
Statistical Methods in Medical Research 2009; 18: 505–526

Probabilistic models and machine learning in
structural bioinformatics
Thomas Hamelryck Bioinformatics Center, Department of Biology, University of
Copenhagen, Copenhagen N, Denmark

Structural bioinformatics is concerned with the molecular structure of biomacromolecules on a genomic
scale, using computational methods. Classic problems in structural bioinformatics include the prediction of
protein and RNA structure from sequence, the design of artificial proteins or enzymes, and the automated
analysis and comparison of biomacromolecules in atomic detail. The determination of macromolecular
structure from experimental data (for example coming from nuclear magnetic resonance, X-ray crystallog-
raphy or small angle X-ray scattering) has close ties with the field of structural bioinformatics. Recently,
probabilistic models and machine learning methods based on Bayesian principles are providing efficient
and rigorous solutions to challenging problems that were long regarded as intractable. In this review, I
will highlight some important recent developments in the prediction, analysis and experimental determina-
tion of macromolecular structure that are based on such methods. These developments include generative
models of protein structure, the estimation of the parameters of energy functions that are used in structure
prediction, the superposition of macromolecules and structure determination methods that are based on
inference. Although this review is not exhaustive, I believe the selected topics give a good impression of the
exciting new, probabilistic road the field of structural bioinformatics is taking.

1 Introduction

The prediction the three-dimensional (3D) structure of RNA and protein from sequence
is one of the main open problems in science today.1 A routine solution of this problem
would be of tremendous importance in science, medicine and biotechnology, due to
its relevance for crucial applications such as understanding our genomes in molecular
detail or the design of novel drugs and man-made enzymes. Despite some important
recent breakthroughs,2−5 prediction and design of macromolecular structure remains
not routinely possible, and in the case of protein structure prediction, progress even
seems to be stagnating.6

The problem of 3D structure prediction can be viewed as a problem in physics, where
the solution is expected to come from a description of the water–protein or water–RNA
system at the level of quantum mechanics. At present, such a description is essentially
out of reach due to excessive computational demands, although progress is being made
by using various approximations, such as molecular dynamics.7 At the other end of
the spectrum, one finds knowledge-based methods that try to translate the existing
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information on macromolecular structure into methods to predict structure. Most of
the so-called de novo methods that predict the structure of proteins and RNA from
sequence information alone are at present knowledge based. These methods essentially
treat the structure prediction problem as a problem of statistical inference, even if this
is not always clearly spelled out.

Here, I will give an overview of some of the special statistical challenges that are asso-
ciated with the prediction and analysis of macromolecular structure, with an emphasis
on proteins. I will focus in particular on methods that view the prediction, analysis
and experimental determination of macromolecular structure as a problem in Bayesian
inference, and point out some recent success stories. A second goal of this review is
to point out that these probabilistic methods can be interpreted in the framework of
statistical physics, and vice versa, that many physics based methods can be seen from a
probabilistic viewpoint. After all, as ET. Jaynes pointed out many years ago, statistical
mechanics is statistical inference applied to physical-problems, 8−10 and therefore it
should not come as a surprise that methods developed from a purely probabilistic point
of view can have a clear physical interpretation.

This review starts with a gentle introduction to macromolecular structure. Next, in
Section 3, I introduce two probabilistic methodologies that have been found recently
to be particularly useful in structural bioinformatics: Bayesian networks and direc-
tional statistics. In Section 4, several recently developed probabilistic solutions to
problems in structural bioinformatics are presented, and I also give some alternative
views on established methods. In the final section, I discuss probabilistic methods to
infer macromolecular structure from experimental data.

2 Macromolecular structure

Proteins are the workhorses of the living cell. They are, for example, responsible for
digesting food, transferring signals from the environment and protecting organisms
against harmful infections. In medicine, proteins are extremely important since they
form the target of virtually all drugs. In biotechnology, proteins are used to catalyse
reactions that would be extremely difficult to perform efficiently by non-biological
means.

Proteins are simple linear polymers of amino acids. One can think of them as a set of
beads-on-a-string, in which the beads are individual amino acids. Brought in a watery
environment, a typical, well-behaving protein will fold into a specific, compact 3D
conformation or fold (Figure 1). Broadly speaking, which shape the protein will adopt
depends entirely on its sequence of amino acids.11 The driving force behind the formation
of the compact fold is the hydrophobic effect, or the shielding of the hydrophobic amino
acids from the water surrounding the protein. The same effect is also responsible for
the fact that oil and water do not mix, for example. Although the hydrophobic effect
is now quite well understood,12 it is still not possible to predict protein structure from
sequence. One of the reasons is that many other subtle interactions play a role as well,
such as hydrogen bonding, electrostatic effects and van der Waals forces.

