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ABSTRACT: Progress in structural design requires probabilistic modeling of quasibrittle
fracture, which is typical of concrete, fiber composites, rocks, toughened ceramics, sea ice and
many ‘high tech’ materials. The most important consequence of quasibrittle behavior is a
deterministic (energetic) size effect, the theory of which evolved near the end of last century.
After a review of the background, the present plenary lecture describes the recent efforts to
combine the classical Weibull theory of statistical size effect due to local strength randomness
with the recently developed energetic theory, and also surveys various related problems, such
as the probability tail structure of the stochastic finite element methods, the random scatter
in fracture testing, the role of fractal nature of cracks, the reliability provisions of design
codes, and the lessons from past structural catastrophes.

1 HISTORICAL INTRODUCTION

The absence of size effect means that the nominal strength of geometrically similar struc-
tures, defined as the maximum load divided by the area of the characteristic cross section,
does not depend on the structure size D. When it does, the structural failure is said to
exhibit a size effect. There is no size effect in the classical continuum mechanics theories.
These include elasticity with a strength limit, plasticity or any theory in which the material
failure criterion is expressed in terms of the stress tensor or the strain tensor, or both, as well
as fracture mechanics of bodies containing only microscopic cracks or flaws.

The size effect, which is a problem of scaling of structural response, is a very old problem.
It was discussed already by Leonardo da Vinci (1500s) and Galileo Galilei (1638) (Williams
1957). The history of size effect studies can be divided in three periods.

Period 1. The period lasting until the 1980’s, in which the size effect has generally been
regarded as statistical, attributed to the randomness of local strength of the material, can be
seen as the first period. The basic idea of the statistical size effect was qualitatively advanced
by Mariotte (1686) already three and half centuries ago. But its proper mathematical for-
mulation had to await the work of Weibull (1939, 1949, 1951, 1956), mathematically justified
by the development of the extreme value statistics, and particularly the weakest link model
(Fisher and Tippett 1928; also Tippett 1925, Peirce 1925, Fréchet 1927, von Mises 1936).
The Weibull statistical theory was discussed and used widely [Gnedenko 1943, Gnedenko and
Kolmogorov 1954, Epstein 1948, Freudenthal 1956, 1968 (and Selected Papers 1981), Weil
and Daniel 1964, Bolotin 1969, Saibel 1969, Kittl and Diaz 1998, 1990, Engelund and Rack-
witz 1992, Bažant and Novák 2001b, etc.]. The theory was physically justified by random
distribution of microscopic flaws (Freudenthal and Gumbel 1953, 1956), and was proven to
describe very well the strength of fatigue-embrittled metals and fine-grained ceramics. Dur-
ing the third quarter of the last century, Weibull theory reigned supreme and was applied
to many other kinds of materials (Zaitsev and Wittmann 1974, Mihashi and Izumi 1977,
Mihashi and Zaitsev 1981, etc.), whether or not perfectly brittle. The mechanicians in those
times were not interested in the size effect, believing it belonged to the realm of statisticians
(the subject was not even mentioned in Timoshenko’s monumental History of the Strength
of Materials, published in 1953).
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Period 2. The start of the second, deterministic, period can be seen, in retrospect, in
Walsh’s (1972, 1976) pioneering experiments on concrete which showed discrepancies irrecon-
cilable with the statistical theory of size effect. Stimulated by nuclear reactor research, failure
theories of concrete that model the size effect as deterministic appeared in the form of the
crack band model (Bažant 1976, 1982; Bažant and Oh 1983), cohesive (or fictitious) crack
model (Hillerborg et al. 1976, 1983; Petersson 1961), and later the nonlocal and gradient
damage models (Bažant 1984, Bažant et al. 1984, 1985, Pijaudier-Cabot and Bažant 1987,
Peerlings et al. 1996, Bažant and Planas 1998). The size effects experimentally observed in
concrete were described by a simple approximate size effect law deduced by energy release
analysis (Bažant 1984) and later justified by asymptotic matching (Bažant 1987, 1999, 2001;
Bažant and Kazemi 1990, Bažant and Chen 1987, Bažant and Planas 1998). Different size
effect formulae were developed for failures with a large fracture process zone (FPZ) occur-
ring after stable growth of large cracks or in notched specimens (Bažant 1984, Bažant and
Kazemi 1991), and failures occurring at crack initiation from a smooth surface (Bažant and
Li 1976a,b, Bažant 1988). It was shown that the deterministic energetic size effect is exhib-
ited by all kinds of quasibrittle materials, i.e., the materials characterized by a large FPZ
in which the material exhibits distributed microcracking with strain softening (rather than
plastic yielding, as in brittle-ductile fracture of metals). Aside from concrete, the quasibrittle
materials include rocks, sea ice, many ‘high-tech’ modern materials such as particulate and
fiber composite or coarse-grained or toughened ceramics, and also cemented sands, stiff clays,
paper, wood, particle board, bone, biological shells, filled elastomers, etc.

Period 3. The beginning of a third period may be seen in the recent efforts for amalga-
mation of the statistical and deterministic size effects in structures consisting of quasibrittle
materials, which are in the focus of the present plenary lecture (e.g., Bažant and Xi 1991,
Breysse 1990, Breysse and Renaudin 1996, Carmeliet 1994, Carmeliet and Hens 1994, Gutiérez
1999, Bažant and Novák 2000a,b, 2001a,b, Novák et al. 2001a,b, Frantzisconis 1998) (the
uncertainties due to loads and environment are outside the scope of this lecture).

2 POWER SCALING

All the physical systems that involve no characteristic length exhibit a simple scaling,
given by power laws. Let us consider geometrically similar systems, for example the beams
shown in Fig. 1a, and seek to deduce the response Y (e.g., the maximum stress or the
maximum deflection) as a function of the characteristic size (dimension) D of the structure;
Y = Y0f(D). (e.g., 1 ft., 1 mm). We imagine three structure sizes 1, D and D′ (Fig. 1a).
If we take size 1 as the reference size, the responses for sizes D and D′ are Y = f(D) and
Y ′ = f(D′). However, since there is no characteristic length, we can also take size D as the
reference size. Consequently, the equation

f(D′) / f(D) = f(D′ /D) (1)

must hold (Bažant 1993, Bažant and Chen 1997; for fluid mechanics, Barenblatt 1979, Sedov
1959). This is a functional equation for the unknown scaling law f(D). It has one and only
one solution, namely the power law:

f(D) = (D/c1)s (2)

where s = constant and c1 is a constant which is always implied as a unit of length measure-
ment (e.g. 1 m, 1 inch). Note that c1 cancels out of equation (2) when the power function
(1) is substituted. Also note that when, for instance, f(D) = log(D/c1), equation (1) is not
satisfied and the unit of measurement, c1, does not cancel out. So, the logarithmic scaling
could be possible only if the system possessed a characteristic length related to c1. (Eq. 1 is
of course the fundamental reason why all the units in physics appear only in powers.)

The power scaling must apply for every physical theory in which there is no characteristic
length. In solid mechanics such failure theories include elasticity with a strength limit and
elasto-plasticity, as well as linear elastic fracture mechanics (LEFM), for which the FPZ is
shrunken into a point.
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To determine exponent s, the failure criterion of the material must be taken into account.
For elasticity and plasticity, one finds that exponent s = 0 when response Y represents the
stress or strain, for example, the maximum stress in the structure or the stress at certain
homologous points (Bažant 1993). This is also true for the so-called nominal strength σN
(or nominal stress at failure), which is a parameter of maximum load, Pmax, and is defined
as σN = Pmax/bD or Pmax/D2 for geometrical similarity in two of three dimensions; D =
structure size (characteristic dimension).

