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1. Introduction 
The traditional theory for individual choice behavior, such as it usually is presented in textbooks of 

consumer theory, presupposes that the goods offered in the market are infinitely divisible. However, 

many important economic decisions involve choice among qualitative—or discrete alternatives. 

Examples are choice among transportation alternatives, labor force participation, family size, 

residential location, type and level of education, brand of automobile, etc. In transportation analyses, 

for example, one is typically interested in estimating price and income elasticities to evalutate the 

effect from changes in alternative-specific attributes such as fuel prices and user-cost for automobiles. 

In addition, it is of interest to be able to predict the changes in the aggregate distribution of commuters 

that follow from introducing a new transportation alternative, or closing down an old one.  

 The set of alternatives may be “structurally” discrete or only “observationally” discrete. 

The set of feasible transportation alternatives is an example of a structurally categorical setting while 

different levels of labor supply such as “part time”, and “full time” employment may be interpreted as 

only observationally discrete since the underlying set of feasible alternatives, “hours of work”, is a 

continuum. 

 In several applications the interest is to model choice behavior for so-called 

discrete/continuous settings. Typical examples of phenomena where the response is 

discrete/continuous are variants of consumer demand models with corner solutions. Here the discrete 

choice consists in whether or not to purchase a positive quantity of a specific commodity, and the 

continuous choice is how much to purchase, given that the discrete decision is to purchase a positive 

amount. Another type of application is the demand for durables combined with the intensity of use. 

For example, a consumer that purchases an automobile has preferences over the intensity of use, and a 

household that purchases an electric appliance is also concerned with the intensity of use of the 

equipment. 

 The recent theory of probabilistic, or discrete/continuous choice is designed to model 

these kind of choice settings, and to provide the corresponding econometric methodology for empirical 

analyses. Due to variables that are unobservable to the econometrician (and possibly also to the 

individual agents themselves), the observations from a sample of agents' discrete choices can be 

viewed as outcomes generated by a stochastic model. Statistically, these observations can be 

considered as outcomes of multinomial experiments, since the alternatives typically are mutually 

exclusive. In the context of choice behavior, the probabilities in the multinomial model are to be 

interpreted as the probability of choosing the respective alternatives (choice probabilities), and the 

purpose of the theory of discrete choice is to provide a structure of the probabilities that can be 

justified from behavioral arguments. Specifically, one is, analogously to the standard textbook theory 
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of consumer behavior, interested in expressing the choice probabilities as functions of the agents' 

preferences and the choice constraints. The choice constraints are represented by the usual economic 

budget constraint and in addition, the choice set (possibly individual specific), which is the set of 

alternatives that are feasible to the agent. For example, in transportation modelling some commuters 

may have access to railway transportation while others may not. 

 In the last 25 years there has been an almost explosive development in the theoretical and 

methodological literature within the field of discrete choice. Originally, much of the theory was 

develop by psychologists, and it was not until the mid-sixties that economists started to adopt and 

adjust the theory with the purpose of analyzing discrete choice problems. In the present compendium 

we shall discuss central parts of the theory of discrete/continuous choice as well as some of the 

econometric methods that apply. 

 There exist by now a few textbooks that only consider discrete and discrete/continuous 

choice, such as Maddala (1983), Train (1986), Ben Akiva and Lerman (1985), and Train (2003). There 

are also several good survey articles, such as Amemiya (1981) and McFadden (1984), to mention just 

a few. Dagsvik (1985,  ) are two survey articles in Norwegian. In addition several textbooks contain 

one or several chapters on discrete and discrete/continuous econometric models. See for example 

Amemiya (1985, ch. 9, 10), Cameron and Trivedi (2005, ch. 14-16), Greene (1993, ch. 21, 22), Lattin, 

Carroll and Green (2003, ch. 13), Wooldridge (2002, ch.15, 16). In contrast to standard textbooks and 

surveys in econometric modeling of discrete choice such as Maddala (1983), Train (1986), Amemiya 

(1981), McFadden (1984) and Ben-Akiva and Lerman (1985), the focus of the present treatment is 

more on the theoretical developments than on statistical methodology. The reason for this is two-fold. 

First, it is believed that it is of substantial interest to bring forward some of the recent theoretical 

results that otherwise would not be easily accessible for the non-expert student. Second, the statistical 

methodology for estimation, testing and diagnostic analysis is rather well covered by the textbooks 

and surveys mentioned above. 

 This survey is organized as follows: In Section 2 I give a brief overview of reduced form 

type specifications of models with discrete response. In Section 3 I discuss some important elements 

of probabilistic choice theory, and in Section 4 I discuss the modeling of a few selected applications of 

discrete choice analysis. In Section 5 the estimation and testing based on the maximum likelihood 

method are discussed. In Section 6 I consider briefly the specification and estimation of Tobit models 

(nonstructural). 
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2. Statistical analysis when the dependent variable is discrete 
As mentioned in the introduction there are many interesting phenomenons that naturally can be 

modelled with a dependent variable being qualitative (discrete) or where the dependent variable may 

be both discrete and continuous. 

 While most of the subsequent chapters will discuss theoretical aspects of 

discrete/continuous choice, we shall in this chapter give a brief summary of the most common 

statistical models which are useful for analyzing phenomena when the dependent variable is discrete, 

without assuming that the underlying response variables necessarily are generated by agents that make 

decisions. A more detailed exposition is found in Maddala (1983), chapter one and two. However, the 

statistical methodology we discuss is of relevance for estimating the choice models for agents 

(consumers, firms, workers, etc.), and will be further discussed in subsequent chapters. 

2.1. Models for binary outcomes 

In this section we shall consider models where the dependent variable is a Binomial variable. Recall 

that in statistics, the Binomial model is designed to represent random "experiments" in which the 

outcomes are independent across experiments, and in each experiment there are only two outcomes; 

either an event occurs or the event does not occur. For example, our experiment may consist in 

drawing independently a sample of n individuals and recording the labor force status of each of them 

("participation" or "not participation"). Thus, we may represent the outcome in this case by a dummy 

variable Yi, defined by 

 Y
if individual i participates in the labor market

otherwisei = 



1

0 .
 

 In the general case, Yi equals one if a particular eventor outcome in question occurs, 

and zero otherwise. We may write 

(2.1) i i iY E Y= + η   

where ηi is a random error term with zero mean. Since Yi is a dummy variable with only two 

outcomes, it follows that 

(2.2) ( ) ( ) ( ) ( )E Y y P Y y P Y P Y P Yi
y

i i i i= = = ⋅ = + ⋅ = = =
≥
∑

0

0 0 1 1 1 .   
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Thus, in this case EYi has the interpretation as the probability that Yi = 1.  In general EYi will depend 

on an exogenous variable just as in the classical regression model considered above. Let Xi denote a 

vector of exogenous variable and assume that 

(2.3) ( ) ( )i i iE Y h ,= βX X   

where ( )ih ,βX  is a function of Xi, that is fully specified apart from a vector of unknown parameters, 

β. Hence we can in the general case write 

(2.4) ( )i i iY h , .= β + ηX   

Assumption (2.3) implies that 

(2.5) ( )E i iε X = 0.   

Also, due to the fact that the dependent variable is binary, we obtain 

(2.6) 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 22
i i i i i i i i i i i i i iVar Var Y E Y E Y E Y E Y h , h , .ε = = − = − = β − βX X X X X X X X  

Consequently, the model (2.4) differs from the classical regression model above in that 

(2.7) ( )i0 h , 1≤ β ≤X   

and that the conditional variance (2.6) is a function of the conditional mean of Yi expressed in (2.3). 

The restriction in (2.7) follows from the fact that similarly to (2.2), ( )ih ,βX  has the interpretation as a 

conditional probability, namely 

(2.8) ( ) ( )i i ih , P Y 1 .β = =X X   

It is therefore problematic to specify ( )ih ,βX  as a linear function in Xi because a linear specification 

will not necessarily satisfy (2.7), and consequently we may risk to get predictions from the model that 

are negative, or greater than one. This is the reason why the linear specification is seldom used in 

settings with discrete dependent variables. (Linear probabiliy model.) Instead it is common to specify 

( )ih ,βX  as 

(2.9) ( ) ( )i ih , Fβ =X X β   
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where F(y) is an increasing function in y that satisfies 0 1≤ ≤F y( ) ,  and 

(2.10) X i
k

m

ik kXβ = +
=
∑β β0

1

.   

Thus, apart from the nonlinear transformation, F(⋅), (2.9) has the structure of a linear regression model, 

and the unknown parameter vector equals the "regression" coefficients, β. 

 

The binary Probit model 

In the Probit model F(y) is equal to the standard cumulative Normal distribution function, i.e., 

(2.11) F y y e dx
y

x( ) ( ) .= ≡
−∞

−∫Φ 1

2

2 2

π
  

 

The binary Logit model 

In the Logit model F(y) is equal to the cumulative Logistic distribution function, 

(2.12) F y
e y( ) .=

+ −
1

1
  

Clearly, 0 1≤ ≤F y( ) ,  since F(y) is increasing, F y( ) → 1  when y → ∞  and F y( ) → 0  when y → −∞ .  

It turns out that unless the explanatory variables take extreme values, the Logit and the Probit models 

are almost indistinguishable. 

 

 Example 2.1 

 Consider again the modelling of labor force participation. In this case the vector X is 

often assumed to contain variables such as age, marital status, number of small children, education. If 

one could estimate the unknown parameters of the model one would for example be possible to assess 

the marginal effect of education on labor force participation. 

 

2.2. Estimation 

The maximum likelihood method (MLE) 
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The maximum likelihood method is the most common method although it is possible to use other 

methods. Assume now that the model is given by (2.9). Suppose we have a sample of n observations. 

Then, conditional on the exogenous variables ( )iX , the likelihood of the observations equal 

(2.13) ( ) ( )( )L F F
i S

i
i S

i( )β β β= ⋅ −
∈ ∈
∏ ∏

1 0

1X X   

where S1 is the subsample for which Y i Si = ∈1 1, ,  while S0 is the subsample for which Y i Si = ∈0 0, .  

Thus the loglikelihood can be written as 

(2.14) ( ) ( )( )ln ( ) ln ln .L F F
i S

i
i S

iβ β β= + −
∈ ∈
∑ ∑

1 0

1X X   

Alternatively, (2.14) can be expressed as 

(2.15) ( ) ( ) ( )( )ln ( ) ln ln .L Y F Y F
i

n

i i
i

n

i iβ β β= + − −
= =
∑ ∑

1 1

1 1X X  (10.27) 

From (2.15) we obtain that 

(2.16)

( )
( )

( ) ( )
( )

( )( ) ( )
( ) ( )( )

∂
∂β
ln ( )

,
L Y F X

F

Y F X

F

Y F F X

F Fk i

n
i i ik

i i

n
i i ik

i i

n
i i i ik

i i

β β
β

β
β

β β

β β
=

′
−

− ′
−

=
− ′

−= = =
∑ ∑ ∑

1 1 1

1

1 1

X

X

X

X

X X

X X
 

for k m= 0 1, , ... , .  Therefore, the maximum likelihood estimator, �β , is determined by 

(2.17) 
( )( ) ( )

( ) ( )( )i

n i i i ik

i i

Y F F X

F F=
∑

− ′

−
=

1 1
0

X X

X X

� �

� �
,

β β

β β
  

for k m= 0 1, , ... , ,  where X i0 1= .  The system of equation (2.17) must of course be solved for �β  by 

iteration methods. If the model is a Logit model where F is given by (2.12) then (2.17) reduces to 

(2.18) ( )i

n

i

i

ikY X
=
∑ −

+ −















=
1

1

1
0

exp �X β
  

for k m= 0 1, , ... , .  

 Also (2.18) is nonlinear in �β , and must similarly to the general case (2.17) be solved by 

iteration methods. It can be demonstrated that for the Probit and the Logit models the loglikelihood 
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function is globaly concave and consequently a unique maximum of the likelihood function is 

guaranteed. 

 The MLE has the following main properties: 

(i) it is consistent, i.e. 
n

ˆp lim
→∞

β = β  

(ii) it is asymptotically efficient, i.e. it attains the smallest variance among all consistent, 

asymptotically normal estimators 

(iii) it is asymptotically normally distributed according to: 

(2.19) ( ) ( )ˆn N 0,Vβ − β ∼  

where V is the asymptotic covariance matrix. 

 The covariance matrix V is determined by the likelihood function. It is equal to 

(2.20) 

1

'

2 )(ln
−




















∂∂
∂−=

ββ
βL

EV  

where 

                                                                     
'

2 )(ln

ββ
β

∂∂
∂ L

 

means the covariance matrix with elements 

                                                                      

                                                                    }
)(ln

{
2

ji

L

ββ
β

∂∂
∂

. 

 

Thus,  

 

                                                       Asympt. Var β̂    =    V/n. 

 

 In practice the covariance matrix V can be estimated consistently by replacing the 

expectation operator by the sample average and the unknown β-coefficients by their ML estimators. 

 Finally, the MLE is asymptotically efficient because it attains asymptotically the so-

called Cramér-Rao lower bound. 
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 When we apply the above model to some data set, the computer program will estimate the 

unknown β’s by ML. Usually these programs will also give the t-values for each parameter. Hence, 

simple hypotheses can be tested in the “usual way”. If we wish to test more composite hypotheses we 

have to resort to test procedures like Wald’s test or the Likelihood ratio test. 

2.3. Binary random utility models 

Often the model with a discrete dependent variable is derived from a random utility representation. 

That is, to each alternative in a choice setting is associated a random index which represents the utility 

of the alternative. Specifically, assume that the individual decision-maker faces a choice set consisting 

of two alternatives, indexed by zero and one, respectively. Let Uij be the individual i's utility of 

alternative j, j = 0 1, .  Assume that 

(2.21) ( )U vij ij ij= +X ,θ ε   

where ( )v ijX ,θ  is a deterministic term that may depend on explanatory variables Xij, an unknown 

vector of parameters θ, and εij is a random term. A utility-maximizing individual i will choose 

alternative j if ( )U U Uij i1 i= max , 2  which means that 

(2.22) Y
if U U

if U Ui
i1 i

i1 i

=
>
<





1

0
0

0 .
  

Let F(y) be the cumulative distribution function of ε εi i10 − , i.e. 