Until recently, RNA was seen as a mere information carrier between the genomic
information encoded in DNA, and the chemical and structural functions performed
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Figure 1 Schematic illustration of protein folding that is driven by the hydrophobic effect. In a watery envi-
ronment, a protein spontaneously goes from an unfolded, extended state (on the left) to the compact, folded
state (on the right). In the compact fold, the hydrophobic amino acids (shown as black circles) are in general
shielded from the solvent, while the hydrophilic amino acids (white circles) are in general exposed.

by proteins. That view has changed radically,13 with the emergence of RNA with enzy-
matic activities and a wide variety of functions performed by so-called non-coding
RNAs. As for proteins, the 3D structure of an RNA molecule is of crucial importance
for understanding its function, and as a result, the problem of the prediction of RNA
structure in atomic detail has become of acute importance. In the case of RNA, the main
driving force behind the formation of the folded conformation is base pairing, in which
nucleotides pair through the formation of hydrogen bonds, and base stacking, which
involves the aromatic rings of the bases.

The detailed 3D structure of RNA and protein can be determined by biophysical meth-
ods, such as nuclear magnetic resonance (NMR) and X-ray crystallography. However,
while determining the sequence of RNA or protein is (relatively) easy, experimentally
determining the 3D structure is typically expensive, time craving and difficult, and some-
times even impossible. Therefore, there is great interest in predicting protein structure
from sequence. Despite some recent advancements, this is still not routinely possible at
present.

2.1 Notation
Below, I will refer to a 3D structure as x and an amino acid sequence as a =

{a1, a2, . . . , aN}, where ai refers to amino acid i in the sequence. A structure x is param-
eterised as a sequence of atom positions (3D vectors) or various angles, depending on
the context.
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3 Probabilistic models for molecular structure

3.1 Directional statistics
In order to develop probabilistic models of molecular structure, one needs to have a

proper mathematical language available. The 3D shape of an RNA or protein molecule
can be conveniently described for many purposes in terms of angles (in [0, π ]) and
dihedral angles (in [−π, π [) (Figure 2). Naively applying the usual statistical machinery
to such data often leads to problems. For example, using a Gaussian distribution for
dihedral angle data can run into problems due to the wrap-around property at −π/π .
In other words, it is often necessary to work on the right manifold, which in the latter
case is the circle, and not the real line. In this case, the von Mises distribution on the
circle is a suitable choice.

The statistics of data that inhabit manifolds such as spheres, tori or more exotic man-
ifolds such as the real projective plane is the realm of directional statistics.14 Examples
of such data are angles, unit vectors, rotations and axes (lines through the origin in
Rn). As these types of data are ubiquitous in structural bioinformatics, the potential of
directional statistics in this field is enormous. Surprisingly, applications of directional
statistics in structural bioinformatics are few and far between, and certainly not part
of the main stream. However, I expect that this situation will change drastically in the
near future. In Section 4.1, I will discuss some of our recent work in this area.

I will end this section with giving some examples of probability distributions that are
particularly useful for describing molecular structure. The Kent distribution, proposed
by John T. Kent in 1982,15 is a distribution on the 2D sphere (Figure 3). In order to
avoid some common confusion, let me point out that the 2D sphere is the surface of the
3D ball. A point on the sphere can be specified by a 3D unit vector, or equivalently, a
set of polar coordinates (one angle, and one dihedral angle).

The Kent distribution is the equivalent the the general bivariate Gaussian distribution,
and has the following probability density function:

f (v) = 1
C(κ, β)

exp
(
κγ1 · v + β

[
(γ2 · v)2 − (γ3 · v)2

])
(1)
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Figure 2 A set of four connected lines illustrates the concept of a dihedral angle, and the geometry of the
Cα trace representation. The individual points 0, 1, 2, 3 and 4 correspond to the Cα atoms of five consecutive
amino acids. The θ angles are ’ordinary’ angles (in [0, π ]) formed by two consecutive line segments. The
dihedral angles τ (in [−π, π [) are defined by three consecutive segments. For example, τ2 is the angle formed
by segments 01 and 23 when looking along segment 12.
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where · is the dot product of two vectors, v is a unit vector, C(κ, β) is a normalising con-
stant, κ ≥ 0 is a concentration parameter, β (with 0 ≤ 2β < κ) determines the ellipticity
of the contours of equal probability and (γ1, γ2, γ3) are three unit vectors that determine
the position and orientation of the equiprobability contours on the sphere. In section
4.1, I will describe some important application of this distribution. The distribution is
also known as the five-parameter Fisher–Bingham distribution, as it has five independent
parameters (κ, β, and a 3 × 3 orthogonal matrix containing the γ vectors) and belongs
to a wider family of distributions. The use of this distribution in modelling the local
structure of proteins is discussed in section 4.1. A distribution from the same family,
the von Mises–Fisher distribution,14,16 generalises the spherical (isotropic) Gaussian
distribution on the N-dimensional sphere.