Thus, if there is no characteristic dimension, all geometrically similar structures of different
sizes must fail at the same nominal stress. By convention, this came to be known as the case
of no size effect. In LEFM, on the other hand, s = −1/2, provided that similar cracks or
notches are considered (this may be generally demonstrated with the help of Rice’s J-integral,
Bažant, F1993). If log σN is plotted versus log D, the power law is a straight line (Fig. 1b).
For plasticity, or elasticity with a strength limit, the exponent of the power law vanishes, i.e.,
the slope of this line is 0. For LEFM, the slope is −1/2.

3 DETERMINISTIC BACKGROUND—ENERGETIC SIZE EFFECT

A currently ‘hot’ subject is the quasibrittle material behavior, for which the size effect
bridges two power laws pertaining to different scales. Quasibrittle materials obey on a small
scale the theory of plasticity (or strength theory), characterized by material strength or
yield limit σ0, and on a large scale the LEFM, characterized by fracture energy Gf . The
combination of σ0 and Gf yields Irwin’s (1958) characteristic length (material length) �0 =
EGf/σ2

0 which approximately characterizes the size of the FPZ (E = Young’s elastic modulus)
and separates the small and large scales. Since a characteristic length exists, a quasibrittle
material cannot follow the power scaling, and so a size effect must exist.

The analysis of distributed (smeared) cracking damage (strain softening) demonstrated
(Bažant 1976, 1982, Bažant and Oh 1983) that damage localization into a crack band engen-
ders a deterministic size effect on the postpeak deflections and energy dissipation of structures.
The effect of the crack band is approximately equivalent to that of a long fracture with a
sizable FPZ at the tip. Subsequently, based on an approximate energy release analysis, the
following approximate size effect law was derived for structures failing after large stable crack
growth (Bažant 1984):

σN = Bσ0

[
1 +

(
D

D0

)r]−1/2r

+ σR (3)

in which b = structure thickness in the case of 2D similarity; r,B = positive dimensionless
constants, B depending on the geometry of structure (usually r = 1 is acceptable); D0 =
constant representing the transitional size (at which the power laws of plasticity and LEFM
intersect); D0 and B characterize the structure geometry; and σR = constant = residual
stress (usually σR = 0). Eq. (3) was shown to be closely followed by the numerical results
for the cohesive (fictitious) crack model (Hillerborg et al. 1976) and crack band model
(Bažant 1976, Bažant and Oh 1983), as well as for the nonlocal continuum damage models.
Measurements of the size effect on σN were shown to offer a simple way to determine the
fracture characteristics of quasibrittle materials, including the fracture energy, the effective
FPZ length, and the (geometry dependent) R-curve.

Quasibrittle fracture may be approximately analyzed by equivalent LEFM in which it
is assumed that the tip of an equivalent LEFM crack lies ahead of the actual crack tip at
distance cf which is a material constant and represents about one half of the FPZ length.
Depending on the ratio a0/cf where a0 = notch length or initial (traction-free)fracture length
at maximum load, two basic kinds of quasibrittle failure may be distinguished:

(i) The case where a0/cf � 1, in which the law (3) applies and Pmax occurs after large
stable fracture growth; and

(ii) the case where a0/cf ≈ 0 (� 1), which means that Pmax occurs at the initiation of
macroscopic fracture propagation from a smooth surface.

3



The former kind is typical of reinforced concrete, fiber composites and sea ice (Bažant and
Planas 1998, Bažant and Kazemi 1991, Bažant 1996, Walraven 1995, Walraven and Lehwalter
1994, Iguro et al. 1985, Shioya and Akiyama 1994, Okamura and Maekawa (1994), Gettu et
al. 1990, Marti 1989, Bažant, Daniel and Li 1986, Bažant et al. 1999, Wisnom 1992), some
unreinforced structures such as concrete gravity dams or floating ice plates in the Arctic). An
example of the latter kind is the modulus of rupture (flexural strength) test, which consists
in the bending of a simply supported beam of span L with a rectangular cross section of
depth D and width b, subjected to concentrated load P . The maximum load is not decided
by the elastically calculated stress σ1 = 3PL/2bD2 at the tensile face, but by the stress value
σ̄ roughly at distance cf from the tensile face (which is at the middle of FPZ). Because σ̄ =
σ1 − σ′

1cf where σ′
1 = stress gradient = 2σ1/D, and also because σ̄ = σ0 = intrinsic tensile

strength of the material, the failure condition σ̄ = σ0 yields P/bD = σN = σ0/(1 − Db/D)
where Db = (3L/D)cf , which is a constant because for geometrically similar beams L/D =
constant. This formula for σN exhibits a size effect but is meaningless for D ≤ Db. Since the
derivation is valid only for the first two terms of the asymptotic expansion in 1/D, one may
replace this formula by the following asymptotically equivalent size effect formula:

σN = σ0

(
1 +

rDb

D

)1/r

(4)

which has the same first two terms and happens to be acceptable for the whole range of D; r
is any positive constant, and r ≈ 1.45 gives the optimum fit of the existing test data (Bažant
and Novák’s 2000a).

To explain the mechanism of the size effect in an intuitive simple manner, consider the
rectangular panel in Fig. 1d, which is initially under a uniform stress equal to σN . Introduc-
tion of a crack of length a with a FPZ of a certain length and width h may be approximately
imagined to relieve the stress, and thus release the strain energy, from the shaded triangles on
the flanks of the crack band shown in Fig. 1d. According to experimental data as well as finite
element simulations, the length of the crack at maximum load may normally be assumed ap-
proximately proportional to the structure size D. The stress reduction in the triangular zones
of areas ka2/2 (Fig. 1d) causes (for the case b = 1) the energy release Ua = 2×(ka2/2)σ2

N/2E.
The stress drop within the crack band of width h causes further energy release Ub = haσ2

N/E.
The total energy dissipated by the fracture is W = aGf , where Gf is the fracture energy, a
material property representing the energy dissipated per unit area of the fracture surface. En-
ergy balance during static failure requires that ∂(Ua +Ub)/∂a = dW/da. Setting a = D(a/D)
where a/D is approximately a constant if the failures for different structure sizes are geomet-
rically similar, the solution of the last equation for σN yields (Bažant 1984) the approximate
size effect law in (3) with σR = 0 (Fig. 1c).

A similar intuitive explanation can be given for compression fracture—when the band of
buckling due to axial splitting cracks propagates sideway (Fig. 1f), the energy release from
the triangular shaded area grows quadratically with D while the energy dissipated in the
band grows linearly, when geometrically similar failures are compared. An intuitive energy
explanation can also be offered for the strut-and-tie model, e.g., for the case of diagonal shear
failure of a reinforced concrete beam—a softening damage band of a width that is a material
property propagates across the strut (B in Fig. 1e), which releases energy from zone 5346 (R
in Fig. 1e) whose area grows quadratically with beam depth D while the area of the band
grows only linearly.

Rigorous derivations of the size effect law (3), which also reveal the effect of geometry,
have been given by means of asymptotic analysis based equivalent LEFM (Bažant 1997b)
and by means of Rice’s path-independent J-integral (Bažant and Planas 1998). This law has
also been verified by nonlocal finite element analysis, and by random particle (or discrete
element) models of the heterogeneous microstructure of concrete. Experimental verifications
have by now become abundant (e.g. Fig. 1g,h,i).