(2.23) ( )F y P yi i1( ) .= − ≤ε ε0   

Then it follows that 

 

(2.24)

( ) ( ) ( ) ( )( ) ( ) ( )( )E Y P U U P v v F v vi i1 i i1 i i1 i i i1 i1 i i1 iX X X X X X X X, , , , , , .0 0 0 0 0 0= > = − < − = −ε ε θ θ θ θ  

 

In applications the function ( )v ijX ,θ  is often assumed linear in parameters, i.e., 

(2.25) ( )v Xij ij
k

m

ijk kX X,θ β= ≡ +
=
∑β β0

1

  

where θ = β .  If (2.25) holds, (2.24) one can write 
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(2.26) ( ) ( ) ( )h E Y Fi1 i i i1 i iX X X X X, , ,0 0θ β≡ =   

where X X Xi i1 i= − 0 .  

 

The Probit model 

Suppose εi1 and εi0 are independent and normally distributed with 

(2.27) ( )Var ij i1 i jε τX X, .0
2=   

Then, conditional on ( )X Xi1 i, ,0  

 ε εi1 i− 0  ~ ( )N 0 2, τ  

where τ τ τ2
1
2

2
2= + .  Hence we obtain in this case that 

(2.28) F y
y

( ) ,= 



Φ

τ
  

and consequently we obtain the Probit model, 

(2.29) ( ) ( )h i1 i iX X X, , *
0 θ β= Φ   

where β β* .= τ  We cannot identify the parameter τ in this model, and we need not either, since the 

model is fully determined through Xiβ*. 

 

The Logit model 

Suppose that the error terms εi1
  and εi0 are independent extreme value distributed (type III), i.e., 

(2.30) ( ) ( )P y e y Rij
yε ≤ = − ∈−exp , .   

Then it follows easily that 

(2.31) ( )P y
ei i1 yε ε0
1

1
− ≤ =

+ −   

which is the Logistic distribution introduced in (2.12). If (2.31) holds we therefore get the Logit 

model; 
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(2.32) ( ) ( )h i1 i
i

X X
X

, ,
exp

.0
1

1
θ =

+ − β
  

 

 

2.4.The multinomial Logit model 

In many instances it is of interest to analyze data that are outcomes of multinomial experiments, 

regardless or not these are generated by discrete choice behavior. This means that the "outcomes" fall 

into one out of m (say) categories, where m may be greater than two. For example, when analyzing 

traffic accidents it may be useful to operate with several type of accidents.  

 Let Yij be equal to one if outcome j occurs for individual I and zero otherwise. Let Pij = 

P(Yij = 1). Then one  must have that 0 1≤ ≤Pj , and 
j jP∑ =1 . One type of specification that fulfills 

these requirements is the multinomial logit model. One version of the multinomial logit model has the 

structure 

(2.34) 
( )

( )
P H X

X

X
j j

j

k

m

k

= ≡
=∑

( ; )
exp

exp
β

β

β
1

 

where X is, typically, a vector of agent-specific variables β j j m, , , . .. , ,= 1 2  are vectors of unknown 

parameters, and ( )β = β β β1 2, , ... , m . This specification is also convenient for estimation purposes as 

we shall discuss in Section 6. 

 From (2.34) it follows that 

(2.35) ( )log
( ; )

( ; )
.

H X

H X
X

j
j

β
β1

1









 = −β β  

Eq. (2.35) demonstrates that at most β βj − 1  can be identified. To realize this, suppose β j
* ,  are 

parameter vectors such that β βj j j m* , , ,... ,≠ = 1 2 . If 

 β β β βj j
* *= − +1 1  

for j m,= 2,... ,  then { }β j
*  will satisfy (2.35), and consequently { }β j  are not identified. We can 

therefore, without loss of generality, put β1 0= , and write 
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(2.36a) 

( )
H X

X
k

m

k

1

2

1

1

( ; )

exp

β =
+

=
∑ β

 

and 

(2.36b) 
( )

( )
H X

X

X
j

j

k

m

k

( ; )
exp

exp

β =
+

=
∑

β

β1
2

 

for j m= 2 3, ,... , . Evidently, with sufficient variation in the X-vector, β j j m,, , , ... ,= 2 3  will be 

identified. 

 

  

 Example 2.2 

 Consider the choice of tourist destination. Suppose there are m actual destinations. We 

assume that actual variables that influence this choice are age, income, education, marital status, 

family size, etc. Let X be the vector of these variables. The probability of choosing destination j can be 

modelled as in (2.36). 

3. Theoretical developments of probabilistic choice models 

3.1. Random utility models 

As indicated above, the basic problem confronted by discrete choice theory is the modelling of choice 

from a set of mutually exclusive and collectively exhaustive alternatives. In principle, one could apply 

the conventional microeconomic approach for divisible commodities to model these phenomena but a 

moment's reflection reveals that this would be rather ackward. This is due to the fact that when the 

alternatives are discrete, it is not possible to base the modelling of the agent’s chosen quantities by 

evaluating marginal rates of substitution (marginal calculus), simply because the utility function will 

not be differentiable. In other words, the standard marginal calculus approach does not work in this 

case. Consequently, discrete choice analysis calls for a different approach. 

3.1.1. The Thurstone model 

Historically, discrete choice analysis was initiated by psychologists. Thurstone (1927) proposed the 

Thurstone model to explain the results from psychological and psychophysical experiments. These 
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experiments involved asking students to compare intensities of physical stimuli. For example, a 

student could be asked to rank objects in terms of weights, or tones in terms of loudness. The data 

from these experiments revealed that there seemed to be the case that some students would make 

different rankings when the choice experiments were replicated. To account for the variability in 

responses, Thurstone proposed a model based on the idea that a stimulus induces a “psychological 

state” that is a realization of a random variable. Specifically, he represented the preferences over the 

alternatives by random variables, so that the individual decision-maker would choose the alternative 

with the highest value of the random variable. The interpretation is two-fold: First, the utilities may 

vary across individuals due to variables that are not observable to the analyst. Second, the utility of a 

given alternative may also vary from one moment to the next, for the same individual, due to 

fluctuations in the individual’s psychological state. As a result, the observed decisions may vary across 

identical experiments even for the same individual.  

 In many experiments Thurstone asked each individual to make several binary comparisons, 

and he represented the utility of each alternative by a normally distributed random variable. Let Ui
1  

and Ui
2  denote the utilities a specific individual associates with the alternatives in replication no. i, 

i n= 1 2, , ... , . Thurstone assumed that  

 U vj
i

j j
i= + ε   

where ε j
i j i n, , , , , ... , ,= =1 2 1 2  are independent and normally distributed where ε j

i  has zero mean and 

standard deviation equal to σj. Thus according to the decision rule the individual would choose 

alternative one in replication i if Ui
1  is greater than Ui

2 . Due to the “error term”, ε j
i , the individual 

may make different judgments in replications of the same experiment. Let Yj
i = 1if alternative j is 

chosen in replication i and zero otherwise. The relative number of times the individual chooses 

alternative j, � ,Pj equals 

 � ,P Y nj
i

n

j
i≡

=
∑

1

 

j = 1 2, .  When the number of replications increases, then it follows from the law of large numbers that 

�P1  tends towards the theoretical probability; 
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(3.1) ( )P P U U
v vi i

1 1 2
1 2

1
2

2
2

≡ > =
−

+













Φ
σ σ

 

where Φ( )⋅  is the standard cumulative normal distribution. The last equality in (3.1) follows from the 

assumption that the error terms are normally distributed random variables. The probability in (3.1) 

represents the propensity of choosing alternative j and it is a function of the standard deviations and 

the means, v1 and v2. While vj  repesents the “average” utility of alternative j the respective standard 

deviations account for the degree of instability in the individuals preferences across replicated 

experiments. We recognize (3.1) as a version of the binary probit model. 

 Although Thurstone suggested that the above approach could be extended to the multinomial 

choice setting, and with other distribution functions than the normal one, the statistical theory at that 

time was not sufficiently developed to make such extensions practical. 

3.1.2. The neoclassisist’s approach 

The tradition in economics is somewhat different from the psychologist’s approach. Specifically, the 

econometrician usually is concerned with analyzing discrete data obtained from a sample of 

individuals. With a neoclassical point of departure, the tradition is that preferences are typically 

assumed to be deterministic from the agent’ point of view, in the sense that if the experiment were 

replicated, the agent would make identical decisions. In practice, however, one may observe that 

observationally identical agents make different choices. This is explained as  resulting from variables 

that affect the choice process and are unobservable to the econometrician. The unobservables are, 

however, assumed to be perfectly known to the individual agents. Consequently, the utility function is 

modeled as random from the observing econometricians point of view, while it is interpreted as 

deterministic to the agent himself. Thus the randomness is due to the lack of information available to 

the observer. Thus, in contrast to the psychologist, the neoclassical economist seems usually reluctant 

to interpret the random variables in the utility function as random to the agent himself. Since the 

economist often does not have access to data from replicated experiments, he is not readily forced to 

modify his point of view either. There are, however, exceptions, see for example Quandt (1956) and 

Georgescu-Roegen (1958). 

3.1.3. General systems of choice probabilities 

Formally, we shall define a system of choice probabilities as follows: 

 

 Definition 1; System of choice probabilities 
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(i) A univers of choice alternatives, S. Each alternative in S may be characterized by a set of 

variables which we shall call attributes. 

(ii) Possibly a set of agent-specific characteristics. 

(iii) A family of choice probabilities { }∈ ⊆jP (B), j B S , where Pj(B) is the probability of choosing 

alternative j when B is the set (choice set) of feasible alternatives presented to the agent. The 

choice probabilities are possible dependent on individual characteristics of the agent and of 

attributes of the alternatives within the choice set. 

 

 Evidently, for each given jj B
B S, P (B) 1

∈
⊆ =∑ , since for given B, Pj(B) are “multinomial” 

probabilities. 

 

 

 Definition 2 

 A system of choice probabilities constitutes a random utility model if there exists a set of 

(latent) random variables { }U , j Sj ∈  such that 

(3.2) P (B) P U maxU .j j
k B

k= =



∈

 

 

 The random variable Uj is called the utility of alternative j. If the joint distribution function of 

the utilities has been specified it is possible to derive the structure of the choice probabilities by means 

of (3.2) as a function of the joint distribution of the utilities. However, in most cases the resulting 

expression will be rather complicated. As explained above, the empirical counterpart of Pj(B) is the 

fraction of individuals with observationally identical characteristics that have chosen alternative j from 

B. 

 Often , the random utilities are assumed to have an additively separable structure, 

(3.3) U vj j j= + ε ,  

where vj is a deterministic term and εj is a random variable. The joint distribution of the terms 

( )ε ε1 2, ,...  is assumed to be independent of { }v j . In empirical applications the deterministic terms 

are specified as functions of observable attributes and individual characteristics.  
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 Similarly to Manski (1977) we may identify the following sources of uncertainty that 

contribute to the randomness in the preferences: 

(i) Unobservable attributes: The vector of attributes that characterize the alternatives may only 

partly be observable to the econometrician. 

(ii) Unobservable individual-specific characteristics:Some of the variables that influence the 

variation in the agents tastes may partly be unobservable to the econometrician. 

(iii) Measurement errors: There may be measurement errors in the attributes, choice sets and 

individual characteristics. 

(iv) Functional misspecification: The functional form of the utility function and the distribution of the 

random terms are not fully known by the observer. In practice, he must specify a parametric form 

of the utility function as well as the distribution function which at best are crude approximations 

to the true underlying functional forms. 

(v) Bounded rationality: One might go along with the psychologists point of view in allowing the 

utilities to be random to the agent himself. In addition to the assessment made by Thurstone, there 

is an increasing body of empirical evidence, as well as common daily life experience, suggesting 

that agents in the decision-process seem to have difficulty with assessing the precise value of each 

alternative. Consequently, their preferences may change from one moment to the next in a manner 

that is unpredictable (to the agents themselves). 

 To summarize, it is possible to interpret the randomness of the agents utility functions as 

partly an effect of unobservable taste variation and partly an effect that stem from the agents difficulty 

of dealing with the complexity of assessing the proper value to the alternatives. In other words, it 

seems plausible to interpret the utilities as random variables both to the observer as well as to the agent 

himself. In practice, it will seldom be possible to identify the contribution from the different sources to 

the uncertainty in preferences. For example, if the data at hand consists of observations from a cross-

section of consumers, we will not be able to distinguish between seemingly inconsistent choice 

behavior that results from unobservables versus preferences that are uncertain to the agents 

themselves.  

 Before we discuss the random utility approach further we shall next turn to a very important 

contribution in the theory of discrete choice. 

3.2. Independence from Irrelevant Alternatives and the Luce model 

Luce (1959) introduced a class of probabilistic discrete choice model that has become very important 

in many fields of choice analyses. Instead of Thurstone's random utility approach, Luce postulated a 

structure on the choice probabilities directly without assuming the existence of any underlying 
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(random) utility function. Recall that Pj(B) means the probability that the agent shall choose 

alternative j from B when B is the choice set. Statistically, for each given B, recall that these are the 

probabilities in a multinomial model, (due to the fact that the choices are mutually exclusive), which 

sum up to one. However, the question remains how these probabilities should be specified as a 

function of the attributes and how the choice probabilities should depend on the choice set, i.e., in 

other words, how should { } ( ){ }P B and P Aj j( )  be related when j B A∈ ∩ ? To deal with this 

challenge, Luce proposed his famous Choice Axiom, which has later been known as the IIA property; 

“Independence from Irrelevant Alternatives”. To describe IIA we think of the agent as if he is 

organizing his decision-process in two (or several) stages: In the first stage he selects a subset A from 

B, where A contains alternatives that are preferable to the alternatives in B\A. In the second stage the 

agent subsequently chooses his preferred alternative from A. So far this entails no essential loss of 

generality, since it is usually always possible to think of the decision process in this manner. The 

crucial assumption Luce made is that, on average, the choice from A in the last stage does not depend 

on alternatives outside A; the alternatives discarded in the first stage has been completely “forgotten” 

by the agent. In other words, the alternatives outside A are irrelevant. A probabilistic statement of this 

property is as follows: Let PA(B) denote the probability of selecting a subset A from B, defined by 

 P B P BA
j A

j( ) ( ) .=
∈
∑  

Specifically, PA(B) means the probability of selecting a set of alternatives A which are at least as 

attractive as the alternatives B\A.  

