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1. Introduction

Thetraditional theory for individual choice behavior, such asit usualy is presented in textbooks of
consumer theory, presupposes that the goods offered in the market are infinitely divisible. However,
many important economic decisions involve choice among qualitative—or discrete alternatives.
Examples are choice among transportation alternatives, labor force participation, family size,
residential location, type and level of education, brand of automobile, etc. In transportation analyses,
for example, oneistypicaly interested in estimating price and income elasticities to eval utate the
effect from changesin aternative-specific attributes such as fud prices and user-cost for automobiles.
In addition, it is of interest to be able to predict the changes in the aggregate distribution of commuters
that follow from introducing a new transportation alternative, or closing down an old one.

The set of alternatives may be “structurally” discrete or only “observationally” discrete.
The set of feasible transportation aternativesis an example of a structurally categorical setting while
different levels of labor supply such as “part time”, and “full time” employment may be interpreted as
only observationally discrete since the underlying set of feasible alternatives, “hours of work”, isa
continuum.

In several applications the interest is to model choice behavior for so-called
discrete/continuous settings. Typical examples of phenomena where the responseis
discrete/continuous are variants of consumer demand models with corner solutions. Here the discrete
choice consists in whether or not to purchase a positive quantity of a specific commaodity, and the
continuous choice is how much to purchase, given that the discrete decision is to purchase a positive
amount. Another type of application isthe demand for durables combined with the intensity of use.
For example, a consumer that purchases an automobile has preferences over the intensity of use, and a
household that purchases an electric appliance is also concerned with the intensity of use of the
eguipment.

The recent theory of probabilistic, or discrete/continuous choice is designed to model
these kind of choice settings, and to provide the corresponding econometric methodology for empirical
analyses. Due to variables that are unobservable to the econometrician (and possibly also to the
individual agents themselves), the observations from a sample of agents' discrete choices can be
viewed as outcomes generated by a stochastic model. Statistically, these observations can be
considered as outcomes of multinomial experiments, since the alternativestypically are mutually
exclusive. In the context of choice behavior, the probabilitiesin the multinomial model are to be
interpreted as the probability of choosing the respective alternatives (choice probabilities), and the
purpose of the theory of discrete choice isto provide a structure of the probabilities that can be

justified from behavioral arguments. Specificaly, oneis, analogously to the standard textbook theory



of consumer behavior, interested in expressing the choice praobabilities as functions of the agents
preferences and the choice constraints. The choice constraints are represented by the usual economic
budget constraint and in addition, the choice set (possibly individual specific), which isthe set of
aternatives that are feasible to the agent. For example, in transportation modelling some commuters
may have access to railway transportation while others may not.

In the last 25 years there has been an almost explosive development in the theoretical and
methodological literature within the field of discrete choice. Originally, much of the theory was
develop by psychaologists, and it was not until the mid-sixties that economists started to adopt and
adjust the theory with the purpose of anayzing discrete choice problems. In the present compendium
we shall discuss centra parts of the theory of discrete/continuous choice as well as some of the
econometric methods that apply.

There exist by now afew textbooks that only consider discrete and discrete/continuous
choice, such as Maddala (1983), Train (1986), Ben Akivaand Lerman (1985), and Train (2003). There
are also several good survey articles, such as Amemiya (1981) and McFadden (1984), to mention just
afew. Dagsvik (1985, ) aretwo survey articlesin Norwegian. In addition several textbooks contain
one or severa chapters on discrete and discrete/continuous econometric models. See for example
Amemiya (1985, ch. 9, 10), Cameron and Trivedi (2005, ch. 14-16), Greene (1993, ch. 21, 22), Lattin,
Carrall and Green (2003, ch. 13), Wooldridge (2002, ch.15, 16). In contrast to standard textbooks and
surveys in econometric modeling of discrete choice such as Maddala (1983), Train (1986), Amemiya
(1981), McFadden (1984) and Ben-Akiva and Lerman (1985), the focus of the present treatment is
more on the theoretical devel opments than on statistical methodology. The reason for this is two-fold.
Firgt, itisbelieved that it is of substantial interest to bring forward some of the recent theoretical
results that otherwise would not be easily accessible for the non-expert student. Second, the statistical
methodology for estimation, testing and diagnostic analysisis rather well covered by the textbooks
and surveys mentioned above.

Thissurvey is organized asfollows: In Section 2 | give a brief overview of reduced form
type specifications of models with discrete response. In Section 3 | discuss some important e ements
of probabilistic choice theory, and in Section 4 | discuss the modeling of afew selected applications of
discrete choice analysis. In Section 5 the estimation and testing based on the maximum likelihood
method are discussed. In Section 6 | consider briefly the specification and estimation of Tobit models

(nonstructura).



2. Satistical analysiswhen the dependent variableis discrete

As mentioned in the introduction there are many interesting phenomenons that naturally can be
modelled with a dependent variable being qualitative (discrete) or where the dependent variable may
be both discrete and continuous.

