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Abstract

In recent years, inertial sensors have undergone major developments. The quality
of their measurements has improved while their cost has decreased, leading to an
increase in availability. They can be found in stand-alone sensor units, so-called
inertial measurement units, but are nowadays also present in for instance any
modern smartphone, in Wii controllers and in virtual reality headsets.

The term inertial sensor refers to the combination of accelerometers and gy-
roscopes. These measure the external specific force and the angular velocity, re-
spectively. Integration of their measurements provides information about the
sensor’s position and orientation. However, the position and orientation estimates
obtained by simple integration suffer from drift and are therefore only accurate
on a short time scale. In order to improve these estimates, we combine the inertial
sensors with additional sensors and models. To combine these different sources
of information, also called sensor fusion, we make use of probabilistic models to
take the uncertainty of the different sources of information into account. The first
contribution of this thesis is a tutorial paper that describes the signal processing
foundations underlying position and orientation estimation using inertial sensors.

In a second contribution, we use data from multiple inertial sensors placed on
the human body to estimate the body’s pose. A biomechanical model encodes the
knowledge about how the different body segments are connected to each other.
We also show how the structure inherent to this problem can be exploited. This
opens up for processing long data sets and for solving the problem in a distributed
manner.

Inertial sensors can also be combined with time of arrival measurements from
an ultrawideband (uwb) system. We focus both on calibration of the uwb setup
and on sensor fusion of the inertial and uwbmeasurements. The uwbmeasure-
ments are modeled by a tailored heavy-tailed asymmetric distribution. This distri-
bution naturally handles the possibility of measurement delays due to multipath
and non-line-of-sight conditions while not allowing for the possibility of measure-
ments arriving early, i.e. traveling faster than the speed of light.

Finally, inertial sensors can be combined with magnetometers. We derive an
algorithm that can calibrate a magnetometer for the presence of metallic objects
attached to the sensor. Furthermore, the presence of metallic objects in the envi-
ronment can be exploited by using them as a source of position information. We
present a method to build maps of the indoor magnetic field and experimentally
show that if a map of the magnetic field is available, accurate position estimates
can be obtained by combining inertial and magnetometer measurements.
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Populärvetenskaplig sammanfattning

När regissören Seth MacFarlane animerade teddybjörnen Ted i den storsäljande
filmenmed samma namn, lånade han ut inte bara sin röst utan också sin kropp till
Ted. Genom att montera en mängd sensorer på kroppen, kan man lagra rörelse-
mönster digitalt, och sedan spela upp dem i exempelvis en animerad teddybjörn.
Tekniken har använts inte bara i en stor mängd filmer, utan också av spelindustrin
för att utveckla verklighetstrogna avatarer, i medicinsk rehabilitering, och för att
analysera och optimera rörelsemönster inom elit-idrott.

Denna avhandling behandlar en rad forskningsproblem kring denna typ av
sensorer, av exakt samma modell som användes i filmen Ted. Sensorerna som
används är en kombination av så kallade tröghetssensorer (eng. inertial sensors)
sammansatta i små enheter. Varje enhet mäter acceleration inklusive tyngdac-
celerationen med accelerometer och rotationshastigheter med gyroskop. Dessa
sensorer kan tillsammans ge information om enhetens orientering och position.
Här används även andra sensortyper och annan information, såsom matematiska
modeller. Eftersom dessa modeller är en förenkling av verkligheten och sensor-
mätningar aldrig är exakta, vill vi kombinera olika informationskällor, och ange
hur mycket vi kan lita på varje källa. Detta kallas sensorfusion och kan göras med
probabilistiska modeller som kan representera osäkerhet.

En sådan modell som används för att skatta kroppens rörelser är en biomeka-
nisk modell som beskriver kroppens olika delar och hur dessa kan röra sig. I vår
modell är dessa kroppsdelar sammankopplade. Vi antar alltså att personen inte
förlorar kroppsdelar under experimenten. Denna typ av information kan använ-
das för att animera teddybjörnen Ted eller för att skapa avatarer i dataspel. Om
vi även vill att de ska interagera, till exempel hålla hand, behöver vi veta var de
är. För att åstadkomma detta kan vi lägga till positionsmätningar.

En typ av sensor som ofta kombineras med tröghetssensorer är magnetomet-
rar. Dessa mäter magnetfältet och man kan likna den vid en kompass som till-
handahåller information om sensorns orientering. I denna avhandling används
magnetometern även för att bestämma sensorns position. Magnetometern mäter
om det finns magnetiskt material i till exempel möbler eller i byggnaden. Denna
information kan man använda för att avgöra var i byggnaden sensorn befinner
sig.

Utvecklingen av tröghetssensorer har gått snabbt de senaste åren. Kvaliteten
på mätningarna har ökat samtidigt som kostnaden har minskat, vilket har lett till
en ökad tillgänglighet. Idag finns de exempelvis i mobiltelefoner, handkontroller
till Wii tv-spel och i virtual reality headsets. Allt detta öppnar upp möjligheter för
flera spännande tillämpningar inom detta intressanta forskningsområde. Denna
avhandling visar att bra information om orientering och position kan fås genom
att kombinera olika sorters mätningar och modeller. Kanske kan det leda till att
vi kan animera teddybjörnar i våra egna vardagsrum om några år!
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Notation

Abbreviations

Abbreviation Meaning

bfgs Broyden-Fletcher-Goldfarb-Shanno
ekf Extended Kalman filter
gp Gaussian process
gps Global positioning system
imu Inertial measurement unit
kf Kalman filter
ls Least squares
map Maximum a posteriori
mekf Multiplicative extended Kalman filter
mems Micro-machined electromechanical system
mhe Moving horizon estimation
ml Maximum likelihood
nlos Non-line-of-sight
nls Nonlinear least squares
pdf Probability density function
pdr Pedestrian dead-reckoning
pf Particle filter

pf-map Maximum a posteriori estimate for the particle filter
rms Root mean square
rmse Root mean square error
rts Rauch-Tung-Striebel
rbpf Rao-Blackwellized particle filter

rbpf-map Maximum a posteriori estimate for the Rao-
Blackwellized particle filter

slam Simultaneous localization and mapping
sqp Sequential quadratic programming
toa Time of arrival
tdoa Time difference of arrival
uwb Ultrawideband
vr Virtual reality
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xviii Notation

Symbols and operators

Notation Meaning

xt Vector x at time t
x1:N Vector x from time t = 1 to t = N
x̂ Estimate of x
xu Vector x expressed in the u-frame
Ruv Rotation matrix from the v-frame to the u-frame
⊙ Quaternion multiplication
qL Left quaternion multiplication of the quaternion q
qR Right quaternion multiplication of the quaternion q
qv Vector part of the quaternion q
R Set of real numbers

SO(3) Special orthogonal group in three dimensions
detA Determinant of the matrix A
TrA Trace of the matrix A
AT Transpose of the matrix A
× Cross product

[a×] Cross product matrix of the vector a
⊗ Kronecker product
A−1 Inverse of the matrix A

A† Pseudo-inverse of the matrix A
N (µ, σ2) Gaussian distribution with mean µ and covariance σ2

Cauchy(µ, γ) Cauchy distribution with location parameter µ and
scale parameter γ

U (a, b) Uniform distribution on the interval [a, b]
GP (µ, k) Gaussian process with mean µ and covariance func-

tion k
p( · ) Probability density function

p (a | b) Conditional probability of a given b
p (a, b) Joint probability of a and b
∼ Is distributed according to
E Expected value
cov Covariance
In Identity matrix of size n × n

0m×n Zero matrix of size m × n
, Defined as
∅ Empty set
∈ Is a member of

A ⊆ B A is a subset of or is included in B
argmax Maximizing argument
argmin Minimizing argument
‖a‖2 Two-norm of the vector a
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Background





1
Introduction

In this thesis, we consider the problem of estimating position and orientation
using inertial sensors. In Section 1.1, we give some example applications and in-
troduce what inertial sensors are and what their measurements look like. We will
also discuss why inertial sensors typically need to be combined with additional
sensors or models to obtain accurate position and orientation information. Exam-
ples of additional sensors and models used in this thesis are given in Section 1.2.
In Sections 1.3 and 1.4, we will introduce the contributions of the thesis and give
an outline of the rest of the thesis.

1.1 Background

Sensors can be used to provide information about the position and orientation of
a person or an object. For instance, it is possible to place sensors on a human body
to see how the person moves. This information can be useful for rehabilitation or
for improving sports performance. An example can be seen in Figure 1.1a where
Olympic and world champion speed skating Ireen Wüst wears sensors on her
body that give information about her posture while ice skating. One can imagine
that she can use this information to analyze which angles her knees and hips
should have to skate as fast as possible and if her posture changes when she gets
more tired. It is also possible to use the information about how a person moves
for motion capture in movies and games, as illustrated in Figure 1.1b, where the
actor Seth MacFarlane wears sensors on his body that measure his movements
to animate the bear Ted. Sensors can also be placed in or on objects, for example
cars, to provide information about their position and orientation as illustrated in
Figure 1.1c. This information is for instance useful for self-driving cars. There is
a wide range of other examples that one can think of, such as using sensors to

3
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(a) Left: Olympic and world champion speed skating
IreenWüst wearing sensors on her body. Right: graph-
ical representation of the estimated orientation and
position of her body segments.

(b) Actor Seth MacFarlane wearing sensors
on his body to capture his motion and ani-
mate the bear Ted.

(c) Sensors can be used to provide informa-
tion about the position of the cars in a chal-
lenge on cooperative and autonomous driv-
ing.

Figure 1.1: Example applications of using sensors to obtain information
about the position and orientation of cars and of the various body segments
of a person. Courtesy of Xsens Technologies.
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(a) Gyroscope measurements yω,t in the
x- (blue), y- (green) and z-axis (red) of the
sensor.
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(b) Accelerometer measurements ya,t in
the x- (blue), y- (green) and z-axis (red) of
the sensor.

Figure 1.2: Inertial measurements collected with a smartphone.

obtain information about the position and orientation of robots, unmanned areal
vehicles, trains and people.

The sensors placed on the people and in the cars in Figure 1.1 are inertial sen-
sors. The term inertial sensor is used to refer to the combination of accelerometers
and gyroscopes. A gyroscope measures the rate of change of the orientation of the
sensor, called the angular velocity. The gyroscopes that we consider have three
axes, implying that they measure the angular velocity in three directions. This is
illustrated in Figure 1.2a, which shows gyroscope measurements collected with a
Sony Xperia Z5 Compact smartphone using the app described in Hendeby et al.
(2014). For the first 10 seconds, the smartphone was lying stationary on a table.
Afterwards, the gyroscope was rotated back and forth around its x-, y- and z-axis.
An accelerometer measures both the earth’s gravity and the acceleration of the
sensor. The accelerometers that we consider also have three axes as illustrated in
Figure 1.2b. During the first 10 seconds, the smartphone was again lying station-
ary on a table. The accelerometer measurements can be seen to be around zero
in the x- and y- axis, while the z-axis measures a value of around 10 m/s2 which
is due to the earth’s gravity. When rotating the smartphone, the accelerometer
measures the gravity in different axes. After around 37 seconds, the smartphone
was shaken, resulting in a significant acceleration that is measured in addition to
the earth’s gravity.

Over recent years, inertial sensors have undergone major developments. They
have become smaller, lighter and cheaper while providing more accurate measure-
ments. Because of this, they are nowadays available in a large number of devices
such as smartphones, Wii controllers and virtual reality (vr) headsets, as shown
in Figure 1.3. They are also present in dedicated devices called inertial measure-
ment units (imus). The sensor devices placed on the persons and in the cars in
Figure 1.1 are imus.