For very large sizes (D � D0), the size effect law in (3) reduces to the power law σN ∝
D−1/2, which represents the size effect of LEFM (for geometrically similar large cracks)
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Figure 1.   (a) Similar cracked structures.  (b) Power scaling laws.  (c) Size effect law bridging the power 
laws for plasticity and LEFM.  (d,e,f) Zones of stress relief and energy release for tensile fracture, failure of 
‘compression strut’ in reinforced concrete beam, and compression fracture band. (g,h,i) Size effect test data 
from the literature, fit by size e.ect law, for compressive punch of concrete, for notched mode I tests of lime-
stone, carbon-epoxy composite, SiO2 ceramic and sea ice (Dempsey’s tests in Arctic Ocean with size range 
0.3m–80m), and for diagonal shear or reinforced microconcrete beams. 
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and corresponds to the inclined asymptote of slope −1/2 in Fig. 1b. For very small sizes
(D � D0), this law reduces to σN = constant, which corresponds to the horizontal asymptote
and means that there is no size effect, as in plastic limit analysis. Properly the size effect laws
in Eqs. (3) and 4) should be seen as aysmptotic matching—an approximate ‘interpolation’
between opposite asymptotic behaviors (Barrenblatt 1979, Bender and Orszag 1978, Hinch
1991, Bažant 2001; Fig. 1c).

The distinction between the two kinds of failure is based on the stability of fracture for
two kinds of geometries of the structure, loading and crack (Bažant and Cedolin 1991; Bažant
and Planas 1998):

• The positive geometry is the case where the dimensionless energy release function g(α)
(or the stress intensity factor KI at constant load P ) increases with a (a = αD), i.e.,
dg(α)/dα > 0 (or [∂KI/∂a]P > 0). In this case, the structure, under load control,
looses stability as soon as the full FPZ develops, which means that, at maximum load,
the FPZ is still attached to the notch (a desired situation in testing) or to the tip of a
preexisting traction-free (fatigued) crack, or to the body surface.

• The negative geometry is the case where dg(α)/dα < 0 (or [∂KI/∂a]P < 0). It is
because of a negative geometry that a crack can grow stably at increasing load while
the FPZ travels ahead. The maximum load occurs only when the structure geometry
changes to   pos  itive, i.e., when g(α) = 0 for some a.

Most types of the notched fracture specimens have a positive geometry, and so does the
modulus of rupture test (flexure of an unnotched unreinforced beam) or the vertical fracture of
an arch dam. The beneficial effect of reinforcement is that most reinforced concrete structures
start their fracture growth with a negative geometry. So do many fiber composite structures.
The ‘dipping’ curved fracture in a gravity dam, as well as sea ice penetration, represents also
negative geometry. For unnotched structures, the size effect law (3) for large cracks can apply
only if the geometry is initially negative.

4 WEIBULL THEORY AND STATISTICAL SIZE EFFECT

A three-dimensional continuous generalization of the weakest link model for the failure
of a chain of links whose strengths are statistically independent random variables (Fig. 2b)
leads to the cumulative distribution

Pf (σN ) = 1 − e−
∫

V
c[σ(x, σN )]dV (x) , c(σ) =

3∑
I=1

P1[σI(x)]
Vr

(5)

which represents the failure probability of the structure, provided that the structure fails
as soon as a macroscopic crack initiates; σI = principal stresses at x just before failure
(I = 1, 2, 3), x = coordinate vector, V = volume of structure, and c(σ) = function giving
the spatial concentration of failure probability of the material (= V −1

r × failure probability
of material representative volume Vr) (Freudenthal 1968); c(σ) = concentration function
(spatial density of failure probability); σi = principal stresses (i = 1,2,3), and P1(σ) = failure
probability (cumulative) of the smallest possible test specimen, of volume Vr, subjected to
uniaxial tensile stress σi. Eq. (5) is derived by noting that the survival probability , 1− Pf ,
of a chain of N links is the joint probability that all the links survive, i.e. 1−Pf = (1−P1)N .
For very large N , the distribution depends only on very small P1, and so we may write
ln(1 − Pf ) = N ln(1 − P1) ≈ −NP1, which immediately gives Eq. (5).

For mathematical reasons as well as physical physical ones (analysis of material flaws),
the low-probability tail of P1(σ) must be a power law:

P1(σ) =
〈

σ − σu

s0

〉m

(6)
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(Weibull 1939) where m, s0, σu = material constants (m = Weibull modulus, usually between
5 and 60) and the threshold σu is typically taken as 0 (it is normally hard to identify σu
from test data unambiguously since very different σu give almost equally good fits). The
weakest-link model leads (for σu = 0) to simple expressions for the mean of σN as a function
of m and the coefficient of variation ω of σN ;

σN = s0 Γ
(

1 +
1
m

) (
Vr

V

)1/m

∝ D−nd/m, ω =

(
Γ(1 + 2m−1)
Γ2(1 + m−1)

− 1

)1/2

(7)

where Γ is the gamma function, and nd = 1, 2 or 3 for uni-, two- or three-dimensional
similarity. Eq. (7) represents a power-law size effect on the mean nominal strength σN (if
σu = 0). Since there is no size effect on ω, the expression for ω in (7) is normally used to
identify m from tests. However, it is usually forgotten to check whether the ω-values for
different specimen sizes are the same. This is a check on the validity of Weibull theory, which
is failed by quasibrittle materials (Fig. 2f, m = 4.2, 14.0, 24.2).

In view of Eq. (7) for σN , the value σW = σN (V/V0)1/m for a uniformly stressed specimen
can be adopted as a size-independent stress measure. Taking this viewpoint, Beremin (1983)
proposed taking into account the nonuniform stress in a large crack-tip plastic zone by the
so-called Weibull stress:

σW = (
∑

i

σi
m Vi/Vr )1/m (8)

where Vi (i = 1, 2, ...NW ) are the elements of the plastic zone having maximum principal stress
σI i. Ruggieri and Dodds (1996) replaced the sum in (7) by an integral (see also Lei et al.
1998). Eq. (8) has been intended for the crack-tip plastic zone in metals. It seems applicable
only if the crack at the moment of failure is still microscopic, that is, small compared to
structural dimensions, which is not the case for quasibrittle materials.

The condition of structural failure at crack initiation is often satisfied only partially. There
are many structures in which crack initiation in the high stress region (e.g., near the tensile
face at midspan of a simply supported beam) gives a positive geometry, but crack initiation
in the low stress region (e.g., near the neutral axis) gives a negative geometry. Thus, in the
latter case, the crack can grow stably, at increasing load, which violates the conditions of
validity of the classical Weibull theory. However, crack initiation at the low stress region is
extremely unlikely (especially for a high m value), and so the contribution from such a region
to the Weibull integral in (5) is negligible.

If the structure is not of a positive geometry (e.g., a beam with tensile reinforcement), large
cracks must form before the failure can occur, which precludes Weibull type statistical analy-
sis. Although rigorous probabilistic modeling seems prohibitively difficult, it does not matter
because, for negative geometries, the size effect is predominantly energetic (deterministic).
So, when the size effect is mainly statistical, the violations of statistical independence have a
negligible effect, and when it is not, the question of statistical independence is irrelevant.

In the case of quasibrittle structures, applications of the classical Weibull theory face a
number of fundamental objections:

1. The fact that the size effect on σN is a power law means that the functional equation (5)
is satisfied, and this implies the absence of any characteristic length.1 But this cannot
be true if the material does contain sizable inhomogeneities, as does concrete.

2. The energy release due to stress redistributions caused by a macroscopic FPZ or a stable
crack growth before Pmax gives rise to a deterministic size effect, which is ignored. Thus
the Weibull theory can be valid only if the structure fails as soon as a microscopic crack
becomes macroscopic.

1Although the length lr = V
1/3

r might seem to be a characteristic length, it serves merely as a unit
of measurement; indeed, if Vr is changed arbitrarily to some other value V ′

r , it suffices to change s0 to
s′0 = s0(V

′
r /Vr)

1/m in order to keep the value of Pf (σN ) the same, as may be checked by substitution into (5).
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3. Every structure is mathematically equivalent to a uniaxially stressed chain or bar of a
variable cross section, which means that the structural geometry and failure mechanism
are ignored.