While most of the subsequent chapters will discuss theoretical aspects of
discrete/continuous choice, we shall in this chapter give a brief summary of the most common
statistical models which are useful for analyzing phenomena when the dependent variable is discrete,
without assuming that the underlying response variables necessarily are generated by agents that make
decisions. A more detailed exposition is found in Maddala (1983), chapter one and two. However, the
statistical methodology we discussis of relevance for estimating the choice models for agents

(consumers, firms, workers, etc.), and will be further discussed in subsequent chapters.

2.1. Modelsfor binary outcomes

In this section we shall consider models where the dependent variable is a Binomial variable. Recall
that in statistics, the Binomial model is designed to represent random "experiments” in which the
outcomes are independent across experiments, and in each experiment there are only two outcomes;
either an event occurs or the event does not occur. For example, our experiment may consist in
drawing independently a sample of nindividuals and recording the labor force status of each of them
("participation” or "not participation™). Thus, we may represent the outcome in this case by a dummy
variable Y;, defined by

1 if individua i participatesin the labor market
"7 10 otherwise.

In the general case, Y; equals oneif a particular event—or outcome in question occurs,

and zero otherwise. We may write
(2.1 Y, =EY, +1,

where 1, is arandom error term with zero mean. Since Y; is adummy variable with only two

outcomes, it follows that

(2.2) EY, =Y yP(Y, =y)=0-P(Y,=0)+1-P(Y, =1)=P(Y, =1).

y=0



Thus, in this case EY; has the interpretation as the probability that Y, =1. In general EY; will depend

on an exogenous variable just asin the classical regression model considered above. Let X; denote a

vector of exogenous variable and assume that

(2.3) E<Yi|Xi):h(Xi’B)

where h(X;,B) isafunction of X;, that is fully specified apart from a vector of unknown parameters,
B. Hence we can in the general case write

(2.4 Y; =h(X;.p)+mn;.

Assumption (2.3) implies that

(2.5) E(e;| X;)=0.
Also, due to the fact that the dependent variable is binary, we obtain
(2.6)
Var (g X, )=Var (Y, [X;)=E(Y?|X; )-(E(Yi]X, ))2=E(Yi X,)-(E(Yi]X, ))2=h(xi B)-h(X;.B)".

Consequently, the model (2.4) differs from the classical regression model above in that

(2.7) 0<h(X;,p)<1

and that the conditional variance (2.6) is afunction of the conditional mean of Y; expressed in (2.3).
Therestriction in (2.7) follows from the fact that similarly to (2.2), h(X;,B) hastheinterpretation asa

conditional probability, namely
(2.8) h(X;.B)=P(Y, =1 X;).

It is therefore problematic to specify h(X;,B) asalinear function in X; because a linear specification

will not necessarily satisfy (2.7), and consequently we may risk to get predictions from the model that
are negative, or greater than one. Thisisthe reason why the linear specification is seldom used in

settings with discrete dependent variables. (Linear probabiliy model.) Instead it is common to specify
h(X;,B) as

(2.9) h(xi’B):F(Xi B)



where F(y) isan increasing function in y that satisfies 0< F(y) <1, and

(2.10) XiB:BO+Z Xi B -
k=1

Thus, apart from the nonlinear transformation, F(-), (2.9) has the structure of alinear regression model,

and the unknown parameter vector equals the "regression” coefficients, .

The binary Probit model
In the Probit model F(y) isequal to the standard cumulative Normal distribution function, i.e.,

y
(2.11) F(y) = d(y) = % [ e ax.

The binary Logit model
In the Logit model F(y) isequal to the cumulative Logistic distribution function,

1

(2.12) FY) =

Clearly, 0< F(y) <1, since F(y) isincreasing, F(y) > 1 when y — « and F(y) >0 when y — —oco.

It turns out that unless the explanatory variables take extreme values, the Logit and the Probit models
are almost indistinguishable.

Example 2.1

Consider again the modelling of labor force participation. In this case the vector X is
often assumed to contain variables such as age, maritd status, number of small children, education. If
one could estimate the unknown parameters of the model one would for example be possible to assess

the marginal effect of education on labor force participation.

2.2. Estimation
The maximum likelihood method (MLE)



The maximum likelihood method is the most common method although it is possible to use other
methods. Assume now that the model is given by (2.9). Suppose we have a sample of n observations.

Then, conditional on the exogenous variables (X, ), the likelihood of the observations equal
(2.13) LB =TT Fx:B)-TT (1-F(X,B))
ieS ieSy
where S, isthe subsample for which Y, =1 i €S;, while § isthe subsample for which Y; =0,i € S,.