Other distributions include the recently proposed bivariate von Mises distribution on
the torus17 (discussed in section 4.1), the Bingham distribution on the sphere with the
antipodes identified,18 and the Matrix–Fisher distribution on Stiefel manifolds.19 The
latter distribution can be used as a probability distribution over the space of rotations
SO(3), which has found applications in crystallography. 20 For a thorough discussion
of directional statistics, I refer to the book of Mardia and Jupp.14

3.2 Bayesian networks
Probabilistic models such as mixture models, hidden Markov models, Bayesian net-

works and Markov random fields can all be seen as examples of graphical models.
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Figure 3 Three points sets sampled from the Kent distribution on the sphere. The mean directions are shown
with arrows. The κ parameter is highest for the rightmost, resulting in a concentrated distribution. The β
parameter is highest for the point set at the bottom, resulting in a distribution with high ellipticity. The position
on the sphere, and the orientation of the equiprobability contours, are determined by the γ1, γ2, γ3 vectors.
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Figure 4 A simple Bayesian network. The circles are variables, and the edges of the graph encode the
conditional independencies between the variables.

Essentially, graphical models are graphs that represent a joint probability distribu-
tion, in which the nodes are variables (which can be parameters, random variables or
hypotheses) and the graph structure determines the possible factorisations of the joint
distribution. Here, I will focus on graphical models specified by directed, acyclic graphs,
which are called Bayesian networks.21 Interestingly, factor graphs have recently pro-
vided an elegant, unified approach to both directed (Bayesian networks) and undirected
(Markov random fields) graphical models.22

Let us consider Figure 4 as a representative example of a Bayesian network.
As mentioned before, the network’s graph structure determines the possible factor-

izations of the joint probability distribution of the variables in the graph. The joint
probability distribution represented by the graph in Figure 4 can be factorised as:

P(A,B,C,D) = P(A)P(B | A)P(C | A)P(D | C)P(E | C)

A Bayesian network is a carrier of conditional independence relationships.
The absence of an edge between two nodes guarantees that there is a set of nodes that
renders them conditionally independent. In the example network, this is for example
the case for nodes B and E:

P(B,E | A,C) = P(B | A)P(E | C)

Sequential data can be easily handled by so-called dynamic Bayesian networks,a in
which the networks structure is ‘unrolled’ along the length of the sequence.23 Bayesian
networks are particularly attractive because they are generative: one can generate sam-
ples from them, which is often of crucial importance. In Section 4.1, I will discuss how a
combination of directional statistics and dynamic Bayesian networks leads to an elegant,
generative model of the local structure of proteins.

I end with a note on the joint probability distribution of Bayesian networks that are
trees or polytrees b (see Pearl,21 Section 2.3.4), as this will be useful later to understand

aThe word dynamic is a bit confusing here: it originates from the fact that sequences modelled by these
networks are often temporal in character, such as, for example, speech signals. In the case of protein or
RNA sequences, this is of course not the case.

bA polytree is a graph with at most one undirected path between any two nodes.
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the construction of a likelihood function used in protein structure prediction. First, note
that any joint probability distribution can be written in the following form:

P(A,B,C,D,E) = P(A)P(B | A)P(C | A,B)P(D | A,B,C)P(E | A,B,C,D)

When the conditional independencies encoded in our example network are taken into
account, this can be written this as:

P(A,B,C,D,E) = P(A,B)P(A,C)P(C,D)P(C,E)
P(A)P(C)2

(2)

Thus, for a directed tree, the joint probability distribution can be written as a product
of the joint probability of the edges, divided by the probabilities of the individual nodes,
raised to the power q − 1, where q is the number of edges attached to the node. We will
return to this result in Section 4.2.

4 Structure prediction and analysis

4.1 Models of local structure for conformational sampling
In this section, I will give an overview of some of the joint work done at the Bioinfor-

matics center, University of Copenhagen and the Department of Statistics, University
of Leeds. Much of the work has been focussed so far on the first necessary ingredient
of any structure prediction method: the exploration of the conformational space.

The current state-of-the-art method to generate protein-like conformations is the so-
called fragment assembly method. Conceptually, the method is very simple. One simply
constructs a library of short, linear fragments from existing protein structures, and
constructs novel conformations by tying a set of fragments together. Which fragments
are chosen depends on the similarity, on a local scale, between the sequence that is
to be modelled and the sequence of the fragment. This approach was first proposed
by Jones and Thirup in 198624 for the construction of protein structures from X-ray
crystallography data. The fragment assembly method was subsequently adopted for
de novo structure prediction by David Baker and his co-workers in 1997,25 and it
is currently still the method of choice for most successful de novo protein structure
prediction methods.

The reason for its success lies in the fact that there is a strong influence of local
sequence on local structure.26 There are strong indications that the native structure
corresponds to the compact structure that is compatible with the structural preferences
encoded on a local scale.27,28

Despite the success of these fragment assembly methods, they have many
disadvantages.29 Most importantly, the fragment approach is non-probabilistic, which
makes it difficult to use the method rigorously in a Markov chain Monte Carlo (MCMC)
context. In addition, combining fragments together causes edge-effects where the frag-
ments are combined, which leads to the proposal of conformations that are not found
in native proteins. The use of fragments also discretizes conformational space, which in
reality of course is of a continuous nature. Much of our work done in the last 4 years
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has been focussed on the development of fully probabilistic methods to capture local
sequence/local structure signals in continuous space.

