of the perpendicu-

lar distance pz towards the coil and the radial distance r =
√
p2x + p2y towards the

center of the coil (Schepers, 2009; Griffiths, 1999). However, in tracking we are in-
terested in absolute position rather than just the distance to a source. Parametriz-
ing the magnetic field in terms of a position px, py , pz introduces unobservability.
Assuming the coil is placed horizontally, this results in two horizontal circles,
one above and one below the coil, where the horizontal position is coupled to the
heading as an unobservable manifold. We assume that the sensor can only be
positioned above the coil and therefore have an entire circle of solutions at each
time step. Note that in the more general case where multiple magnetic sources
are present and possibly rotated with respect to each other, the unobservable
manifold will be differently shaped or in some cases non-existent. To make our
dynamic model applicable to any magnetic field map, we have not adapted the
parametrization of our state vector to this specific structure.

3 Computing the estimate

As can be seen from the dynamical and measurement model presented in Sec-
tion 2, the state dynamics is assumed to be linear while the measurement model
is a nonlinear function of the sensor’s position and orientation. A nonlinear
filtering technique is therefore needed to compute a state estimate. A linear
substructure can, however, be recognized, which can be exploited using a Rao-
Blackwellized particle filter (RBPF) in which the state is split into a state xl that
enters linearly in both the dynamic and measurement model and a state xn that
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enters non-linearly, where xl and xn are defined by (1). An RBPF solves the non-
linear filtering problem by using a Kalman filter (KF) for the linear states and a
particle filter (PF) for the nonlinear states.

The RBPF in this paper has been derived from Törnqvist (2008) and Lindsten
(2011) and is summarized in Algorithm 1. It applies the model structure (2), (8),
the noise assumptions (6) and their correlations given in (7). In (13), x̄it and
P̄ it are computed, which are a stacked version of the nonlinear and linear states
and covariances. Based on these, the nonlinear and linear time update are given
by (14), (15) respectively. Note that in (15) the pseudo-inverse, denoted by †, of
P̄nn,i
t needs to be taken because this matrix is rank deficient due to the presence

of quaternion states.

Since the measurement model (9) only depends on the nonlinear states, measure-
ment information about the linear states is in our problem only available through
the nonlinear states. Algorithm 1 does therefore not contain an explicit KF mea-
surement update. However, measurement information implicitly present in the
nonlinear states is taken into account in the linear states in (15).

3.1 RBPF-MAP

To compare particle filter estimates to reference data, a point estimate needs to
be computed at each time step. The most commonly used approach for this is to
take the conditional mean estimate. Due to the unobservability in our model (see
Section 2.3), however, all particles on a horizontal circle are equally likely, which
can lead to an uninformative point estimate in center of the circle.

In Driessen and Boers (2008); Saha et al. (2009) a maximum a posteriori estimate
for the particle filter (PF-MAP) has been derived, which is argued to give a better
point estimate in multi-modal applications. The PF-MAP estimate is an approxi-
mation of the MAP estimate given by

x̂MAP
t|t = argmax

xit

p(yt |xit)
∑

j

p(xit |x
j
1:t−1)w

j
t−1. (16)

Following a similar reasoning, the RBPF-MAP estimate, can be shown to be

x̂MAP
t|t = argmax

xn,it ,xl,it

p(yt |xn,it , xl,it )
∑

j

w
j
t−1N (xit ; x̄

j
t|t−1, P̄

j
t|t−1), (17)

where x̄
j
t|t−1 and P̄

j
t|t−1 can be obtained from (13). Note that since our problem

does not have a KF measurement update, instead of the commonly used double
subscript denoting the time for the linear states, Algorithm 1 only uses a single
subscript.

When implementing this in Step 2 of the Algorithm 1, it needs to be taking into

account that the covariance matrix P̄
j
t is rank deficient due to the presence of

quaternion states. Because computation of (17) is computationally heavy, it could
also be considered to use the most probable particle of the posterior. This would
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Algorithm 1 Rao-Blackwellized particle filter

1. Initialization: For i = 1, . . . , N generate xn,i0 ∼ pxn0 , set {x
l,i
0 , P

i
0 } = {xl0, P0},

γ i−1 = 1
N , and set t = 0.

2. Measurement update: For i = 1, . . . , N evaluate the particle impor-
tance weights γ it = 1

ct
γ it−1p(yt |x

n,i
0:t , y0:t−1) based on (8) where ct =

∑N
i=1 γ

i
t−1p(yt |x

n,i
0:t , y0:t−1).