Thus the loglikelihood can be written as

(2.14) INLB)=D, InF(X;B)+ D In(1-F(X;B)).

ieS ieSy

Alternatively, (2.14) can be expressed as

(2.15) InL(B)zzn: Y, InF(X; B)+ n (1-Y,)In(1-F(X, B)). (10.27)
From (2.15) we obtain that
(2.16)
LB _ 3 Vi FX X g (YR X v (Y —FOXB)FX B)Xs
aBk i=1 F(XiB) i=1 1- F(XiB i=1 X B)(l F(X B)) ’
for k=01,...,m. Therefore, the maximum likelihood estimator, ﬁ , isdetermined by
o Y —F(X, B)|F(X B) X
o1 g [roxBE
= FxB)[2-F(x,B)

for k=01,...,m, where X, =1. The system of equation (2.17) must of course be solved for [3 by
iteration methods. If the model is aLogit model where Fis given by (2.12) then (2.17) reduces to

5
[EEY

(2.18) Yi———— | Xk =0

for k=01,...,m

Also (2.18) isnonlinear in ﬁ , and must similarly to the general case (2.17) be solved by
iteration methods. It can be demonstrated that for the Probit and the Logit models the loglikelihood



function is globaly concave and consequently a unique maximum of the likelihood functionis

guaranteed.
The MLE hasthe following main properties:
()  itisconsistent,i.e. plimp=p
(i) itisasymptotically efficient, i.e. it attains the smallest variance among all consistent,

asymptotically normal estimators
(iii) itis asymptotically normally distributed according to:

(2.19) Jn(B-B)-N(0,v)

whereV isthe asymptotic covariance matrix.

The covariance matrix V is determined by the likelihood function. It is equal to

(2.20) V= {— E{—az InL(5) }J
0pp
where
92InL(B)
oPp

means the covariance matrix with e ements

{azln L(ﬂ)}
Bop;

Thus,
Asympt. Var,B = Vin.
In practice the covariance matrix V can be estimated consistently by replacing the
expectation operator by the sample average and the unknown B-coefficients by their ML estimators.

Finaly, the MLE is asymptotically efficient because it attains asymptotically the so-

called Cramér-Rao lower bound.



When we apply the above model to some data set, the computer program will estimate the
unknown ’sby ML. Usualy these programs will also give the t-values for each parameter. Hence,
simple hypotheses can be tested in the “usual way”. If we wish to test more composite hypotheses we
have to resort to test procedures like Wald' stest or the Likelihood ratio test.

2.3. Binary random utility models
Often the model with a discrete dependent variable is derived from arandom utility representation.
That is, to each aternative in a choice setting is associated a random index which represents the utility
of the dternative. Specifically, assume that the individual decision-maker faces a choice set consisting
of two alternatives, indexed by zero and one, respectively. Let U;; be the individual i's utility of
dternativej, j=0,1. Assume that

ij?

(2.21) Uj=v(X;.0)+e,

where v(X i ,e) is adeterministic term that may depend on explanatory variables Xj;, an unknown

vector of parameters 0, and g;; is arandom term. A utility-maximizing individual i will choose

alternative] if U; =max(U,;,U;,) which meansthat

(2.22)

1 if U,;>U;
'T10 if Uy<Uy,.

Let F(y) be the cumulative distribution function of €, —¢€;,, i.e.

(2.23) F(y)=P(g;o -1 <Y).

Then it follows that

(2.24)
E(Yi|xi11XiO): P(Uil > Ui0|Xi1’XiO): I:>(Sio —&j <V(Xilve)_V(Xio’e)):F(V(Xil’e)_v(xio’e))'

In applications the function v(X i ,e) is often assumed linear in parameters, i.e.,

(2.25) V(Xijfe)zxijBEBO+Z Xijk P
k=1
where 6 =B. If (2.25) holds, (2.24) one can write

10



(2.26) h(Xi1, X 0,6)

E(Yi | Xilfxio): F(Xi B)
where X; =X, =X, .

The Probit model
Suppose gj; and € are independent and normally distributed with

(2.27) Var (g X1, X o) =17
Then, conditional on (X, X;,),
ey —€, ~ N(0,7%)

where 1% =12 +15 . Hence we obtain in this case that

(2:28) Fy)=oY),
T
and conseguently we obtain the Probit model,

(2.29) h(Xi1,X0,0)=®(X,B)

where B* =B /1. We cannot identify the parameter T in this model, and we need not either, since the

model is fully determined through X"

The Logit model

Suppose that the error terms €; and € are independent extreme value distributed (type I11), i.e.,

(2.30) P(s Sy):exp(—e‘y), yeR.

ij

Then it follows easily that

(2.31) P(eig—€;1 < ):1+e-y

whichisthe Logistic distribution introduced in (2.12). If (2.31) holds we therefore get the Logit
model;

11



(232) h(Xil,XiO,e):m.

2.4.Themultinomial L ogit model

In many instancesit is of interest to anayze data that are outcomes of multinomial experiments,
regardless or not these are generated by discrete choice behavior. This means that the "outcomes' fall
into one out of m (say) categories, where m may be greater than two. For example, when analyzing
traffic accidents it may be useful to operate with several type of accidents.

Let Y;; be equal to oneif outcomej occursfor individual | and zero otherwise. Let P =

P(Y; = 1). Then one must havethat 0< P, <1, and Zj P, =1. Onetype of specification that fulfills

these requirements is the multinomial logit model. One version of the multinomial logit model has the

structure

exp(XBj)
Do &P(XBy)

where X is, typically, avector of agent-specific variables ;, j=12,...,m, are vectors of unknown

(2.34) P =H,(X;B)=

parameters, and B = (B,.B,....,B,,). This specification is also convenient for estimation purposes as

we shall discussin Section 6.
From (2.34) it follows that

H.(X;
(2.35) log (Hjixgn =X (B, -B,).