In order to do this, one first needs a good parameterisation for the local structure of
proteins. Two such parameterisations are well established (Figure 5). The first is called
the Cα-trace representation of a protein, in which each amino acid is represented as a
single point (its Cα atom), and the overall shape of the protein is outlined by a series
of connected segments30,31 (Figure 2). To a good approximation, the length of these
segments can considered to be fixed (about 3.8 Å). As a result, the geometry of the Cα
trace of n amino acids can be expressed as a series of n − 3 dihedral angles (called τ ,
with τ ∈ [−π, π [) and n − 2 angles (called θ , with θ ∈ [0, π ]). An (θ, τ ) angle pair can be
interpreted as a set of polar coordinates, which leads to the insight that the Cα trace of a
protein can be parameterised as a sequence of unit vectors, or, equivalently, a sequence
of points on the unit sphere S2 in R3.

A considerably more detailed representation is the so-called backbone representation
of a protein, in which each amino acid is represented by three of its atoms (C, N and
Cα). This representation captures the geometry of the protein backbone in atomic detail.
Again, this representation can be parameterised as a sequence of angle pairs, in this case
n − 1 dihedral angle pairs. These angles are called φ and ψ (both ∈ [−π, π [), and are
the angles plotted in the celebrated Ramachandran plot.32 This plot is widely used by
structural biologists to judge the quality of an experimental protein structure, as these
angles are expected to avoid certain values in high-quality structures. A dihedral angle
pair defines a point on the torus T2 (the surface of a doughnut or a tyre), and hence the
backbone representation can be parameterised as a series of points on the torus.

Armed with these insights, it now becomes clear that the statistical challenge is
to develop a probabilistic model that represents a string of symbols (the amino acid
sequence) and a sequence of points on two different manifolds (the sphere or the torus).
The first aspect of the problem, dealing with sequential observations, can be easily solved

(a) (b)

Figure 5 Two simplified representations of the same protein (the engrailed homeodomain, with Protein Data
Bank code 1ENH). (a) The Cα trace representation, in which uses a single point (at the Cα atom) for each amino
acid. The edges between the consecutive points are not real chemical bonds, but span several real chemical
bonds. (b) The full backbone representation, which uses three points (Cα, C, N) for each amino acid. In this
case, the edges do correspond to real chemical bonds between atoms. The side chains, which are not shown
for clarity, are attached to the Cα atoms and determine the amino acid type.
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by using a graphical model such as a hidden Markov model or a dynamic Bayesian net-
work (Section 3.2). For the second aspect of the problem, the field of directional statistics
comes into play (Section 3.1). Observations on the sphere can be modelled by the Kent
distribution,15 while observations on the torus can be handled by the bivariate von
Mises distribution.17

The final model is shown in Figure 6. It consists of a single first-order Markov chain
of hidden nodes, each with three observed nodes attached. One amino acid is repre-
sented by one hidden node, where the attached observed nodes represent the amino
acid symbol, secondary structure (α-helix, β-sheet or coil) and angle pair. Two models
were developed, respectively dealing with Cα-trace and full backbone geometry.28,33−35

The first model uses the Kent distribution to represent the angle pairs as points on the
sphere, while the second model uses the bivariate von Mises distribution to represent
the angle pairs as points on the torus. The parameters of both models were optimised
with stochastic expectation maximisation,36 using a large training set of experimental
protein structures. The optimal number of hidden node states was determined using
the Bayesian information criterion. The joint probability distribution of amino acid
sequence a, secondary structure sequence s and angle pair sequence xL (where the sub-
script L stands for ‘local’) is obtained by marginalising over all possible hidden node
sequences h:

P(a, s,xL) =
∑

h

P(a | h)P(s | h)P(xL | h)P(h) (3)

Although this expressions looks daunting due to the enormous number of possible
hidden node sequences, it is in fact quite easy to evaluate this probability using the
forward algorithm.37

How are these models used in practice? The aim of the models is not prediction,
but sampling (Figure 7). They are used to generate plausible protein structures that
are subsequently accepted or rejected in an MCMC procedure, using some kind of
energy function Eθ (x, a), with parameter vector θ , that takes into account local and
nonlocal interactions, and possibly also experimental data. The sampling is done in

Leu

h h h

a s x a s x a s x

Ala Gly

Figure 6 A probabilistic model of local protein structure. The model is a dynamic Bayesian network, that
can be seen as an hidden Markov model with multiple outputs. The nodes of the graph represent variables,
and the edges encode the conditional independencies between the variables. The boxes represent discrete
nodes, and the circles represent continuous nodes. h: hidden node; s: secondary structure (helix, strand or
coil); a: amino acid symbol (which can adopt 20 possible values); x: angle pair (Kent or bivariate von Mises
distribution). Example sequence input is indicated (leucine, alanine, glycine) – the values of the other nodes
can be sampled conditional upon the input values in an efficient way.
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the following way: first, the observed nodes that represent the amino acid symbols are
initialised with the values specified by the protein sequence of interest. Then, a sequence
of hidden node values is sampled from P(h | a). This can be done very efficiently using the
forward-backtrack algorithm.38 Once the hidden node sequence is obtained, sampling a
sequence of angles from P(xL | h) is trivial. If information on secondary structure content
is also available, sampling of the hidden node sequence can be done using P(h | a, s).

