
Abstract

In this paper, we describe an algorithm for object recogni-

tion that explicitly models and estimates the posterior proba-

bility function, .  We have chosen a functional

form of the posterior probability function that captures the

joint statistics of local appearance and position on the object

as well as the statistics of local appearance in the visual world

at large. We use a discrete representation of local appearance

consisting of approximately 106 patterns. We compute an esti-

mate of  in closed form by counting the fre-

quency of occurrence of these patterns over various sets of

training images. We have used this method for detecting human

faces from frontal and profile views. The algorithm for frontal

views has shown a detection rate of 93.0% with 88 false alarms

on a set of 125 images containing 483 faces combining the MIT

test set of Sung and Poggio with the CMU test sets of Rowley,

Baluja, and Kanade. The algorithm for detection of profile

views has also demonstrated promising results.

1. Introduction

In this paper we derive a probabilistic model for object rec-

ognition based primarily on local appearance. Local appear-

ance is a strong constraint for object recognition when the

object contains areas of distinctive detailing. For example, the

human face consists of distinctive local regions such as the

eyes, nose, and mouth. However, local appearance alone is usu-

ally not sufficient to recognize an object. For example, a human

face becomes unintelligible to a human observer when the var-

ious features are not in the proper spatial arrangement. There-

fore the joint probability of local appearance and position on

the object must be modeled.

Nevertheless, representation of only the appearance of the

object is still not sufficient for object recognition. Some local

patterns on the object may be more unique than others. For

example, the intensity patterns around the eyes of a human face

are much more unique than the intensity patterns found on the

cheeks. In order to represent the “uniqueness” of local appear-

ance, the statistics of local appearance in the world at large

must also be modeled.

The underlying representation we have chosen for local

appearance is discrete. We have partitioned the space of local

appearance into a finite number of patterns. The discrete nature

of this representation allows us to estimate the overall statisti-

cal model, , in closed form by counting the

frequency of occurrence of these patterns over various sets of

“training” images.

In this paper we derive a functional form for the posterior

probability function  that combines these rep-

resentational elements. We then describe how we have applied

this model to the detection of faces in frontal view and profile.

We begin in section 2 with a review of Bayes decision rule. We

then describe our strategy for deriving the functional form of

the posterior probability function in section 3 and perform the

actual derivation in section 4. In section 5, we describe how use

training images to estimate a specific probability function

within the framework of this functional form. In section 6 and

7 we give our results for frontal face detection and profile

detection, respectively. In section 8 we compare our represen-

tation with other appearance-based recognition methods.

2. Review of Bayes decision rule

The posterior probability function gives the probability that

the object is present given an input image. Knowledge of this

function is all that is necessary to perform object recognition.

For a given input image region, , we decide whether

the object is present or absent based on which probability is

larger,  or , respec-

tively. This choice is known as the maximum a posteriori

(MAP) rule or the Bayes decision rule.  Using this decision

rule, we achieve optimal performance, in the sense of mini-

mum rate of classification errors, if the posterior probability

function is accurate.

3. Model derivation strategy

Unfortunately, it is not practically feasible to fully represent

 and achieve optimal performance; it is too

large and complex a function to represent. The best we can do

is choose a simplified form of  that can be reli-

ably estimated using the available training data.

Although a fully general form of  is intrac-

table, it provides a useful starting point for derivation of a sim-
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plified probabilistic model. In our derivation, we take this

general form and apply successive simplifications to it until it

is in a computationally feasible form. At each stage of this der-

ivation we make our modeling decisions on the basis of domain

knowledge and intuitive preferences.

This strategy of derivation provides an explicit record of all

the representational simplifications made in deriving such a

functional form. We then know not only those relationships we

have modeled but those we have not modeled. For example, we

make the implicit modeling decision not to represent the joint

statistics of appearance across the full spatial extent of the

object. This simplification along with various others become

explicit through this derivation process.

4. Model derivation

In this section, we derive a functional form of the posterior

probability function. This functional form was derived with the

problem of frontal face detection in mind, but is generally

applicable to a wider range of objects.  For this reason, we

describe the specific modeling choices we make for face detec-

tion after we have described the general nature of the simplifi-

cation in each following section. Overall, we derive this

functional form by applying approximately 13 simplifications

and modifications to the general form of the posterior probabil-

ity function. Variations on these modeling choices for face pro-

file detection are described in section 7.