Eq. (2.35) demonstrates that at most 3; — B, can beidentified. To redlizethis, suppose [3*]- , are
parameter vectorssuch that B} #B;,j=12,...,m.If
Bi=B;—B.+B:

for j=2,...,m, then {B]} will satisfy (2.35), and consequently {B,—} are not identified. We can

therefore, without loss of generality, put B, =0, and write

12



(2.369) H,(X;B) =
1+ exp(XBy)
k=2
and
(2.36b) H,(X;B) = &p(XB,)

m

1+ exp(XBy)

for j=2,3,...,m. Evidently, with sufficient variation in the X-vector, Bj,j=2,3,...,m, will be

identified.

Example 2.2

Consider the choice of tourist destination. Suppose there are m actual destinations. We
assume that actua variables that influence this choice are age, income, education, marital status,
family size, etc. Let X be the vector of these variables. The probability of choosing destination j can be
modelled asin (2.36).

3. Theoretical developments of probabilistic choice models

3.1. Random utility models

As indicated above, the basic problem confronted by discrete choice theory isthe modelling of choice
from a set of mutually exclusive and collectively exhaustive alternatives. In principle, one could apply
the conventional microeconomic approach for divisible commodities to model these phenomena but a
moment's reflection reveals that this would be rather ackward. Thisis due to the fact that when the
aternatives are discrete, it is not possible to base the modelling of the agent’s chosen quantities by
evaluating marginal rates of substitution (marginal calculus), smply because the utility function will
not be differentiable. In other words, the standard marginal cal culus approach does not work in this

case. Consequently, discrete choice analysis calls for a different approach.
3.1.1. The Thurstone model

Historically, discrete choice anaysis was initiated by psychologists. Thurstone (1927) proposed the

Thurstone model to explain the results from psychological and psychophysical experiments. These

13



experimentsinvolved asking students to compare intensities of physical stimuli. For example, a
student could be asked to rank objects in terms of weights, or tonesin terms of loudness. The data
from these experiments reveal ed that there seemed to be the case that some students would make
different rankings when the choice experiments were replicated. To account for the variability in
responses, Thurstone proposed a model based on the idea that a stimulus induces a“ psychological
state” that is arealization of arandom variable. Specifically, he represented the preferences over the
aternatives by random variables, so that the individual decision-maker would choose the alternative
with the highest value of the random variable. The interpretation is two-fold: First, the utilities may
vary across individuals due to variables that are not observable to the analyst. Second, the utility of a
given alternative may also vary from one moment to the next, for the same individual, due to
fluctuationsin the individual’s psychological state. As aresult, the observed decisions may vary across
identical experiments even for the same individual.

In many experiments Thurstone asked each individual to make several binary comparisons,

and he represented the utility of each alternative by a normally distributed random variable. Let U}

and U}, denote the utilities a specific individual associates with the aternativesin replication no. i,

i=12,...,n. Thurstone assumed that
U=V, +¢]

where eij ,J=12,i=12,...,n, areindependent and normally distributed where eij has zero mean and
standard deviation equal to oj. Thus according to the decision rule the individual would choose
aternative onein replication i if Uy is greater than U}, . Dueto the “error term”, ¢!, theindividual
may make different judgmentsin replications of the same experiment. Let Y ]' =1if dternativej is

chosen in replication i and zero otherwise. The relative number of times the individual chooses

dternativej, P, equals

j=12. When the number of replicationsincreases, then it follows from the law of large numbers that

I51 tends towards the theoretical probahility;

14



(31) PlsP(Uil>Ui2):d)[—V1_V2 ]

where @(') isthe standard cumulative normal distribution. The last equality in (3.1) follows from the

assumption that the error terms are normally distributed random variables. The probability in (3.1)
represents the propensity of choosing aternativej and it is a function of the standard deviations and
the means, v, and v,. Whilev; repesents the “average” utility of alternative | the respective standard
deviations account for the degree of instability in the individuals preferences across replicated
experiments. We recognize (3.1) as aversion of the binary probit model.

Although Thurstone suggested that the above approach could be extended to the multinomial
choice setting, and with other distribution functions than the normal one, the statistical theory at that

time was not sufficiently developed to make such extensions practical.

3.1.2. The neoclassisist’ s approach

Thetradition in economics is somewhat different from the psychologist’s approach. Specifically, the
econometrician usually is concerned with analyzing discrete data obtained from a sample of
individuals. With aneoclassica point of departure, the tradition is that preferences are typically
assumed to be deterministic from the agent’ point of view, in the sense that if the experiment were
replicated, the agent would make identical decisions. In practice, however, one may observe that
observationally identical agents make different choices. Thisis explained as resulting from variables
that affect the choice process and are unobservabl e to the econometrician. The unobservables are,
however, assumed to be perfectly known to the individua agents. Consequently, the utility functionis
modeled as random from the observing econometricians point of view, whileit isinterpreted as
determinigtic to the agent himself. Thus the randomness is due to the lack of information available to
the observer. Thus, in contrast to the psychol ogist, the neoclassical economist seems usually reluctant
to interpret the random variables in the utility function as random to the agent himself. Since the
economist often does not have access to data from replicated experiments, he is not readily forced to
modify his point of view either. There are, however, exceptions, see for example Quandt (1956) and

Georgescu-Roegen (1958).