There are many advantages attached to the use of these models. Unlike with frag-
ment assembly, each sampled conformation comes with an attached probability, which
makes rigorous Metropolis-Hastings sampling (respecting detailed balance) possible.
It is also possible to resample a part of a conformation seamlessly, while talking
the rest of the structure into account, which is impossible using fragment libraries.
The models are flexible, and can also be used in structure design by sampling pos-
sible amino acid sequences that are compatible with a given local protein structure.
In addition, sampling is fast: about 10 times faster than fragment assembly. In con-
clusion, given the advantages of this approach to conformational sampling, it can be
expected that probabilistic methods will become predominant for this purpose in the
near future.

4.2 Learning the parameters of energy functions
As mentioned in the introduction, the parameters of knowledge-based energy func-

tions are optimised using the structural information present in the database of known
structures. This is an important problem, which is currently only partly solved. Of the
many approaches to solve it, two are by far the most popular.

First, one can optimise the energy difference between the native structure and a set of
alternative conformations (typically called ‘decoys’). This can be done using methods
such as funnel sculpting,39 Z-score optimisation,40 linear programming 41 or even a
brute force trial-and-error approach. The weak points of these methods are that the

Figure 7 A set of samples generated using the full backbone model. The true structure is shown in black.
The samples are shown as curves, and the consensus structure (the centroid of the set of samples) is shown
in grey. The samples were generated using amino acid sequence and native secondary structure as input.
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parameters might depend on the decoy set that is used, that the resulting energy function
might have the shape of a golf course instead of the desired funnel shape,42 or that the
optimisation criteria are to a certain extent ad hoc.

One promising way to avoid some of these problems is to make use of Boltzmann
learning, as recently proposed by Winther and Krogh.43 Suppose the energy of a structure
x for a certain sequence a is given by a parameterised energy function Eθ (x, a), with θ
being a vector of parameters. At thermal equilibrium, the probability for a protein of
being in the native state xN is given by:

P(xN | a, θ ) =
∫

xN
exp (−βEθ (x, a))dx∫

exp (−βEθ (x, a))dx

where β = 1/kT, with k being Boltzmann’s constant and T the absolute temperature.
The integral in the numerator runs over all conformations that make up the native state
xN , while the integral in the denominator runs over the whole conformational space.
Winther and Krogh43 propose to optimise the parameters of the energy function by
maximum likelihood:

θML = argmax
∑

i

log P(xN,i | ai, θ )

where the sum runs over all proteins in a training set. If the energy function is
differentiable, one can optimise θ by simple gradient ascent:

θ ′ = θ + η �θ

∑
i

log P(xN,i | ai, θ ) (4)

where � is the gradient operator. The second term can be written as:

ηβ
∑

i

〈�θEθ (xi, ai)
〉 − 〈�θEθ (xi, ai)

〉
xN,i

(5)

where 〈·〉 is the expectation is over the whole conformational space, and 〈·〉xN,i
is the

expectation over the native state of protein i. Although conceptually elegant, the method
has some inherent problems. First, one needs to define the native conformational space,
and that requires some ad hoc decisions. In the article where the method was proposed,43

all structure within 1 Å root mean square deviation of the experimental structure xE
were considered to belong to the native state. Second, the first expectation requires
sampling the whole conformational space, and that is very computationally expensive.
Nonetheless, it was shown that good results can indeed be obtained.43

Podtelezhnikov and co-workers44 propose a computationally efficient, approximative
variant of the Krogh and Winter’s approach. They approximate the gradient by starting
from the experimental state xE, and letting the system evolve to new conformation xK
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by a Monte Carlo method, using the current setting of the parameters of the energy
function. The gradient can then be approximated by:

�θ log P(x | a, θ ) 	 �θEθ (xK, a, θ ) − �θEθ (xE, a, θ ) (6)

This approximation to full blown Boltzmann learning is due to Hinton,45 and is called
contrastive divergence. Contrastive divergence abolishes both the need for extensive
sampling of the whole conformational space, which is computationally expensive, and
avoids an ad hoc definition of the native state. Podtelezhnikov and co-workers44 applied
this technique to the optimisation of the parameters of a hydrogen bond energy, with
convincing results.