4.1. Notation

Throughout this document we make use of several nota-

tional conventions. Random variables are indicated in italics,

e.g., image.  When these random variables assume a specific

value, the value is not italicized, e.g., . Curly

braces, {}, indicate aggregates.  For example, {ai} represents

all ai: a1, a2, a3, etc. We designate the class of all visual scenes

that do not contain our object by the symbol object.

4.2. General form of posterior probability function

The most general representation we consider is the poste-

rior probability function of the object conditioned directly on

the entire input image:

(1)

Where,  is the scalar intensity value (or color vector

value for a color image) at location (i, j) in the image.

4.3. Size standardization

We first standardize the size of the object.  Rather than

model the object at all sizes simultaneously, we model the

object at one standard size.   This simplification allows us to

express the posterior probability function conditioned an image

region of fixed size, rreg x creg:

(2)

where,  is the scalar intensity value at pixel location

(i, j) in the region.

In order to detect an object at any position in an image, we

must then evaluate   for every overlapping

region of this size within the image boundaries.  Additionally,

to detect the object at any size, we must repeat this process

over a range of magnification scales of the original image.

We model faces that are normalized in size to 64x64.  This

size was chosen to be large enough to capture the detailed

appearance of a human face.

4.4. Decomposition into class conditional probabilities

Using Bayes theorem, we can decompose the posterior

probability function into the class conditional probabilities for

the object, , and non-object, ,

and the prior probabilities,  and :

(3)

where the unconditional probability of the image region,

, is given by:

(4)

This decomposition allows us to separately estimate each of

the class-conditional probability functions,

and  from object and non-object training

images, respectively. In the following sections we discuss how

we simplify the functional forms for these probabilities.

Furthermore, using Bayes theorem, Bayes decision rule can

re-written in an equivalent form as a likelihood ratio test:

(5)

Under this formulation we decide the object is present if the

likelihood ratio (left side) is larger than the ratio of prior proba-

bilities (right side). Otherwise we decide the object is not

present.

Often we have little knowledge of the prior probabilities.

By writing the decision rule this way all information concern-

ing the priors is combined into one term, λ. This term can be

viewed as a threshold controlling the sensitivity of the detector.

4.5. Decomposition into subregions

We decompose the input region into an aggregate of

smaller subregions of fixed size, rsub x csub:
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(6)

where  contains two types of infor-

mation: pattern - the array of pixel intensities over the subre-

gion and pos - the subregion position with respect to the overall

region. We consider all overlapping subregions within the

larger region. For faces we use subregions of size 16x16.

With these modifications, the class conditional probability

functions become:

(7)

where there are nsubs subregions in a region.

We describe the advantages of this decomposition in sec-

tions 4.6.3 and 4.6.4.

4.6. No modeling of statistical dependency among

subregions

We do not model statistical dependency among subregions.

This simplification gives the following expression for the class

conditional probability functions:

(8)

Through these simplifications, our modeling requirements are

reduced to representing

 and

 that describe the joint behavior of sub-

region appearance and position.

4.6.1. Model complexity reduction

The choice of not modeling the statistical dependency

among subregions greatly reduces the complexity of the model.

To illustrate the extent of this simplification, let us assume that

a region is represented by an aggregate of n subregions and

each subregion can take on m possible values describing its

intensity pattern. The full statistical distribution for the object,

, is then modeled

over mn discrete events. In contrast, the distribution,

, is modeled over mn discrete events.

4.6.2. Loss of modeling power

Unfortunately, by not modeling this statistical dependency,

there are many relationships we cannot represent.   For exam-

ple, we cannot represent attributes that are similar across the

extent of the object, such as skin color on a human face.  We

cannot represent the structure in the brightness distribution

across the object that is larger in extent than a subregion.  For

example, on human faces the forehead is usually brighter than

the eye sockets [1]. We cannot represent any form of symme-

try. We cannot represent if all parts of a geometric figure are

connected [2].

However, this assumption does not impose a debilitating

penalty for the problem of face detection because local features

are salient and consistent among different faces, e.g., noses

look relatively similar from individual to individual and appear

in relatively the same position relative to the other facial

attributes.