 To state IIA formally, let J(B) denote the agent’s choice from B. Thus, we can express the 

choice probability alternatively as jP (B) P(J(B) j)= = . 

 

 

 Definition 3; Independence from Irrelevant Alternatives (IIA) 

 Let j{P (B)}be a system of choice probabilities with probabilities that are  different from 

zero and one. This system satisfies IIA if and only if for any ⊆A,B S  such that ∈ ⊂ ⊆j A B S  

(3.4) ( ) ( )( ) ( )( )= ∈ = =P J B j J B A P J A j . 
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 Eq. (3.4) states that the choice from B, given that the chosen alternative belongs to A is 

the same as if A were the “original” choice set. We can rewrite (3.4) as follows. The left hand side of 

(3.4) can be expressed as 

 ( ) ( ) ( )( )
( )

( )
( )

j

A

P J(B) j J(B) A P (B)P J(B) j
P J(B) j J(B) A

P J(B) A P J(B) A P (B)

= ∩ ∈ =
= ∈ = = =

∈ ∈
. 

Hence, (3.4) is equivalent to 

(3.5) j A jP (B) P (B)P (A)= . 

 

 Eq. (3.4) states that the probability of choosing alternative j from B equals the probability that 

A is a subset of the “best” alternatives which is selected in stage one times the probability of selecting 

alternative j from A in the second stage. Notice that the second stage probability, Pj(A), has the same 

structure as Pj(B), i.e., it does not depend on alternatives outside the (current) choice set A. Note that 

since this is a probabilistic statement it does not mean that IIA should hold in every single experiment. 

It only means that it should hold on average, when the choice experiment is replicated a large number 

of times, or alternatively, it should hold on average in a large sample of “identical” agents. (In the 

sense of agents with identically distributed tastes.) We may therefore think of IIA as an assumption of 

“probabilistic rationality”. Another way of expressing IIA is that the rank ordering within any subset 

of the choice set is, on average, independent of alternatives outside the subset. 

 

 Definition 4; The Constant-Ratio Rule 

 A system of choice probabilities, { }P Bj ( ) ,  satisfies the constant-ratio rule if and only if for all 

j, k, B such that j, ,k B S∈ ⊆  

(3.5) { }( ) { }( )P k j P k j P B P Bj k j k, , ( ) ( )=   

provided the denominators do not vanish. 

 

 The following results are due to Luce (1959): 

 

 Theorem 1 
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 Suppose { }P Bj ( )  is a system of choice probabilities and assume that { }( ) ( )jP j,k 0,1∈  for all 

j, k S∈ . Then part (i) of the IIA assumption holds if and only if there exist positive scalars, a(j), j S∈ ,  

such that the choice probabilities equal 

(3.6) P B
a j

a k
j

k B

( )
( )

( )
.=

∈
∑

  

 Moreover, the scalars {a(j)} are unique apart from multiplication by a positive constant. 

 

 Proof: Assume first that (3.6) holds. Then it follows immediately that (3.4) holds. Assume 

next that (3.4) holds. Define a j c P Sj( ) ( ) ,=  where c is an arbitrary positive constant. Then by (3.4) 

with B S=  and A B= , we obtain 

 P B
P S

P S

a j c

a k c

a j

a k
j

j

B

k B k B

( )
( )

( )

( )

( )

( )

( )
= = =

∈ ∈
∑ ∑

 

where B S.⊆  This shows that Pj(B) has the structure (3.6). 

 To show uniqueness (apart from multiplication by a constant), let ~( )a j  be positive scalars 

such that (3.6) holds with a(j) replaced by ~( )a j . Then with B S=  we get 

 
P S

P S

a j

a

a j

a
j ( )

( )

( )

( )

~( )
~( )1 1 1

= =  

which implies that 

 ~( ) ( )
~( )

( )
.a j a j

a

a
= ⋅ 1

1
 

Thus we have proved that IIA implies the existence of scalars { }a j j S( ), ∈ , such that (3.6) holds and 

these scalars are unique apart from multiplication by a constant. 

  Q.E.D. 

 

 Theorem 2 

 Let { }P Bj ( )  be a system of choice probabilities. The Constant-Ratio Rule holds if and only if 

IIA holds. 
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 Proof: The constant ratio rule implies that for j k A B S, ∈ ⊂ ⊂  

 
{ }( )
{ }( )

P B

P B

P j k

P j k

P A

P A
j

k

j

k

j

k

( )

( )

,

,

( )

( )
.= =  

Hence, since 

 P B P A P A P Bj k j k( ) ( ) ( ) ( )=  

and 

 
k A

kP A
∈
∑ =( ) ,1  

we obtain 

 P B P B P A P A P B P A P Bj j
k A

k j
k A

k j A( ) ( ) ( ) ( ) ( ) ( ) ( ).= = =
∈ ∈
∑ ∑  

Conversely, if IIA holds we realize immediately that the constant ratio rule will hold. 

  Q.E.D. 

 

 The results above are very powerful in that they establish statements that are equivalent to the 

IIA assumption, and they yield a simple structure of the choice probabilities. For example, if the 

univers S consists of four alternatives, S = {1,2,3,4}, there will be at most 11 different choice sets, 

namely {1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}. This 

yields altogether 28 probabilities. Since the probabilities sum to one for each choice set we can reduce 

the number of “free” probabilities to 17. However, when IIA holds we can express all the choice 

probabilities by only three scale values, a2, a3 and a4 (since we can choose a1=1, or equal to any other 

positive value). We therefore realize that the Luce model implies strong restrictions on the system of 

choice probabilities. 

 There is another interesting feature that follows from the Luce model, expressed in the next 

Corollary. 

 

 Corollary 1 

 If IIA, part (i) holds it follows that for distinct i, j and k S∈  
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(3.7) { }( ) { }( ) { }( ) { }( ) { }( ) { }( )P i j P j k P k i P i k P k j P j ii j k i k j, , , , , , .=   

 

 The proof of this result is immediate.  

 

 Recall that IIA only implies rationality “in the long run”, or at the aggregate level. Thus 

the probability of intransitive sequences (chains) is positive. The result in Corollary 1 is a statement 

about intransitive chains beause the interpretation of (3.7) is that 

 ( ) ( )P i j k i P i k j i; ; ; ; ; ;=  

where ;  means “preferred to”. In other words, the intransitive chains i j k i and i k j i; ; ; ; ; ;  

have the same probability. This shows that although intransitive “chains” can occur with positive 

probability there is no systematic violation of transitivity. In fact, it can also be proved that if (3.7) 

holds then the binary choice probabilities must have the form 

(3.8) { }( )P i, j
a j

a i a jj =
+
( )

( ) ( )
 

where { }a j j S( ), ∈  are unique up to multiplication by a constant, cf. Luce and Suppes (1965). 

However, (3.7) does not imply IIA. Equation (3.7) is often called the Product rule. 

3.3. The relationship between IIA and the random utility formulation 

After Luce had introduced the IIA property and the corresponding Luce model, Luce (1959), the 

question whether there exists a random utility model that is consistent with IIA was raised. A first 

answer to this problem was given by Holman and Marley in an unpublished paper (cf. Luce and 

Suppes, 1965, p. 338). 

 

 Theorem 3 

 Assume a random utility model, U ,j j j= +v ε  where ε j j S, ,∈  are independent random 

variables with standard type III extreme value distribution1 

(3.9) ( ) ( )P x ,k S exp ej k
xε ≤ ∈ = − −v .  

Then, for ,j B S∈ ⊆  

                                                      
1  In the following the distribution function (3.9) will be called the standard extreme value distribution. 
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(3.10) ( )P (B) P U maxU
e

e
.j j

k B
k

k B

j

k
≡ = =

∈

∈
∑

v

v
 

 We realize that (3.10) is a Luce model with v a jj = log ( ) . Thus, by Theorem 3 there 

exists a random utility model that rationalizes the Luce model. 

 

 Proof: Let us first derive the cumulative distribution for V Uj k B j k≡ ∈max .\ { }  We have 

(3.11) ( ) ( ) ( ) ( )P V y P y v e e Dj
k B j

k k
k B j

v y y
j

k≤ = ≤ − = − = −
∈ ∈

− −∏ ∏
\ { } \{ }

exp expε  

where 

(3.12) D ej k B j

vk=
∈∑ \ { }

.  

Hence 

(3.13)    ( ) ( ) ( ) ( ) ( )( )P U U P U V P v V P y V P v y y dyj
k B

k j j j j j j j j= = > = + > = > + ∈ +
∈

−∞

∞

∫max , .ε ε  

Note next that since by (3.9) 

 ( ) ( ) ( )P U y P v y ej j j
v yj≤ = + < = − −ε exp  

it follows that 

 ( )( ) ( )P v y y dy e e dyj j
v y v yj jε + ∈ + = − − −, exp .  

Hence 

(3.14) 

( ) ( )( ) ( ) ( )

( )( )
( )( )

−∞

∞

−∞

∞
− − −

−∞

∞
− −

−∞

∞
−

∫ ∫

∫

> + ∈ + = − −

= − +

=
+

− + =
+

P y V P v y y dy D e e e dy

e D e e e dy

e

D e
D e e

e

D e

j j j j
y v y v y

v
j

v y y

v

j
v j

v y
v

j
v

j j

j j

j

j

j

j

j

ε , exp exp

exp

| exp .

 

Since 
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 D e ej
v

k B

vj k+ =
∈
∑  

the result of the Theorem follows from (3.13) and (3.14). 

  Q.E.D. 

 

 An interesting question is whether or not there exists other distribution functions than 

(3.9) which imply the Luce model. McFadden (1973) proved that under particular assumptions the 

answer is no. Later Yellott (1977) and Strauss (1979) gave proofs of this result under weaker 

conditions. Yellott (1977) proved the following result. 

 

 Theorem 4 

 Assume that S contains more than two alternatives, and U j j j= +v ε , where ε j j S, ∈ , 

are i.i.d. with cumulative distribution function that is independent of { }v j , j S∈ and is strictly 

increasing on the real line. Then (3.10) holds if and only if εj  has the standard extreme value 

distribution function. 

 

 Example 3.1 

 Consider the choice between m brands of cornflakes. The price of brand j is Zj. We 

assume that the utility function of the consumer has the form 

(3.15) U Zj j j= +
~
β ε σ  

where β < 0  and σ > 0  are unknown parameters, εj, j m= 1 2, ,... , , are i.i. extreme value distributed. 

Without loss of generality we can write the utility function as 

(3.16) 
~ ~

.U Z Zj j j j j= + ≡ +β σ ε β ε  

From Theorem 3 it follows that the choice probabilities can be written as 

(3.17) 
( )

( )
.

exp

exp

1

β

β

k

m

k

j
j

Z

Z
P

∑
=

=  

Clearly, β is identified, since 
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 ( )log .
P

P
Z Z

j
j

1
1









 = − β  

However, σ is not identified. Note that the variance of the error term in the utility function is large 

when σ is large, which in formulation (3.16) corresponds to a small β . 

 When β  has been estimated one can compute the aggregate own- and cross-price 

elasticities according to the formulae 

(3.18) ( )∂
∂

β
log

log

P

Z
Z P

j

j
j j= −1  

and 

(3.19) 
∂
∂

β
log

log

P

Z
Z P

j

k
k k= −  

for k j≠ . 

 

 Example 3.2 

 Consider a transportation choice problem. There are two feasible alternatives, namely 

driving own car (Alternative 1), or riding a bus (Alternative 2). 

 Let i index the commuter and let 

Z
if j

otherwiseij1

1 1

0
=

=

 ,

 

Zij2 = In-vehicle time, alternative j, 

Zij3 = Out-of-vehicle time, alternative j, 

Zij4 = Transportation cost, alternative j. 

The variable Zij1 is supposed to represent the intrinsic preference for driving own car. The utility 

function is assumed to have the structure 

 U Zij ij ij= +β ε  

where ( )Z Z Z Z Zij ij ij ij ij= 1 2 3 4, , , , εi1 and εi2 are i.i. extreme value distributed, and β is a vector of 

unknown coefficients. From these assumptions it follows that the probability that commuter i shall 

choose alternative j is given by 
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(3.20) 
( )

( )
P

Z

Z
ij

ij

k
ik

=

=
∑

exp

exp

.
β

β
1

2
 

From a sample of observations of individual choices and attribute variables one can estimate β by the 

maximum likelihood procedure. 

 Let us consider how the model above can be applied in policy simulations once β has 

been estimated. Consider a group of individuals facing some attribute vector Zj, j = 1 2, .  The 

corresponding choice probability equals 

(3.21) 
( )

( )
P

Z

Z
j

j

k
k

=

=
∑

exp

exp

β

β
1

2
 

for j = 1 2, .  From (3.21) it follows that 

(3.22) ( )∂
∂

β
log

log

P

Z
Z P

j

jr
r jr j= −1  

and 

(3.23) 
∂

∂
β

log

log

P

Z
Z P

j

kr
r kr k= −  

for k j≠ . Eq. (3.22) expresses the “own elasticities” while (3.23) expresses the “cross elasticities”. 

Specifically, (3.22) yields the relative increase in the fraction of individuals that choose alternative j 

that follows from a relative increase in Zjr by one unit. 

 

 Example 3.3. (Multinomial logit) 

 Assume that 

(3.24) ( )F y ej
y( ) exp .= − −  

Then (3.24) yields 

(3.25) P B
e

e
j

v

k B

v

j

k
( ) .=

∈
∑
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 Example 3.4. (Independent multinomial probit) 

If 

(3.26) ′ = ′ ≡
−

F y y ej

y
( ) ( )Φ 1

2

1

2
2

π
 

then we obtain the socalled Independent multinomial Probit model; 

(3.27) 
{ }

( ) ( ) .
2

dy
vy

2

1
expvy)B(P 2

jk
j\Bk

j π






 −−−Φ= ∏∫

∈

∞

∞−

 

It has been found through simulations and empirical applications that the independent probit model 

yields choice probabilities that are close to the multinomial logit choice probabilities. 