Without any doubt, the most popular way to construct an energy function is to view
the database of known structures as a Boltzmann distribution of interacting amino
acids, and use this assumption to construct an energy potential.46−48 The Boltzmann
distribution applies to a system of particles, at a certain equilibrium temperature, which
can adopt a number of different states, each with a certain energy. Statistical mechanics
tells us that in this case, the chance of the occurrence of a state r with energy E(r) is:

P(r) = 1
Z

exp
(−E(r)

kT

)
(7)

and Z is a normalisation constant (the partition function) given by:

Z =
∑

r

exp
(−E(r)

kT

)
(8)

where the sum runs over all possible states. In simple words, for such a system,
Boltzmann’s equation provides us with a relation between the energy and the prob-
ability of a given state. Now, if one assumes that the pairwise interactions seen in
the database of known structures for two given amino acid types follow a Boltzmann
distribution, the following relation applies:

E(r; t1, t2) = −kT log P(r | t1, t2) − kT log Z (9)

where P(r | t1, t2) is the probability of observing a certain state r for an amino acid
pair consisting of two fixed types t1, t2 (for example, t1 = alanine and t2 = glycine)
in proteins. Then, one subtracts an ‘average energy’ E∗ (with corresponding partition
function Z∗) for all amino acid types,

E∗(r) = −kT log P(r) − kT log Z∗ (10)

which finally leads to the following expression for the energy difference:

�E(r; t1, t2) = E − E∗

= −kT log
P(r | t1, t2)

P(r)
− kT log

Z
Z∗ (11)
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The second term is a constant, and hence one ends up with a convenient way to estimate
energy differences from observed amino acid pair geometries in known protein struc-
tures. The reasons for the subtraction of the reference energy are rather obscure from
a physical point of view, and related to the estimation of a ‘potential of mean force’
from a radial distribution function,49 but there is also a probabilistic explanation of
this procedure (see below). Finally, the total energy of a protein conformation is then
simply the sum of the pairwise energies:

�E(x, a) =
∑
i<j

�E(rij; t1 = ai, t2 = aj)

= −kT
∑
i<j

log
P(rij | t1 = ai, t2 = aj)

P(rij)
(12)

where rij somehow describes the state of the pair of amino acids ai, aj in a structure.
The sum runs over all amino acid pairs. For the state rij, one typically chooses pairwise
distances between amino acids at positions i and j. Typically, these distances are binned
to discretise the problem, that is, to end up with a small, finite number of states. More
elaborate descriptors can be used as well, for example including relative orientation.50

The efficiency of the method greatly depends on how P(rij) is defined, which depends
highly on a so-called reference state (see for example Liu et al).51

The weak point of the method is that the pairwise amino acid contacts in the PDB
are viewed as some kind of Boltzmann distribution, which is clearly unjustified. Amino
acid pairs in protein structures are not snapshots of a single system in thermal equilib-
rium. Discussions of the theoretical and practical problems associated with potentials of
mean force are manifold.49,52−54 Nonetheless, these potentials can be quite successful,
although their success critically depends on the choice of the reference state, which is
far from straightforward.

As shown by Simons et al.,25 expressions that are very similar to the potentials of
mean force described above can be obtained by formulating the problem using Bayes’
theorem:

P(x | a) ∝ P(a | x)P(x)

The prior, P(x), can take into account features such as radius of gyration, packing of
secondary structure elements and the presence of sterical clashes.55 For the likelihood,
an unfounded but convenient assumption of amino acid pair independence leads to the
expression:

P(a | x) =
∏
i<j

P(ai, aj | rij) (13)

∝
∏
i<j

P(rij | ai, aj)

P(rij)
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where rij is the distance between amino acids at positions i and j. This expression is
equivalent to the expressions obtained by the potential of mean force method, and
explains the use of the subtraction of the average energy which introduces the factor
P(rij)−1.

For the Rosetta protein structure prediction method,25 Baker and co-workers propose
the following expression for the likelihood P(a | x):

P(a | x) ≈
∏

i

P(ai | ei)
∏
i<j

P(ai, aj | ei, ej, rij)

P(ai | ei, ej, rij)P(aj | ei, ej, rij)
(14)

where ei is the solvent exposure of amino acid i. Although it is not mentioned in
the article (where it is called an ‘expansion’), this expression for the likelihood can
be somewhat justified by viewing the graph of pairwise interactions in a protein as
a polytree. As pointed out in section 3.2 (Equation (2)), in the case of a polytree,
the likelihood is the product of the marginal pairwise probabilities (the edges of the
tree, in this case amino acid pairs), divided by the product of the marginal individ-
ual probabilities (the nodes of the tree, in this case amino acids). This is essentially
the form of the expression used by Rosetta25 for the calculation of the conditional
likelihood, as the first product and a subset of the factors in the denominator will
almost cancel. An expression with a similar shape is obtained for pairwise Markov
random fields, when using the Bethe free energy approximation (which becomes exact
in this case).56

I will finish this section with an outlook on the future. A protein is essentially a
graph that represents interacting amino acids, and many problems arising in the con-
text of structure prediction can be seen as inference problems on graphs.57−59 This
brings the problem into the realm of graphical models such as Bayesian networks
and Markov random fields. Recently, great progress has been made in understanding
these models in a general framework,22 and efficient, theoretically justified meth-
ods such as the Bethe and Kikuchi free energy approximations are now available
for inference problems that were long regarded as intractable.56,60,61 For example,
the classic problem of minimum energy side chain placement on a given back-
bone structure can be conveniently reformulated as a problem of inference in a
Markov random field, leading to improved solutions.57,58 In general, methods based
on generalised belief propagation can be used to calculate free energy estimates,59

which makes them an attractive replacement of the currently used, poorly justified
knowledge-based potentials. It will be exciting to see in the future how graph-
based inference methods will be extended to the problem of de novo structure
prediction.