3.1.3. General systems of choice probabilities

Formally, we shall define a system of choice probabilities as follows:

Definition 1; System of choice probabilities

15



(i) Auniversof choice alternatives, S. Each alternative in Smay be characterized by a set of
variables which we shall call attributes.

(if) Possibly a set of agent-specific characteristics.
(iii) Afamily of choice probabilities {Pj (B), je Bc S}, where P;(B) is the probability of choosing

alternative j when B is the set (choice set) of feasible alter natives presented to the agent. The
choice probabilities are possible dependent on individual characteristics of the agent and of

attributes of the alter natives within the choice set.

Evidently, for each given BC S, ZjeB P.(B)=1, since for given B, P,(B) are “multinomial”

probabilities.

Definition 2
A system of choice probabilities constitutes a random utility model if there exists a set of

(latent) random variables {U e S} such that

(3.2) P.(B)= P[Uj =rpgé<ukj.

The random variable U; is called the utility of aternative]. If the joint distribution function of
the utilities has been specified it is possible to derive the structure of the choice probabilities by means
of (3.2) asafunction of the joint distribution of the utilities. However, in most cases the resulting
expression will be rather complicated. As explained above, the empirical counterpart of P(B) is the
fraction of individuals with observationally identical characteristics that have chosen aternative j from
B.

Often , the random utilities are assumed to have an additively separable structure,

where v; is adeterministic term and g; is arandom variable. The joint distribution of the terms

(81,82,...) is assumed to be independent of {vj} . Inempirical applications the deterministic terms

are specified as functions of observable attributes and individual characteristics.

16



Similarly to Manski (1977) we may identify the following sources of uncertainty that
contribute to the randomness in the preferences:

(i) Unobservable attributes: The vector of attributes that characterize the alternatives may only
partly be observable to the econometrician.

(ii) Unobservable individual-specific characteristics: Some of the variables that influence the
variation in the agents tastes may partly be unobservable to the econometrician.

(iii) Measurement errors: There may be measurement errors in the attributes, choice sets and
individual characteristics.

(iv) Functional misspecification: The functional form of the utility function and the distribution of the
random terms are not fully known by the observer. In practice, he must specify a parametric form
of the utility function as well as the distribution function which at best are crude approximations
to the true underlying functiona forms.

(v) Bounded rationality: One might go along with the psychol ogists point of view in alowing the
utilities to be random to the agent himself. In addition to the assessment made by Thurstone, there
is an increasing body of empirical evidence, as well ascommon daily life experience, suggesting
that agentsin the decision-process seem to have difficulty with ng the precise value of each
aternative. Consequently, their preferences may change from one moment to the next in a manner
that is unpredictable (to the agents themselves).

To summarize, it is possible to interpret the randomness of the agents utility functions as
partly an effect of unobservable taste variation and partly an effect that stem from the agents difficulty
of dealing with the complexity of ng the proper value to the alternatives. In other words, it
seems plausible to interpret the utilities as random variables both to the observer as well as to the agent
himself. In practice, it will seldom be possible to identify the contribution from the different sourcesto
the uncertainty in preferences. For example, if the data at hand consists of observations from a cross-
section of consumers, we will not be able to distinguish between seemingly inconsistent choice
behavior that results from unobservables versus preferences that are uncertain to the agents
themselves.

Before we discuss the random utility approach further we shall next turn to a very important

contribution in the theory of discrete choice.

3.2. Independence from Irrelevant Alter natives and the L uce model
Luce (1959) introduced a class of probabilistic discrete choice model that has become very important
in many fields of choice analyses. Instead of Thurstone's random utility approach, L uce postulated a

structure on the choice probabilities directly without assuming the existence of any underlying
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(random) utility function. Recall that P,(B) means the probability that the agent shall choose
aternative j from B when B is the choice set. Statigtically, for each given B, recall that these are the
probabilities in a multinomial model, (due to the fact that the choices are mutually exclusive), which
sum up to one. However, the question remains how these probabilities should be specified as a

function of the attributes and how the choice probabilities should depend on the choice s, i.e., in
other words, how should {Pj (B)} and {F’j (A)} berelated when je B A ? To ded with this

challenge, Luce proposed his famous Choice Axiom, which has |later been known asthe [1A property;
“Independence from Irrelevant Alternatives’. To describe [IA we think of the agent asif heis
organizing his decision-process in two (or several) stages: In the first stage he selects a subset A from
B, where A contains alternatives that are preferable to the alternativesin B\A. In the second stage the
agent subsequently chooses his preferred alternative from A. So far this entails no essential oss of
generdity, sinceit is usually always possible to think of the decision process in this manner. The
crucia assumption Luce made is that, on average, the choice from A in the last stage does not depend
on alternatives outside A; the alternatives discarded in the first stage has been completely “forgotten”
by the agent. In other words, the alternatives outside A areirrelevant. A probabilistic statement of this
property isasfollows: Let P,(B) denote the probability of selecting a subset A from B, defined by

P.(B)=Y_ P/(B).

jeA

Specifically, Pa(B) means the probability of selecting a set of aternatives A which are at least as
attractive as the alternatives B\A.