Gyroscopes can be used to provide information about the orientation of the
sensor, by adding up the changes in orientation over time. This process is called
integration of the signal. Accelerometers can be used to provide information both
about the position and about the orientation of the sensor. If the sensor is not
accelerated, the accelerometer measurements can be used to provide information
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(a) Left bottom: an Xsens mtx imu
(Xsens Technologies B.V., 2016). Left top:
a Trivisio Colibri Wireless imu (Trivisio
Prototyping GmbH, 2016). Right: a Sam-
sung Galaxy S4 mini smartphone.

(b) A Samsung gear vr.1 (c) A Wii controller containing
an accelerometer and a Motion-
Plus expansion device containing a
gyroscope.2

Figure 1.3: Examples of devices containing inertial sensors.

1 ‘Samsung Gear vr’ available at flic.kr/photos/pestoverde/15247458515 under cc by
2.0 (http://creativecommons.org/licenses/by/2.0).

2 ‘WiiMote with MotionPlus’ by Asmodai available at https://commons.wikimedia.org/
wiki/File:WiiMote_with_MotionPlus.JPG under cc by sa (https://creativecommons.
org/licenses/by-sa/3.0/).

flic.kr/photos/pestoverde/15247458515
http://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:WiiMote_with_MotionPlus.JPG
https://commons.wikimedia.org/wiki/File:WiiMote_with_MotionPlus.JPG
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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Figure 1.4: Schematic illustration of dead-reckoning, where accelerometer
and gyroscope measurements are integrated to position and orientation.

about the orientation of the sensor, because they measure the direction of the
earth’s gravity with respect to the axes of the sensor. If the sensor is accelerated,
the measurements provide information about the change in velocity, which in turn
provides information about the change in position. Hence, to obtain position infor-
mation from the acceleration of the sensor, the signal needs to be integrated twice.
To be able to distinguish between the acceleration of the sensor and the earth’s
gravity, the orientation needs to be known so that the gravity component can be
subtracted from the measurements. Because of this, when using inertial sensors,
the estimation of the sensor’s position is inextricably linked to the estimation of
its orientation. The process of integrating the inertial sensor measurements to
obtain position and orientation information is often called dead-reckoning. This
process is summarized in Figure 1.4.

In practice, the position and orientation estimates obtained using dead-reck-
oning are only accurate for a short time. The reason is that the gyroscope and ac-
celerometer measurements are both biased and noisy, as illustrated in Figure 1.5,
where we zoom in on the first 10 seconds of the data shown in Figure 1.2. Because
of this, the integration steps from angular velocity to rotation and from accelera-
tion to position introduce integration drift. The integration drift in orientation for
simulated gyroscope data is illustrated in Figure 1.6. This simulated data has the
same bias as the gyroscope measurements in Figure 1.5a, and the same spread in
the noise. Because of the constant bias, the orientation error grows linearly with
time. The different lines in Figure 1.6 represent the orientation error for differ-
ent realizations of this noise. The variation in the orientation error for different
noise realizations increases over time. The integration drift is more severe for po-
sition, which relies both on double integration of the acceleration and on accurate
orientation estimates to subtract the earth’s gravity.

Because the process of dead-reckoning only gives accurate position and orien-
tation information on a short time scale, inertial sensors are typically combined
with additional sensors or additional models. In this thesis, we consider two sepa-
rate problems related to position and orientation estimation using inertial sensors.
The first is concerned only with orientation estimation. The three-dimensional
orientation can be described in terms of the roll, pitch and yaw or heading angles.
The combination of the roll and pitch angles is often also called inclination. In a
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(a) Gyroscope measurements yω,t in the
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(b) Accelerometer measurements ya,t
in the x- (blue), y- (green) and z-axis
(red) of the sensor.
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Figure 1.5: The first 10 seconds of the gyroscope and accelerometer measure-
ments shown in Figure 1.2, during which the smartphone is lying stationary
on a table (a,b) and the histograms of one of the axes of the gyroscope and of
the accelerometer (c,d).
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Figure 1.6: Integration of simulated one-dimensional gyroscope measure-
ments to orientation for 50 different noise realizations having the same char-
acteristics as in Figure 1.5a.
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second problem, we consider the combined estimation of position and orientation,
which is often also called pose estimation. In this case, we are interested both in
the three-dimensional orientation and in the three-dimensional position.

1.2 Additional sensors and models

In this section, we will discuss a number of additional sensors and additional
models that are used in this thesis to complement the inertial sensors.

1.2.1 Magnetometers

A magnetometer measures the strength and the direction of the magnetic field.
The magnetic field consists of contributions both from the local earth magnetic
field and from the field due to the presence of magnetic material. The magnitude
and the direction of the earth magnetic field depend on the location on the earth.
The horizontal component points to the earth magnetic north. The properties of
the earth magnetic field are accurately known from geophysical studies, see e.g.
National Centers for Environmental Information (2016).

In combination with inertial sensors, magnetometers typically serve the pur-
pose of a compass and are used to provide information about the sensor’s heading.
This relies on the assumption that the magnetic field is at least locally constant
and that it points in the direction of a local magnetic north. There are two rea-
sons why this assumption is frequently violated in practice. Firstly, the sensor
can be mounted such that it is rigidly attached to magnetic material. This is for
instance the case when the magnetometer is integrated in a smartphone or when
it is placed in a car. Secondly, objects containing magnetic material can be present
in the vicinity of the sensor, specifically in indoor environments. For instance,
there is typically a large amount of magnetic material present in the structures of
buildings and in the furniture present in the building.

If themagnetic material is rigidly attached to the sensor, themagnetometer can
be calibrated for the presence of this material. Afterwards, the measurements can
be used for heading estimation as if the material was not present. The presence
of magnetic material in the vicinity of the sensor, however, can not be calibrated
for and is typically considered an undesired disturbance. An alternative view is
that the presence of magnetic material in indoor environments can be exploited
by using it as a source of position information, see e.g. Angermann et al. (2012);
Frassl et al. (2013); Solin et al. (2016). This can be done by building a map of
the magnetic field. Both information about the strength and about the direction
of the field can be included in the map. An example of an indoor magnetic field
map is shown in Figure 1.7a. It is built from data collected using the mobile
robot shown in Figure 1.7b. After the map has been constructed, magnetometer
measurements can be compared to it in order to obtain information about possible
sensor locations, see e.g. Solin et al. (2016) and Paper G.
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(a)Map of the magnitude of the indoor magnetic
field.

(b)Mobile robot.

Figure 1.7: Left: Magnitude of an indoor magnetic field estimated using the
method presented in Paper F. Right: Mobile robot that was used to collect
data.

1.2.2 Ultrawideband

Time of arrival (toa) measurements from an ultrawideband (uwb) system can
be used to provide information about the position of the sensor. Uwb is a radio
technology which uses a very large frequency band. An example of a uwb sys-
tem consisting of a number of stationary uwb receivers and a number of small,
mobile transmitters is depicted in Figure 1.8a. Each uwb transmitter sends out a
uwb pulse as illustrated in Figure 1.8b. The pulse travels with the speed of light
towards the receivers, which each measure when the pulse arrives. Combining
the measurements from different receivers, it is possible to obtain an estimate of
the position of the transmitter. Note that the time when the pulses arrive needs to
be measured with very high accuracy. For instance, if the transmitter is 10 meters
away from the receiver, it will take the pulse only approximately 33 nanoseconds
to reach the receiver.

1.2.3 Biomechanical models

In the examples shown in Figures 1.1a and 1.1b, multiple imus are placed on the
human body to estimate its movements. More specifically, the imus are placed
on a large number of body segments and the position and the orientation of each
body segment is estimated. This is schematically illustrated in Figure 1.9a. The
two body segments can be thought of as the upper and the lower leg, each having
an imu attached to it. The sensors are attached as rigidly as possible to the body
segments. This is illustrated in Figure 1.9b, which shows a suit containing 17
imus. The suit is meant to be a tight fit such that the sensors move as little as
possible with respect to the body. For this application, knowledge about how the
human body can move is available to complement the inertial measurements. For
instance, the different body segments are known to be connected to each other.
This can be captured in biomechanical models.
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(a)Hardware used in a uwb setup.
More specifically, a uwb receiver
and a small, battery-powered uwb
transmitter. Courtesy of Xsens
Technologies.

uwb transmitter

uwb receiver

uwb pulse

(b) A uwb setup consisting of a number of sta-
tionary receivers obtaining toa measurements
of signal pulses originating from a mobile trans-
mitter.

Figure 1.8: Illustration of the toa measurements and the hardware used in
a uwb setup.

(a) Schematic illustration of two connected
body segments (purple and green), each
with a sensor (orange) attached to it.

(b) Suit containing 17 imus
placed on the human body.
Courtesy of Xsens Tech-
nologies.

Figure 1.9: Illustration of using imus placed on the human body to estimate
its movements.

1.3 Main contributions

In this thesis, inertial sensors are combined with additional sensors and addi-
tional models for position and orientation estimation. Examples of sensors and
models that can be used for this were discussed in Section 1.2. The choice of these
examples was highly inspired by the contributions of this thesis. In short, these
contributions are:
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• A tutorial paper describing the signal processing foundations, i.e. the algo-
rithms and models, underlying position and orientation estimation using
inertial sensors [Paper A].

• An approach to estimate the pose of the human body using inertial sensors
placed on the body, as illustrated in Figure 1.9 [Paper B]. We also present a
method that allows us to solve this problem for large data sets. The same
approach can be used to distribute the computations needed to solve the
problem over the sensors on the body [Paper C].

• An approach to combine inertial measurements with toa measurements
from a uwb system for indoor positioning. We provide solutions to the
pose estimation problem using inertial and uwb measurements, and to the
calibration of the uwb setup shown in Figure 1.8 [Paper D].

• We have developed a magnetometer calibration algorithm which uses in-
ertial sensors to calibrate the magnetometer for the presence of magnetic
disturbances attached to the sensor. It also calibrates for magnetometer sen-
sor errors and for misalignment between the magnetometer and the inertial
sensor axes [Paper E].

• An approach to build maps of the indoor magnetic field, taking into account
the well-known physical properties of the magnetic field [Paper F]. An ex-
ample of a magnetic field map obtained using this method is illustrated in
Figure 1.7. We also show that the magnetic field can be used as a source of
position information for an experiment where we generate a known mag-
netic field [Paper G].

1.4 Outline

The thesis consists of two parts. In Part II, seven papers are presented. The con-
tributions of these papers were discussed in Section 1.3. Below we provide a sum-
mary of each paper in Part II together with a discussion of the background and
of the author’s contributions. A background to these papers is provided in Part I.
In this introductory chapter, we have briefly introduced the problem at hand, the
sensors and models involved and the contributions of the thesis. To combine these
different sources of information, also called sensor fusion, we make use of proba-
bilistic models to take into account each source of information and its accuracy.
In Chapters 2 and 3 we discuss the subjects of probabilistic models and inference
using these models. Having introduced these topics we revisit the contributions
of the thesis in Chapter 4 and discuss them in more technical detail, followed by
a discussion of some directions for future work.

Paper A: Using inertial sensors for position and orientation

estimation

Paper A is an edited version of
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M. Kok, J. D. Hol, and T. B. Schön. Using inertial sensors for position
and orientation estimation. Technical Report LiTH-ISY-R-3093, De-
partment of Electrical Engineering, Linköping University, Linköping,
Sweden, December 2016a.

Summary: In recent years, micro-machined electromechanical system (mems)
inertial sensors (3D accelerometers and 3D gyroscopes) have become widely avail-
able due to their small size and low cost. Inertial sensor measurements are ob-
tained at high sampling rates and can be integrated to obtain position and orien-
tation (pose) estimates. These pose estimates are accurate on a short time scale,
but suffer from integration drift over longer time scales. To overcome this issue,
inertial sensors are typically combined with additional sensors and models. In
this tutorial we focus on the signal processing aspects of pose estimation using
inertial sensors, discussing different modeling choices and a selected number of
important algorithms. These algorithms are meant to provide the reader with a
starting point to implement their own pose estimation algorithm. The algorithms
include optimization-based smoothing and filtering as well as computationally
cheaper extended Kalman filter implementations.