The application of this assumption to the recognition of

other objects may not be as successful.  In particular, it could

be argued that many objects are more distinguished by overall

structure rather than individual features.  For example, on a

modern building, windows are distributed in a regularly spaced

arrangement against the uniform texture of the building mate-

rial. The distinguishing characteristics are not the individual

windows, nor the specific spacing of the window arrangement,

but simply the presence of some form of regular window spac-

ing.

4.6.3. Small alignment errors when matching

Using the subregion decomposition, we can accommodate

some degree of geometric distortion in the appearance of the

object. The alignment error between a full-size template and a

rotated version of the template will be quite significant -- see

figure 1. If we match individual subregions, the alignment error

will be much less -- see figure 2. Similarly, subregion-based

matching will reduce the alignment error for distortions in

aspect ratio and magnification.

4.6.4. Emphasizing distinct parts of the object’s appearance

The subregion decomposition provides a mechanism for

emphasizing distinctive parts of the object’s appearance over

less distinctive parts.  Let us consider the current expression for
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the likelihood ratio:

Distinctive areas on the object, subregionk, will have a large

value for  since

the occurrence of these patterns is much more frequent on the

object than in the world at large. Thus, such distinctive areas

contribute more to the overall product given above.

4.7. Projection of the subregion intensity pattern

We linearly project the subregion intensity pattern, onto a

lower dimensional space of dimension npr:

(9)

where pattern is rewritten as a column vector.

The columns of the projection operator, A, are chosen to be

principal components computed from a sample of subregions

collected from training images of the object.

A linear projection was chosen because of its computa-

tional efficiency using fast Fourier transforms. We chose prin-

cipal components as basis functions because they minimize the

mean square reconstruction error with respect the training set

of object images.

For faces, we project the 16x16 subregion intensity pattern

onto a 12 dimensional space.  Below we show a set of principal

components displayed as 16x16 arrays.

Overall, these principal components capture 98.4% of the total

energy of their data set.

4.8. Sparse coding of projection

Typically, for any given pattern, its projection onto some of

the eigenvectors will be negligibly small. Therefore, we apply

sparse coding where for each pattern, we selectively represent

only the ntr largest responses among the npr eigenvectors.

For faces, we do not apply sparse coding to individual coor-

dinates but instead to groups of coordinates.  We first arrange

the 12 coordinates into 9 different groups.  Coordinates 1

through 6 are each assigned their own group.  The remaining

coordinates are grouped into pairs, 7 & 8, 9 & 10, and 11 & 12.

This assignment of groups partially equalizes the amount of

energy represented by each group.  Then for each pattern, we

select the response of the first group and the 5 groups that have

the largest responses among the remaining 8 groups.

4.9. Discretization

We quantize the sparse coded representation into a finite

number of patterns. Our expression for the class conditional

probabilities is now given by:

(10)

where q1 can take on nq1 discrete values and q1 = Q1(pattern)

combines projection, sparse coding, and quantization.

For faces, each of the original coordinates in the projection

are quantized to a finite number of levels between 3 and 8.

Overall, q1 can take on nq1 = 3,854,120 different values. In fig-

ure 3 we illustrate how the successive operations of projection,

sparse coding, and quantization affect the appearance of an

image and the mean square pixel reconstruction error (MSE).

4.10. Decomposition of appearance and position

We decompose the class conditional probabilities into the

product of two distributions using the probability chain rule:

(11)

No further reduction is performed on  and

.  In the following sections we describe the simpli-

fications we use for representing  and

. Each of these distributions describes the

positional distribution of each subregion intensity pattern, x =

q1, within the overall region.

4.11. Positional representation

In images of non-objects, there are no stable landmarks

from which we can define a region-based coordinate system.

Therefore, we model the positional distribution as uniform:

(12)

In representing the positional distribution for objects,

, we reduce the resolution of subregion posi-

tion, by mapping pos to a new variable, pos’, over a coarser

resolution.

We also reduce the number of discrete patterns.  In doing

so, we first compute an estimate of  from the

training data of face images (see section 5).  We then select

those nest patterns that have the largest frequency of occur-

rence, where  nest << nq1. For these values of q1 we explicitly
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estimate and smooth the distribution .  For

the remaining nq1 - nest values of q1, we model

 as a uniform distribution.