4. The size effect differences between the cases of two- and three-dimensional similarities
(nd = 2 or 3) are often much smaller than predicted by Weibull theory (because, for
example, a crack in a beam causes failure only if it spreads across the full width of the
beam).

5. Many tests of quasibrittle structures show a much stronger size effect than predicted
by Weibull theory (e.g., diagonal shear failure of reinforced concrete beams; Walraven
and Lehwalter 1994, Walraven 1995, Iguro et al. 1985, Shioya and Akiyama 1994, and
many flexure tests of plain beams cited in Bažant and Novák 1990a,b).

6. When Weibull exponent m is identified by fitting the standard deviation of σN for spec-
imens of very different sizes, very different m values are obtained. Also, the size effect
data and the standard deviation data give very different m (e.g., m = 12 was obtained
with small concrete specimens while the large-size asymptotic behavior corresponds to
m = 24 (Bažant and Novák 1990); Fig. 2f (m varies from 4.2 to 24.2).

7. The classical theory neglects spatial correlations of material failure probabilities (which
is admissible only if the structure is far larger than the autocorrelation length of the
random field of local material strength).

5 WEIBULL THEORY ENHANCEMENTS AND NONLOCAL GENERALIZATION

One can discern three types of generalization of Weibull theory capturing in various ways,
and to various degrees, the effect of a large FPZ and quasibrittleness.

1. Various phenomenological models for load sharing (parallel couplings), which began to
appear in the mid 1900s (Daniels 1945, Grigoriu 1990). Although they can simulate
some effects of a large FPZ, they are not generally predictive. Calibrating the model
for one structure geometry, one cannot predict the behavior for another geometry.

2. Weibull theory adaptations to LEFM crack-tip singularity, which causes the classical
Weibull integral to diverge for all realistic m values (Beremin 1983, Ritchie, Becker, Lei
et al. 1998, Lin, Evans, McClintock, Phoenix 1978, etc.). For example, one excludes
from the domain of Weibull integral a finite circular zone about the crack tip, in order
to make the integral convergent, or only the stresses at points far enough ahead of
the crack tip are considered, or the stress profile is blunted plastically, or the failure
probability is averaged spatially. These approaches work well for tough metals with a
large (but not very large) yielding zone at the crack tip, but are doubtful when the
effective FPZ length is of the same order of magnitude as the structure size (which is
typical for reinforced concrete), and are not completely general; e.g., they cannot be
used for crack initiation from a smooth surface.

3. Nonlocal Weibull theory (Bažant and Xi 1991, Bažant and Novák 2000a,b). This is
a general theory which has as its limit cases both the classical Weibull theory and
the deterministic nonlocal damage mechanics developed for finite element analysis of
quasibrittle materials, which means that the energetic size effect is a limiting case of
this theory.

The nonlocal concept was proposed for elasticity in the 1960s (Kröner 1961, Eringen
1965, Kunin, Edelen). In the 1980s it was adopted for strain-softening continuum damage
mechanics (Bažant 1984. Bažant et al. 1984, Pijaudier-Cabot and Bažant 1987), with three
motivations:
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1) to serve as a computational ‘trick’ (localization limiter) eliminating spurious mesh sensi-
tivity and incorrect convergence of finite element simulations of damage;

2) to reflect the physical causes of nonlocality, which are:

(a) material heterogeneity,
(b) energy release due to microcrack formation, and
(c) microcrack interactions; and

3) to simulate experimentally observed size effects stronger than those explicable by Weibull
theory.

Causes 1 and 2 mean that microcrack formation in a heterogeneous material depends mainly
on the average deformation of a representative volume of the material surrounding the mi-
crocrack, rather than on the local stress or strain at a point of a macroscopic smoothing
continuum.

In keeping with the finding that, in the deterministic nonlocal theory, the spatial averaging
must be applied to the inelastic part ε′′ of the total strain ε (or some of its parameters), the
cumulative failure probability P1(σ) as a function of the local stress tensor σ at continuum
point x is replaced in the nonlocal Weibull theory with

P1 = 〈σ̄/s0〉m, σ̄(x) = E : [ε(x) + ε̄′′(x)], ε̄(x) =
∫

V
α(s − x)ε′′(s)dV (s)/ᾱ(x) (9)

in which E = initial elastic moduli tensor; α(x) = given bell-shaped weight function whose
effective spread is characterized by characteristic (material) length l0; and ᾱ(x) = normalizing
factor of α(x). The nonlocality makes the Weibull integral over a body with a sharp crack
convergent for any Weibull modulus m, and it also introduces spatial correlation into the
Weibull theory. Numerical calculations of bodies with large cracks or notches showed that
the randomness of material strength is almost irrelevant for the size effect on the mean σN ,
except theoretically for structures extrapolated to sizes less then the inhomogeneity size in
the material (Bažant and Xi 1991). So, the energetic mean size effect law (3) for the case
of large cracks or large notches remains unaffected by material randomness. Intuitively, the
reason is that a significant contribution to Weibull integral comes only from the FPZ, but
the size of the FPZ at a crack tip is about the same regardless of the structure size. This
also applies to the boundary layer of cracking, Fig. 2a, and is documented by the inelastic
strain field in (Fig. 2c left, linear scale) and the field of density of contribution to the Weibull
integral (right, log-scale) obtained by Bažant and Novák (2000a) in nonlocal beam flexure
analysis.

However, the size effect law for failures at crack initiation from a smooth surface (Eqs. 3
and 4 in the paper by Bažant and Novák, 2001, in this volume) is affected by randomness
for the case of very large sizes, the effect becoming important for plain concrete beams
or plates of thickness ≥1m, and major for 10 m (arch dams); Bažant and Novák 2000a,b;
Fig. 2d,e). The standard deviation of σN becomes size dependent. Furthermore, for very
large plain concrete beams, the material randomness becomes more important when the
maximum bending moment acts within a longer segment of the beam (e.g., 4-point versus
3-point loading of a beam). The asymptotic limits of the nonlocal Weibull theory are the
deterministic energetic size effect for D → 0 and the Weibull statistical size effect for D → ∞.
Their asymptotic matching approximation leads to the following approximate formula for the
mean size effect(Bažant 2001, Fig. g,d,e):

σN = σ0

[(
Db

ηDb + D

)rn/m

+
rDb

ηDb + D

]1/r

(rn/m < 1) (10)

where η and r are empirical constants. The special case for η = 0 was shown to fit the
bulk of the existing test data on the modulus of rupture and closely agree with numerical
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predictions of the nonlocal Weibull theory over the size range 1:1000 (Bažant and Novák
2000b). Aside from the two aforementioned asymptotic limits, the formula also satisfies a
third asymptotic—namely that the deterministic size effect on the modulus of rupture must
be recovered for m → ∞.

During the quarter-century since the work of Zech and Wittmann in 1977, the value m = 12
has been generally accepted for the Weibull modulus of concrete. However, the studies of
size effect in quasibrittle materials with the nonlocal Weibull theory revealed that this is
merely an apparent value characterizing the standard deviation of σN for small laboratory
specimens. When the specimen size increases, the m-value corresponding to the standard
deviation increases as well (Fig. 2f).

The fact that the Weibull modulus of the classical (local) theory is not a constant is one
reason why this theory does not apply. However, in the context of the nonlocal Weibull
theory and by data fitting with the statistical energetic formula, the large-size asymptotic
value of Weibull modulus of a quasibrittle material is in fact found to be a constant—about
m = 24 for concrete (Bažant and Novák 2000a,b); Fig. 2f. This, of course, could have been
expected for physical reasons: When the structure size is far larger (say, 100× larger) than
the FPZ size, a quasibrittle material becomes a perfectly brittle material, following LEFM
(thus, e.g., the global fracture of a concrete dam must follow LEFM). Conversely, a perfectly
brittle material such as a fine-grained ceramic must doubtless become quasibrittle when the
structure is small enough, as for instance in MEMS (micro-electro-mechanical systems).