Background and contributions: A couple of years ago, Prof. Thomas Schön
came up with the idea of writing a tutorial paper on pose estimation using inertial
sensors. Towards the end of the PhD of the author of this thesis, the plans for
writing this paper became more concrete since it is a nice way of rounding up
the work we have done together in the past years. The paper has been written
together with Dr. Jeroen Hol.

Paper B: An optimization-based approach to motion capture

using inertial sensors

Paper B is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. An optimization-based approach to
human body motion capture using inertial sensors. In Proceedings of
the 19th World Congress of the International Federation of Automatic
Control, pages 79–85, Cape Town, South Africa, August 2014.

Summary: In inertial human motion capture, a multitude of body segments
are equipped with inertial measurement units, consisting of 3D accelerometers,
3D gyroscopes and 3D magnetometers. Relative position and orientation esti-
mates can be obtained using the inertial data together with a biomechanical model.
In this work we present an optimization-based solution to magnetometer-free in-
ertial motion capture. It allows for natural inclusion of biomechanical constraints,
for handling of nonlinearities and for using all data in obtaining an estimate. As
a proof-of-concept we apply our algorithm to a lower body configuration, illus-
trating that the estimates are drift-free and match the joint angles from an optical
reference system.

Background and contributions: The co-authors Dr. Jeroen Hol and Prof.
Thomas Schön came up with the idea of solving the human body motion capture



14 1 Introduction

problem as an optimization problem. The implementation of the optimization
algorithm has been done using a framework developed by Xsens Technologies.
With this framework, it is possible to define the optimization problem at a high
level. The author of this thesis has been involved in developing and implementing
the algorithm, in the data collection and has written a major part of the paper.

Paper C: A scalable and distributed solution to the inertial motion

capture problem

Paper C is an edited version of

M. Kok, S. Khoshfetrat Pakazad, T. B. Schön, A. Hansson, and J. D.
Hol. A scalable and distributed solution to the inertial motion cap-
ture problem. In Proceedings of the 19th International Conference
on Information Fusion, pages 1348–1355, Heidelberg, Germany, July
2016b.

Summary: In inertial motion capture, a multitude of body segments are
equipped with inertial sensors, consisting of 3D accelerometers and 3D gyro-
scopes. Using an optimization-based approach to solve the motion capture prob-
lem allows for natural inclusion of biomechanical constraints and for modeling
the connection of the body segments at the joint locations. The computational
complexity of solving this problem grows both with the length of the data set
and with the number of sensors and body segments considered. In this work, we
present a scalable and distributed solution to this problem using tailored message
passing, capable of exploiting the structure that is inherent in the problem. As a
proof-of-concept we apply our algorithm to data from a lower body configuration.

Background and contributions: This work solves the inertial motion capture
problem from Paper B using the message passing algorithm developed by Khosh-
fetrat Pakazad et al. (2016). After the author of this thesis presented the inertial
motion capture problem during an internal group meeting, Dr. Sina Khoshfetrat
Pakazad suggested that the structure of the motion capture problem can be ex-
ploited using the message passing algorithm. The implementation and the writing
of the paper has been done together with Dr. Sina Khoshfetrat Pakazad.

Paper D: Indoor positioning using ultrawideband and inertial

measurements

Paper D is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. Indoor positioning using ultra-
wideband and inertial measurements. IEEE Transactions on Vehicular
Technology, 64(4):1293–1303, 2015b.

Summary: In this work we present an approach to combine measurements
from inertial sensors (accelerometers and gyroscopes) with time of arrival mea-
surements from an ultrawideband system for indoor positioning. Our algorithm
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uses a tightly-coupled sensor fusion approach, where we formulate the problem
as a maximum a posteriori problem that is solved using an optimization approach.
It is shown to lead to accurate 6D position and orientation estimates when com-
pared to reference data from an independent optical tracking system. To be able
to obtain position information from the ultrawideband measurements, it is im-
perative that accurate estimates of the ultrawideband receivers’ positions and
their clock offsets are available. Hence, we also present an easy-to-use algorithm
to calibrate the ultrawideband system using a maximum likelihood formulation.
Throughout this work, the ultrawideband measurements are modeled by a tai-
lored heavy-tailed asymmetric distribution to account for measurement outliers.
The heavy-tailed asymmetric distribution works well on experimental data, as
shown by analyzing the position estimates obtained using the ultrawideband
measurements via a novel multilateration approach.

Background and contributions: The co-authors of this paper, Dr. Jeroen Hol
and Prof. Thomas Schön, have been working on the subject of indoor position-
ing using ultrawideband and inertial measurements, resulting in Hol et al. (2009,
2010) and in the results presented in Hol (2011). The author of this thesis has sub-
stantially extended and adapted the previously presented algorithms for sensor
fusion, calibration and multilateration. The paper has been written together with
Dr. Jeroen Hol.

Paper E: Magnetometer calibration using inertial sensors

Paper E is an edited version of

M. Kok and T. B. Schön. Magnetometer calibration using inertial sen-
sors. IEEE Sensors Journal, 16(14):5679 – 5689, 2016.

Earlier versions of this work were presented in:

M. Kok and T. B. Schön. Maximum likelihood calibration of a mag-
netometer using inertial sensors. In Proceedings of the 19th World
Congress of the International Federation of Automatic Control, pages
92–97, Cape Town, South Africa, August 2014,

M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge. Cali-
bration of a magnetometer in combination with inertial sensors. In
Proceedings of the 15th International Conference on Information Fu-
sion, pages 787–793, Singapore, July 2012.

Summary: In this work we present a practical algorithm for calibrating a
magnetometer for the presence of magnetic disturbances and for magnetometer
sensor errors. To allow for combining the magnetometer measurements with in-
ertial measurements for orientation estimation, the algorithm also corrects for
misalignment between the magnetometer and the inertial sensor axes. The cali-
bration algorithm is formulated as the solution to a maximum likelihood problem
and the computations are performed offline. The algorithm is shown to give good
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results using data from two different commercially available sensor units. Us-
ing the calibrated magnetometer measurements in combination with the inertial
sensors to determine the sensor’s orientation is shown to lead to significantly
improved heading estimates.

Background and contributions: Before the author of this thesis started her
work as a PhD student at Linköping University, she worked at Xsens Technologies.
During this time she studied the topic of magnetometer calibration. Hence, the
magnetometer calibration problem provided a good starting point for research
during her PhD. A first paper on this subject has therefore been co-authored by
Dr. Jeroen Hol and Dr. Henk Luinge from Xsens Technologies. Later work has
mainly been done in cooperation with Prof. Thomas Schön. Dr. Henk Luinge and
Laurens Slot from Xsens Technologies and Dr. Gustaf Hendeby from Linköping
University have been so kind as to help in collecting the data sets presented in the
paper. The author of this thesis has implemented the calibration algorithm and
has written a major part of the paper.

Paper F: Modeling and interpolation of the ambient magnetic field

by Gaussian Processes

Paper F is an edited version of

A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä. Modeling
and interpolation of the ambient magnetic field by Gaussian processes.
ArXiv e-prints, September 2015. arXiv:1509.04634.

Summary: Anomalies in the ambient magnetic field can be used as features
in indoor positioning and navigation. By using Maxwell’s equations, we derive
and present a Bayesian non-parametric probabilistic modeling approach for in-
terpolation and extrapolation of the magnetic field. We model the magnetic field
components jointly by imposing a Gaussian process (gp) prior on the latent scalar
potential of the magnetic field. By rewriting the gp model in terms of a Hilbert
space representation, we circumvent the computational pitfalls associated with
gp modeling and provide a computationally efficient and physically justified
modeling tool for the ambient magnetic field. The model allows for sequential
updating of the estimate and time-dependent changes in the magnetic field. The
model is shown to work well in practice in different applications: we demonstrate
mapping of the magnetic field both with an inexpensive Raspberry Pi powered
robot and on foot using a standard smartphone.

Background and contributions: This paper has largely been written during
the author’s PreDoc visit to the Bayesian Methodology Group at Aalto University
in January –March 2015. It combines the approaches fromWahlström et al. (2013)
and Solin and Särkkä (2014) and builds on the common interest of the authors in
localization using magnetic fields as a source of position information. The map
of the indoor magnetic field obtained using the method presented in this paper,
has been used in Solin et al. (2016) for localization. In the future we hope to
find time to combine these ideas into a working simultaneous localization and
mapping (slam) solution. The work on implementation and writing of the paper
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has been split more or less equally between Dr. Arno Solin and the author of this
thesis.

Paper G: MEMS-based inertial navigation based on a magnetic

field map

Paper G is an edited version of

M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson. MEMS-based
inertial navigation based on a magnetic field map. In Proceedings
of the 38th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 6466–6470, Vancouver, Canada, May 2013.

Summary: This paper presents an approach for 6D pose estimation where mems
inertial measurements are complemented with magnetometer measurements as-
suming that a model (map) of the magnetic field is known. The resulting esti-
mation problem is solved using a Rao-Blackwellized particle filter. In our exper-
imental study the magnetic field is generated by a magnetic coil giving rise to a
magnetic field that we can model using analytical expressions. The experimental
results show that accurate position estimates can be obtained in the vicinity of
the coil, where the magnetic field is strong.

Background and contributions: The idea of looking into pose estimation
using magnetometers as a source of position information was started through dis-
cussions with Dr. Slawomir Grzonka during the cadics “Learning World Models”
workshop in 2010 in Linköping. The experiments used in the paper were per-
formed while the author of this thesis was working at Xsens Technologies. During
this time, a first implementation of the pose estimation algorithm was made, us-
ing an extended Kalman filter. During the author’s time at Linköping University,
the work has been extended with an implementation using a Rao-Blackwellized
particle filter. The author of this thesis wrote a major part of this paper. This paper
was the start of our work towards slam using magnetic measurements.

Publications of related interest, but not included in this thesis

F. Olsson, M. Kok, K. Halvorsen, and T. B. Schön. Accelerometer cal-
ibration using sensor fusion with a gyroscope. In Proceedings of the
IEEEWorkshop on Statistical Signal Processing, pages 660–664, Palma
de Mallorca, Spain, June 2016.

M. Kok, J. Dahlin, T. B. Schön, and A. Wills. Newton-based maximum
likelihood estimation in nonlinear state space models. In Proceedings
of the 17th IFAC Symposium on System Identification, pages 398–403,
Beijing, China, October 2015a.

A. Svensson, T. B. Schön, andM. Kok. Nonlinear state space smoothing
using the conditional particle filter. In Proceedings of the 17th IFAC
Symposium on System Identification, pages 975–980, Beijing, China,
October 2015.
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A. J. Isaksson, J. Sjöberg, D. Törnqvist, L. Ljung, and M. Kok. Using
horizon estimation and nonlinear optimization for grey-box identifi-
cation. Journal of Process Control, 30:69–79, June 2015.

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger.
Real-time video based lighting using GPU raytracing. In Proceedings
of the 2014 European Signal Processing Conference (EUSIPCO), pages
1627–1631, Lisbon, Portugal, September 2014.

M. Kok. Probabilistic modeling for positioning applications using
inertial sensors. Licentiate’s thesis no. 1656, Linköping University,
Linköping, Sweden, June 2014.

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling mag-
netic fields using Gaussian processes. In Proceedings of the 38th In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3522 – 3526, Vancouver, Canada, May 2013.



2
Probabilistic models

As discussed in Chapter 1, our interest lies in position and orientation estimation
using inertial sensors. For general estimation problems, two key questions need
to be answered to set up a description of the problem:

What are we interested in? And which information is available?

For the inertial motion capture problem illustrated in Figure 1.9 for instance, we
are interested in estimating the relative position and orientation of each of the
body segments. The information that is available are the inertial measurements
from each of the 17 imus. Furthermore, knowledge is available from biomechan-
ical models. For instance, the body segments are known to be connected to each
other.