 

 

 Example 3.5. (Binary probit) 

 Assume that { }B= 1 2,  and ( )F y yj ( ) .= Φ 2  Then 

(3.28) ( ) ( )P U U v v1 2 1 2> = −Φ .  

 

 Example 3.6. (Binary Arcus-tangens) 

 Assume that { }B= 1 2,  and 

(3.29) ( )′ =
+

F y
y

j ( ) .
2

1 4 2π
 

The density (3.29) is the density of a Cauchy distribution. Then 

(3.30) ( ) ( )P U U Arctg v v1 2 1 2
1

2

1> = + −
π

.  

The Arcus-tangens model differs essentially from the binary logit and probit models in that the tails of 

the Arcus-tangens model are much heavier than for the other two models. 
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3.4. Specification of the structural terms, examples 

Let ( )Z Z Z Zj j j jK= 1 2, , .. .,  denote a vector of attributes that characterize alternative j. In the absence 

of individual characteristics, a convenient functional form is 

(3.31) v Z Zj j
k

K

jk k= ≡
=
∑β β

1

.  

A more general specification is 

(3.32) ( )v h Z Xj
k

K

k j k=
=
∑

1

, β  

where ( )h Z X k Kk j , , , ... , ,= 1  are known functions of the attribute vector and a vector variable X that 

characterizes the agent.  

 

 Example 3.7 

 Let ( )X X X= 1 2,  and ( )Z Z Zj j j= 1 2, . A type of specification that is often used is 

(3.33) v Z Z Z X Z X Z X Z Xj j j j j j j= + + + + +1 1 2 2 1 1 3 1 2 4 2 1 5 2 2 6β β β β β β .  

In some applications the assumption of linear-in-parameter functional form may, however, be too 

restrictive. 

 

 Example 3.8. (Box-Cox transformation): 

 Let ( )Z Z Z Z kj j j jk= > =1 2 0 1 2, , , , ,  

and 

(3.34) v
Z Z

j
j j=

−







 +

−









1

1
1

2

2
2

1 21 1α α

α
β

α
β  

where α α β β1 2 1 2, , ,  are unknown parameters. The transformation 

(3.35) 
yα

α
−1

,  

y > 0 ,  is called a Box-Cox transformation of y and it contains the linear function as a special case 

( )α = 1 .When α → 0  then 
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y

y
α

α
− →1

log .  

When ( )α αα< −1 1, y  is concave while it is convex when α > 1.  For any α, ( )yα α− 1  is 

increasing in y. 

 

 Example 3.9 

 A problem which is usually overlooked in discrete choice analyses is the fact that 

simultaneous equation problems can arise as a result of unobservable attributes. Consider the 

following example where the utility function has the structure 

 U Z Z X Z Xj j j j j= + + +β β β ε1 1 2 2 3  

where Zj is an attribute variable (scalar) and X1, X2 are individual characteristics. The random error 

term εj is assumed to be uncorrelated with Zj, X1 and X2. Also Zj is assumed uncorrelated with X1 and 

X2. However, X2 is unobservable to the researcher. The researcher therefore specifies the utility 

function as 

(3.36) .XZZU *
j21j1j

*
j ε+β+β=  

Thus, the interpretation of ε j
*  is as 

(3.37) .XZ 32jj
*
j β+ε=ε  

Then 

 ( ) ( ).XXEZZ,XE 123jj1
*
j β=ε  

In this case we therefore get that the error terms are correlated with the structural terms when X1 and 

X2 are correlated. A completely similar argument applies in the case with unobservable attributes. 

 This simple example shows that simultaneous equation bias may be a serious problem in 

many cases where data contains limited information about population heterogeneity or/and relevant 

attributes. Note that even if we were able to observe the relevant explanatory variables, we may still 

face the risk of getting simultaneous equation bias as a result of misspesified functional form of the 

deterministic term of the utility function. This is easily demonstrated by a similar argument as the one 

above. 
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3.5. Stochastic models for ranking 

So far we have only discussed models in which the interest is the agent's (most) preferred alternative. 

However, in several cases it is of interest to specify the joint probability of the rank ordering of 

alternatives that belong to S or to some subset of S. For example, in stated preference surveys, where 

the agents are presented with hypothetical choice experiments, one has the possibility of designing the 

questionaires so as to elicit information about the agents' rank ordering. This yields more information 

about preferences than data on solely the highest ranked alternatives, and it is therefore very useful for 

empirical analysis. This type of modeling approach has for example been applied to analyze the 

potential demand for products that may be introduced in the market, see Section 4.8. 

 The systematic development of stochastic models for ranking started with Luce (1959) 

and Block and Marschak (1960). Specifically, they provided a powerful theoretical rationale for the 

structure of the so-called ordered Luce model. The theoretical assumptions that underly the ordered 

Luce model can briefly be described as follows. 

 Let ( )R( ) ( ), ( ),... , ( )B R B R B R Bm= 1 2  be the agent’s rank ordering of the alternatives in 

B, where m is the number of alternatives in B, and B S.⊆  This means that Ri(B) denotes the element 

in B that has the i'th rank. As above let P B j Bj ( ), ∈ , be the probability that the agent shall rank 

alternative j on top when B is the set of feasible alternatives. Recall that the empirical counterpart of 

these probabilities is the respective number of times the agent chooses a particular rank ordering to the 

total number of times the experiment is replicated, or alternatively, the fraction of (observationally 

identical) agents that choose a particular rank ordering. Let ( )ρ( ) , , ... ,B m= ρ ρ ρ1 2 , where the 

components of the vector ρ(B) are distinct and ρk B∈  for all k m≤ . 

 Similarly to Definition 1 one can define a system of ranking probabilities formally. Since 

the extension from Definition 1 to the case with ranking is rather obvious we shall not present the 

formal definition here. 

 

 Definition 5 

 A system of ranking probabilities constitute a random utility model if and only if 

 ( ) ( ) ( ) ( )( )P (B) (B) P U U ... U1 2 mR = = > > >ρ ρ ρ ρ  

for ,B S⊆  where { }U j j S( ), ,∈  are random variables. 

 

 The next definition is a generalization of IIA to the setting with rank ordering. For 

simplicity we rule out the case with degenerate choice probabilities equal to zero or one. 
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 Definition 6: Generalized IIA (IIAR) 

 A system of ranking probabilities satisfies the Independence from Irrelevant Alternatives 

(IIAR) property if and only if for any B S⊆  

(3.38) ( ) { }( ) { }( )P (B) (B) P (B) P B \ ... P ,
1 2 m 11 m 1 mR = =

− −ρ ρ ρ ρρ ρ ρ .  

 

 Definition 6 states that an agent's ranking behavior can (on average) be viewed as a 

multistage process in which he first selects the most preferred alternative, next he selects the second 

best among the remaining alternatives, etc. The crucial point here is that in each stage, the agent's 

ranking of the remaining alternatives is independent of the alternatives that were selected in earlier 

steps. In other words, they are viewed as “irrelevant”. 

 We realize that Definition 3 is a special case of Definition 6. 

 Let 

 { }Ω j B B B j j B( ) ( ): ( ) , .= = ∈ρ ρ1  

The interpretation of Ω j B( )  is as the set of rank orderings among the alternatives within B, where 

alternative j is ranked highest. 

 

 Theorem 5 

 Let ( ){ }P (B)ρ  be a system of ranking probabilities, defined by 

( ) ( )P (B) P (B) (B)ρ ρ= =R . This system constitutes a random utility model if and only if 

 ( )P (B) P (B) .j
(B) (B)j

=
∈
∑

ρ
ρ

Ω
 

 

 A proof of Theorem 5 is given by Block and Marschak (1960, p. 107). 

 

 Theorem 6 

 Assume that a system of ranking probabilities is consistent with a random utility model 

and that IIAR holds. Then there exists positive scalars, a j j S( ), ,∈  such that the ranking probabilities 

are given by 
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(3.39) ( ) ( ) ( )
{ }

( )
( ) ( )P (B) (B)

a

a(k)

a

a(k)

a

a a
1

k B

2

k B\

m 1

m 1 m
1

R = = ⋅ ⋅ ⋅ ⋅
+

∈ ∈

−

−∑ ∑
ρ

ρ ρ ρ
ρ ρ

ρ

 

for B S⊆ . The scalars, { }a j( ) ,  are uniquely determined up to multiplication by a positive constant. 

Conversely, the model (3.41) satisfies IIAR. 

 

 Block and Marschak (1960, p. 109) have proved Theorem 6, cf. Luce and Suppes (1965). 

 

 Example 3.10 

 Consider the rankings of different brands of beer. Let { }B = 1 2 3, ,  where alternative 1 is 

Tuborg, alternative 2 is Budweiser and alternative 3 is Becks. Suppose one has data on consumers 

rank ordering of these brands of beer. If IIAR holds then the probability that for example ( )ρB = 2 3 1, , , 

i.e., Budweiser is ranked on top and Becks second best. According to (3.39) we obtain that the 

probability of ρB equals 

 ( )( ) .
)3(a)1(a

)3(a

)3(a)2(a)1(a

)2(a
1,3,2)B(P

+
⋅

++
==R  

 The next result shows that (3.39) is consistent with a simple random utility representation. 

 

 Theorem 7 

 Assume a random utility model with U(j) (j) ,j= +v ε  where ε j j S, ∈ , are i.i.d. with 

standard extreme value distribution function that is independent of { }v(j), j S∈ . Then 

(3.40) 

( ) ( ) ( ) ( )( )
( )( )

( )
( )( )

{ } ( )
( )( )

( )( ) ( )( )

P (B) (B) P U U ... U

exp

exp (k)

exp

exp (k)

exp

exp exp

1 2 m

1

k B

2

k B\

m 1

m 1 m
1

R = = > > >

= ⋅ ⋅⋅⋅
+

∈ ∈

−

−∑ ∑

ρ ρ ρ ρ

ρ ρ ρ
ρ ρ

ρ

v

v

v

v

v

v v
.

 

 

 Also here we realize that Theorem 1 is a special case of Theorem 6 and Theorem 3 is a 

special case of Theorem 7 because the choice probability Pj(B) is equal to the sum of all ranking 

probabilities with ρ1 = j.  A proof of Theorem 7 is given in Strauss (1979). 
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3.6. Stochastic dependent utilities across alternatives 

In the random utility models discussed above we only focused on models with random terms that are 

independent across alternatives. In particular we noted that the independent extreme value random 

utility model is equivalent to the Luce model. It has been found that the independent multinomial 

probit model is “close” to the Luce model in the sense that the choice probabilities are close provided 

the structural terms of the two models have the same structure (see for example, Hausman and Wise, 

1978). However, the assumption of independent random terms is rather restrictive in some cases, 

which the following example will demonstrate. 

 

 Example 3.11 

 Consider a consumer choice problem in which there are two soda alternatives, namely 

“Coca cola”, (1), “Fanta”, (2). The fractions of consumers that buy Coca cola and Fanta are 1/3 and 

2/3, respectively. If we assume that Luce's model holds we have 

 { }( )P
a

a a1
1

1 2

1 2
1

3
, .=

+
=  

With a1 1=  it follows that a 2 2= .  Suppose now that another Fanta alternative is introduced 

(alternative 3) that is equal in all attributes to the existing one except that its bottles have a different 

color from the original one. Since the new Fanta alternative is essential equivalent to the existing one 

it must be true that the corresponding response strengths must be equal, i.e., a a3 2 2= = .  

Consequently, since the choice set is now equal to {1,2,3} we have according to (3.6) that 

 { }( )P
a

a a a1
1

1 2 3

1 2 3
1

1 2 2

1

5
, , =

+ +
=

+ +
=  

which implies that 

 { }( ) { }( )P P2 31 2 3 1 2 3
2

5
, , , , .= =  

But intuitively, this seems unrealistic because it is plausible to assume that the consumers will tend to 

treat the two alternatives as a single alternative so that 

 { }( )P1 1 2 3
1

3
, , =  

and 
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 { }( ) { }( )P P2 31 2 3 1 2 3
1

3
, , , , .= =  

This example demonstrates that if alternatives are “similar” in some sense, then the Luce model is not 

appropriate. A version of this example is due to Debreu (1960). 

 

 Example 3.12 

 Let us return to the general theory, and try to list some of the reasons why the random 

terms of the utility function may be correlated across alternatives. 

 For expository simplicity consider the (true) utility specification 

(3.41) U Z X Z X Zj j j j j= + + +1 1 1 1 2 2 2 3β β β ε  

and suppose that only Zj1 and X1 are observable for all j. Thus, in practice we may therefore be 

tempted to resort to the misspecified version 

(3.42) *
j21jj11j

*
j ZXZU ε+β+β≡  

where 

(3.43) .ZX 32j2j
*
j β+ε=ε  

Let ( )Z1
11 21 1= Z Z Zm, ,... , . From (3.38) it follows that 

(3.44) 

( ) ( )
( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )

Cov X Cov X Z X Z X

E Cov X Z X Z X X

Cov E X Z X X E X Z X X

E X X Cov Z Z Var X X E Z E Z

j k j k

j k

j k

j k j k

ε ε β β

β

β

β β

* *, , , ,

, , ,

, , , , ,

, .