4.3 Structure comparison
There are two problems in structural bioinformatics that have attracted an extraordi-

nary amount of attention, and one of these is the optimal superposition of protein
structures (the other problem is the prediction of secondary structure). Often, one
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wants to compare two or more structures that for example differ in the presence of
a bound ligand, the conformation of a flexible loop or, in the case of structures of
different proteins, in chemical structure. The problem is a well-known topic in com-
putational geometry: finding the translation and rotation to put two point sets on top
of each other. Traditionally, one uses the unweighted least-squares method for this,62

which assumes that the points are uncorrelated and that they have equal variances
(that is, that they are homoscedastic). In this case, the optimal translation is obtained
by moving all point sets to their centers of mass, and obtaining the optimal rotation
using singular value decomposition. However, the correlation and variance assumptions
are unfounded, as in the case of proteins the atoms are connected to each other with
chemical bonds, and some regions in the protein may be highly mobile as compared
to others.

Based on previous developments in shape theory,81 Theobald and Wuttke63,64 pro-
pose a statistical model where each structure xi is seen as originating from a mean form
m. Conceptually, each point in xi is obtained by perturbing the corresponding point
in m with a Gaussian random error. Leaving out some details that are less important
in the context of macromolecular structure superposition, the statistical model has the
following form:

xi = (m + Ei)R
′
i − 1kTi (15)

where Ri is a 3 × 3 rotation matrix, Ti is a 1 × 3 row vector that represents the
translational offset, and 1k is a k × 1 vector of ones, with k equal to the number
of atoms to be superimposed. The matrix Ei is distributed according to a matrix
normal distribution65,66 with zero mean, Nk,3(0, , I). The matrix  is a k × k covari-
ance matrix, which described the variances of, and among, the atoms. Estimation
of  requires constraining its parameters, which can be done by assuming that its
eigenvalues are distributed according to an inverse gamma distribution, with param-
eters α and γ . The two parameters are set to a point estimate determined from the
data, and the procedure can thus be interpreted as a shrinkage estimator for . The
maximum likelihood estimates for Ri,Ti,m,  and the parameters of the inverse
gamma distribution α, γ can be found using a numerical algorithm.64 The method
is not only of theoretical importance, but leads to improved performance in real-
life superposition problems. An implementation of the algorithm, called Theseus, is
available.64

The above method assumes that the point sets to be superimposed have a simple
one-to-one correspondence between their points, that is known in advance. This is
often not the case, as proteins typically contain insertions or deletions. Simple one-
to-one correspondence is also lacking in the related problem of matching of active
sites of proteins. These sites are localised collections of atoms that fulfill the pro-
tein’s chemical function, and similarities among these sites is an important way to
infer a possible function for unknown proteins. Here, it is also important to decide
whether the similarity between two sites is statistically significant. Green and Mardia67

propose a Bayesian hierarchical model, to deal with this case. The model can be
seen as a Bayesian network (Figure 8). Here, the two point sets x = {x1, . . . ,xn}
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Figure 8 Green and Mardia’s model67 for active site superposition, represented as a Bayesian network. x, y:
point sets to be matched; μ: the set of true locations from which x and y are derived; ξ, η: indexing arrays that
match points in μ to points in x, y, respectively; M: matching matrix, where M[j,k] = 1 if xj and yk are derived
from the same true location in μ, and zero otherwise; σ covariance of the Gaussian distribution that describes
the noisy observation of x and y from μ; R,T: rotation and translation applied to all points in y. Figure adapted
from Green and Mardia.67

and y = {y1, . . . , ym} (with x and y each representing a macromolecular structure,
and x1, . . . ,xn, y1, . . . , yn being 3D vectors) are viewed as Gaussian perturbations of a
set of true locations μ:

xj = N3(μξ [j], σ 2I) (16)

Ryj + T = N3(μη[j], σ 2I)

where N3 is a 3D Gaussian distribution with a spherical covariance matrix, ξ and η are
indexing arrays that match point in μ to points in x and y, respectively. To the points
in set y, a rotation R and translation T is applied. The matching of the configurations
is represented by the matching matrix M, where M[j,k] is one if xj and yk are derived
from the same point in μ, and zero otherwise.

The set of true locations μ is assumed to be generated by a spatial Poisson process
with rate λ. In a spatial Poisson process, the number of points in a volume v follows a
Poisson distribution with mean λv, and the point counts are independent for disjoint
volumes.68 The parameter λ can be interpreted as a point density.