To reduce the number of patterns further, we group together

patterns whose smoothed distributions, , are

similar.  We use a simple clustering technique based on VQ [3]

to form these groups of patterns that have similar positional

distributions. The final form of this distribution becomes:

(13)

Where the reduction in the number of patterns is expressed

by q2 = Q2(q1) which maps the set of nest patterns to a smaller

set of nq2 composite patterns, represented by the q2.

For faces, we reduce the positional resolution of subregions

from 48x48 to 16x16. We estimate the spatial distribution for

nest = 300,000 of the original nq1 = 3.8M patterns.  We then

combine these patterns to form a smaller set of nq2 = 20,000

composite patterns. Below we show examples of

, for four different patterns (values of q2):

4.12. Intensity normalization

We normalize the intensity over the entire region to have

zero mean and unit variance. Since this normalization discards

information about the mean and variance of original image

region, it could be thought of as a small simplification to the

posterior probability function.

Normalization reduces a known form of variation in the

appearance of the object.  By reducing this variation, we can

obtain a better statistical estimate from a limited pool of train-

ing examples.

For faces, we compute the normalization coefficients only

from the portion of the input region that contains the face. We

perform this normalization separately on the left and right sides

of the input region, to compensate for situations in which oppo-

site sides of a face receive unequal amounts of illumination.

4.13. Multiresolution representation

We have only discussed the representation in the context of

one level of resolution. This largely limits us to representing

visual attributes that are the size of the subregion. To enhance

our representation we consider multiple levels of resolution.

We form separate submodels of the class conditional proba-

bility functions,  and , at

several scales of resolution and we do not model the statistical

dependencies among them.  Thus, the expressions for the class

condition probabilities become:

(14)

where  and aj scales the

region’s resolution and there are nmagn scales of resolution.

For face detection, we use three levels of resolution given

by, a1 = 1.0, a2 = 0.577, and a3 = 0.333 as shown below in fig-

ure 5.

4.14. Final form of Bayes decision rule

By fully substituting all simplifications of the class-condi-

tional probability functions into equation (5), the overall

expression for Bayes decision rule becomes:

(15)

5. Estimation

Equation (15) gives the final expression for the functional

form of the likelihood ratio. We now use labelled training

examples to estimate a specific likelihood ratio function within

the structure of this functional form.

5.1. Training set for frontal face detection

We formed training sets from 991 faces images and 1,552

non-face images.  We used the same set of images to train each

of the level of resolution within the model.  The magnification

of these images is scaled appropriately for each resolution

level.

To partially compensate for the limited number of face

images, we expanded this training set by generating synthetic

variations of these images.  For each face image we generated

120 synthetic variations in orientation, size, aspect ratio, inten-

sity, and background scenery.

5.2. Method of estimation

We break the estimation of the likelihood function into sev-

eral components.  For each scale of resolution j, we first esti-

mate  and  directly from face and
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non-face training images, respectively.  The estimates of these

functions are then  substituted directly into equation (15).  We

then estimate  from the face training images

for nest values of q1. We then derive  from

 by the procedure outlined in section 4.11.

 is then substituted into equation (15) giving

us the complete estimate for the likelihood ratio function.

There are several principles that are common to the estima-

tion of , and .

Their estimates are computed in closed form.  For

 and , we simply count how fre-

quently each value of q1 occurs in the training data, using non-

face images and face images respectively.  Then for

,we count how frequently each pattern, x =

q1, occurs at each position pos‘ in the image region. These are

maximum likelihood estimates and they are unbiased, consis-

tent, and efficient (satisfy Cramer-Rao lower bound)[8].

6. Testing results for frontal faces

Each row in table 1 shows our performance for a different

value of a detection threshold, λ' (closely related to the thresh-

old λ given in equation (15)), on the test set of Sung and Pog-

gio [4] (136 faces) excluding 3 images of line drawn faces. We

searched for all faces between the sizes of 18x18 and 338x338

by evaluating each input image at 17 levels of magnification.

Similarly, table 2 shows our performance on the combined test

sets of Sung and Poggio [4] and Rowley, Baluja, and Kanade

[5](483 faces) excluding 5 images of line drawn faces. We

searched each input image at 17 levels of magnification for

faces from size 18x18 to 338x338.