6 NEED FOR IMPROVING THE STOCHASTIC FINITE ELEMENT METHOD (SFEM)

The SFEM has become a powerful tool for calculating the statistics of deflections and
stresses of arbitrary structures (e.g., Schuëller 1997a,b, Kleiber and Hien 1992, Ghanem and
Spanos 1991, Liu et al. 1987, Deodatis and Shinozuka 1991, Shinozuka and Deodatis 1988,
Takada 1990). Compared to SFEM, the nonlocal Weibull theory has two limitations:

• It does not yield the statistics of stiffness, deflections and stresses during the loading
process.

• The failure probability should be related to the probability that the first eigenvalue λ1
of the tangential stiffness matrix of the structure, Kt, becomes nonpositive, which is
not the case for the Weibull theory, whether local or nonlocal.

However, the nonlocal Weibull theory offers three significant advantages over SFEMs:

1. It is simpler, since an autocorrelated random field is not needed (a certain kind of spatial
correlation is implied by the characteristic length of the nonlocal averaging operator).

2. In contrast to autocorrelation length in SFEMs, the nonlocal characteristic length � has
a clear physical meaning and can be easily evaluated from the size effect tests using
simple LEFM-based formulae (� = LEFM shape factor times the size D0 obtained as
the intersection of the asymptotes of an optimally matched size effect law).

3. In the limit of infinite size, the nonlocal Weibull theory reduces to the classical (local)
Weibull theory, while the same cannot be said about SFEMs (in their contemporary
form).

The last point is of a rather fundamental nature. It relates to the far-out tail of the probability
distribution of the tangential stiffness. In this regard, the following physical argument should
be noted:

When the structure size is scaled up to infinity (D → ∞), the FPZ becomes infinitely small
compared to the structure size D (i.e., a point in the dimensionless coordinates ξ = x/D).
In that case, failure (of a structure of positive geometry) must occur at fracture initiation.
Therefore, the classical (local) Weibull theory must apply, and the failure then depends only
on the far-off tail of the local strength distribution. Thus, extrapolation to very large sizes is
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a way to identify the far-off tail of the local strength distribution (it can be seen as a physical
substitute for the importance sampling).

For the existing SFEMs, however, it has not been demonstrated that they would converge
to Weibull theory and reproduce the Weibull size effect as D → ∞, neither analytically nor
computationally. Whether this requirement is satisfied by the existing SFEMs is doubtful.

This has some implications for the structure of the tail of the probability distribution
of the stiffness coefficients, deflections and stresses. Normally, the Gaussian or log-normal
distributions for the material stiffness characteristics are assumed in SFEM. Since the prob-
ability distribution of the structural tangent stiffness matrix is essentially a weighted sum of
the elemental distributions (i.e., the distributions of the stiffness characteristics of a small
representative volume of the material), the distribution of the structural stiffness coefficients
may be expected to be Gaussian, with the exception of

(1) the far-out tail of probability distribution, and

(2) the states of damage localization which may (though need not) occur just before reaching
the peak load and are characterized by the fact that the stiffness of one or several finite
elements in a small failing zone totally dominates the structural stiffness.

The connection between the structural stiffness and failure rests on stability analysis (e.g.
Bažant and Cedolin 1991, ch. 4, 10 and 13). During the loading process, the maximum load
(which represents a failure state under the conditions of load control), is reached when the
tangential stiffness matrix of the structure, Kt, ceases being positive definite, i.e., when the
first eigenvalue λ1 of Kt ceases being positive. Therefore,

Failure probability(u) = Prob (λ1(u) ≤ 0 ) (11)

where it is indicated that the failure probability and the first eigenvalue may be regarded as
functions of the displacement u (since, in order to achieve computational stability, u rather
than P needs to be controlled during loading because a smoothly evolving matrix Kt is
singular at maximum load). (For the sake of simplicity, we omit one further condition needed
to distinguish the maximum load state from a bifurcation state, which can be stable or
unstable and is also characterized by a loss of positive definiteness of Kt.)

Based on the knowledge of the possible limiting forms of extreme value distributions, it
appears reasonable to impose on the SFEM the following condition (which is strictly required
only for a very large chain structure but may in practice be convenient to apply systematically
for any structure of any size):

Tail of[ Prob (λ1(u) ≤ 0 )] = FW [P (u)] (12)

Here FW (P ) is the cumulative Weibull distribution function (Weibull 1939), which has a
power-law tail with a threshold (the Weibull distribution would better be called the Fisher-
Tippett-Weibull distribution because, in mathematics, it was derived by Fisher and Tippett
already in 1928); FW is here properly considered as an implicit function of the controlled
displacement u because the tangential stiffness changes its sign at maximum load. Condition
(12) ensues by excluding all the other possibilities, which are as follows.

If we consider a population of N statistically independent random variables Xi (i =
1, 2, ...N) with arbitrary but identical statistical distributions Prob(Xi ≤ x) = P1(x), hence-
forth called the elemental distribution (x = σ/s0 = scaled stress, Xi = scaled random
strength), we have for the distribution of YN = minN

i=1 Xi for very large N the gen-
eral expression:

PN (y) = 1 − e−NP1(y) where PN (y) = Prob( minN
i=1Xi ≤ y ) (13)

where PN (y) = Pf = failure probability of structure, provided that the failure of one element
causes the whole structure to fail. As Fisher and Tippett (1928) proved, there exist three and
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Figure 2.   (a) Approximate effect of stress redistritution due to cracking in boundary layer.   (b) Chain struc-
ture.   (c) Field of inelastic strain in beam flexure (linear scale) and corresponding density field of contribu-
tions to failure probability (log-scale).   (d,e) Relative flexural strength versus relative size for 10 test series 
from the literature, and results of nonlocal Weibull calculations, fit by energetic-statistical formula for crack 
initiation.   (f) Differences in apparent Weibull moduli m in classical definition corresponding to nonlocal 
Weibull calculations in different size ranges.  (g) Energetic- statistical size effect for failures at crack initia-
tion.   (h) Chain subdivided into segments.   (i) Stress-strain formula with three random parameters.  
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only three asymptotic forms (or limiting forms for N → ∞) of the extreme value distribution
PN (y):

1) Weibull distribution: PN (y) = 1 − e−ym
(14)

2) Fisher-Tippett-Gumbel distribution: PN (y) = 1 − e−ey
(15)

3) Fréchet distribution: PN (y) = 1 − e|y|
−m

(16)

(Case 2 is usually called the Gumbel distribution, but Fisher and Tippett derived it much
earlier and Gumbel gave them credit for it.) Case 1 is obtained if the elemental distribution
P1(y) has a power-law tail with a finite threshold, which is normally taken as 0 (the simplest
case is the rectangular probability density function, for which m = 1). Case 2 is obtained
if P1(y) has an exponentially decaying tail, and case 3 if P1(y) has an infinite tail with an
inverse power law (such as |σ|−m) (see also Bouchaud and Potters 2000).

The basis of Fisher and Tippett’s (1928) ingenious proof can be dissected into three argu-
ments:

(1) The extreme of a sample of ν = Nn independent identical random variables x (the
strengths of the individual links of a chain) can be regarded as the extreme of the set
of N extremes of the subsets of n variables (segments of the chain, with n links in each,
Fig. 2h). This recursive property is the key idea.

(2) The asymptotic forms of the distributions of the extremes of samples of sizes n and Nn
must be the same if an asymptotic form exists (both n → ∞ and N → ∞).