Our answers to these two key questions will guide us when we model the
relation between the quantities that we are interested in and the information that
is available. It is important to realize that models are simplifications of reality,
which implies that they are never completely true. Since our sensors are not per-
fect (see Figure 1.5) and since our models are not perfect descriptions of reality,
we typically want to combine multiple sources of information. This is illustrated
in Example 2.1.

Example 2.1: Estimating orientation using inertial measurements

As described in Chapter 1, the gyroscope measures the angular velocity of the sen-
sor and integration of the measurements provides information about the sensor’s
orientation. Modeling the accelerometer measurements as measuring only the
gravity, its measurements can be used to estimate the inclination of the sensor. In
practice, however, the measurements are biased and contain noise, as illustrated
in Figure 1.5. We simulate noisy accelerometer and gyroscope measurements, as-
suming that the sensor is lying still. Note that compared to the data in Figure 1.5,

19
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Figure 2.1: Estimated inclination using integration of simulated gyroscope
measurements (a), by using accelerometer measurements, assuming that the
sensor is stationary (b) and by combining the measurements (c). The roll is
depicted in black, the pitch in grey.

we have assumed that the measurements do not contain any bias. Furthermore,
the noise levels are chosen slightly differently for illustrational purposes.

The inclination estimates obtained by integration of the gyroscope data are
shown in Figure 2.1a. Instead of staying around 0◦, they drift over time. The
inclination estimated from the simulated accelerometer measurements is shown
in Figure 2.1b. As can be seen, the orientation estimates are centered around 0◦.
However, they are quite noisy. We would like to combine the accelerometer and
gyroscope measurements to estimate the inclination such that our estimates look
as smooth as the ones using the gyroscope data but at the same time do not exhibit
any integration drift. An example of our desired outcome is shown in Figure 2.1c.

To effectively combine multiple sources of information, it is beneficial to take
the uncertainty of the different sources into account. For instance, to obtain Fig-
ure 2.1c, we explicitly made use of the knowledge of the noise levels of the (sim-
ulated) measurements. This is an important reason for why we are interested in
using probabilistic models.

We express our models in terms of mathematical relations. For this, we denote
all the quantities that we are interested in the states xt or the parameters θ. The
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Figure 2.2: A number of probability density functions.

subscript t on x implies that we assume that x changes over time and has value xt
at time t. We model the states to be in discrete time from time t = 1 to t = N . The
set of states at all time steps is denoted x1:N . In Example 2.1, the state xt consists
of the inclination of the sensor. The parameters θ do not have a subscript t. With
this we explicitly indicate that they are constant. We will encounter examples of
parameters θ in Chapter 3. We denote themeasurements at time t by yt and the set
of all measurements from t = 1, . . . , N by y1:N . In Example 2.1, the measurements
yt consist of both the gyroscope and the accelerometer measurements.

To take the uncertainty of the states x1:N and the measurements y1:N into
account, we represent both the states and the measurements as random variables
distributed according to some probability distribution. Examples of probability
distributions that we encounter throughout this thesis are given in Figure 2.2. The
Gaussian distribution shown in Figure 2.2a has a mean of zero and a covariance
of one. This implies that the variable is most likely to have a value around 0. In
fact, there is a 68% chance that the random variable is between −1 and +1 and a
99.7% chance that it is within −3 and +3. A general Gaussian distribution with
mean µ and covariance Σ is denoted N (µ,Σ).

For the Gaussian distribution in Figure 2.2a, the probability of the variable
to have a value smaller than −3 or larger than +3 is very small. The Cauchy
distribution shown in Figure 2.2b on the other hand, assigns a larger probability
to values deviating more from zero. A distribution that models the probability of
large positive values to be higher than the probability of large negative values is
shown in Figure 2.2c.

2.1 Models for position and orientation estimation

In this section we discuss a number of probabilistic models to illustrate the types
of models that we use for position and orientation estimation in the papers in
Part II. We start with an example of a dynamic model in Example 2.2. Dynamic
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models are used to describe the relation between the state xt+1 and xt as

xt+1 | xt ∼ p(xt+1 | xt), (2.1)

where p( · ) denotes a probability density function. The dynamic model describes
the conditional distribution of the state xt+1 given the state xt .

Example 2.2: Dynamic model

For almost all applications, we have some knowledge about the dynamics. For
instance, when estimating the position of a person, it is very unlikely, if not im-
possible, for the person to be in Linköping, Sweden at a specific time instance,
and in Amsterdam, the Netherlands half an hour later. In other words, condi-
tioned on the fact that we know that the person is in Linköping at time t, we
know something about where the person can be at time t + 1.

Since inertial sensors measure the acceleration and the angular velocity of the
sensor, they can be used to provide information about the change in position and
orientation from time t to time t + 1. This can be used in a dynamic model. The
inertial measurements are both noisy and biased as illustrated in Figure 1.5. Com-
paring the histograms in Figures 1.5c and 1.5d to the distributions in Figure 2.2,
it can be seen that the inertial sensor measurement noise is quite Gaussian with
a non-zero mean value (bias) and a covariance that is significantly smaller than
one. The presence of Gaussian noise and of a sensor bias can be represented by
the probabilistic dynamic model (2.1).

The model discussed in Example 2.2 is used in Papers A – E and Paper G. In
some applications, additional knowledge is available about the relation between
different parts of the state vector xt . This can explicitly be modeled in terms of
the conditional distribution

xat | x
b
t ∼ p(xat | x

b
t ), (2.2)

where xat and xbt are subsets of the states xt . Two examples related to Papers B
and C are discussed in Examples 2.3 and 2.4.

Example 2.3: Sensors placed on body segments

To estimate the pose of the human body, sensors can be placed on different body
segments, as discussed in Section 1.2.3. It is not possible to place the sensors
directly on the bone. Instead, they are placed on the skin and because of the
presence of soft tissue, they will move slightly with respect to the bone. It is
difficult to model this movement exactly. Instead, we assume that the position
and orientation of the sensors on the body segments are constant up to some
Gaussian noise.
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Example 2.4: Connection of body segments at joints

When sensors are placed on a human body, it is possible to make use of the knowl-
edge that the body segments are connected to each other at the joints. This assump-
tion is actually exactly true. Hence, we would like to model this as a deterministic
constraint instead of using a probability distribution.

Finally, we can model the knowledge provided by the sensor measurements
about the states. This can be represented as

yt | xt ∼ p(yt | xt), (2.3)

i.e. in terms of the conditional distribution of the measurements yt given the
state xt . Examples 2.5 and 2.6 discuss the inclusion of uwb and magnetometer
measurements. Uwb measurements are used in Paper D, while magnetometers
are used in Papers E – G.

Example 2.5: Ultrawideband measurements

In Section 1.2.2, we discussed the use of toa measurements from a uwb sys-
tem in combination with inertial sensors. In practice, a small number of pulses
sent by the transmitter to the receivers can be delayed. This can be because the
pulse did not take the shortest path to the receiver, but instead traveled via for
instance the floor or a wall in the building. This is called multipath. It can also
be because the pulse had to travel through some material other than air to reach
the receiver. This is called non-line-of-sight (nlos) and causes a delayed pulse
since the speed of light in material is lower than the speed of light in air. The pres-
ence of a small number of delayed measurements can be modeled by assuming
that the toa measurements yt given the state xt are distributed according to an
asymmetric distribution such as the one shown in Figure 2.2c. This distribution
allows for measurements to be delayed while not allowing for the possibility of
measurements arriving earlier, i.e. traveling faster than the speed of light.

Example 2.6: Magnetometer measurements

Magnetometers measure the local magnetic field. This field consists of contribu-
tions both from the local earth magnetic field and from the magnetic field due to
magnetic material such as metallic structures of buildings and furniture. Because
of this, especially in indoor environments, it can vary significantly over different
locations in the building. Let us define a function f (pnt ) that gives the magnetic
field at each position pnt . The magnetometer measurements ym,t can then be mod-
eled as

ym,t = Rbn
t f (pnt ) + em,t , (2.4)

where em,t is Gaussian measurement noise. The rotation matrix Rbn
t rotates the

magnetic field from the coordinate frame in which the sensor is localized to the
coordinate frame in which the sensor obtains its measurements. Note that we
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use slightly different notation here compared to (2.3). A subscript m is added
to the measurements yt to explicitly indicate that we consider magnetometer
measurements. Furthermore, the state xt in this case consists of both the position
of the sensor pnt and the orientation Rbn

t .
When the magnetic field is used for heading information, it is typically as-

sumed that the magnetic field is constant, i.e. that f (pnt ) is a constant three-
dimensional vector. Because of this, local variations of the magnetic field are con-
sidered undesired disturbances. On the other hand, it is also possible to make use
of the changes in the magnetic field to provide position and orientation informa-
tion. For this we would like to know the function f (pnt ). In practice, it is typically
hard to obtain f (pnt ) because a large number of magnetic field sources contribute
to the magnetic field, severely complicating the modeling process. However, it is
possible to estimate the function f (pnt ) by learning a map of the magnetic field.
This can be done by collecting training data, which can be used to predict the
magnetic field at previously unknown locations.

The models discussed in Examples 2.2 – 2.6 can be combined and used for po-
sition and orientation estimation, which is the topic of Section 3.2. In Section 2.2
we will first discuss a method to build maps of the magnetic field.

2.2 Maps of the magnetic field

In Example 2.6, we introduced the problem of building maps of the magnetic
field. An example of a map of the magnetic field is shown in Figure 1.7. The map
is obtained by interpolation and extrapolation of magnetic field measurements
at different locations, collected by a small robot. Hence, based on a number of
measurements, so-called training data, we learn the local magnetic field. This
allows us to predict the magnetic field in previously unobserved locations. In
Paper F, we build these maps by assuming that the magnetic field can be modeled
as a Gaussian process (gp). Gps are defined by Rasmussen and Williams (2006)
as:

Definition 2.7. “A gp is a collection of random variables, any finite number of
which have a joint Gaussian distribution.”

Consider the slightly more general notation as compared to Example 2.6 and
model the measurements yt as

yt = f (xt) + et ,

f (x) ∼ GP (µ(x), k(x, x′)) ,
(2.5)

where et ∼ N (0, σ2
n ) and GP (µ(x), k(x, x′)) denotes a gp with mean µ(x) and

covariance k(x, x′). Hence, the magnetic field at different locations xt is jointly
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. (2.6b)

Using gps, it is possible to incorporate prior information about the physical prop-
erties of the magnetic field. This is illustrated in Example 2.8.

Example 2.8: Encoding prior knowledge

The choice of covariance function k(x, x′) can encode prior knowledge about the
function f (x). Two well-known covariance functions are the squared exponential
covariance function kSE(x, x

′) and the exponential covariance function kE(x, x
′),

defined as

kSE(x, x
′) = σ2

f exp
(

−
‖x−x′‖22
2ℓ2

)

, (2.7a)

kE(x, x
′) = σ2

f exp
(

− ‖x−x
′‖2

ℓ

)

. (2.7b)

They model the mutual dependence of f (x) on f (x′) in terms of the hyperparam-
eters σf and ℓ. Figures 2.3a – 2.3c show samples drawn from a gp prior using
a squared exponential covariance function with different hyperparameters. As
can be seen, the parameter σf determines the magnitude and the parameter ℓ the
length scale. The hyperparameters σ and ℓ therefore influence the shapes of the
functions. They can be learned from data. As shown in Figure 2.3d, the choice
of covariance function can incorporate prior knowledge for instance about the
smoothness of the function.

In Example 2.8, we assumed that x and y are one-dimensional. For the case
of modeling the magnetic field, however, the magnetometer measurements ym,t

and the position pnt are both three-dimensional vectors. This opens up for addi-
tional modeling choices, for instance on how these three components are related.
Physical knowledge of magnetic fields is available through Maxwell’s equations,
see also Griffiths (1999); Jackson (1999). We incorporate this into the gp prior in
Wahlström et al. (2013) and in Paper F.