Table 3 shows our performance on three portions of the

FERET[7] face set consisting of subsets of 1000, 241, and 378

face images at profile angles of 0  (full frontal), 15 , and

22.5 , respectively. We searched each input image at 14 levels

of magnification for faces from size 22x22 to 235x235.

Moghaddam and Pentland [6] achieve a detection rate of 97%.

on this test set. False alarm data was unreported.

7. Face profile detection

The same theory has been tested for face profile detection.

There are several significant differences between our algorithm

for profile detection and our algorithm for face detection. For

profile detection we do not perform intensity normalization.

Instead of measuring absolute intensity across the subregion

(i.e. projection on to the first eigenvector for frontal faces), we

measure the difference in intensity between a subregion and its

neighboring subregions. This intensity information is quan-

tized into 3 levels. We then combine this intensity information

with result of sparse coding. In sparse coding we select the 4

largest projections among the 12 remaining eigenvectors.

Instead of quantizing these selected responses, we simply indi-

cate which group of 4 responses was selected, the sign of each

Table 1: Results on images from [4]

Schneiderman & Kanade (20

images)
Sung and Poggio [4](23 images)

Detection rate False alarms Detection rate False alarms

91.2% 12 84.6% 13

89.0% 3 79.7% 5

Table 2: Results on images from [4] and [5].

Schneiderman & Kanade(125

images)

Rowley, Baluja, and Kanade

[5] (130 images)

Detection rate False alarms Detection rate False alarms

93.0% 88 92.5% 862

90.5% 33 86.6% 79

77.0% 1 77.9% 2
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Table 3: Results on FERET[7] images

Schneiderman &

Kanade

Rowley, Baluja, and

Kanade[5]

Data set
Detection

rate

False

alarms

Detection

rate

False

alarms

0  set 99.6% 1 98.7% 3

15  set 100.0% 0 99.6% 0

22.5 set 99.7% 2 95.5% 3

Figure 6. Our results on a test image from [4]
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individual component, and which component is largest.

Below we show some preliminary results acquired for a

fixed value of the detection threshold. The double bar indicates

the front of the face:

8. Appearance-based methods for recognition

The representation described in this paper combines: joint

statistics of local appearance and position on the object, statis-

tics of local appearance in the world at large, a discrete non-

parametric probability distribution, and estimation by counting

the frequency of occurrence of a finite set of patterns in the

training data. Many other methods share one or two of these

concepts, but none, to our knowledge, have combined all of

them.

In particular, our method differs significantly from appear-

ance-based methods that emphasize global appearance over

local appearance. For example, the methods [4], [9], [10], [11],

model the full extent of the object at once. In particular the

methods [4], [10], [11] implicitly give equal weighting to dis-

tinctive and non-distinctive areas on the object.

There are several methods [5], [6], [12],[13], [14], which

capture the joint variation of local appearance and position on

the object. These methods all differ from our approach in that

they model the appearance of hand-selected features on the

object rather than modeling local appearance across the full

extent of the object. [5] captures local appearance through a

multilayer perceptron architecture with hidden units that have

localized support regions. However, this architecture rigidly

fixes the spatial relationships of these localized receptive fields.

[14] uses a Gaussian distribution to model the spatial variation

in feature location. Their model of the non-face statistics is

chosen completely by hand. [6] uses a mixture of Gaussians to

model the statistics of the local features on a face and does not

model the statistics of non-face appearance. The methods of

[12] and [13] both reduce the dimensionality of the local

regions by projection onto the principal components. Recogni-

tion is then performed by comparing a set templates represent-

ing the object to a set of image regions at the appropriate

spacing as specified by the object model.

The method of [15] uses a discrete representation and esti-

mation method similar to ours except they apply it to color

rather than local appearance. We choose a discrete, non-para-

metric, representation of the probability distribution function

because it greatly simplifies the estimation problem. Estima-

tion of multimodal continuous parametric distributions (e.g.

mixture models, multilayer perceptrons) is usually not possible

in closed form and requires iterative estimation procedures

which are not guaranteed to converge to a global optimum.

Continuous valued non-parametric methods such as nearest

neighbor and Parzen windows require storing all training

examples and exhaustive comparison of training examples to

each input. Because such methods require large training sets

for even moderately high dimensional spaces they are prohibi-

tive in storage and computational requirements.
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