Some of the true locations in μ give rise to points in x or y, others to points in
both x and y, and some are not observed at all, with probabilities px,py,1 − px − py −
ρpxpy and ρpxpy, respectively. The parameter ρ controls the tendency for points to be
matched: if close to zero, most true locations will match points in x or y, or both. The
joint model is:

P(M,R,T, σ,x, y) ∝ |R|n P(R)P(T)P(σ )
∏

j,k:M[j,k]=1

ρφ
(

1
σ
√

2
(xj − Ryk − T)

)

λ(σ
√

2)3
(17)



Probabilistic models and machine learning 521

where φ is the standard normal density in R³. Green and Mardia develop an MCMC
approach to sample M,R,T and σ given point sets x and y, for fixed ρ and λ. Some appli-
cations of this model, including partial labelling that causes some points to be matched
more likely than others, are further explored in a series of articles.67,69,70

5 Inferential structure determination

High-resolution experimental structures of proteins and RNA are obtained from NMR
and X-ray crystallography experiments. Typically, a structure is obtained from the data
by minimisation of a so-called hybrid energy:

E(x, a) = Eθ (x, a) + wdataEdata(x, a) (18)

where the first energy term ensures that the model x, a respects the chemical and physi-
cal constraints, while the second term measures the disagreement between the data and
the model. The weight term wdata controls the relative contributions of the two ener-
gies, which needs to be determined by ad hoc methods or, more rigorously, by cross
validation.71

Of course, macromolecular structure determination is a classic example of statistical
inference, and should ideally be treated as such.72 In this view, one needs a data likelihood
P(d | x, ξ, a) that quantifies the probability of observing the data d given the structural
model x, a and set of nuisance parameters ξ , a prior P(x, a) that brings in chemical,
physical and any other information regarding the structure, and a prior over the nuisance
parameters P(ξ ):

P(x, ξ | d, a) ∝ P(d | x, ξ, a)P(x, a)P(ξ ) (19)

The nuisance parameters ξ typically deals with experimental errors and uncertainties,
and can be integrated out, or included in the posterior.

In NMR, this approach to structure determination has been especially fruitful.72−74

In Rieping et al.,72 a data likelihood is constructed by treating the data as independent
measurements and model the deviations between observed and calculated distances
using the log-normal distribution. In this case, the nuisance parameter ξ is the standard
deviation σ of the log-normal distribution. For the prior on σ , Jeffreys’ rule is applied,
resulting in P(σ ) = σ−1. For the structure prior P(x, a), Boltzmann’s equation is applied
to a physical energy function Eθ :

P(x, a) ∝ exp
(

− 1
kT

Eθ (x, a)
)

(20)

An ensemble of structures is obtained by generating samples from the posterior distri-
bution using a Monte Carlo method. Using a Gibbs sampler scheme, samples of x and σ
are drawn from the joint posterior in an iterative fashion. The method is implemented
in the ISD program.72−74
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In macromolecular X-ray crystallography, the situation is less favourable.
Although there is in principle enough information available from physics, chemistry
and diffraction data to solve the problem in a fully probabilistic framework as out-
lined above, such a method for X-ray crystallography has not yet been constructed.
This is commonly attributed to the large number of correlations between the rel-
evant variables.75,76 Probabilistic methods are, however, widely applied to many
subproblems in the structure determination process.75,76

Recently, small angle X-ray crystallography (SAXS) is becoming increasingly popular
to obtain low resolution information on molecular structure.77 In SAXS, the data is a
diffraction pattern obtained from the macromolecule in solution. This type of data has a
much lower information content than NMR or X-ray data, but is typically much easier
to obtain. In simple words, the SAXS profile is the Fourier transform of the electron
density distribution of the solvent/macromolecule system, and it contains information
on the inter-atomic distances that are present in the macromolecule. The histogram
of these distances can be obtained by an indirect Fourier transform (IFT) of the data,
which requires the use of hyper parameters that ensure the smoothness of the histogram.
Hansen proposed a Bayesian approach to the IFT calculation of this histogram, using
a Bayesian treatment of the hyper parameters.78,79 For protein structure determination
from SAXS data, the non-probabilistic hybrid energy approach is typically used (see for
example Petokhov et al.80). A direct Bayesian approach to structure determination from
SAXS data, incorporating a prior on structure and a suitable likelihood in the spirit of
the inferential structure determination method as outlined above, is as far as I know
not developed yet.

6 Conclusions

From the developments highlighted above, it should be clear that probabilistic models
and machine learning methods based on Bayesian principles are leading to sub-
stantial progress, and more success stories are to be expected. Let me end with
highlighting a few of the many open challenges. A sound, computationally efficient
probabilistic model of the nonlocal interaction in proteins and RNA is still lack-
ing. The problem lies in capturing sufficient molecular detail, such as for example
the interactions between multiple amino acids, in a tractable way. Such a model
would be of tremendous potential for the prediction of macromolecular structure, and
would probably also lead to additional insight in the protein folding process itself.
In protein structure comparison, a probabilistic model that handles insertions and
deletions in a rigorous and efficient way is high on the priority list. Finally, in infer-
ential structure determination, methods are needed that go beyond the assumption
of independence of the individual data observations (for the likelihood) or structural
features (for the prior). The model of local structure discussed in 4.1, for example,
would provide an excellent prior that obviously goes beyond the naive assumption of
independence. Clearly, the field of structural bioinformatics provides a fertile hunt-
ing ground for the adventurous probabilist looking for challenging yet rewarding
problems.
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