1
1

2 2 3 2 2 3 1
1

3
2

2 2 2 2 1
1

2

3
2

2 2 1
1

2 2 2 1
1

2

3
2

2
2

1 2 2
1

3
2

2 1 2
1

2
1

Z Z

Z

Z Z

Z Z Z

=

=

+

= +

 

This shows that unobservable attributes and individual characteristics may lead to error terms that are 

correlated across alternatives. Suppose next that ( )Cov Z Zj k2 2
1 0, Z = . Then (3.44) reduces to 

(3.45) ( ) ( ) ( ) ( )Cov X E Z E Z Var X Xj k j kε ε β* *, , .1
1

3
2

2
1

2
1

2 1Z Z Z=  

Eq. (3.45) shows that even if the unobservable attributes are uncorrelated the error terms will still be 

correlated if ( )Var X X2 1 0≠ . (If ( )Var X X2 1 0= , X2 is perfectly predicted by X1.) 
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3.7. The multinomial Probit model  

The best known multinomial random utility model with interdependent utilities is the multinomial 

probit model. In this model the random terms in the utility function are assumed to be multinormally 

distributed (with unknown covariance matrix). The concept of multinomial probit appeared already in 

the writings of Thurstone (1927), but due to its computational complexity it has not been practically 

useful for choice sets with more than five alternatives until quite recently. In recent years, however, 

there has been a number of studies that apply simulation methods in the estimation procedure, 

pioneered by McFadden (1989). Still the computational issue is far from being settled, since the 

current simulation methods are complicated to apply in practice. The following expression for the 

multinomial choice probabilities is suggestive for the complexity of the problem. Let ( )h x;Ω  denote 

the density of an m-dimensional multinormal zero mean vector-variable with covariance matrix Ω. We 

have 

(3.46) ( ) ( )h x x x
m

; exp
/ /Ω Ω Ω= − ′





− − −2
1

2
2 1 2 1π  

where Ω  denotes the determinant of Ω. Furthermore 

(3.47) ( ) ( )P v v h x x x dx dx dxj j
k m

k k

v v v v v v

j m j m

j j j j n

+ = +



 =

≤
−∞

−

−∞

−

−∞

−

∫ ∫ ∫ε εmax ... ... , ... , , ... , ; ... ... .
1

1 1Ω  

 From (3.47) we see that an m-dimensional integral must be evaluated to obtain the choice 

probabilities. Moreover, the integration limits also depend on the unknown parameters in the utility 

function. When the choice set contains more than five alternatives it is therefore necessary to use 

simulation methods to evaluate these choice probabilities.  

  

3.8. The Generalized Extreme Value model 

McFadden (1978) and (1981) introduced the class of GEV model which is a random utility model that 

contains the Luce model as a special case. He proved the following result: 

 

 Theorem 8 

 Let G be a non-negative function defined over Rm
+  that has the following properties: 

(i) G is homogeneous of degree one, 

(ii)  ( )lim G y ,..., y ,... , y , i 1,2,... ,m
y

1 i m
i →∞

= ∞ = ,  
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(iii) the kth partial derivative of G with respect to any combination of k distinct components exist, are 
continuous, non-negative if k is odd, and are non-positive if k is even. 

 Then 

(3.48) ( )( )F(x) exp G e ,e ,... ,ex x x1 2 m= − − − −  

is a well defined multivariate (type III) extreme value distribution function. Moreover, if 

( )ε ε ε1 2 m, ,... ,  has joint distribution function given by (3.51), then it follows that 

(3.49) ( ) ( )
( )

vv v

vv v

v
v v .

≤

∂ ∂ + = + = 
 

m1 2

m1 2

j

j j k k
k m

G e ,e ,...,e
P max

G e ,e ,...,e
ε ε  

 

 The proof of Theorem 8 is analogous to the proof of Lemma A2 in Appendix A. 

 

 Conditions (ii) and (iii) are necessary to ensure that F(x) is a well defined multivariate 

distribution function (with non-negative density), while condition (i) characterizes the multivariate 

extreme value distribution. 

 Above we have stated the choice probability for the case where all the choice alternatives 

in S belong to the choice set. Obviously, we get the joint cumulative distribution function of the 

random terms of the utilities that correspond to any choice set B by letting x i = ∞ ,  for all i B∉ .  This 

corresponds to letting vi = − ∞,  for all i B∉  in the right hand side of (3.49). 

 To see that the Luce model emerges as a special case, let 

(3.50) ( )G y y ym
k

m

k1
1

,... , =
=
∑  

from which it follows by (3.49) that 

 P B
e

e
j

v

k B

v

j

k
( ) .=

∈
∑

 

 

 Example 3.13 

 Let { }S = 1 2 3, ,  and assume that 
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(3.51) ( ) ( )G y y y y y y1 2 3 1 2
1

3
1, , / /= + +θ θ θ

 

where 0 1< ≤θ .  It can be demonstrated that θ has the interpretation 

(3.52) ( )corr ε ε θ2 3
21, = −  

and 

 ( )corr jjε ε1 0 2 3, , , .= =  

From Theorem 8 we obtain that 

(3.53) 
( )

P S
e

e e e

v

v v v
1

1

1 2 3

( )
/ /

=
+ +θ θ θ  

and 

(3.54) 
( )

( )
P S

e e e

e e e
j

v v v

v v v

j

( ) ,

/ / /

/ /
=

+

+ +

−
2 3

1 2 3

1θ θ θ θ

θ θ θ  

for j = 2 3, .  If { }B = 1 2, , then 

(3.55) { }( )P
e

e e

v

v v1 1 2
1

1 2
, .=

+
 

When alternative 2 and alternative 3 are close substitutes θ should be close to zero. By applying 

l'Hôpital's rule we obtain 

 ( ) ( )lim log max , ./ /

θ

θ θθ
→

+ =
0

2 3
2 3e e v vv v  

Consequently, when θ is close to zero the choice probabilities above are close to 

(3.56) 
( )( )P S

e

e v v

v

v1
2 3

1

1
( )

exp max ,
=

+
 

and 

(3.57) P S
e

e e

v

v v2

2

1 2
( ) ,=

+
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if v v2 3> , and zero otherwise, and similarly for P3(S). For v v2 3=  we obtain 

(3.58) P S
e

e e

v

v v1

1

1 2
( ) =

+
 

and 

(3.59) ( )P S
e

e e
j

v

v v
( ) =

+

2

1 22
 

for j = 2 3, .  

 Consider again Example 3.11. With v v2 3= ,  0v1 =  and 2e 2v = . Eq. (3.58) and (3.59) 

yield 

 { }( )P1 1 2 1 3, /=  

and 

 { }( ) { }( )P P2 31 2 3 1 2 3 1 3, , , , / .= =  

Thus the model generated from (3.51) with θ close to zero is able to capture the underlying structure 

of Example 3.11. 

3.8.1. The Nested multinomial logit model (nested logit model) 

The nested logit model is an extension of the multinomial logit model which belongs to the GEV class. 

The nested logit framework is appropriate in a modelling situation where the decision problem has a 

“tree-structure”. This means that the choice set can be partitioned into a hierarchical system of subsets 

that each group together alternatives having several observable characteristics in common. It is 

assumed that the agent chooses one of the subsets Ar (say) in the first stage from which he selects the 

preferred alternative. The choice problem in Example 3.11 has such a tree structure: Here the first 

stage concerns the choice between Coca cola and Fanta while the second stage alternatives are the two 

Fanta variants in case the first stage choice was Fanta. 

 

 Example 3.14 

 To illustrate further the typical choice situation, consider the choice of residential 

location. Specifically, suppose the agent is considering a move to one out of two cities, which includes 
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a specific location within the preferred city. Let Ujk denote the utility of location k L j∈  within city j, 

j = 1 2, ,  where Lj is the set of relevant and available locations within city j. Let U vjk jk jk= + ε ,  where 

(3.60) ( ) ( ) ( )( )P x x G e e e e
k L k L

k k
x x x x

∈ ∈

− − − −≤ ≤








 = −

1 2

11 12 21 22
1k 1k 2 2∩ ∩ε ε, exp , ,... , , , ...  

and 

(3.61) ( )G y y y y
j k L

jk

j

j

j

11 12 21
1

2
1

, , .. ., , .. . .
/=













= ∈
∑ ∑ θ

θ

 

The structure (3.61) implies that 

(3.62) ( )corr for r kjk jr jε ε θ, , ,= − ≠1 2  

and 

(3.63) ( )corr for j i and all k and rjk irε ε, , .= ≠0  

The interpretation of the correlation structure is that the alternatives within Lj are more “similar” than 

alternatives where one belongs to L1 and the other belongs to L2. 

 Let Pjr denote the joint probability of choosing location r L j∈  and city j. Now from 

Theorem 8 we get that 

(3.64) 

( )
( )
11 12

11 12k

j

jk j jr j

j

i

k ii

i

v v
jr

jr jr ik v vi 1,2 k L

1

v / v

k L

2
v /

i 1 k L

G e ,e ,... v
P P U max max U

G e ,e ...

e e

.

e

= ∈

θ −

θ θ

∈

θ

θ

= ∈

∂ ∂  ≡ = =    

 
 
 
 =

 
  
 

∑

∑ ∑

 

Note that we can rewrite (3.64) as 
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(3.65) P

e

e

e

e
P

e

e
jr

k L

v

i k L

v

v

k L

v j

v

k L

v

j

jk j

j

i

ik i

i

jr j

j

jk j

jr j

j

jk j
=

























⋅ = ⋅
∈

= ∈
∈ ∈

∑

∑ ∑
∑ ∑

/

/

/

/

/

/ ,

θ

θ

θ

θ

θ

θ

θ

θ

1

2
 

where 

(3.66) P Pj
k L

jk

j

=
∈
∑ .  

The probability Pj is the probability of choosing to move to city j (i.e. the optimal location lies within 

city j). Furthermore 

(3.67) 
P

P

e

e

jr

j

v

k L

v

jr j

j

jk j
=

∈
∑

/

/

θ

θ  

is the probability of choosing location r L j∈ ,  given that city j has been selected. We notice that 

P Pjr j  does not depend on alternatives outside Lj. Thus the probability Pjr can be factored as a product 

consisting of the probability of choosing city j times the probability of choosing r from Lj, where the 

last probability has the same structure as the Luce model. However, this will not be the case if a subset 

different from L1 and L2 were selected in a first stage. Graphically, the above tree structure looks as 

follows: 

 

City
 o

ne

City two

Location within
city one

Location within
city two

 
 So far no deep theoretical characterization of the GEV class of models has been given, 

apart from the property that it contains the Luce model as a special case. Specifically, and interesting 
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question is how restrictive the GEV class is. This issue has been addressed by Dagsvik (1994, 1995). 

He proves that any (additive) random utility model can be approximated arbitrarily closely by GEV 

models. In other words, one can approximate, as closely as desired, the choice probabilities of any 

(additive) random utility model by choice probabilities of a GEV model. This means that the GEV 

class represents no essential restrictions beyond being an additive random utility model. 

 

3.9. The mixed logit model  

Recently the so-called mixed logit model has become popular. This type of models is also known as 

random coefficient model. The idea of this approach is to allow the unknown parameters of the logit 

model be individual specific and distributed across the population according to some distribution 

function. The distribution function of the parameters may be specified parametrically or may be 

specified nonparametrically. McFadden and Train (2000) have shown that one can approximate any 

random utility model arbitrarily closely by mixed logit models. 

 To illustrate the idea explicitly, assume for example that one has specified the 

multinomial logit model conditional on the parameter vector β as in (3.17), that is 

(3.68)                                   
( )

( )β

β
β

k

m

k

j
j

Z

Z
P

exp

exp
)(

1
∑

=

= . 

 

Then one obtains the unconditional choice probability by taking expectation with respect to the 

random vector β. That is, one "integrates out" with respect to the distribution of β. Thus, the resulting 

choice probability for choosing alternative j becomes 

(3.69)                                     
( )

( )
}

exp

exp
{

1

β

β

k

m

k

j
j

Z

Z
EP

∑
=

= . 

 

The econometrician's problem is now to estimate the unknown parameters in the distribution of β. 

Train (2003) discusses practical estimation techniques based on simulation methods. 
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4. Applications of discrete choice analysis 

4.1. Labor supply  

Consider the binary decision problem of choosing between the alternatives “working” and “not 

working”. Take the standard neo-classical model as a point of departure. Let V(C,L) be the agent's 

utility in consumption, C, and annual leisure, L. The budget constraint equals 

(4.1) C hW I= +  

where W is the wage rate the agent faces in the market, h is annual hours of work and I is non-labor 

income (for example the income provided by the spouse). The time constraint equals 

(4.2) h L M+ ≤ =( ).8760  

According to this model utility maximization implies that the agent supplies labor if 

(4.3) 
( )
( )

W
V I, M

V I, M
W> ≡

∂
∂

2

1

*  

where ∂j denotes the partial derivative with respect to component j. If the inequality is reversed, then 

the agent will not wish to work. W* is called the reservation wage. Suppose for example that the utility 

function has the form 

(4.4) 
( )

V C L
C

L

M
M( , ) ,=

−













+







−








α

α

α
β

α
β

1

2

1
1

1
1

2
2  

where α α β β1 2 1 21 1 0 0< < > >, , , .  Then V(C,L) is increasing and strictly concave in (C,L). The 

reservation wage equals 

(4.5) 
( )
( )

W
V I, M

V I, M
I* .≡ = −∂

∂
β
β

α2

1

2

1

1 1  

After taking the logarithm on both sides of (4.3) and inserting (4.5) we get that the agent will supply 

labor if 

(4.6) ( )log log log .W I> − +






1 1

2

1

α
β
β
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Suppose next that we wish to estimate the unknown parameters of this model from a sample of 

individuals of which some work and some do not work. Unfortunately, it is a problem with using (4.6) 

as a point of departure for estimation because the wage rate is not observed for those individuals that 

do not work. For all individuals in the sample we observe, say, age, non-labor income, length of 

education and number of small children. To deal with the fact that the wage rate is only observed for 

those agents who work, we shall next introduce a wage equation. Specifically, we assume that 

(4.7) log W X a= +1 1ε  

where X1 consists of length of education and age and a is the associate parameter vector. ε1 is a 

random variable that accounts for unobserved factors that affect the wage rate, such as type of 

schooling, the effect of ability and family background, etc. We assume furthermore that the parameter 

β2/β1 depend on age and number of small children, X2, such that 

(4.8) log
β
β

ε2

1
2 2







 = +X b  

where ε2 is a random term which accounts for unobserved variables that affect the preferences and b is 

a parameter vector. For simplicity we assume that α1 is common to all agents. If ε1 and ε2 are 

independent and normally distributed with E jε = 0,  Var j jε σ= 2 ,  we get that the probability of 

working equals a probit model given by 
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where ( )Φ ⋅  is the cumulative normal distribution function and s is a parameter vector such that 

Xs X a X b= −1 2 . From (4.9) we realize that only 
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and kj

σ σ
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σ σ1
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2
2

1

1
2

2
2
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1 2

+

−

+
=, , , , .. .,  

can be identified. 

 If the purpose of this model is to analyze the effect from changes in level of education, 

family size and non-labor income on the probability of supplying labor then we do not need to identify 

the remaining parameters. Let us write the model in a more convenient form; 

(4.10) ( )P Xs c I2 = −Φ * log ,  
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where ( )c = − +1 1 1
2

2
2α σ σ  and s sj j

* .= +σ σ1
2

2
2  We have that 

(4.11) 
( )
( )

( )

( )
∂
∂ π
log

log

log

log

exp
log

log
.