2.3 Visualizing the resulting model structures

In this chapter, we have introduced models for two different estimation problems.
The first is estimation of position and orientation, for which we have discussed
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Figure 2.3: Samples from two different gp priors for a number of different
hyperparameters.

several models in Section 2.1. The second is estimation of the magnetic field using
gps discussed in Section 2.2. In this section we discuss the structure of these two
resulting models and visualize them in terms of their corresponding graphical
models (Bishop, 2006).

Combining (2.1) and (2.3), the structure of our model for position and orienta-
tion estimation is graphically illustrated in Figure 2.4. The state xt+1 can be seen
to depend on xt and result in measurements yt+1. Note that xt+1 is conditionally
independent of x1:t−1 given the state xt . This implies that if the sensor’s current
position, velocity and acceleration are known, it is possible to predict the position
and velocity at the next time instance. It is not necessary to know where the sensor
has been or how fast it has traveled before arriving in this state. This property of
the model is called the Markov property. The algorithms used to compute posi-
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Figure 2.4: Structure of pose estimation problem where xt+1 depends on xt
according to (2.1) and results in measurements yt+1 according to (2.3).
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Figure 2.5: Structure of the gp model where noisy measurements yt of the
magnetic field f (xt) at locations xt are available.

tion and orientation estimates which will be introduced in Chapter 3 rely on this
property.

In the gp model (2.5), noisy measurements yt of the magnetic field f (xt) at
different locations xt are available. Having a closer look at the covariance matrix
in (2.6), it can be seen that the magnetic field at each location xt depends on the
magnetic field at all other locations, i.e. that all components K(x, x′) are non-zero.
This is graphically illustrated in Figure 2.5. The fact that f (x1:N ) are all connected
to each other, results in a high computational complexity to build a map of the
magnetic field if N is large. Because of this, approaches that use gp models to
learn function values f (x) often approximate the model in Figure 2.5, see e.g.
Quiñonero-Candela and Rasmussen (2005) for an early survey and Chapter 4 of
Bijl (2016) for a more recent overview. The simplest approximation would be to
simply discard some of the measurements. An alternative approach is used in
Paper F.





3
Inference

In Chapter 2, we focused on modeling the quantities that we are interested in and
the information that is available. In this chapter, we will focus on the question:

How can we use the available models and measurements to infer knowledge
about the quantities we are interested in?

We will use the models on the forms introduced in Chapter 2 to obtain infor-
mation about the sensor’s position and orientation and about the magnetic field.
More formally, our aim is to infer information about the states x1:N and the pa-
rameters θ using the available models and the measurements y1:N . For this, we
make extensive use of the basic relations of probabilities, (see e.g. Gut (1995);
Bishop (2006)),

p(a) =

∫

p(a, b)db, (3.1a)

p(a, b) = p(a | b)p(b). (3.1b)

where p(a | b) denotes the conditional probability of a given b and p(a, b) denotes
the joint probability of a and b.

3.1 Building maps of the magnetic field

Given a data set with measurements y = {yt}
N
t=1 at locations x = {xt}

N
t=1, it is

possible to infer knowledge about the magnetic field f (x∗) at some new location x∗
using gp regression. In the remainder, we will use the short-hand notation f∗ to
denote f (x∗). Using the fact that y and f∗ are jointly Gaussian as

p(f∗, y | x, x∗) = N

((

y
f∗

)

;

(

0
0

)

,

(

K(x, x) + σ2
n K(x, x∗)

K(x∗, x) K(x∗, x∗)

))

, (3.2)

29
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Figure 3.1: Illustration of gp regression where the mean is represented by a
black line and the grey area represents the uncertainty.

the conditional distribution p(f∗ | x, y, x∗) can be computed. For Gaussian distri-
butions, this conditional distribution can be computed exactly using (3.1b), see
e.g. Schön and Lindsten (2011). It results in the Gaussian distribution

p(f∗ | x, y, x∗) = N (E [f∗] , cov [f∗]), (3.3)

with

E [f∗] = K(x∗, x)
(

K(x, x) + σ2
nIN

)−1
y, (3.4a)

cov [f∗] = K(x∗, x∗) − K(x∗, x)
(

K(x, x) + σ2
nIN

)−1
K(x, x∗). (3.4b)

An example ofgp regression can be found in Figure 3.1. Before anymeasurements
are observed, the mean of the gp prior is zero and the uncertainty is the same
for each position x as illustrated in Figure 3.1a. Observing a measurement yt at
position xt provides knowledge about the function value f (xt). This is illustrated
in Figures 3.1b and 3.1c. Note that for illustrational purposes we assume that
the measurements are noiseless, i.e. σn = 0. Since the function values f (x) at
the different locations x depend on each other, the measurements also provide
information about the function values at surrounding locations.

3.2 Estimating position and orientation

In this section, we are concerned with infering knowledge about the states x1:N
(containing the position and orientation) from the measurements y1:N . This can
be expressed in terms of the joint smoothing distribution

p(x1:N | y1:N ). (3.5)
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In the pose estimation problem, we are typically interested in obtaining point
estimates, denoted by x̂1:N . One way of obtaining these is by solving

x̂1:N = argmax
x1:N

p(x1:N | y1:N )

= argmax
x1:N

p(x1:N ,y1:N )
p(y1:N )

= argmax
x1:N

p(x1:N , y1:N ), (3.6)

where argmax denotes the maximizing argument. The first equality sign in (3.6)
follows from (3.1) and the second from the fact that p(y1:N ) in the denominator
does not depend on x1:N . The estimate x̂1:N is called the maximum a posteriori
(map) estimate. Hence, themap estimate x̂1:N is the pose forwhich the probability
of the states given the measurements is maximized.

In (3.6) we assume that all measurements y1:N are used to obtain the posterior
distribution of x1:N . Although it makes sense to use all available information
to obtain the best estimates, a downside of smoothing is that one needs to wait
until all measurements are collected before the pose can be computed. Because of
this, in many applications, we are also interested in filtering, where the aim is to
compute the filtering distribution

p(xt | y1:t). (3.7)

The map estimate can in this case be computed as

x̂t = argmax
xt

p(xt | y1:t). (3.8)

Using the relations (3.1) in combination with the Markov property discussed in
Section 2.3, the full probabilistic model p(x1:N , y1:N ) in (3.6) can be decomposed
as

p(x1:N , y1:N ) = p(x1)

︸︷︷︸

Prior

N∏

t=2

p(xt | xt−1)

︸            ︷︷            ︸

Dynamics

N∏

t=1

p(yt | xt)

︸         ︷︷         ︸

Measurements

. (3.9a)

Here, p(x1) is a prior distribution over x1. The dynamics is modeled in terms
of p(xt+1 | xt). The distribution p(yt | xt) models the information given by the
measurements about the state. Note that we have encountered explicit examples
of these kinds of models in Chapter 2. Similarly, the filtering distribution can be
decomposed as

p(xt | y1:t) =

Measurements
︷    ︸︸    ︷

p(yt | xt)

Prediction
︷         ︸︸         ︷

p(xt | y1:t−1)

p(yt | y1:t−1)
, (3.9b)
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where

p(xt | y1:t−1) =

∫

p(xt | xt−1)
︸       ︷︷       ︸

Dynamics

p(xt−1 | y1:t−1)
︸            ︷︷            ︸

Filtering distribution

dxt−1.

If ourmodels in Section 2.1 would be linear andGaussian, closed form expressions
for the map estimates of the position and orientation of the sensor could be ob-
tained. For filtering, this results in the well-known Kalman filter (Kalman, 1960).
For smoothing, this results in the linear smoothing equations, see e.g. Särkkä
(2013). Estimation of position and orientation, however, is inherently a nonlinear
problem due to the nonlinear nature of orientations. In Examples 3.1 – 3.3 we
give a number of examples illustrating how themap estimates (3.6) and (3.8) can
be obtained for this nonlinear case. The choice of which algorithm to use is highly
application-dependent. It depends on the properties of the problem, as well as on
the computational resources and the desired accuracy.

Example 3.1: Optimization-based smoothing and filtering

The smoothing and filtering problems can be solved using an optimization-based
approach (Nocedal and Wright, 2006; Boyd and Vandenberghe, 2004). In this
approach, the solutions x̂1:N to (3.6) or x̂t to (3.8) can be found by studying the
shape of the smoothing or filtering distributions as a function of the states x1:N
or xt . This can be characterized in terms of their slope and curvature. If nx is
the size of the state vector xt , the filtering problem solves N problems of size nx.
The smoothing problem instead solves one problem of size nxN . For example, for
orientation estimation the size of xt is 3. Estimating a smoothing solution of the
pose of the lower body for 37 seconds as in Paper B, the state vector has 40 284
elements instead. The framework of optimization naturally allows for including
equality and inequality constraints.

Example 3.2: Extended Kalman filters

An alternative approach to solving the filtering problem (3.8) is to use an ex-
tended Kalman filter (ekf) (Särkkä, 2013; Gustafsson, 2012). Ekfs make a linear
approximation of the nonlinear models and use the relations (3.1) to approxi-
mate the filtering distribution. They are computationally less expensive than the
optimization-based methods from Example 3.1. However, they can not straight-
forwardly include equality and inequality constraints.

Example 3.3: Particle filters

Particle filters (pfs) approximate the distribution (3.7) using a number of sam-
ples and their associated weights. For an introduction to particle filtering, see
e.g. Doucet and Johansen (2011). Pfs are specifically useful in cases when the
models are severely nonlinear and a Gaussian assumption on the state xt is a poor
description. An example when this is the case is localization of the robot in the
map in Figure 1.7.
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Figure 3.2: Example calibration results with an ellipsoid of magnetometer
data before calibration (red) and a sphere of data after calibration (blue).

3.3 Estimating calibration parameters

In Section 3.2, we focused on estimating x1:N from the measurements y1:N . We
did not consider the presence of unknown parameters θ. Parameter estimation is
typically of concern when calibrating the sensors. One approach to estimate con-
stant parameters θ is to straightforwardly include them as additional unknowns
in the smoothing optimization problem (3.6), resulting in map estimates of the
parameters. They can also be included as slowly time-varying parameters in the
filtering problem (3.8).

An alternative way of estimating the parameters θ is to solve the maximum
likelihood (ml) problem defined as

θ̂ = argmax
θ∈Θ

L(θ; y1:N ), (3.10)

where L(θ; y1:N ) is refered to as the likelihood function, see e.g. Ljung (1999).
It is defined as L(θ; y1:N ) , pθ(Y1:N = y1:N ), where Y1:N are random variables
and y1:N are particular realizations of these variables. Hence, L(θ; y1:N ) is a deter-
ministic function of a deterministic unknown parameter vector θ. Here, θ is an
nθ-dimensional vector which can be limited to a subset Θ of Rnθ . An example of
a calibration problem that we encounter in this thesis is calibration of a magne-
tometer for the presence of magnetic material attached to the sensor, as illustrated
in Example 3.4.

Example 3.4: Magnetometer calibration

In Example 2.6, we discussed the use of magnetometers to provide heading in-
formation. In that case, the magnetic field at the different locations is assumed to
be constant. We will denote this constant magnetic field as mn. Furthermore, we
extend the measurement model (2.4) with calibration parameters D and o as

ym,t = DRbn
t mn + o + em,t , (3.11)

where D ∈ R3×3 and o ∈ R3. If the sensor would be properly calibrated, rotation of
the sensor would lead to a sphere of magnetometer data. When magnetic material
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is rigidly attached to the sensor, the magnetometer data obtained by rotating the
sensor lies on an ellipsoid instead. An example based on experimental data is
shown in Figure 3.2. Estimating D and o can be interpreted as fitting the red
ellipsoid of data to a sphere. Magnetometer calibration is the topic of Paper E.