To state I1A formally, let J(B) denote the agent’ s choice from B. Thus, we can express the
choice probability dternatively as P,(B) = P(J(B) = j) .

Definition 3; Independencefrom Irrelevant Alternatives (11A)

Let {P,(B)} be a system of choice probabilities with probabilities that are different from

zero and one. This system satisfies 1A if and only if for any A,Bc S suchthat je AcBc S

(3.4 P(J(B)=j[J(B)e A)=P(J(A)=]).
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Eq. (3.4) states that the choice from B, given that the chosen alternative belongsto A is
the same asif A werethe“origina” choice set. We can rewrite (3.4) asfollows. The left hand side of
(3.4) can be expressed as

P((3B)=])n(IB)eA)) P(IB)=j) P(B)
P(J(B)e A) "~ P(JB)eA) P,(B)

P(J(B)=jld(B)e A)=

Hence, (3.4) isequivalent to

(35 R (B)=F.(B)R(A).

Eq. (3.4) states that the probability of choosing alternative j from B equal s the probability that
A isasubset of the “best” aternatives which is selected in stage one times the probability of selecting
aternativej from A in the second stage. Notice that the second stage probability, P,(A), has the same
structure as P(B), i.e., it does not depend on alternatives outside the (current) choice set A. Note that
since thisis a probabilistic statement it does not mean that 11A should hold in every single experiment.
It only meansthat it should hold on average, when the choice experiment is replicated alarge number
of times, or dternatively, it should hold on average in alarge sample of “identical” agents. (In the
sense of agents with identically distributed tastes.) We may therefore think of 11A as an assumption of
“probabilistic rationality”. Another way of expressing I1A isthat the rank ordering within any subset

of the choice set is, on average, independent of alternatives outside the subset.

Definition 4; The Constant-Ratio Rule

A system of choice probabilities, {F’j (B)}, satisfies the constant-ratio ruleif and only if for all

j, k, Bsuchthat j,ke BCS,

(35) P ({k i})/ R (k. i}) = P (B)/R(B)

provided the denominators do not vanish.
The following results are due to Luce (1959):

Theorem 1
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Suppose {F’j (B)} is a system of choice probabilities and assumethat P, ({ j,k})e (0,1) for all
j,ke S. Then part (i) of the Il A assumption holds if and only if there exist positive scalars, a(j), j €S,

such that the choice probabilities equal

36) P, (B) =)

> ak)

keB

Moreover, the scalars{a(j)} are unique apart from multiplication by a positive constant.

Proof: Assumefirst that (3.6) holds. Then it follows immediately that (3.4) holds. Assume
next that (3.4) holds. Define a(j)=cP,(S), where cisan arbitrary positive constant. Then by (3.4)

with B=S and A =B, weobtain

pE)- O __aie __al)
TR Y ake Y ak)

keB keB
where B c S Thisshowsthat Py(B) has the structure (3.6).

To show uniqueness (apart from multiplication by a constant), let a(j) be positive scalars

such that (3.6) holds with &(j) replaced by a(j) . Then with B =S we get

PI(S) _a(j) _ &(j)
RS al) &

which implies that

a(j)=a(j) al)

Thus we have proved that I1A implies the existence of scalars {a(j), j € S}, such that (3.6) holds and

these scalars are unique apart from multiplication by a constant.
Q.E.D.

Theorem 2

Let {F’j (B)} be a system of choice probabilities. The Constant-Ratio Rule holdsif and only if

[IA holds.
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Proof: The constant ratio ruleimpliesthat for jke AcBcS

PB) _P ({i.k}) _h®
P.(B) P({ik}) P(A)

Hence, since
P (B)P«(A) =P, (A) R (B)
and
> R(A)=1,
keA
we obtain

P(B)=P,(B)>. P(A)=P,(A)> P.(B)=P,(A)P,(B).
keA keA

Conversdly, if 1A holds we realize immediately that the constant ratio rule will hold.
Q.E.D.

The results above are very powerful in that they establish statements that are equivalent to the
I1A assumption, and they yield asimple structure of the choice probabilities. For example, if the
univers S consists of four alternatives, S={1,2,3,4}, therewill be at most 11 different choice sets,
namely {1,2}, {1,3},{2,3}, {14}, {24},{3,4},{1,2,3},{1,24},{1,3,4},{2,3,4},{1,2,3,4}. This
yields atogether 28 probabilities. Since the probabilities sum to one for each choice set we can reduce
the number of “free” probabilitiesto 17. However, when I1A holds we can express al the choice
probabilities by only three scale values, a, a; and a, (Since we can choose a;=1, or equal to any other
positive value). We therefore realize that the Luce model implies strong restrictions on the system of
choice probabilities.

There is another interesting feature that follows from the Luce model, expressed in the next

Corallary.

Corollary 1
If 1A, part (i) holdsit follows that for distinct i, j and ke S

21



(37) R({i. i) P ({5 k) R({kii}) = R ({fi. k) Re({l 1) P ({3 11)-

The proof of thisresult isimmediate.