*

*

*

*

P

I
c

Xs c I

Xs c I
c

Xs c I

Xs c I
2

2

2

2
= −

′ −

−
= −

−
−













−

Φ

Φ Φ
 

Eq. (4.11) equals the elasticity of the probability of working with respect to in non-labor income. 

 Suppose alternatively that σ σ1 2=  and that the random terms θε1 and θε2 are i.i. standard 

extreme value distributed. This means that 6σπ=θ , cf. Lemma A1. Then it follows that P2 

becomes a binary logit model given by 

(4.12) 
( )

( ) ( ) ( )( )Ilog1Xsexp1

1
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From (4.12) we now obtain the elasticity with respect to I as 
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A further discussion on the application of discrete choice models in the analysis of labor supply is 

given by Dagsvik (2004).  

4.2. Transportation 

Suppose that commuters have the choice between driving own car or taking a bus. One is interested in 

estimating a behavioral model to study, for example, how the introduction of a new subway line will 

affect the commuters' transportation choices. Consider a particular commuter (agent) and let Uj(x) be 

the agent's joint utility of commodity vector x and transportation alternative j, j = 1 2, .  Assume that the 

utility function has the structure 

(4.14) .)x(U
~

U)x(U j1j +=  

The budget constraint is given by 

(4.15) ′ = − ≥p x y q xj , ,0  
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where p is a vector of commodity prices and qj is the per-unit-cost of transportation. By maximizing 

Uj(x) with respect to x subject to (4.15) we obtain the conditional indirect utility, given j, as 

(4.16) ( ) ( )V p y q U V p y qj j j j, ,*− = + −1  

where the function V*(p,y) is defined by 

(4.17) ( ) .)x(U
~

maxy,pV
yxp

*

=′
=  

Assume that 

(4.18) jjj1 TU ε+β=  

where Tj is the travelling time with alternative j, β is an unknown parameter and { }ε j  are random 

terms that account for the effect of unobserved variables, such as walking distances and comfort. We 

assume that ε1 and ε2 are i.i. standard extreme value distributed. Assume furthermore that 

(4.19) ( ) ( )V p y q V p y qj j
* ,

~
( ) log− = + −θ  

where θ > 0  is an unknown parameter. The assumptions above yield 

(4.20) ( ) ( ) jjjjj )p(V
~

qylogTqy,pV ε++−θ+β=−  

which implies that 
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for j = 1 2, .  After the unknown parameters β and θ have been estimated one can predict the fraction of 

commuters that will choose the subway alternative (alternative 3) given that T3 and q3 have been 

specified. Here, it is essential that one believes that Tj and qj are the main attributes of importance. We 

thus get that the probability of choosing alternative j from {1,2,3} equals 

(4.22) { }( ) ( )( )
( )( )

.
qylogTexp

qylogTexp
3,2,1P

kk
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jj
j
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4.3. Potential demand for alternative fuel vehicles 

This example is taken from Dagsvik et al. (2002). To assess the potential demand for alternative fuel 

vehicles such as; “electric” (1), “liquid propane gas” (lpg) (2), and “hybrid” (3), vehicles, an ordered 

logit model was estimated on the basis of a “stated preference” survey. In this survey each responent 

in a randomly selected sample was exposed to 15 experiments. In each experiment the respondent was 

asked to rank three hypothetical vehicles characterized by specified attributes, according to the 

respondent's preferences. These attributes are: “Purchase price”, “Top speed”, “Driving range between 

refueling/recharging”, and “Fuel consumption”. The total sample size (after the non-respondent 

individuals are removed) consisted of 662 individuals. About one half of the sample (group A) 

received choice sets with the alternatives “electric”, “lpg”, and “gasoline” vehicles, while the other 

half (group B) received “hybrid”, “lpg” and “gasoline” vehicles. In this study “hybrid” means a 

combination of electric and gasoline technology. The gasoline alternative is labeled alternative 4. 

 The individuals' utility function was specified as 

(4.23) U t Z t tj j j j( ) ( ) ( )= + +β µ ε  

where Zj(t) is a vector consisting of the four attributes of vehicle j in experiment t, t = 1 2 15, , ... , , and µj 

and β are unknown parameters. Without loss of generality, we set µ 4 0= .  As mentioned above group 

A has choice set, { }CA = 1 2 4, , , while group B has choice set, { }CB = 2 3 4, , .  Let Pijt(C) be the 

probability that an individual shall rank alternative i on top and j second best in experiment t, and let 

Y tij
h ( ) = 1 if individual h ranks i on top and j second best in experiment t, and zero otherwise. From 

Theorem 3 it follows that if { }ε j t( )  are assumed to be i.i. standard extreme value distributed then 

(4.24) 
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where C is equal to CA or CB,. We also assume that the random terms { }ε j t( )  are independent across 

experiments. Consequently, it follows that the loglikelihood function has the form 

(4.25) ( ) ( )A = +










= ∈ ∈
∑ ∑ ∑ ∑ ∑ ∑ ∑
t h A i j

ij
h

ijt A
h B i j

ij
h

ijt BY t P C Y t P C
1

15

( ) log ( ) log .  

The sample is further split into six age and gender groups, and Table 4.1 displays the estimation 

results for these groups. 
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Table 4.1. Parameter estimates*) for the age/gender specific utility function 

 Age 

 18-29 30-49 50- 

Attribute Females Males Females Males Females Males 

Purchase price (in 100 000 NOK) -2.530 
(-17.7) 

-2.176 
(-15.2) 

-1.549 
(-15.0) 

-2.159 
(-20.6) 

-1.550 
(-11.9) 

-1.394 
(-11.8) 

Top speed (100 km/h) -0.274 
(-0.9) 

0.488 
(1.5) 

-0.820 
(-3.3) 

-0.571 
(-2.4) 

-0.320 
(-1.1) 

-0.339 
(-1.2) 

Driving range (1 000 km) 1.861 
(3.1) 

2.130 
(3.3) 

1.018 
(2.0) 

1.465 
(3.2) 

0.140 
(0.2) 

1.000 
(1.8) 

Fuel consumption (liter per 10 km) -0.902 
(-3.0) 

-1.692 
(-5.1) 

-0.624 
(-2.5) 

-1.509 
(6.7) 

-0.446 
(-1.5) 

-1.030 
(-3.7) 

Dummy, electric 0.890 
(4.2) 

-0.448 
(-2.0) 

0.627 
(3.6) 

-0.180 
(-1.1) 

0.765 
(3.6) 

-0.195 
(-1.0) 

Dummy, hybrid 1.185 
(7.6) 

0.461 
(2.8) 

1.380 
(10.6) 

0.649 
(5.6) 

1.216 
(7.7) 

0.666 
(4.6) 

Dummy, lpg 1.010 
(8.2) 

0.236 
(1.9) 

0.945 
(9.2) 

0.778 
(8.5) 

0.698 
(5.7) 

0.676 
(5.6) 

# of observations 1380 1110 2070 2325 1290 1455 

# of respondents 92 74 138 150 86 96 

log-likelihood 2015.1 1747.8 3140.8 3460.8 2040.9 2333.8 

McFadden's  ρ2 0.19 0.12 0.15 0.17 0.12 0.10 
*) t-values in parenthesis. 

 Table 4.1 displays the estimates when the model parameters differ by gender and age. We 

notice that the price parameter is very sharply determined and it is slightly declining by age in absolute 

value. Most of the other parameters also decline by age in absolute value. However, when we take the 

standard error into account this tendency seems rather weak. Further, the utility function does not 

differ much by gender, apart from the parameters associated with fuel-consumption and the dummies 

for alternative fuel-cars. Specifically, males seem to be more sceptic towards alternative-fuel than 

females. 

 To check how well the model performs, we have computed McFadden's ρ2 and in 

addition we have applied the model to predict the individuals' rankings. The prediction results are 

displayed in Tables 4.2 and 4.3, while McFadden's  ρ2  is reported in Table 4.1. We see that 

McFadden's  ρ2 has the highest values for young females, and for males with age between 30-49 years. 
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Table 4.2. Prediction performance of the model for group A. Per cent 

 First choice Second choice Third choice 

 
Gender 

 
Electric 

 
Lpg 

Gaso-
line 

 
Electric 

 
Lpg 

Gaso-
line 

 
Electric 

 
Lpg 

Gaso-
line 

Females:          
Observed 52.1 26.1 21.9 22.3 46.5 31.2 25.6 27.4 46.9 
Predicted 45.6 36.3 18.1 32.8 38.5 28.8 21.6 25.3 53.2 

Males:          
Observed 40.0 34.5 25.5 20.3 43.5 36.2 39.7 22.0 38.3 
Predicted 32.6 44.2 23.3 32.1 35.5 32.4 35.3 20.3 44.3 

 

Table 4.3. Prediction performance of the model group B. Per cent 

 First choice Second choice Third choice 

 
Gender 

 
Hybrid 

 
Lpg 

Gaso-
line 

 
Hybrid 

 
Lpg 

Gaso-
line 

 
Hybrid 

 
Lpg 

Gaso-
line 

Females:          
Observed 45.0 42.0 13.0 33.0 44.9 22.1 22.0 13.1 64.9 
Predicted 43.0 40.3 16.7 36.9 37.8 25.3 20.1 21.9 58.0 

Males:          
Observed 38.1 46.2 15.7 32.9 41.0 26.2 29.0 12.8 58.1 
Predicted 35.3 45.2 19.5 37.4 35.0 27.6 27.3 19.8 52.9 

 

 The results in Table 4.3 show that for those individuals who receive choice sets that 

include the hybrid vehicle alternative (group B) the model fits the data reasonably well. For the other 

half of the sample for which the electric vehicle alternative is feasible (group A), Table 4.2 shows that 

the predictions fail by about 10 per cent points in four cases. Thus the model performs better for group 

B than for group A. 

4.4. Oligopolistic competition with product differentiation 

This example is taken from Anderson et al. (1992). Consider m firms which each produces a variant of 

a differentiated product. The firms' decision problem is to determine optimal prices of the different 

variants. 

 Assume that firm j produces at fixed marginal costs cj and has fixed costs Kj. There are N 

consumers in the economy and consumer i has utility 

(4.26) U y a wij i j j ij= + − + σ ε .  
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for variant j, where yi is the consumers income, aj is an index that captures the mean value of non-

pecuniary attributes (quality) of variant j, wj is the price of variant j, εij is an individual-specific 

random taste-shifter that captures unobservable product attributes as well as unobservable individual-

specific characteristics and σ > 0  is a parameter (unknown). If we assume that ε ij j m, , ,... ,= 1 2 , 

i N= 1 2, , ... , ,  are i.i. standard extreme value distributed we get that the aggregate demand for variant j 

equals NPj where 

(4.27) P Q
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Assume next that the firm knows the mean fractional demands { }Q j ( )w  as a function of prices, w. 

Consequently, a firm that produces variant j can calculate expected profit, πj, conditional on the prices; 

(4.28) ( )π j j j j jw c N Q K= − −( ) .w  

Now firm j takes the prices set by other firms as given and chooses the price of variant j that 

maximizes (4.28). Anderson et al. (1992) demonstrate that there exists a unique Nash equilibrium set 

of prices, ( )w* * * *, ,... ,= w w w m1 2  which are determined by 

(4.29) ( )w c
Q

j j

j

*

*
.= +

−
σ

1 w
 

4.5. Social network 

This example is borrowed from Dagsvik (1985). In the time-use survey conducted by Statistics 

Norway, 1980-1981, the survey respondents were asked who they would turn to if they needed help. 

The respondents were divided into two age groups, where group (i) and (ii) consist of individuals less 

than 45 years of age and more than 45 years of age, respectively. Here, we shall only analyze the 

subsample of individuals less than 45 years of age. The univers of alternatives S consisted of five 

alternatives, namely 

 { }S Mother father brother sister neighbor= ( ), ( ), ( ), ( ), ( ) .1 2 3 4 5  
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However, the set of feasible alternatives (choice set) were less for many of the respondents. 

Specifically, there turn out to be 11 different choice sets in the sample; B B B1 2 11, , . .. , .  The data for 

each of the 11 groups are given in Table 4.5. Group (i) consists of 526 individuals. 

 The question is whether the above data can be rationalized by a choice model. To this end 

we first estimated a logit model  

(4.30) ( ) ,Bj,
e

e
BP kv

Br

v

kj
r

k

j

∈=
∑
∈

 

where k = 1 2 11, , ..., ,  and v5 0= .  Thus this model contains four parameters to be estimated. Let �Pjk  

be the observed choice frequencies conditional on choice set Bk. Let A*  denote the loglikelihood 

obtained when the respective choice probabilities are estimated by � , .P j Bjk k∈  From Table 4.5 it 

follows that A* . .= − 405 8  In the logit model there are four free parameters, while there are 24 “free” 

probabilities in the 11 multinomial models in the a priori statistical model. Consequently, if A1 denotes 

the loglikelihood under the hypothesis of a logit model it follows that ( )− −2 1A A*  is (asymptotically) 

Chi squared distributed with 20 degrees of freedom. Since the corresponding critical value at 5 per 

cent significance level equals 31.4 it follows from estimation results reported in Table 4.4 that the logit 

model is rejected against the non-structural multinomial model. One interesting hypothesis that might 

explain this rejection is that alternative five (“neighbor”) differs from the “family” alternatives in the 

sense that the family alternatives depend on a latent variable which represents the “family aspect”, that 

make the family alternatives more “close” than non-family alternatives. As a consequence, the family 

alternatives will have correlated utilities. To allow for this effect we postulate a nested logit structure 

with utilities that are correlated for the family alternatives. Specifically, we assume that 

(4.31) ( )corr U Ui j, ,= −1 2θ  

for i j i, j≠ ≠, ,5  and 

(4.32) ( )corr U Ui , ,5 0=  

for i < 5,  where 0 1< ≤θ .  This yields 
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when ,5B ∋  
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As above we set v5 0= .  

 The parameter estimates in the nested logit case are also given in Table 4.4. We notice 

that while only v1 and v4 are precisely determined in the logit case all the parameters are rather 

precisely determined in the nested logit case. The estimate of θ implies that the correlation between 

the utilities of the family alternatives equals 0.79. 