(3) When the size of the samples is increased from n to Nn, the mean and standard deviation
of the distribution of the extremes must, in general, change. Thus, an asymptotic
distribution of the extremes, as a limit for N → ∞, cannot exist. What may exist
is an asymptotic form (or shape) of the extreme value distribution. The forms of the
distributions of samples of sizes N and n are identical if the former can be transformed
into the latter by a linear transformation of variables, σ′ = aNσ + bN where aN and bN
are functions of N (N ∼ structure size) (note that this transformation is equivalent
to changing the mean and standard deviation of the distribution, but not any higher
moments). Thus (if we prefer the terminology of the weakest link model), the argument
of joint probability of survival of all N segments of the chain yields for the asymptotic
form of the cumulative distribution of the survival probability F (σ) = 1−Pf = 1−PN
of a very long chain the functional equation:

FN (σ) = F (aNσ + bN ) (17)

In this manner, Fisher and Tippett reduce the problem to finding the solution F (σ) of this
equation. They prove that there exist three and only three forms of solution—those in (14)–
(16). By substituting these forms into functional equation (17), one can check that indeed
this equation is satisfied, and the substitutions give the dependence of aN and bN on N , which
in turn represents the dependence of the mean and the standard deviation of each asymptotic
distribution on N (N ∼ structure size).

For structural strength, the infinite negative tails of PN distribution appear unrealistic,
for physical as well as conceptual reasons. Consequently, the Fréchet distribution and the
Fisher-Tippett-Gumbel distribution must be excluded. So, for the tail distribution, there is
no other rational possibility but the Weibull distribution. This lends support to the condition
(12). Besides, the Weibull distribution provides overall the best match of the experimental
evidence, although most of it is on fatigue fracture. The other two distributions do not fit
the test data on structural strength.

There are of course techniques in SFEM, e.g., the importance sampling, to calculate failure
loads of extremely small probability. Unfortunately, though, the fact that the failure load
calculations with the existing SFEMs do not give probability distributions with a Weibull
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power-law tail, and that they do not lead to the Weibull power-law size effect when the
structure size is scaled up to infinity, implies that calculations of the loads of a very small
failure probability, such as 10−7, cannot be realistic.

In design codes, the safety factors relate the mean failure load prediction (roughly the
same as the median, or failure probability 0.5) to the failure load with a desired extremely
low probability, typically about 10−7. This is illustrated by the upper arc in Fig. 3k, spanning
almost 7 orders of magnitude. Since the existing experimental validations of SFEMs have
been confined mainly to the standard deviation, the current SFEMs, with their exponential
tails, might be realistic for calculating only loads of failure probability no less than about
10−2. So, an empirical safety factor is needed to relate this load to the failure load of the
desired probability such as 10−7. This is illustrated by the lower arc in the figure, spanning
5 orders of magnitude. Comparing the lengths of the two arcs, we are sobered with the
impression that not too much has yet been gained through the development of SFEMs, as
far as structural safety is concerned.

Although a rigorous mathematical formulation based on condition (12) seems in general
quite difficult, a semi-intuitive justification may be seen in the following observations:

1. For a chain structure whose elements have a smooth stress-strain curve through the peak
stress region (Fig. 2i), λ1 at states near the maximum load is totally dominated by Kt
of one element—the element with the lowest strength (lowest peak of the stress-strain
curve), and

2. the same property must approximately hold for non-chain structures of positive geom-
etry, or else the structure would not be failing at crack initiation.

There may be various ways to meet condition (12) and, in view of the foregoing observations,
the following proposition represents one:

Proposition I: The random material properties should be defined so that, at least on
approach to the strength limit, the distribution of the slope Kt = dσ/dε of the random
tensile stress-strain curve as a function of the strength limit (peak of the curve) would be
a Weibull distribution or, more generally, a distribution with a power-law tail and a non-
negative threshold (Fig. 2i).

Even if the Weibull distribution is adopted for the material tangent stiffness at any load,
the deflections and stresses at loads not close to the failure load would have Gaussian dis-
tributions (except the far-out tails), by virtue of the central limit theorem. To control the
variance of the Gaussian distribution, Weibull parameters s0 and m could be varied as a
function of the current stress, strain or damage in the material element.

Consider now the simple example of a chain of elements (links) i = 1, 2, ...N . Although
the stress-strain curve of the elements is generally a Markovian process, one may restrict
consideration to a family of curves with random parameters. For instance, as the simplest
expression, consider the curves of the type introduced in Bažant and Chern (1985):

σ = E ε e−εn/nεn
p , 1/n = ln(Eεp/σp) (18)

where E = Young’s modulus and n > 0. One can check that σp = peak stress (maximum
stress, strength of element) and εp = strain at peak stress (Fig. 2i). In general, σp, εp and E
may be taken as independent random variables, characterized by the cumulative distributions

Prob(σp < y) = Fσ(y), Prob(εp < z) = Fε(z), Prob(E < η) = FE(η) (19)

According to the foregoing arguments, the distribution Fσ(y) must have a Weibull (power-
law) tail. The distributions Fε(z) and FE(η) can be arbitrary but must be such that always
n > 0, which requires that σp < Eεp for any realization. This inequality is easy to meet
if both Fε(z) and FE(η) are bounded from below (e.g., if they are both taken as Weibull),
while the distribution Fσ(y) must be bounded from above, in addition to being bounded
from below. Thus, Fσ(y) must rise from a power-law tail but, strictly speaking, cannot be
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the Weibull distribution through the whole range, although in practice it can be Weibull
if the probability of exceeding Eεp is negligible, say 10−9 (this is easy to satisfy, especially
for high m, because the Weibull probability density distribution has on the right a rapidly
decaying exponential tail; Fig. 3a, right). Intuitively selecting the distributions of εp and σp,
one could not expect to satisfy these requirements. A trivial satisfactory case, albeit not very
realistic, occurs when εp and E are deterministic, in which case all the random stress-strain
curves are affine.

7 CRACK FRACTALITY AS A CAUSE OF SIZE EFFECT?

The random scatter observed in fracture experiments is doubtless largely controlled by
the random disorder on the microstructural level. Aside from various statistical descriptions,
much of this disorder can be described by fractal concepts. The crack surface irregularity in
concrete and other quasibrittle materials can be characterized as a self-affine invasive fractal
surface with a fractal dimension df > 1 (Fig. 3f), and the microcrack distributions as a
lacunar fractal set (or Cantor set) with Df < 1 (Fig. 3g).

Carpinteri (1994a,b) proposed an intriguing idea—that the size effect on σN might be
caused by crack fractality. But they offered merely intuitive geometric arguments. While
providing one viable alternative way to describe the effect of random disorder in the mi-
crostructure on the material fracture characteristics, their idea, however, appears invalid in
terms of a direct influence on the structural size effect.

The idea was examined by mechanical analysis in Bažant (1997) under the hypothesis
that standard (nonfractal) continuum mechanics and the laws of continuum mechanics apply
on the global scale of structure. If the crack surface has a fractal dimension, the fracture
energy must have a fractal dimension, too, as proposed by Mosolov and Borodich. The use
of this concept in an energy-based fracture analysis showed that the predictions do not agree
with reality. Patently unrealistic size effects were shown to result from the hypothesis of
crack surface fractality for large cracks as well as crack initiation (Fig. 3h,i) and, based
on a recursive ad infinitum argument similar to Fisher-Tippett’s, a physically meaningful
form of the hypothesis of lacunar fractality of the microcrack distribution was shown to be
mathematically equivalent to the classical Weibull size effect theory.