Recall that I|A only impliesrationality “in the long run”, or at the aggregate level. Thus
the probability of intransitive sequences (chains) is positive. Theresult in Corollary 1 is a statement

about intransitive chains beause the interpretation of (3.7) isthat

Pi>j-k>=i)=P(i=k>j=i)

where = means “preferred to”. In other words, the intransitivechains i > j>= k=i and i > k> j>i

have the same probability. This shows that although intransitive “chains’ can occur with positive
probability there is no systematic violation of transitivity. In fact, it can aso be proved that if (3.7)

holds then the binary choice probabilities must have the form
L a(j)
(38) P, Llf)=———=
({3 a(i)+a(j)
where {a(j),je S} are unique up to multiplication by a constant, cf. Luce and Suppes (1965).

However, (3.7) does not imply 1IA. Equation (3.7) is often called the Product rule.

3.3. Therelationship between |1 A and the random utility formulation

After Luce had introduced the | A property and the corresponding Luce model, Luce (1959), the
question whether there exists arandom utility model that is consistent with 1A wasraised. A first
answer to this problem was given by Holman and Marley in an unpublished paper (cf. Luce and
Suppes, 1965, p. 338).

Theorem 3

Assume a random utility model, U; =v, +¢; , where ¢, , j € S, areindependent random

variables with standard type 111 extreme value distribution®

(3.9 P(gj £x|vk,keS):exp(—e‘x).

Then, for je BCS,

1 In the following the distribution function (3.9) will be called the standard extreme value distribution.
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(3.10) P'(B)EP(U:maxUk)z €
] ] keB evk

keB

Weredlize that (3.10) is aLuce model with v; =loga(j) . Thus, by Theorem 3 there

exists arandom utility model that rationalizes the L uce model.

Proof: Let usfirst derive the cumulative distribution for V; =max, ., U, . We have

(3.11) P(V;<y)= [] Plec<y-vi)= J] ew(-e“”)=exp(-e” D))
keB\{j} keB\{j}

where

(3.12) D, =Zkem e’ .

Hence

(313) P(U;=maxU, |=P(U;>V,)=P(e, +v,>V,)= [ P(y>V,)P(e; +v, (y,y+dy)).
Note next that since by (3.9)

P(U, <y)=P(e;+v, <y)= exp(—e"i_y)

it follows that

P(ej+vj e(y,y+dy)):exp(_ v,-—y)evj_y dy.

Hence

T P(y> V]-)P(Sj +V, e(y,y+ dy)) = T eXp(—Dj e—y)exp(_evj—y)evj—y dy
(3.14) pNY T exp(_(Dj‘i‘evj)e_y)e_ydy

= Dje+levi l exp(—(D [ +e’ )e‘y) = Dje+levi :
Since
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Vi _ Vi
D, +e _Z e

keB

the result of the Theorem follows from (3.13) and (3.14).
Q.ED.

An interesting question is whether or not there exists other distribution functions than
(3.9) which imply the Luce model. McFadden (1973) proved that under particular assumptions the
answer isno. Later Yellott (1977) and Strauss (1979) gave proofs of thisresult under weaker
conditions. Ydllott (1977) proved the following result.

Theorem 4

Assume that S contains more than two alter natives, and U,=v,+¢, , Wwhere £ ,j €S,

arei.i.d. with cumulative distribution function that is independent of {vi Jje S} and is strictly

increasing on thereal line. Then (3.10) holdsif and only if g has the standard extreme value

distribution function.

Example 3.1
Consider the choice between m brands of cornflakes. The price of brand j is Z;. We

assume that the utility function of the consumer hasthe form

(3.15) U=ZB+e0

where B <0 and ¢ >0 are unknown parameters, g;, j=12,...,m, arei.i. extreme value distributed.
Without loss of generality we can write the utility function as

(3.16) L~Jj=ZjB/0+ejEZjB+ej.

From Theorem 3 it follows that the choice praobabilities can be written as

317 p o ZPZA)

> ez p)

k=1

Clearly, B isidentified, since
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Iog(%j =(Zj —Zl)B.

1
However, ¢ isnot identified. Note that the variance of the error term in the utility functionislarge
when ¢ islarge, which in formulation (3.16) correspondsto asmall 3.

When 3 has been estimated one can compute the aggregate own- and cross-price

elasticities according to the formulae

dlogP,
(3.18) aIOSZJj =pZz,(1-P)
and
(3.19) 9logR =-BZ, P,
dlogz,
for k= j.

Example 3.2
Consider atransportation choice problem. There are two feasible aternatives, namely
driving own car (Alternative 1), or riding abus (Alternative 2).

Let i index the commuter and | et

, [t et
710 otherwise,

Zj, = In-vehicle time, alternativej,
Z;;; = Out-of-vehicle time, aternative ],
Z;;, = Transportation cost, aternativej.