 From Table 4.4 we find that twice the difference in loglikelihood between the two models 

equals 17.6. Since the critical value of the Chi squared distribution with one degree of freedom at 5 

per cent level equals 3.8, it follows that the logit model is rejected against the nested logit alternative. 

 As above we can also compare the nested logit model to the non-structural multinomial 

model. Let A2  denote the loglikelihood of the nested logit model. Since the nested logit model has five 

parameters it follows that ( )− −2 2A A*  is (asymptotically) Chi squared distributed with 19 degrees of 

freedom (under the hypothesis of the nested logit model). The corresponding critical value is 30.1 at 5 

per cent significance level and therefore the estimate of ( )− −2 2A A*  in Table 4.4 implies that the 

nested logit model is not rejected against the non-structural multinomial model. As measured by 

McFaddens ρ2, the difference in goodness-of-fit is only one per cent. 
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Table 4.4. Parameter estimates 

 Logit model Nested logit model 

Parameters Estimates t-values Estimates t-values 

v1  2.119 18.9 1.932 31.8 

v2 -0.519  0.7 0.654  5.5 

v3  0.099  0.2 0.801  8.3 

v4  0.725  4.8 1.242 16.8 

θ   0.455 15.0 

loglikelihood A j  -424.9  -416.1  

McFadden's  ρ2  0.33  0.34  

( )− −2 A Aj
*   38.2  20.6  

 

 In Table 4.5 we report the data and the prediction performance of the two model versions. 

The table shows that the nested logit model predicts the fractions of observed choices rather well. 

 At this point it is perhaps of interest to recall the limitation of this type of statistical 

significance testing. Of course, when the sample size increases we will always get rejection of the null 

hypothesis of a "perfect model". Since we already know that our models are more or less crude 

approximations to the "true model", this is as it should be, but is hardly very interesting. What, 

however, is of interest is how the model performs in predictions, preferably out-of-sample predictions. 

 Since the logit and the nested-logit model predict almost equally well within sample, it is 

not possible to discriminate between the two models on the basis of (aggregate) predictions. One 

argument that supports the selection of the nested logit model is that even if this model contains an 

additional parameter, the precision of the estimates is considerably higher than in the case of the logit 

model. This suggests that the nested logit model captures more of the "true" underlying structure than 

the logit model. 
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Table 4.5. Prediction performance of the logit- and the nested logit model 

   Alternatives  

Choice
sets 

  1 
Mother 

2 
Father 

3 
Brother 

4 
Sister 

5 
Neighbor 

# obser-
vations 

 Observed  30 NF NF NF 6 36 
B1 Predicted Logit 32.1 NF NF NF 3.9  
 Predicted Nested logit 31.4 NF NF NF 4.6  

 Observed  NF NF 36 NF 20 56 
B2 Predicted Logit NF NF 29.4 NF 26.6  
 Predicted Nested logit NF NF 38.6 NF 17.3  

 Observed  21 NF 2 NF 1 24 
B3 Predicted Logit 19.2 NF 2.5 NF 2.3  
 Predicted Nested logit 19.4 NF 1.5 NF 2.9  

 Observed  NF NF 9 21 2 32 
B4 Predicted Logit NF NF 8.5 15.8 7.7  
 Predicted Nested logit NF NF 7.0 18.6 6.4  

 Observed  NF 5 NF NF 2 7 
B5 Predicted Logit NF 2.6 NF NF 4.4  
 Predicted Nested logit NF 4.6 NF NF 2.4  

 Observed  65 3 NF NF 10 78 
B6 Predicted Logit 65.4 4.7 NF NF 7.9  
 Predicted Nested logit 64.5 3.9 NF NF 9.6  

 Observed  50 4 4 NF 6 64 
B7 Predicted Logit 48.3 3.5 6.4 NF 5.8  
 Predicted Nested logit 49.2 3.0 4.1 NF 7.7  

 Observed  23 NF NF 7 8 38 
B8 Predicted Logit 27.8 NF NF 6.9 3.3  
 Predicted Nested logit 27.5 NF NF 6.0 4.4  

 Observed  45 2 NF 5 8 60 
B9 Predicted Logit 41.7 3.0 NF 10.3 5  
 Predicted Nested logit 41.5 2.5 NF 9.1 6.8  

 Observed  21 NF 2 6 8 37 
B10 Predicted Logit 24.7 NF 3.3 6.1 3.0  
 Predicted Nested logit 25.2 NF 2.1 5.5 4.2  

 Observed  64 4 5 15 6 94 
B11 Predicted Logit 60.0 4.3 7.9 14.8 7.2  
 Predicted Nested logit 61.3 3.7 5.1 13.4 10.5  

NF = Not feasible. 
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5. Maximum likelihood estimation of multinomial probability 
models 

 

Suppose the multinomial probability model has been specified. Let Yij =1, if agent i in a sample of 

randomly selected agents, falls into category j and zero otherwise, and let  

 

                                P(Yij = 1Z, Xi) = Hj(Z, Xi; β) 

 

( ){ }H Xj i ;β  be the corresponding multinomial logit probabilities, where Xi is the vector of individual 

characteristics for agent i and Z = (Z1, Z2,…,Zm)  . The total likelihood of the observed outcome equals 

 ( ) ijY
ij

m

j

N

i

XZH β;,
11

∏∏
==

 

where N is the sample size. The loglikelihood function can therefore be written as 

(5.1) ( ).;,log
11

βijij

m

j

N

i

XZHY∑∑
==

=A  

By the maximum likelihood principle the unknown parameters are estimated by maximizing A  with 

respect to the unknown parameters. 

 The logit structure implies that the first order conditions of the loglikelihood function 

equals 

(5.2) ( )( ) 0;,
1
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ikirik
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irk

XXZHY β
β∂
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for r m k K= =2 3 1 2, , .. ., , , , . .. , ,  where Xik is the k-th component component of Xi, with associated 

coefficient βrk. 
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5.1. Estimation of the multinomial logit model 

 

Suppose next that the logit model has the structure 

(5.3) ( )
( )( )

( )( )
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h Z X

h Z X
j i

j i

k

m

k i

Z, ;
exp ,
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where 

(5.4) ( ) ( )h Z X h Z Xj i
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K

r j i r, , .β β=
=
∑

1

 

Examples of this structure were given in Section 3.5. Note that in this case the parameters are not 

alternative-specific. 

 When the logit model has the structure given by (5.3) and (5.4), then the first order 

conditions yield 

(5.5) ( )( ) ( )∂
∂β
A

k i

N

j

m

ij j i k j iY H X h Z X= − =
= =
∑ ∑

1 1

0Z, ; ,β  

for k K= 1 2, , ... , .  

 McFadden (1973) has proved that when the probabilities are given by (5.3) and (5.4), the 

loglikelihood function is globally strictly concave, and therefore a unique solution to (5.5) is 

guarantied. 

5.2. Berkson's method (Minimum logit chi-square method) 

If we have a case with several observations for each value of the explanatory variable it is possible to 

carry out estimation by Berkson's method (Berkson, 1953). Model (3.17) in Example 3.1 is an 

example of a case where this method is applicable, since this model does not depend on individual 

characteristics. Let 

 �H
N

Yj
i

N

ij=
=
∑1

1

 

and replace Hj by �H j  in (3.17). We then obtain  
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(5.6) ( )log
�

� ,
H

H
Z Z

j
j j

1
1











 = − +β η  

where ηj is a random error term. By the strong law of large numbers �H Hj j→  with probability one as 

the sample size increases, the error term ηj will be small when N is “large”. Also by first order Taylor 

approximation we get 

 
( ) ( )

log
�

� log � log � log
� �H

H
H H

H

H

H H

H

H H

H
j

j
j j j

j1
1

1

1 1

1











 = − ≈









 +

−
−

−
 

which shows that 

(5.7) 

( )

( ) ( )

( ) .0ZZ
H

H
log

ZZ
H

HĤE

H

HĤE

H

H
log

ZZ
Ĥ

Ĥ
logEE

1j
1

j

1j
1

11

j

jj

1

j

1j

1

j
j

=β−−







=

β−−
−

−
−

+







≈

β−−












=η

 

 Thus, even in samples of limited size the mean of the error terms { }η j  is approximately 

equal to zero. Define the dependent variable 
~
Yj  by 

 
~

log
�

� .Y
H

H
j

j=












1

 

We now realize that due to (5.6) we can estimate β by regression analysis with { }~
Yj  as dependent 

variables and { }Z Zj − 1  as independent variables. However, the error terms in (5.6) are correlated 

with covariance matrix that depends on the probabilities. Therefore one needs to apply GLS methods 

to obtain efficient estimation. See Maddala (1983, p. 30) for a more detailed treatment of Berkson’s 

method. 
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6. The nonstructural Tobit model 
 

In this section we shall describe a type of statistical model, usually called the Tobit model. The Tobit 

model (Tobin, 1958) is specified as follows: The dependent variable Y is defined by 

(6.1) Y
X u if X u

otherwise
=

+ + >



β σ β σ 0

0 ,
 

where σ > 0  is a scale parameter, and u is a zero mean random variable with cumulative distribution 

function F(·). Another way of expressing (6.1) is as 

(6.2) ( )Y X u= +max , .0 β σ  

Tobin (1958) assumed that u is normally distributed N(0,1), but it is also convenient to work with the 

logistic distribution. 

 An example of a Tobit formulation is the standard labor supply model. Here we may 

interpret X c u cβ σ+  as an index that measures the desire to work of an agent with characteristics X. 

Specifically, one may interpret X c u cβ σ+ as the difference between the utility of working and the 

utility of not working. When this index is positive, the desired hours of work is typically assumed 

proportional to X c u cβ σ+  where 1/c is the proportionality factor. The variable vector X may contain 

education, work experience, and the unobservable term u may capture the effect of unobservable 

variables such as specific skills and training. When the index X c u cβ σ+  is negative and large, say, it 

means that the agent has strong tendence to choose leisure. Since the actual hours of work always will 

be non-negative we therefore get the structure (6.1). 

 As regards structural models, see for example Hanemann (1984) and Dubin and 

McFadden (1984) and McFadden 1981) who discuss multivariate structural discrete/continuous choice 

models of the Tobit type. 

6.1. Maximum likelihood estimation of the Tobit model 

Notice first that due to the form of (6.2) ordinary regression analysis will not do because of the 

nonlinear operation on the right hand side of (6.2). 

 From (6.2) it follows that 



58 

(6.3) ( ) ( ) ( )P Y P u X F X= = ≤ − = −0 β σ β σ/ /  

where F(y) denotes the cumulative distribution of u, and  

(6.4) ( )( ) ( )( )P Y y y dy P u y X y dy X F
y X

dy∈ + = ∈ − + − = ′
−





, , ,σ β β
σ

β
σ

1
 

for y > 0 .  Consider now the estimation of the unknown parameters based on observations from a 

random sample of individuals, and as above, let i = 1 2, , ...  be an indexation of the individuals in the 

sample. Let S1 be the set of N1 individuals for which Yi > 0  and S0 the remaining set of individuals 

for whom Yi = 0.  We shall distinguish between two cases, namely the cases where we observe Xi and 

Yi for all the individuals (Case I), and the case where we do not observe Xi when i S∈ 0  (Case II). 

 

 Case I: Xi is observed for all i S S∈ ∪0 1  (Censored case) 

 From (6.4) it follows that the density of Yi when Yi > 0  equals 

 ′
−





F
y X iβ

σ σ
1

 

while, by (6.3), the probability that i S∈ 0  equals 

 F
X i−





β
σ

.  

Therefore the total loglikelihood equals 

(6.5) A = ′
−





−






 +

−



∈ ∈

∑ ∑
i S

i i

i S

iF
Y X

F
X

1 0

log log log .
β

σ
σ

β
σ

 

 

 Example 6.1 

 Suppose F(y) is a standard normal distribution function, Φ(y). Then, since 

 ′ = −Φ ( ) /u e u1

2

2 2

π
 

it follows that the loglikelihood in this case reduces to 
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(6.6) 
( )

A = −
−

− +
−





−
∈ ∈
∑ ∑
i S

i i

i S

iY X
N

X N

1 0

2

2 1
1

2 2
2

β
σ

σ
β

σ
πlog log log ( ) .Φ  

We realize that applying OLS to the equation Y X u= +β σ  corresponds to neglecting the last term in 

(6.6) and will therefore produce biased estimates. 

 

 Example 6.2 

 Suppose that F(y) is a standard logistic distribution, L(y), given by (2.12). Since 

1 − − =L y L y( ) ( )  and 

(6.7) ( )′ = −L y L y L y( ) ( ) ( )1  

it follows from (6.5) that the loglikelihood function in this case is 

(6.8) A =
−





+ −
−





















 − +

−



∈ ∈

∑ ∑
i S

i i i i

i S

iL
Y X

L
Y X

N L
X

1 0

1 1log log log log .
β

σ
β

σ
σ

β
σ

 

 

 Case II: Xi is not observed for i S∈ 0  (Truncated case) 

 In this case we must evaluate the conditional likelihood function given that the 

individuals belong to S1. The conditional probability of ( )Y y y dy yi ∈ + >, , ,0  given that Yi > 0  

equals 

 ( )( ) ( )( )
( )

( )( )
( )P Y y y dy Y

P Y y y dy Y

P Y

P Y y y dy

P Y

F
y X

dy

F
Xi i

i i

i

i

i

i

i

∈ + > =
∈ + >

>
=

∈ +

>
=

′
−





−
−





,
, , ,

.0
0

0 0

1

1

β
σ σ

β
σ

 

Therefore, the conditional loglikelihood given that Yi > 0  for all i, equals 

(6.9) A = ′
−





− −
−





















 −

∈
∑
i S

i i iF
Y X

F
X

N
1

1 1log log log .
β

σ
β

σ
σ  

6.2. Estimation of the Tobit model by Heckman's two stage method 

Heckman (1979) suggested a two stage method for estimating the tobit model. We shall briefly review 

his method for the case where F(y) is either the normal distribution or the logistic distribution. 
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6.2.1. Heckman's method with normally distributed random terms 

As above Φ(⋅) denotes the cumulative normal distribution function. From (6.2) we get 

(6.10) ( ) ( )E Y Y X E u Y> = + >0 0β σ .  