4
Conclusions and future work

In Chapters 1 – 3 of Part I of this thesis, a background was given to the seven
papers that will be presented in Part II. In Chapter 1, an introduction to the
sensors and models that we use was given and the contributions of the papers
were summarized. Chapter 2 focused on describing the concept of a probabilistic
model, illustrated with a few examples of models used in Part II. In Chapter 3, we
subsequently discussed how to infer knowledge from these models and the sensor
measurements. In the present chapter, we revisit the contributions of this thesis
and summarize them in more technical detail. We also discuss possible directions
for future work.

4.1 Position and orientation estimation using inertial

sensors

Contributions The tutorial in Paper A describes the topic of position and orien-
tation estimation using inertial sensors. Different modeling choices for the dynam-
ics, the measurements and the priors are presented. We introduce smoothing and
filtering algorithms solved as optimization problems as well as computationally
attractive ekf implementations. The estimates from the different algorithms are
compared. Furthermore, some general characteristics are discussed both for the
problem of orientation estimation and for the problem of combined position and
orientation estimation. Finally, the topic of sensor calibration is discussed and
illustrated in terms of the estimation of an unknown gyroscope bias.

Future work In Paper A we discuss four different algorithms for pose estimation.
An interesting direction for future work would be to consider also other popular
algorithms such as the complementary filter, see e.g. Mahony et al. (2008); Bald-

35
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win et al. (2007), and the filter presented by Madgwick et al. (2011). Furthermore,
it would be interesting to have a closer look at using spherical distributions to
represent the orientation. These distributions explicitly model the orientation to
lie on a manifold. In recent years, a number of approaches have been proposed to
estimate the orientation using these kinds of distributions. For instance, in Kurz
et al. (2013); Gilitschenski et al. (2016); Glover and Kaelbling (2013), algorithms
are presented to estimate orientation by using Bingham distributions.

4.2 Inertial sensor motion capture

Contributions Paper B presents an approach for inertial sensor motion capture
to estimate the pose of the human body. We assume that the sensors are more
or less rigidly attached to the body and that the body segments are connected to
each other. Solving the problem as a smoothing optimization problem allows us
to straightforwardly incorporate the connection between the body segments as
equality constraints into the problem. The algorithm is applied to experimental
data with promising results.

As discussed in Example 3.1, the number of states in the smoothing formula-
tion of the motion capture problem is large. It grows both with time and with the
number of sensors and body segments that are considered. However, as illustrated
in Figure 2.4, the states xt+1 in the motion capture problem are conditionally in-
dependent of the states x1:t−1 given the states xt . This structure can be exploited
using a technique called message passing as presented in Paper C. This allows for
solving the smoothing problem for large data sets. A similar structure can be seen
in the human body where the left foot is connected to the left lower leg (and not
to any other body segments), the left lower leg is connected to the left upper leg,
and so forth. Using this structure, message passing can also be used to solve the
problem in a distributed manner using the sensors on the body.

Future work The topic of inertial sensor motion capture is an interesting and
large field of study in itself. Because of this, there are many interesting directions
of future work for Papers B and C, a few of which will be highlighted here. First of
all, Paper B only presents a proof-of-concept, showing that inertial sensor motion
capture can indeed be solved using an optimization approach. The algorithm is
applied to data from a lower-body configuration with promising results. However,
an extensive analysis of the quality of the estimates has not been performed and
is an important direction for future work. We also see clear possibilities for future
work in the following directions:

• Relative pose estimation without using magnetometers Solving the iner-
tial motion capture problem using an optimization-based approach allows
us to straightforwardly incorporate equality constraints to model the con-
nections of the different body segments. By incorporating these constraints,
the sensors’ relative position and orientation become observable as long as
the subject is not standing completely still (Hol, 2011). Because of this, it is
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not necessary to make use of magnetometer data to provide heading infor-
mation. The use of magnetometers is known to be problematic specifically
in motion capture applications because the magnetic field at the different
sensor locations is typically different, see e.g. Ligorio and Sabatini (2016);
Seel et al. (2014); El-Gohary and McNames (2015) and the references in
Paper B. The claim in Hol (2011) that the relative position and orientation
become observable if the subject is not completely standing still, is mainly
based on experimental results and on physical insight. It would be an inter-
esting direction for future work to undertake a more rigorous observability
study and to derive the necessary and sufficient conditions under which the
relative pose is indeed observable.

• Estimating calibration parameters In Paper B, we assume that the posi-
tion and orientation of the sensors on the body segments are known from
pre-calibration. It would be an interesting direction of future work to add
these calibration parameters as unknowns in the optimization approach.
We expect that these parameters will only be identifiable under “sufficient”
motion of the body. It would be interesting to derive conditions under which
the calibration parameters can be identified from the available data and to
study the quality of the parameter estimates as a function of the motion of
the body.

• Online pose estimation The algorithm derived in Paper B obtains smooth-
ing estimates of the pose. To allow for online estimation, it would be inter-
esting to consider filtering or sliding window approaches. A first step in
this direction has been taken in the master thesis project by Lorenz (2016).
To run the filtering or sliding window approach in real-time, an efficient
implementation is necessary. It would be interesting to see if the message
passing algorithm presented in Paper C will be useful for this.

• Activity recognition In Paper B we have focused on pose estimation using
inertial sensors placed on the human body. A separate but related topic is
that of activity recognition using sensors placed on the human body, see
e.g. Bulling et al. (2014); Hardegger et al. (2016); Reiss et al. (2010). This
field focuses on recognizing the activities that the subject performs. It would
be interesting to combine the motion capture approach from Paper B with
activity recognition.

A number of these directions of future work have already been addressed in Taetz
et al. (2016) andMiezal et al. (2016). In Miezal et al. (2016), an optimization-based
solution to the inertial motion capture problem is presented that is inspired by
the approach in Paper B. A sliding window approach is used to allow for online
estimation. The approach is compared to two different ekf -based approaches,
particularly in terms of performance in the presence of calibration errors and de-
pendence on magnetometer usage. The optimization-based approach was shown
to result in more accurate pose estimates than the ekf approaches. In Taetz et al.
(2016), an optimization-based approach using a sliding window of data was used
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to estimate both the human body pose and the calibration parameters, i.e. the po-
sition and orientation of the sensors on the body segments. To this end, additional
biomechanical models were included in the optimization approach.

4.3 Combining UWB with inertial sensors

Contributions Paper D presents our approach to combine inertial measurements
with toa measurements from a uwb system for indoor positioning. We consider
both pose estimation using inertial and uwb measurements, and calibration of
the uwb setup as shown in Figure 1.8. By using the asymmetric distribution
illustrated in Figure 2.2c, we explicitly model the possibility of delayed measure-
ments due to multipath or nlos while not allowing for measurements arriving
earlier, i.e. traveling faster than the speed of light. It is experimentally shown that
taking the possibility of delayed measurements into account leads to significantly
improved position estimates.

Future work In Paper D we use a tailored asymmetric heavy-tailed distribu-
tion to model the possibility of delayed measurements. Related studies have also
modeled this presence of delayed measurements using skew-t distributions (Nur-
minen et al., 2015; Müller et al., 2016) and Gaussian mixture models (Müller
et al., 2014). It would be an interesting topic for future work to study how these
approaches compare to each other. Another interesting direction of future work
is to combine measurements from multiple uwb transmitters and multiple imus
for human body motion capture. This would be a combination of the work pre-
sented in Paper B and that presented in Paper D and would allow us to estimate
the absolute pose of the human body.

4.4 Magnetometer calibration

Contributions Paper E presents a magnetometer calibration algorithm which
uses inertial sensors to calibrate the magnetometer for the presence of magnetic
disturbances attached to the sensor. The algorithm also calibrates for magne-
tometer sensor errors and for misalignment between the magnetometer and the
inertial sensor axes. The calibration algorithm is based on an ml formulation
and is shown to give good results using data from two different commercially
available imus. Using the calibrated magnetometer measurements in combina-
tion with the inertial sensors to determine the sensor’s orientation is shown to
lead to significantly improved heading estimates.

Future work In Paper E we show that our magnetometer calibration algorithm
leads to significantly improved heading estimates based on measurements from
two different commercially available imus. An interesting line of future work is
to apply the magnetometer calibration algorithm to inertial and magnetometer
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measurements from a smartphone. Smartphones typically use their own mag-
netometer calibration algorithm, thereby complicating the testing of other cali-
bration algorithms. However, as of Android api level 18 (Jelly Bean mr2), it is
possible to log uncalibrated magnetometer data. Hence, it is be possible to apply
our calibration algorithm to measurements from a smartphone.

The calibration algorithm is formulated as a batch, offline, method. It would
be interesting to extend it to an online approach. Using this approach, it might be
possible to automatically recalibrate the sensor once it enters a different magnetic
environment.

4.5 Mapping and localization using magnetic fields

Contributions Paper F presents an approach to build maps of the indoor mag-
netic field. Physical knowledge is incorporated by modeling the magnetic field
as the gradient of a scalar potential. The magnetic field map is built using gp re-
gression. Since the magnetometers typically sample at 50 or 100 Hz, the amount
of data that can be used for building the map of the magnetic field grows quickly
over time. As illustrated in Figure 2.5, the gp model assumes that the magnetic
field at each location depends on the magnetic field at all other locations. Be-
cause of this, gp regression becomes intractable for large amounts of data. To
circumvent this issue, we use a computationally efficient implementation using
the approach introduced in Solin and Särkkä (2014). Using this approach in com-
bination with the sequential approach introduced in Särkkä et al. (2013) allows
for online updating of the magnetic field estimate. It also opens up the possibility
to focus on the spatio-temporal problem in which the magnetic field can change
over time, for instance due to furniture being moved around.

In Paper G we use the magnetic field as a source of position information. We
make use of a magnetic coil which generates a magnetic field that we canmodel us-
ing analytical expressions. Combining magnetometer and inertial measurements,
it is possible to estimate the pose of the sensor. Based on experimental results
we show that accurate pose estimates can be obtained in the vicinity of the coil,
where the magnetic field is strong.

Future work In Paper F we discussed a method to build maps of the magnetic
field. Paper G focused on localization in a known map. A natural direction of
future work is to consider the problem of simultaneous localization and mapping
(slam). A first step in this direction has been set by Solin et al. (2016), where a
smartphone is localized in a map which is built using the approach presented in
Paper F. Using such a slam approach, it would be very interesting to analyze
what localization accuracy we can achieve. Furthermore, it would be interesting
to analyze if this accuracy varies significantly over different buildings because of
differences in the amount of magnetic material that is present.
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4.6 Concluding remarks

In general, these are interesting times to work with inertial sensors. The quality
of their measurements has improved while their cost has decreased, leading to an
increase in availability. The fact that they have become so widely available opens
up for many exciting possibilities. For instance, a lab for master students has
been developed at Linköping University in which students implement their own
orientation estimation algorithm using data from a smartphone (Hendeby et al.,
2014). Other sensors have also undergone significant developments. For instance,
very small devices have been developed which can both act as uwb receiver and
transmitter (DecaWave, 2016; BeSpoon, 2016). Most experiments in this thesis
have been done with standalone imus. In Paper A, however, some experiments
have been included using measurements collected with a smartphone. It will be
very interesting to see how the measurements from smartphones and from small
uwb devices can be used and what the quality of the resulting estimates will be.
It will also be interesting to see what new and exciting applications for position
and orientation estimation using inertial sensors will open up in the future.



Bibliography

M. Angermann, M. Frassl, M. Doniec, B. J. Julian, and P. Robertson. Characteriza-
tion of the indoor magnetic field for applications in localization and mapping.
In Proceedings of the International Conference on Indoor Positioning and In-
door Navigation (IPIN), pages 1–9, Sydney, Australia, November 2012.

G. Baldwin, R. Mahony, J. Trumpf, T. Hamel, and T. Cheviron. Complementary
filter design on the special Euclidean group SE(3). In Proceedings of the IEEE
European Control Conference (ECC), pages 3763–3770, Kos, Greece, July 2007.