8 RANDOM SCATTER IN FRACTURE TESTING

Statistical analysis of quasibrittle fracture requires at least the values of standard deviation
of the fracture energy, Gf , and the effective fracture process zone length, cf . It is appealing
to take advantage in this regard of the enormous statistical basis (238 tests) that exists in
the literature. The existing test data pertain basically to two types of testing method:
(I) The size effect method (SEM) (RILEM 1990), with two other methods which test in

the maximum load range and give similar results [Jenq and Shah’s (1985) method,
similar to Wells (1961) and Cottrell’s (1963) method for metals, and Nallathambi and
Karihaloo’s (1986) method], and

(II) the work-of-fracture method based on the area under the measured load-deflection curve
of a notched specimen, as proposed by Hillerborg for his fictitious crack model (Hiller-
borg et al. 1976, Bažant and Planas 1998).

The differences among the test results involve not only random scatter but also large sys-
tematic differences between the concretes tested in different laboratories. To allow statistical
comparisons, the deterministic trends must be extracted first, at least approximately. By
fitting the results of 238 test series compiled from the literature, the following approximate,
admittedly very crude, formulae for the deterministic (mean) trend were obtained by least-
square fitting (Bažant and Becq-Giraudon 2001):

Gf = α0

(
f

′
c/0.051

)0.46
[1 + (da/11.27)]0.22 (w/c)−0.30, GF ≈ 2.5Gf (20)

ln cf = γ0

(
f

′
c/0.022

)−0.019
[1 + (da/15.05)]0.72 (w/c)0.2 (ωcf

= 47.6%) (21)
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where Gf fracture energy of concrete in N/m obtained by the size effect method and other
type I methods, f ′

c = compression strength in MPa, da = maximum aggregate size in mm,
w/c = water-cement ratio in the mix, cf effective fracture process zone length in mm, and
parameter α0 distinguishes river and crushed aggregates. Knowing also the scatter of the
elastic modulus E, one can further estimate the coefficients of variation of δCMOD and Kc.

Fig. 3d,e shows the plots of measured versus predicted values of fracture energy, for the size
effect method (and related methods) of type I, and for Hillerborg’s work-of-fracture method.
The coefficients of variation of the vertical deviations from the straight line of slope 1 in Fig.
3d,e are

ωGf = 17.8 % (77 tests), ωGF = 29.9 % = 1.66 ωGf (161 tests) (22)

where subscripts Gf and GF refer to the size effect method (with the related peak load
methods) and the work-of-fracture method. Fig. 3c shows the histogram of 77 test data for
the size effect method and related methods, plotted on the Weibull probability paper (the
plots for the Gaussian and log-normal distributions deviate from a straight line significantly
more, Bažant and Becq-Giraudon 2001).

Based on the researches of Planas and Elices (Bažant and Planas 1998) and on further
mathematical justification in Bažant (2001a), the common fitting of the type I and type II
data was based on the assumption that the ratio of the corresponding fracture energies is
GF /Gf ≈ 2.5 (GF corresponds to the area under the entire stress-displacement curve of
cohesive crack, while Gf corresponds to the area under the initial tangent of that curve, Fig.
3j; the GF values in Fig. 3e are converted to the Gf values according to this ratio, to facilitate
comparison, with no effect on ωGF ).

The large discrepancy between the coefficients of variation in Eq. (22) (Fig. 3d,e) reveals
that the size effect method gives a much smaller random scatter than the work-of-fracture
method. This important advantage should be noted in the current debates of a standardized
test. Further note that calculations of the maximum loads of structures require only the
knowledge of the initial portion (slope) of the softening stress-displacement curve of the
cohesive crack model (Fig. 3k). The tail of this curve is needed to calculate the post-peak
softening behavior of structures. Thus it makes little sense to conduct the work-of-fracture
tests and then use the result for calculating the maximum load, the most frequent objective
in practice. By adjusting the cohesive stress-displacement curve of the assumed shape (Fig.
3k) to the measured GF , one in fact imparts the high coefficient of variation also on the initial
slope of that curve, and the result is that the fracture energy that matters for the maximum
load now has an unnecessarily high coefficient of variation, 29.9% instead of 17.8%.

It might be objected that the statistical comparison in Fig. 3d,e is contaminated by errors
in the formula used to capture the mean effects of the differences in concrete composition.
True, but there is no reason for such errors to favor one type of test. To obtain more
reliable comparisons, all the 238 data sets should ideally be obtained for one and the same
concrete, under the same laboratory conditions. Not only would then the comparison of
testing methods be shielded from criticism, but a significantly smaller coefficient of variation
could be expected. However, inferring the standard deviations for other concretes would then
become more uncertain.

The physical reason for Gf having a much smaller scatter than GF is that the tail of
the softening stress-displacement curve exhibits much more random scatter than its initial
portion, which is a property well known from testing.

The high value of ωcf means that a distribution with a threshold, e.g. the Weibull or
log-normal distribution, must be assumed for cf . Note that the results of structural analysis
as well as testing are much less sensitive to cf than Gf , and only the order of magnitude of
cf is important.

9 REINTERPRETATION OF PAST STRUCTURAL DISASTERS

Because of very large safety factors as well as a size effect hidden in the safety factor for
dead load, a single inadequacy of the current design methods and codes can hardly bring

116



Figure 3.   (a,b) Cumulative Weibull distribution and its density, for various Weibull moduli m.   (c) 77 size 
effect test data on fracture energy from the literature, plotted on Weibull probability paper.   (d,e) Plots of 
measured versus predicted values of size effect fracture energy (77 test series) and Hillerborg fracture energy 
(161 test series).   (f,g) Invasive affine fractality of crack surface and lacunar fractality of microcracks. (h,i) 
Unreasonable size effects for large cracks and crack initiation ensuing from the hypothesis of fractal size ef-
fect.   (j) Softening stress-crack separation curve of cohesive crack model of concrete.   (k) Safety factors re-
lating failure probability to calculations.  
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down a structure. Thus it is not surprising that in most structural failures, several causes
are combined. Practically all the famous catastrophes of structures have in the past been
plausibly explained without revoking the size effect. However, it now transpires that many of
these explanations have been incomplete. In the light of the latest research, the fracture size
effect should, for example, be added as a significant contributing factor (Bažant and Novák
2000b) to the explanations of the following catastrophes:

1) While the direct cause of the tragic failure of the Malpasset arch dam in French Maritime
Alps in 1959 was an excessive movement of the rock abutment, it now transpires that the
maximum tolerable movement must have been only about 45% of the value deduced at that
time from the standard strength tests of concrete.

2) The same, but with a reduction to 40%, applies to the Saint-Francis Dam (failed in
1928).

3) Whereas the direct cause of the failure of the Schoharie Bridge on New York Thruway
in 1987 was river bed scouring in a flood, the nominal bending strength of the concrete
foundation plinth that broke was only about 54% of the value deduced from the standard
tensile strength tests.

Based on today’s knowledge of size effect for large fractures, nominal strength reductions
ranging from 30% to 50% compared to code-based design must have also occurred in the
following catastrophes:

4) The sinking of the Sleipner oil platform in Norway in 1991, caused by shear fracture of
a tri-cell (an incorrect placement of reinforcement and an error in finite element analysis due
to incorrect meshing were the originally cited causes).

5) The columns of Hanshin viaduct, Kobe (failed in 1995 earthquake).
6) The columns of Cypress Viaduct, Oakland (failed in 1989 earthquake).
7) The bridge columns in Los Angeles earthquake (1994).
Insufficient confining reinforcement was, of course, the primary cause of the last three

failures, as originally cited in the reports on these disasters.

10 SIZE EFFECT HIDDEN IN EXCESSIVE DEAD LOAD FACTOR IN DESIGN CODES

The dead load factors currently used in concrete design codes have recently been criticized
by structural engineering statisticians as unjustifiably large. Proposals for reducing these
factors drastically have been made. However, such a reduction would be dangerous of if the
fracture size effect were not simultaneously incorporated into the code provisions (Bažant
and Frangopol 2001).