3. If t > 0, compute the estimate x̂t based on (17).
4. Resampling: If N̂eff = 1∑N

i=1(γ
i
t )2

< 2
3N , resample N particles with replace-

ment from the set {xn,it , xl,it }Ni=1 where the probability to take sample i is γ it ,
and reset the weights to γ it =

1
N .

5. Time update: Determine the Gaussian mixture
x̄it+1 = Aitx

i
t + B

i
tut , (13a)

P̄ it+1 = Al,i
t P

i
t (A

l,i
t )

T + GitQ(Git)
T, (13b)

where

x̄it =

(
x̄n,it
x̄l,it

)
, P̄ it =

(
P̄nn,i
t P̄nl,i

t

(P̄nl,i
t )T P̄ ll,i

t

)
,

Al,i
t =

(
Anl,i
t (xn,it )
All

)
, Ait =

(
Ann Anl,i

t (xn,it )
0 All

)
,

Bit =

(
Bn,it (xn,it )
Bl,it (x

n,i
t )

)
, Git =

(
Gn,i
t (xn,it ) 0
0 Gl,i

t (xn,it )

)
.

The nonlinear states can now sampled according to
xn,it+1 ∼ N (x̄n,it+1, P̄

nn,i
t+1 ), (14)

and the linear states can be updated according to
xl,it+1 = x̄l,it+1 + (P̄nl,i

t+1 )
T(P̄nn,i

t+1 )†(xn,it+1 − x̄
n,i
t+1), (15a)

P it+1 = P̄ ll,i
t+1 − (P̄

nl,i
t+1 )

T(P̄nn,i
t+1 )†P̄nl,i

t+1 . (15b)
6. Set t := t + 1 and iterate from Step 2.

lead to similar results in Section 4.

4 Experimental results

4.1 Experimental setup

An experiment has been performed in which the magnetic field is generated by
a magnetic coil where the number of windings Nw is equal to 50, the current
I through the coil is 1 A and the radius a of the coil is 6 cm. A MEMS IMU
(Xsens MTi) providing synchronized inertial and magnetometer measurements
at a sampling frequency of 100 Hz is used. A picture of the experimental setup
can be found in Figure 2. Ground truth data is collected from an optical reference
system (Vicon system) and is used for validation of the estimates as well as for
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determining the position and orientation Rem of the coil.

Figure 2: The experimental setup consisting of an IMU (orange box), a coil
and a power supply. Optical markers are present, used for obtaining ground
truth data, via an optical reference system.

Before the magnetometer measurements can be used in Algorithm 1, they need
to be preprocessed for two reasons. First, the model (9) assumes that the magne-
tometer only measures the magnetic field due to a coil. A constant term repre-
senting the local earth magnetic field therefore needs to be determined and sub-
tracted from all measurements. Second, the IMU used outputs magnetometer
measurements in arbitrary units, while the model (9) determines the magnetic
field in Tesla. A constant multiplication on all axes is therefore needed. Both
constants are obtained by determining a best estimate from a part of the data
where the magnetic disturbance is (approximately) zero. The preprocessed data
is illustrated in Figure 1. The circles represent the preprocessed magnetometer
measurements, downsampled to 4 Hz. The color of the circles represents themag-
nitude of the magnetic field. The magnetic field falls off cubically with distance
which explains why the magnitude of the magnetic field is reduced quickly with
distance from the coil. Each preprocessed measurement also gives rise to a red
arrow indicating the direction of the magnetic field. The length of the arrows
illustrates the magnitude.

4.2 Results

Using the collected inertial and magnetometer data, Algorithm 1 can be applied
to obtain state estimates. Due to the fact that the magnitude of the magnetic field
falls off cubically with distance, all results in this section are based on data no
further away from the coil’s origin than 40 cm. These have been compared to the
ground truth data from the reference system. This section focuses on analysis of
the position estimates. Due to the unobservability discussed in Section 2.3 we
do not expect exact matches between the RBPF estimates and the ground truth
data. A good comparison of the quality of the estimates, however, are the radial
position and height estimates. The error plots can be found in Figure 3. The
RBPF is initialized around the true estimate using the reference data, but any
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other (reasonable) initialization will give comparable results.

As can be seen in Figure 3, very good position estimates are obtained. However, at
approximately 42 s, there is a big peak in both the radial position and the height
errors. This can be explained by the fact that at this time instant, the sensor is
the furthest away from the coil, almost 40 cm. The approach presented in this
work is thus able to obtain high accurate position estimates for longer times, only
when the sensor remains close to the coil. This is a major limitation in using the
magnetic field as a source of position information in the way presented in this
paper. The further away from the magnetic disturbance the less informative the
measurements become. Even though at 40 cm from the coil the signal to noise
ratio is still good, tracking problems occur due to model errors. It is therefore
important to have a good model of the magnetic field (Wahlström et al., 2013).
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Figure 3: Error plots comparing the RBPF position estimates with the
ground truth data from the optical reference system.

5 Conclusions and future work

This paper has shown that close to a magnetic distortion generated by a mag-
netic coil, good position and orientation estimates can be obtained from inertial
and magnetometer data only. Ideas for future work include extending the mag-
netometer model to a more realistic measurement model. First trials show that
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we can probably deal with including the local earth magnetic field. We also aim
at combining this work with Wahlström et al. (2013) into an approach where si-
multaneous localization and mapping (SLAM) is possible. Another future line of
research aims at studying the unobservability manifolds from the magnetic field
in different cases.
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