BeSpoon. http://spoonphone.com/en/, 2016. Accessed on November 30.

H. Bijl. Gaussian process regression techniques – With applications to wind
turbines. PhD thesis, Delft University of Technology, Delft, the Netherlands,
2016.

C. M. Bishop. Pattern recognition and machine learning. Springer Science +
Business Media, 2006.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

A. Bulling, U. Blanke, and B. Schiele. A tutorial on human activity recognition
using body-worn inertial sensors. ACM Computing Surveys (CSUR), 46(3):33,
2014.

DecaWave. http://www.decawave.com/, 2016. Accessed on November 30.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. In The Oxford Handbook of Nonlinear Filtering. Oxford
University Press, 2011.

M. El-Gohary and J. McNames. Human joint angle estimation with inertial sensors
and validation with a robot arm. IEEE Transactions on Biomedical Engineering,
62(7):1759–1767, 2015.

M. Frassl, M. Angermann, M. Lichtenstern, P. Robertson, B. J. Julian, and
M. Doniec. Magnetic maps of indoor environments for precise localization

41

http://spoonphone.com/en/
http://www.decawave.com/


42 Bibliography

of legged and non-legged locomotion. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 913–920,
Tokyo, Japan, November 2013.

I. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck. Unscented orientation
estimation based on the Bingham distribution. IEEE Transactions on Automatic
Control, 61(1):172–177, 2016.

J. Glover and L. P. Kaelbling. Tracking 3-D rotations with the quaternion Bingham
filter. Computer Science andArtificial Intelligence Laboratory Technical Report,
2013.

D. J. Griffiths. Introduction to electrodynamics, volume 3. Prentice Hall, New
Jersey, 1999.

F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 2012.

A. Gut. An intermediate course in probability. Springer-Verlag, New York, 1995.

M. Hardegger, D. Roggen, A. Calatroni, and G. Tröster. S-SMART: A unified
bayesian framework for simultaneous semantic mapping, activity recognition,
and tracking. ACM Transactions on Intelligent Systems and Technology (TIST),
7(3):34, 2016.

G. Hendeby, F. Gustafsson, andN.Wahlström. Teaching sensor fusion and Kalman
filtering using a smartphone. In Proceedings of the 19th World Congress of
the International Federation of Automatic Control, pages 10586–10591, Cape
Town, South Africa, August 2014.

J. D. Hol. Sensor fusion and calibration of inertial sensors, vision, ultra-wideband
and GPS. Dissertation no. 1368, Linköping University, Linköping, Sweden, June
2011.

J. D. Hol, F. Dijkstra, H. Luinge, and T. B. Schön. Tightly coupled UWB/IMU
pose estimation. In Proceedings of the IEEE International Conference on Ultra-
Wideband (ICUWB), pages 688–692, Vancouver, Canada, September 2009.

J. D. Hol, T. B. Schön, and F. Gustafsson. Ultra-wideband calibration for indoor
positioning. In Proceedings of the IEEE International Conference on Ultra-
Wideband (ICUWB), pages 1–4, Nanjing, China, September 2010.

A. J. Isaksson, J. Sjöberg, D. Törnqvist, L. Ljung, and M. Kok. Using horizon
estimation and nonlinear optimization for grey-box identification. Journal of
Process Control, 30:69–79, June 2015.

J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal
of basic engineering, 82(1):35–45, 1960.



Bibliography 43

S. Khoshfetrat Pakazad, A. Hansson, M. S. Andersen, and I. Nielsen. Distributed
primal-dual interior-point methods for solving tree-structured coupled convex
problems using message-passing. Optimization Methods and Software, pages
1–35, 2016.

M. Kok. Probabilistic modeling for positioning applications using inertial sensors.
Licentiate’s thesis no. 1656, Linköping University, Linköping, Sweden, June
2014.

M. Kok and T. B. Schön. Maximum likelihood calibration of a magnetometer
using inertial sensors. In Proceedings of the 19th World Congress of the In-
ternational Federation of Automatic Control, pages 92–97, Cape Town, South
Africa, August 2014.

M. Kok and T. B. Schön. Magnetometer calibration using inertial sensors. IEEE
Sensors Journal, 16(14):5679 – 5689, 2016.

M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge. Calibration of a
magnetometer in combination with inertial sensors. In Proceedings of the 15th
International Conference on Information Fusion, pages 787–793, Singapore,
July 2012.

M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson. MEMS-based inertial navi-
gation based on a magnetic field map. In Proceedings of the 38th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 6466–
6470, Vancouver, Canada, May 2013.

M. Kok, J. D. Hol, and T. B. Schön. An optimization-based approach to human
body motion capture using inertial sensors. In Proceedings of the 19th World
Congress of the International Federation of Automatic Control, pages 79–85,
Cape Town, South Africa, August 2014.

M. Kok, J. Dahlin, T. B. Schön, and A. Wills. Newton-based maximum likelihood
estimation in nonlinear state space models. In Proceedings of the 17th IFAC
Symposium on System Identification, pages 398–403, Beijing, China, October
2015a.

M. Kok, J. D. Hol, and T. B. Schön. Indoor positioning using ultrawideband and
inertial measurements. IEEE Transactions on Vehicular Technology, 64(4):1293–
1303, 2015b.

M. Kok, J. D. Hol, and T. B. Schön. Using inertial sensors for position and orienta-
tion estimation. Technical Report LiTH-ISY-R-3093, Department of Electrical
Engineering, Linköping University, Linköping, Sweden, December 2016a.

M. Kok, S. Khoshfetrat Pakazad, T. B. Schön, A. Hansson, and J. D. Hol. A scalable
and distributed solution to the inertial motion capture problem. In Proceedings
of the 19th International Conference on Information Fusion, pages 1348–1355,
Heidelberg, Germany, July 2016b.



44 Bibliography

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger. Real-time
video based lighting using GPU raytracing. In Proceedings of the 2014 Eu-
ropean Signal Processing Conference (EUSIPCO), pages 1627–1631, Lisbon,
Portugal, September 2014.

G. Kurz, I. Gilitschenski, S. Julier, and U. D. Hanebeck. Recursive estimation of
orientation based on the Bingham distribution. In Proceedings of the 16th
International Conference on Information Fusion, pages 1487–1494, Istanbul,
Turkey, July 2013.

G. Ligorio and A. M. Sabatini. Dealing with magnetic disturbances in human
motion capture: A survey of techniques. Micromachines, 7(3):43, 2016.

L. Ljung. System Identification, Theory for the User. Prentice Hall PTR, 2nd
edition, 1999.

M. Lorenz. Towards realtime estimation of human motion using inertial sensors
without magnetometers – an optimization-based filtering approach. Master
thesis, TU Berlin, Germany, 2016.

S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. Estimation of IMU and
MARG orientation using a gradient descent algorithm. In IEEE International
Conference on Rehabilitation Robotics, pages 1–7, Zürich, Switserland, Jun –
Jul 2011.

R. Mahony, T. Hamel, and J.-M. Pflimlin. Nonlinear complementary filters on
the special orthogonal group. IEEE Transactions on Automatic Control, 53(5):
1203–1218, 2008.

M. Miezal, B. Taetz, and G. Bleser. On inertial body tracking in the presence of
model calibration errors. Sensors, 16(7):1132, 2016.

P. Müller, H. Wymeersch, and R. Piché. UWB positioning with generalized gaus-
sian mixture filters. IEEE Transactions on Mobile Computing, 13(10):2406–
2414, 2014.

P. Müller, J. A. del Peral-Rosado, R. Piché, and G. Seco-Granados. Statistical trilat-
eration with skew-t distributed errors in LTE networks. IEEE Transactions on
Wireless Communications, 15(10):7114–7127, 2016.

National Centers for Environmental Information. https://www.ngdc.noaa.
gov/geomag/geomag.shtml, 2016. Accessed on October 10.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Opera-
tions Research, 2nd edition, 2006.

H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson. Robust inference for state-
space models with skewed measurement noise. IEEE Signal Processing Letters,
22(11):1898–1902, 2015.

https://www.ngdc.noaa.gov/geomag/geomag.shtml
https://www.ngdc.noaa.gov/geomag/geomag.shtml


Bibliography 45

F. Olsson, M. Kok, K. Halvorsen, and T. B. Schön. Accelerometer calibration us-
ing sensor fusion with a gyroscope. In Proceedings of the IEEE Workshop on
Statistical Signal Processing, pages 660–664, Palma de Mallorca, Spain, June
2016.

J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approx-
imate Gaussian process regression. Journal of Machine Learning Research, 6:
1939–1959, 2005.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

A. Reiss, G. Hendeby, G. Bleser, and D. Stricker. Activity recognition using biome-
chanical model based pose estimation. In Proceedings of the 5th European Con-
ference on Smart Sensing and Context, pages 42–55, Passau, Germany, Novem-
ber 2010.

S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

S. Särkkä, A. Solin, and J. Hartikainen. Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing. IEEE Signal Processing Maga-
zine, 30(4):51–61, 2013.

T. B. Schön and F. Lindsten. Manipulating the multivariate Gaussian density.
Technical Report, Division of Automatic Control, Linköping University, Sweden,
Jan 2011.

T. Seel, J. Raisch, and T. Schauer. IMU-based joint angle measurement for gait
analysis. Sensors, 14(4):6891–6909, 2014.

A. Solin and S. Särkkä. Hilbert space methods for reduced-rank Gaussian process
regression. ArXiv e-prints, January 2014. arXiv:1401.5508.

A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä. Modeling and inter-
polation of the ambient magnetic field by Gaussian processes. ArXiv e-prints,
September 2015. arXiv:1509.04634.

A. Solin, S. Särkkä, J. Kannala, and E. Rahtu. Terrain navigation in the magnetic
landscape: Particle filtering for indoor positioning. In Proceedings of the Euro-
pean Navigation Conference, Helsinki, Finland, May–June 2016.

A. Svensson, T. B. Schön, and M. Kok. Nonlinear state space smoothing using
the conditional particle filter. In Proceedings of the 17th IFAC Symposium on
System Identification, pages 975–980, Beijing, China, October 2015.

B. Taetz, G. Bleser, and M. Miezal. Towards self-calibrating inertial body motion
capture. In 19th International Conference on Information Fusion, pages 1751–
1759, Heidelberg, Germany, July 2016.

Trivisio Prototyping GmbH. http://www.trivisio.com, 2016. Accessed on
November 14.

http://www.trivisio.com


46 Bibliography

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling magnetic fields
using Gaussian processes. In Proceedings of the 38th International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pages 3522 – 3526,
Vancouver, Canada, May 2013.