Since ( )E u Y > 0  in general is different from zero we cannot, as mentioned above, do linear 

regression analysis based on the subsample of individuals in S1. Now note that 

(6.11) 

( )( ) ( )

( ) ( )( )

P u y y dy Y P u y y dy u
X

P u y y dy u
X

P u
X

P u y y dy

P u
X

y dy
X

∈ + > = ∈ + > −







=
∈ + > −





> −





=
∈ +

− <





= ′






, ,

, ,
, ( )

0
β

σ

β
σ

β
σ

β
σ

β
σ

Φ

Φ

 

since -u has the same distribution as u due to symmetry. We therefore get 

(6.12) ( )E u Y
X

u u du
X

> =






′
−

∞

∫0
1

Φ
Φ

β
σ

β
σ

( ) .  

But 

(6.13) 

−

∞

−

∞ −

−

∞
−

∫ ∫′ = = − = ⋅ − 













 = ′





X X

u

X

u

u u du
u e

du
e X X

β
σ

β
σ

β
σ

π π π
β

σ
β

σ
Φ Φ( ) | exp

2 2

2 2 2

2 2

1

2
2  

which together with (6.11) yields 

(6.14) ( )E u Y

X

X

X
> =

′











≡ 





0

Φ

Φ

β
σ
β

σ

λ
β

σ
 

where the last notation (λ) is introduced for convenience. 

 Heckman suggested the following approach: First estimate β/σ by probit analysis, i.e., by 

maximizing the likelihood with the dependent variable equal to one if i S∈ 1  and zero otherwise. The 

corresponding loglikelihood equals 
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(6.15) A = 





+ − 













∈ ∈
∑ ∑
i S

i

i S

iX X

1 0

1log log .Φ Φ
β

σ
β

σ
 

From the estimates β* of β/σ,  compute 

 
( )
( )

�
*

*
λ

β

βi
i

i

X

X
=

′Φ

Φ
 

and estimate β and σ by regression analysis on the basis of 

(6.16) Y Xi i i i= + +β σλ η�  

by applying the observations from S1. This gives unbiased estimates because it follows from (6.10) 

and (6.14) that 

 

( ) ( )
( ) ( )

E Y E Y X Y

E u Y E u Y

X

i i i i i i

i i i i i i

i
i

η β σλ

σ σλ σ σλ

σ λ
β

σ
σ λ

> = − − >

= − > = > −

= 





− ≈

0 0

0 0

0

�

� �

� .

 

Heckman (1979) has also obtained the asymptotic covariance matrix of the parameter estimates that 

take into account that one of the regressors, λi, is represented by the estimate, � .λ i  

 Note that this procedure leads to two separate estimates of σ, namely the one obtained as 

a regression coefficient in (7.21) and the one that follows by dividing the mean component value of 

the estimated β by the corresponding mean based on β*. 

6.2.2 Heckman's method with logistically distributed random term 

Assume now that u is distributed according to the logistic distribution L(y). Then by Lemma A3 in 

Appendix A it is proved that 

(6.17) ( ) ( )( ) ( )( )E u Y X X X> = + − + −0 1 1exp / log exp / / .β σ β σ β σ  

In this case the regression model that corresponds to (6.21) equals 

(6.18) Y Xi i i i= + +β σ θ η� ~  

where 
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(6.19) ( )( ) ( )( )� exp log exp* * *θ β β βi i i iX X X= + − + −1 1  

and β* is the first stage maximum likelihood estimate of β/σ based on the binary logit model with 

loglikelihood equal to (6.15) with Φ(y) replaced by L(y). 

A modified version of Heckman's method 

Since 

 ( ) ( )P Y
X

> =
+ −

0
1

1 exp /β σ
 

it follows from (6.17) that 

(6.20) 

( ) ( )( )
( )( )
( )( ) ( )

EY P Y E u Y X

X

X X X P Y

= > > +

= +

= + − + = − >

0 0

1

1 0

σ β

σ β σ

σ β σ β β σ

log exp /

log exp / log .

 

Eq. (6.20) implies that we may alternatively apply regression analysis on the whole sample based on 

the regression equation 

(6.21) Y Xi i i i= + +β σ µ δ�  

where 

(6.22) ( )( )� log exp *µ βi iX= + −1  

and δi is an error term with zero mean. This is so because (6.20) implies that 

 ( )( )E E Y X P Yi i i iδ β σ= − + > =log .0 0  

With the present state of computer software, where maximum likelihood procedures are readily 

available and easy to apply, Heckman's two stage approach may thus be of less interest. 

6.3. The likelihood ratio test 

The likelihood ratio test is a very general method which can be applied in wide variety of cases. A 

typical null hypothesis (H) is that there are specific constraints on the parameter values. For example, 

several parameters may be equal to zero, or two or more parameters may be equal to each other. Let 

�βH  denote the constrained maximum likelihood estimate obtained when the likelihood is maximized 
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subject to the restrictions on the parameters under H. Similarly, let �β  denote the parameter estimate 

obtained from unconstrained maximization of the likelihood. Let ( )A �βH  and ( )A �β  denote the 

loglikelihood values evaluated at �βH  and �β , respectively. Let r be the number of independent 

restrictions implied by the null hypothesis. By “independent restrictions” it is meant that no restriction 

should be a function of the other restrictions. It can be demonstrated that under the null hypothesis 

 ( ) ( )( )− −2 A A� �β βH  

is asymptotically chi squared distributed with r degrees of freedom. Thus, if ( ) ( )( )− −2 A A� �β βH  is 

“large” (i.e. exceeds the critical value of the chi squared with r degrees of freedom), then the null 

hypothesis is rejected. 

 In the literature, other types of tests, particularly designed for testing the “Independence 

from Irrelevant Alternatives” hypothesis have been developed. I refer to Ben-Akiva and Lerman 

(1985, p. 183), for a review of these tests. 

6.4. McFadden's goodness-of-fit measure 

As a goodness-of-fit measure McFadden has proposed a measure given by 

(6.23) 
( )

ρ
β

2 1
0

= −
A

A

�

( )
 

where, as before, ( )A �β  is the unrestricted loglikelihood evaluated at �β  and A( )0  is the loglikelihood 

evaluated by setting all parameters equal to zero. A motivation for (6.23) is as follows: If the estimated 

parameters do no better than the model with zero parameters then ( )A A� ( )β = 0 , and thus ρ2 0= .  This is 

the lowest value that ρ2 can take (since if ( )A �β  is less than A( )0 , then �β  would not be the maximum 

likelihood estimate). Suppose instead that the model was so good that each outcome in the sample 

could be predicted perfectly. Then the corresponding likelihood would be one which means that the 

loglikelihood ( )A �β  is equal to zero. Thus in this case ρ2 1= ,  which is the highest value ρ2 can take. 

This goodness-of-fit measure is similar to the familiar R2 measure used in regression analysis in that it 

ranges between zero and one. However, there are no general guidelines for when a ρ2 value is 

sufficiently high. 
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   Appendix A 

Some properties of the extreme value and the logistic distributions 
In this appendix we collect some classical results about the logistic and the extreme value 

distributions. 

 Let X X1 2, ,... ,  be independent random variables with a common distribution function 

F(x). Let 

(A.1) ( )M X X Xn n= max , ,... , .1 2  

 

 Theorem A1 

 Suppose that, for some α > 0 , 

(A.2) ( )lim x 1 F(x) c ,
x → ∞

− =α  

where c 0> . Then 

(A.3) ( )lim P
M

(c n)
x

exp x for x 0 ,

0 for x 0 .n

n

→ ∞

−

≤








 = − >

≤






1 α

α
 

 

 Theorem A2 

 Suppose that for some x0,, ( )F x 10 = , and that for some α > 0 , 

(A.4) ( ) ( )lim x x 1 F(x) c ,
x x

0
0→

−− − =α
 

where c 0> . Then 

(A.5) ( )lim P
M x

(c n)
x

exp x for x 0

1 for x 0 .n

n 0
1→ ∞

−
≤









 = − <

≥






α

α

 

 

 Theorem A3 

 Suppose that 
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(A.6) ( )lim e 1 F(x) c ,
x

x

→ ∞
− =  

where c 0> . Then 

(A.7) ( ) ( )lim P M log (c n) x exp e
n

n
x

→ ∞

−− ≤ = −  

for all x. 

 

 Proofs of Theorems A1 to A3 are found in Lamperti (1996), for example. Moreover, it 

can be proved that the distributions (A.3), (A.5) and (A.7) are the only ones possible. 

 The three classes of limiting distributions for maxima were discovered during the 1920s 

by M. Fréchet, R.A. Fisher and L.H.C. Tippett. In 1943 B. Gnedenko gave a systematic exposition of 

limiting distributions of the maximum of a random sample. 

 Note that there is some similarity between the Central Limit Theorem and the results 

above in that the limiting distributions are, apart from rather general conditions, independent of the 

original distribution. While the Central Limit Theorem yields only one limiting distribution, the 

limiting distributions of maxima are of three types, depending on the tail behavior of the distribution. 

The three types of distributions (A.3), (A.5) and (A.7) are called standard type I, II and III extreme 

value distributions, cf. Resnick (1987). 

 The extreme value distributions have the following property: if X1 and X2 are type III 

independent extreme value distributed with different location parameters, i.e., 

 ( ) ( )P X x ej j
b xj j≤ = − −exp  

where b1 and b2 are constants, then ( )X X X≡ max ,1 2  is also type III extreme value distributed. This is 

seen as follows: We have 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )( ) ( )

P X x P X x X x

P X x P X x e e

e e e e

b x b x

x b b b x

≤ = ≤ ∩ ≤

= ≤ ≤ = − ⋅ −

= − + = −

− −

− −

1 2

1 2
1 2

1 2

exp exp

exp exp

 

where 

 ( )b e eb b= +log .1 2  

Similar results hold for the other two types of extreme value distributions. 
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 In the multivariate case where the random variables are vectors, there exists similar 

asymptotic results for maxima as in the univariate case, where maximum of a vector is defined as 

maximum taken componentwise. The resulting limiting distributions are called multivariate extreme 

value distributions, and they are of three types as in the univariate case. A characterization of type III 

is given in Theorem 8 in Section 3.10. More details about the multivariate extreme value distributions 

can be found in Resnick (1987). 

 A general type III extreme value distribution has the form 

 ( )( )exp − − −e x b a  

and it has the mean b + 0 5772. .... ,  and variance equal to a 2 2 6π , cf. Lemma A1 below. 

 

 Lemma A1 

 Let ε be standard type III extreme value distributed and let s 1< . Then 

 ( )E e 1 ss ε Γ= −  

where Γ ⋅( )  denotes the Gamma function. In particular 

 E (1) 0.5772 ...ε Γ= − ′ =  

and 

 Var (1) (1)
6

.2
2

ε Γ Γ π= ′′ − ′ =  

 

 Proof: 

 We have 

 ( )E e e e e dxs sx x xε = −
−∞

∞
− −∫ exp .  

By change of variable t e x= −  this expression reduces to 

 ( )E e t e dt ss s tε = = −
−∞

∞
− −∫ Γ 1 .  
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Moreover, the formulaes E ε = − ′Γ ( )1  and E ε 2 1= ′′Γ ( )  follows immediately. The values of ′Γ ( )1  

and ′′Γ ( )1  can be found in any standard tables on the Gamma function. 

  Q.E.D. 

 

 Lemma A2 

 Suppose U vj j j= + ε ,  where ( )ε ε ε1 2, , . .. , m  is multivariate extreme value distributed. 

Then 

 ( ) ( ) ( )P max U y U max U P U y U max U = P max U yk k j k k j j k k k k≤ = = ≤ = ≤ .  

 

 Proof: According to the definition of the multivariate extreme value distribution 

(A.8) ( ) ( ) ( )( )P U y U y U y F y y G e e em m
v y v y v ym m

1 1 2 2 1 2
1 1 2 2≤ ≤ ≤ ≡ = − − − −, , . .. , , , . .. exp , , ... ,  

where G(·) is homogeneous of degree one. For notational simplicity let j = 1, since the general case is 

completely analogous. Let ∂j denote the partial derivative with respect to component j. We have  

(A.9) 

( )( ) ( )( ) ( )P U z z dz U U P U z z dz U z U z F z z z dzk k k k mmax , , max , , ,... , , , ... , .∈ + = = ∈ + ≤ ≤ =1 1 2 1∂  

Since by assumption 

(A.10) ( ) ( )G e e e e G e e ev y v y v y y v y y v y y v y ym m m m1 1 2 2 1 1 2 2− − − − − + − + − +=, , . .. , , , .. .,  

we get 

(A.11) ( ) ( )( ) ( )∂ ∂1 1
1 2 1 2 1F z z e G e e e G e e e ez v v v v v v v zm m, , ... exp , , ..., , , . .. , .= − − −  

Hence 
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(A.12) 

( ) ( )

( ) ( )( )
( )

( ) ( )( )

P U y U U F z z z dz

e G e e e e G e e e e dz

e G e e e

G e e e
e G e e e

k k k k

y

v v v v
y

z v v v z

v v v v

v v v
y v v v

m m

m

m

m

max , max , , ...,

, , ... , exp , , ... ,

, , .. .,

, , . .. ,
exp , , ..., .

≤ = =

= −

= ⋅ −

−∞

−∞

− −

−

∫

∫

1 1

1

1

1 1 2 1 2

1 1 2

1 2

1 2

∂

∂

∂

 

With y = ∞  in (A.12) we realize that the first factor on the right hand side equals the choice 

probability, ( )P U Uk k1 = max . Hence we have proved Theorem 8 as well. This implies also that the 

second factor on the right hand side equals ( )P U yk kmax ≤ . Moreover, it follows that the events 

{ } { }U U and U yk k k k1 = ≤max max  are stochastically independent. 

  Q.E.D. 

 

 Lemma A3 

 Assume that Y u= +µ σ ,  where  
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 Proof: 

 For y > − µ
σ

 we have 
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(A.15) 
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which proves (A.13). 

 Consider next (A.14). Let 
~

.Y Y= σ  Then for y ≥ 0  
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This implies that 
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and (A.14) has thus been proved. 

  Q.E.D. 
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