The larger the structure, the higher is the percentage of the own weight contribution D1
to the ultimate load U . So, if the load factor for the own weight is excessive, structures
of large size are overdesigned from the viewpoint of strength theory or plastic limit state
design—the theory underlying the current building codes. However, such an overdesign helps
to counteract the neglect of size effect in the current codes, which is inherent to plastic limit
analysis concepts (Bažant 2001a). Doubtless it is the reason why the number of structural
collapses in which the size effect was a contributing factor has not been much larger than we
have seen so far.

Denote by L̂ and D̂ the internal forces caused by the live load and the dead load, and by
U the internal force caused by ultimate loads, i.e., the loads magnified by the load factors.
Using the load factors currently prescribed by the building code (ACI Standard 318, 1999),
one has U = 1.4 D̂ + 1.7 L̂

Take it now for granted that the dead load factor 1.4 is excessive and that a realistic value,
justified by statistics of dead load, should be µD. Then the ratio of the required ultimate
design value of the internal force to the realistic ultimate value, named the overdesign ratio
(Bažant 2001, Bažant and Frangopol 2001) is

R =
Udesign

Ureal
=

1.4 D̂ + 1.7 L̂

µD D̂ + 1.7 L̂
(23)
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Consideration will now be limited to dead loads caused by the own weight of structures,
which for example dominate the design of large span bridges. For a bridge of very large span,
the dead load may represent 90% of the total load, and the live load 10%. In that case, the
overdesign ratio is R = (1.4 × 0.9 + 1.7 × 0.1)/(µD × 0.9 + 1.7 × 0.1). For the small scale
tests which were used to calibrate the present code specifications, the own weight may be
assumed to represent less that 2% of the total load. In that case, the overdesign ratio is
R0 = (0.4×0.02+1.7×0.98)/(µD×0.02+1.7×0.98). It seems reasonable to assume that the
own weight of a very large structure cannot be underestimated by more than 5%. This means
that µD = 1.05. So, R ≈ 1.28, R0 ≈ 1.00. It follows that, compared to the reduced scale
laboratory tests used to calibrate the code, a structure of a very large span is overdesigned,
according to the current theory, by about 28% (Bažant 2001). Such overdesign compensates
for a size effect in the ratio of about 1.28. This is approximately the size effect for very large
spans that is unintentionally hidden in the current code specifications.

Further note that a hidden size effect also exists in various indices proposed for reliability-
based codes. This is due to the fact that the reliability implied in the code increases with
the contribution of the dead load to the overall gravity load effect (in detail, see Bažant and
Frangopol 2001).

11  PATH TO HAPPIER FUTURE

Hopefully, the present lecture has demonstrated that, if the future should bring a significant
improvement in reliability of failure predictions of quasibrittle structures, particularly the
concrete structures, fiber composites, sea ice and rock masses, the probabilists and fracture
mechanicians must collaborate. In civil engineering, the dead load safety factor cannot be
reduced without incorporating the size effect into the concrete design codes, which pertains to
the concrete code specifications for all the failure types termed ‘brittle’. Conversely, it makes
little sense to introduce size effects into the code without improving its probabilistic structure.
Likewise, the results of sophisticated finite element analyses that correctly simulate the mean
(deterministic) energetic size effect get absurdly devalued when the current, less than rational,
safety factors are applied. To reach a happier future, synergy will be imperative.
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Bažant, Z.P. (2001b). “Size effects in quasibrittle fracture: Apercu of recent results.” Fracture Me-

chanics of Concrete Structures (Proc., FraMCoS-4 Int. Conf., Paris), R. de Borst et al., eds., A.A.
Balkema Publishers, Lisse, Netherlands, 651–658.
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Li, Yuan-Neng, and Bažant, Z.P. (1997). “Cohesive crack with rate-dependent opening and viscoelas-

ticity: II. numerical algorithm, behavior and size effect.” Int. J. of Fracture 86 (3), 267–288.
Lin, T., Evans, A.G., and Ritchie, R.O. (1986). “A statistical model of brittle fracture by transgranular

cleavage.” J. of the Mech. & Phys. of Solids 34, 477–497.
Liu, W.K., Mani, A. and Belytschko, T. (1987). “Finite element methods in probabilistic mechanics.”

Probabilistic Engineering Mechanics 2 (4), 201–213.
Mai, Y.-W., and Lawn, B.R. (1986). “Crack stability and toughness characteristics in brittle materi-

als.” Ann. Rev. Mater. Sci. 16, 415–439.
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Mihashi, H., Okamura, H., and Bažant, Z.P., Editors (1994). Size effect in concrete structures (Proc.,
Japan Concrete Institute Intern. Workshop held in Sendai, Japan, Oct.31–Nov.2, 1995). E & FN
Spon, London-New York.

Mihashi, H. and Zaitsev, J.W. (1981). “Statistical nature of crack propagation,” Section 4-2 in Report
to RILEM TC 50—FMC, ed. F.H. Wittmann.

von Mises, R. (1936). “La distribution de la plus grande de n valeurs.” Rev. Math. Union Interbal-
canique 1, p. 1.

Nallathambi, P. and Karihaloo, B.L. (1986). “Determination of specimen-size independent fracture
toughness of plain concrete.” Mag. of Concrete Res. 38 (135), 67-76.
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(p. 546); and Les Manuscrits de Léonard de Vinci, transl. in French by C. Ravaisson-Mollien,
Institut de France (1881-91), Vol. 3.

Walraven, J. (1995). “Size effects: their nature and their recognition in building codes“, Studi e
Ricerche (Politecnico di Milano) 16, 113-134.

Walraven, J., and Lehwalter (1994). ”Size effects in short beams loaded in shear”, ACI Structural
Journal 91 (5), 585–593.

Walsh, P.F. (1972). “Fracture of plain concrete.” Indian Concrete Journal 46, No. 11.
Walsh, P.F. (1976). “Crack initiation in plain concrete.” Magazine of Concrete Research 28, 37–41.
Weibull, W. (1939). “The phenomenon of rupture in solids.” Proc., Royal Swedish Institute of

Engineering Research (Ingenioersvetenskaps Akad. Handl.) 153, Stockholm, 1–55.
Weibull, W. (1949). “A statistical representation of fatigue failures in solids.” Proc., Roy. Inst. of

Techn. No. 27.
Weibull, W. (1951). “A statistical distribution function of wide applicability.” J. of Applied Mechanics

ASME, Vol. 18.
Weibull, W. (1956). “Basic aspects of fatigue.” Proc., Colloquium on Fatigue, Stockholm, Springer.
Weil, N.A., and Daniel, I.M. (1954). “Analysis of fracture probabilities in nonuniformly stresses

solids.” J. of the Am. Ceramic Soc. 47 (6), 268–274.
Wells, A.A. (1961). “Unstable crack propagation in metals-cleavage and fast fracture.” Symp. on

Crack Propagation, Cranfield, Vol. 1, 210–230.
Williams, E. (1957). “Some observations of Leonardo, Galileo, Mariotte and others relative to size

effect.” Annals of Science 13, 23–29.
Zaitsev, J.W., and Wittmann, F.H. (1974). “A statistical approach to the study of the mechanical

behavior of porous materials under multiaxial state of stress,” Proc. of the 1973 Symp. on
Mechanical Behavior on Materials, Kyoto, Japan, 705 p.

Zech, B. and Wittmann, F.H. (1977). “A complex study on the reliability assessment of the contain-
ment of a PWR, Part II. Probabilistic approach to describe the behavior of materials.” Trans.
4th Int. Conf. on Structural Mechanics in Reactor Technology, T.A. Jaeger and B.A. Boley, eds.,
European Communities, Brussels, Belgium, Vol. H, J1/11, 1-14.

23