Xsens Technologies B.V. http://www.xsens.com, 2016. Accessed on October
4.

http://www.xsens.com


Part II

Publications





 

 

 

 

 

 

Papers 
 

The articles associated with this thesis have been removed for copyright 

reasons. For more details about these see:  

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133083 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133083


PhD Dissertations
Division of Automatic Control

Linköping University

M.Millnert: Identification and control of systems subject to abrupt changes. Thesis No. 82,
1982. ISBN 91-7372-542-0.
A. J. M. van Overbeek: On-line structure selection for the identification of multivariable
systems. Thesis No. 86, 1982. ISBN 91-7372-586-2.
B. Bengtsson: On some control problems for queues. Thesis No. 87, 1982. ISBN 91-7372-
593-5.
S. Ljung: Fast algorithms for integral equations and least squares identification problems.
Thesis No. 93, 1983. ISBN 91-7372-641-9.
H. Jonson:ANewton method for solving non-linear optimal control problems with general
constraints. Thesis No. 104, 1983. ISBN 91-7372-718-0.
E. Trulsson: Adaptive control based on explicit criterion minimization. Thesis No. 106,
1983. ISBN 91-7372-728-8.
K. Nordström: Uncertainty, robustness and sensitivity reduction in the design of single
input control systems. Thesis No. 162, 1987. ISBN 91-7870-170-8.
B. Wahlberg: On the identification and approximation of linear systems. Thesis No. 163,
1987. ISBN 91-7870-175-9.
S. Gunnarsson: Frequency domain aspects of modeling and control in adaptive systems.
Thesis No. 194, 1988. ISBN 91-7870-380-8.
A. Isaksson: On system identification in one and two dimensions with signal processing
applications. Thesis No. 196, 1988. ISBN 91-7870-383-2.
M. Viberg: Subspace fitting concepts in sensor array processing. Thesis No. 217, 1989.
ISBN 91-7870-529-0.
K. Forsman: Constructive commutative algebra in nonlinear control theory. Thesis No. 261,
1991. ISBN 91-7870-827-3.
F. Gustafsson: Estimation of discrete parameters in linear systems. Thesis No. 271, 1992.
ISBN 91-7870-876-1.
P. Nagy: Tools for knowledge-based signal processing with applications to system identifi-
cation. Thesis No. 280, 1992. ISBN 91-7870-962-8.
T. Svensson: Mathematical tools and software for analysis and design of nonlinear control
systems. Thesis No. 285, 1992. ISBN 91-7870-989-X.
S. Andersson: On dimension reduction in sensor array signal processing. Thesis No. 290,
1992. ISBN 91-7871-015-4.
H. Hjalmarsson: Aspects on incomplete modeling in system identification. Thesis No. 298,
1993. ISBN 91-7871-070-7.
I. Klein: Automatic synthesis of sequential control schemes. Thesis No. 305, 1993. ISBN 91-
7871-090-1.
J.-E. Strömberg: A mode switching modelling philosophy. Thesis No. 353, 1994. ISBN 91-
7871-430-3.
K. Wang Chen: Transformation and symbolic calculations in filtering and control. Thesis
No. 361, 1994. ISBN 91-7871-467-2.
T. McKelvey: Identification of state-space models from time and frequency data. Thesis
No. 380, 1995. ISBN 91-7871-531-8.
J. Sjöberg: Non-linear system identification with neural networks. Thesis No. 381, 1995.
ISBN 91-7871-534-2.
R. Germundsson: Symbolic systems – theory, computation and applications. Thesis
No. 389, 1995. ISBN 91-7871-578-4.
P. Pucar: Modeling and segmentation using multiple models. Thesis No. 405, 1995.
ISBN 91-7871-627-6.



H. Fortell: Algebraic approaches to normal forms and zero dynamics. Thesis No. 407, 1995.
ISBN 91-7871-629-2.
A. Helmersson: Methods for robust gain scheduling. Thesis No. 406, 1995. ISBN 91-7871-
628-4.
P. Lindskog:Methods, algorithms and tools for system identification based on prior knowl-
edge. Thesis No. 436, 1996. ISBN 91-7871-424-8.
J. Gunnarsson: Symbolic methods and tools for discrete event dynamic systems. Thesis
No. 477, 1997. ISBN 91-7871-917-8.
M. Jirstrand: Constructive methods for inequality constraints in control. Thesis No. 527,
1998. ISBN 91-7219-187-2.
U. Forssell: Closed-loop identification: Methods, theory, and applications. Thesis No. 566,
1999. ISBN 91-7219-432-4.
A. Stenman: Model on demand: Algorithms, analysis and applications. Thesis No. 571,
1999. ISBN 91-7219-450-2.
N. Bergman: Recursive Bayesian estimation: Navigation and tracking applications. Thesis
No. 579, 1999. ISBN 91-7219-473-1.
K. Edström: Switched bond graphs: Simulation and analysis. Thesis No. 586, 1999.
ISBN 91-7219-493-6.
M. Larsson: Behavioral and structural model based approaches to discrete diagnosis. The-
sis No. 608, 1999. ISBN 91-7219-615-5.
F. Gunnarsson: Power control in cellular radio systems: Analysis, design and estimation.
Thesis No. 623, 2000. ISBN 91-7219-689-0.
V. Einarsson: Model checking methods for mode switching systems. Thesis No. 652, 2000.
ISBN 91-7219-836-2.
M. Norrlöf: Iterative learning control: Analysis, design, and experiments. Thesis No. 653,
2000. ISBN 91-7219-837-0.
F. Tjärnström: Variance expressions and model reduction in system identification. Thesis
No. 730, 2002. ISBN 91-7373-253-2.
J. Löfberg: Minimax approaches to robust model predictive control. Thesis No. 812, 2003.
ISBN 91-7373-622-8.
J. Roll: Local and piecewise affine approaches to system identification. Thesis No. 802,
2003. ISBN 91-7373-608-2.
J. Elbornsson: Analysis, estimation and compensation of mismatch effects in A/D convert-
ers. Thesis No. 811, 2003. ISBN 91-7373-621-X.
O. Härkegård: Backstepping and control allocation with applications to flight control.
Thesis No. 820, 2003. ISBN 91-7373-647-3.
R. Wallin: Optimization algorithms for system analysis and identification. Thesis No. 919,
2004. ISBN 91-85297-19-4.
D. Lindgren: Projection methods for classification and identification. Thesis No. 915, 2005.
ISBN 91-85297-06-2.
R. Karlsson: Particle Filtering for Positioning and Tracking Applications. Thesis No. 924,
2005. ISBN 91-85297-34-8.
J. Jansson: Collision Avoidance Theory with Applications to Automotive Collision Mitiga-
tion. Thesis No. 950, 2005. ISBN 91-85299-45-6.
E. Geijer Lundin: Uplink Load in CDMA Cellular Radio Systems. Thesis No. 977, 2005.
ISBN 91-85457-49-3.
M. Enqvist: Linear Models of Nonlinear Systems. Thesis No. 985, 2005. ISBN 91-85457-
64-7.
T. B. Schön: Estimation of Nonlinear Dynamic Systems— Theory and Applications. Thesis
No. 998, 2006. ISBN 91-85497-03-7.
I. Lind: Regressor and Structure Selection — Uses of ANOVA in System Identification.
Thesis No. 1012, 2006. ISBN 91-85523-98-4.



J. Gillberg: Frequency Domain Identification of Continuous-Time Systems Reconstruction
and Robustness. Thesis No. 1031, 2006. ISBN 91-85523-34-8.
M. Gerdin: Identification and Estimation for Models Described by Differential-Algebraic
Equations. Thesis No. 1046, 2006. ISBN 91-85643-87-4.
C. Grönwall: Ground Object Recognition using Laser Radar Data – Geometric Fitting,
Performance Analysis, and Applications. Thesis No. 1055, 2006. ISBN 91-85643-53-X.
A. Eidehall: Tracking and threat assessment for automotive collision avoidance. Thesis
No. 1066, 2007. ISBN 91-85643-10-6.
F. Eng: Non-Uniform Sampling in Statistical Signal Processing. Thesis No. 1082, 2007.
ISBN 978-91-85715-49-7.
E. Wernholt: Multivariable Frequency-Domain Identification of Industrial Robots. Thesis
No. 1138, 2007. ISBN 978-91-85895-72-4.
D. Axehill: Integer Quadratic Programming for Control and Communication. Thesis
No. 1158, 2008. ISBN 978-91-85523-03-0.
G. Hendeby: Performance and Implementation Aspects of Nonlinear Filtering. Thesis
No. 1161, 2008. ISBN 978-91-7393-979-9.
J. Sjöberg: Optimal Control and Model Reduction of Nonlinear DAE Models. Thesis
No. 1166, 2008. ISBN 978-91-7393-964-5.
D. Törnqvist: Estimation and Detection with Applications to Navigation. Thesis No. 1216,
2008. ISBN 978-91-7393-785-6.
P-J. Nordlund: Efficient Estimation and Detection Methods for Airborne Applications.
Thesis No. 1231, 2008. ISBN 978-91-7393-720-7.
H. Tidefelt:Differential-algebraic equations and matrix-valued singular perturbation. The-
sis No. 1292, 2009. ISBN 978-91-7393-479-4.
H. Ohlsson: Regularization for Sparseness and Smoothness — Applications in System
Identification and Signal Processing. Thesis No. 1351, 2010. ISBN 978-91-7393-287-5.
S. Moberg: Modeling and Control of Flexible Manipulators. Thesis No. 1349, 2010.
ISBN 978-91-7393-289-9.
J. Wallén: Estimation-based iterative learning control. Thesis No. 1358, 2011. ISBN 978-
91-7393-255-4.
J. D. Hol: Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and
GPS. Thesis No. 1368, 2011. ISBN 978-91-7393-197-7.
D. Ankelhed: On the Design of Low Order H-infinity Controllers. Thesis No. 1371, 2011.
ISBN 978-91-7393-157-1.
C. Lundquist: Sensor Fusion for Automotive Applications. Thesis No. 1409, 2011.
ISBN 978-91-7393-023-9.
P. Skoglar: Tracking and Planning for Surveillance Applications. Thesis No. 1432, 2012.
ISBN 978-91-7519-941-2.
K. Granström: Extended target tracking using PHD filters. Thesis No. 1476, 2012.
ISBN 978-91-7519-796-8.
C. Lyzell: Structural Reformulations in System Identification. Thesis No. 1475, 2012.
ISBN 978-91-7519-800-2.
J. Callmer: Autonomous Localization in Unknown Environments. Thesis No. 1520, 2013.
ISBN 978-91-7519-620-6.
D. Petersson: A Nonlinear Optimization Approach to H2-Optimal Modeling and Control.
Thesis No. 1528, 2013. ISBN 978-91-7519-567-4.
Z. Sjanic: Navigation and Mapping for Aerial Vehicles Based on Inertial and Imaging
Sensors. Thesis No. 1533, 2013. ISBN 978-91-7519-553-7.
F. Lindsten: Particle Filters and Markov Chains for Learning of Dynamical Systems. Thesis
No. 1530, 2013. ISBN 978-91-7519-559-9.



P. Axelsson: Sensor Fusion and Control Applied to Industrial Manipulators. Thesis
No. 1585, 2014. ISBN 978-91-7519-368-7.
A. Carvalho Bittencourt: Modeling and Diagnosis of Friction and Wear in Industrial
Robots. Thesis No. 1617, 2014. ISBN 978-91-7519-251-2.
M. Skoglund: Inertial Navigation and Mapping for Autonomous Vehicles. Thesis No. 1623,
2014. ISBN 978-91-7519-233-8.
S. Khoshfetrat Pakazad: Divide and Conquer: Distributed Optimization and Robustness
Analysis. Thesis No. 1676, 2015. ISBN 978-91-7519-050-1.
T. Ardeshiri: Analytical Approximations for Bayesian Inference. Thesis No. 1710, 2015.
ISBN 978-91-7685-930-8.
N. Wahlström: Modeling of Magnetic Fields and Extended Objects for Localization Appli-
cations. Thesis No. 1723, 2015. ISBN 978-91-7685-903-2.
J. Dahlin: Accelerating Monte Carlo methods for Bayesian inference in dynamical models.
Thesis No. 1754, 2016. ISBN 978-91-7685-797-7.


	Abstract
	Populärvetenskaplig sammanfattning
	Acknowledgments
	Contents
	Notation
	I Background
	1 Introduction
	1.1 Background
	1.2 Additional sensors and models
	1.2.1 Magnetometers
	1.2.2 Ultrawideband
	1.2.3 Biomechanical models

	1.3 Main contributions
	1.4 Outline

	2 Probabilistic models
	2.1 Models for position and orientation estimation
	2.2 Maps of the magnetic field
	2.3 Visualizing the resulting model structures

	3 Inference
	3.1 Building maps of the magnetic field
	3.2 Estimating position and orientation
	3.3 Estimating calibration parameters

	4 Conclusions and future work
	4.1 Position and orientation estimation using inertial sensors
	4.2 Inertial sensor motion capture
	4.3 Combining UWB with inertial sensors
	4.4 Magnetometer calibration
	4.5 Mapping and localization using magnetic fields
	4.6 Concluding remarks

	Bibliography