The variable Z;j; is supposed to represent the intrinsic preference for driving own car. The utility

function is assumed to have the structure
Uj=Z;B+ey

where Z, =(Z1,Z,.Z5,Z;4) - €1 and € areii. extreme value distributed, and f is a vector of

unknown coefficients. From these assumptionsit follows that the probability that commuter i shall

choose alternativej is given by
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(3.20) M

eXp(ZikB)

i~ 2
k=1
From a sample of observations of individual choices and attribute variables one can estimate § by the
maximum likelihood procedure.

Let us consider how the model above can be applied in policy simulations once 3 has

been estimated. Consider agroup of individuals facing some attribute vector Z;, j=12. The

corresponding choice probability equals

exp(Z.
(3.21) P == (25)
> exp(Z,B)
k=1
for j=1,2. From (3.21) it follows that
dlogP,
3.22 L-B.z (1-P
(3.22) ooz, B.Z,(1-P)
and
(3.23) Jlogh, Z. P
. alogzkr__Br kr Tk

for k# j. Eq. (3.22) expresses the “ own e asticities” while (3.23) expresses the “cross elasticities”.

Specifically, (3.22) yields the relative increase in the fraction of individuals that choose alternative j

that follows from arelative increase in Z;; by one unit.

Example 3.3. (Multinomial logit)

Assume that
(3.24) F(y) = e><|0(—e’y ) :
Then (3.24) yidds
el
(3.25) P.(B)=

keB
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Example 3.4. (Independent multinomial probit)

(3:26) ) =0')=pe ?

then we obtain the socalled Independent multinomial Probit model;

(3.27) JoN kl‘\[{_}d>(y—vk)exp[—§<y—vj)2j%-
—o KeB\{j

It has been found through simulations and empirical applications that the independent probit model

yields choice probabilities that are close to the multinomial logit choice probabilities.

Example 3.5. (Binary prohit)
Assumethat B={1,2} and F;(y)=®(y~2). Then

(3.28) P(U;>U,)=d (v, —V,).
Example 3.6. (Binary Arcus-tangens)
Assumethat B={12} and

2
3.29 Fi(y)=——=
(3.29) 7(y) w1+ a7
The density (3.29) isthe density of a Cauchy distribution. Then

(330) P(U;>U,) = + = Arcig(v, - v,).
T

The Arcus-tangens model differs essentially from the binary logit and probit modelsin that the tails of

the Arcus-tangens model are much heavier than for the other two models.
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3.4. Specification of the structural terms, examples

Let Z; =(Zil, ZigyonZig ) denote a vector of attributes that characterize alternative . In the absence

of individual characteristics, a convenient functional formis

K
(3.3 Vj:ZjBEZ Zy By -
k=1
A more general specificationis
K
(332) vi=>" h(Z;,X)By

where h, (Z;,X),k=1,...,K, areknown functions of the attribute vector and avector variable X that

characterizes the agent.

Example 3.7
Let X=(X,,X,) and Z;=(Z,,Z,,). A type of specification that is often used is

(3:33) Vi=ZyBi+ZBr+Zp X Ba+Z XoBs+Zj, X Bs+Z 5, X, Bs -

In some applications the assumption of linear-in-parameter functional form may, however, be too

restrictive.
Example 3.8. (Box-Cox transformation):
Let Z;=(Z4.2),), 2, >0, k=12,
and
Z}xll -1 ZTZZ -1
(339 Vi= B.+ B,
O o,

where o, o.,, B;, B, areunknown parameters. The transformation

(3.35) y -1
o

y >0, iscaled aBox-Cox transformation of y and it contains the linear function as a specia case

(o=1).When oo — 0 then
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o

y* -1
o

—logy.

When a <1, (y“ —1)/oc is concave whileit is convex when o >1. For any o, (y“ —1)/oc is

increasinginy.

Example 3.9
A problem which isusually overlooked in discrete choice analysesisthe fact that
simultaneous equation problems can arise as aresult of unobservable attributes. Consider the

following example where the utility function has the structure

where Z; is an attribute variable (scalar) and X, X, areindividual characteristics. The random error
term g; is assumed to be uncorrelated with Z;, X; and X,. Also Z; is assumed uncorrelated with X; and
X,. However, X, is unobservabl e to the researcher. The researcher therefore specifies the utility

function as

(3.36) U;=Z,B,+Z;X,B, +e;.
Thus, the interpretation of €] isas

(3.37) g, =€, +Z;X,Bs.
Then

E(7[X,,2,)=2,B.E(X,|X,).

In this case we therefore get that the error terms are correlated with the structural terms when X ; and
X, are correlated. A completely similar argument applies in the case with unobservabl e attributes.
This simple exampl e shows that simultaneous equation bias may be a serious problem in
many cases where data contains limited information about population heterogeneity or/and relevant
attributes. Note that even if we were able to observe the relevant explanatory variables, we may still
face the risk of getting simultaneous equation bias as aresult of misspesified functiona form of the
deterministic term of the utility function. Thisis easily demonstrated by a similar argument as the one

above.
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3.5. Stochastic modelsfor ranking

So far we have only discussed models in which the interest is the agent's (most) preferred alternative.
However, in several casesit is of interest to specify the joint probability of the rank ordering of
alternatives that belong to S or to some subset of S. For example, in stated preference surveys, where
the agents are presented with hypothetical choice experiments, one has the possibility of designing the
guestionaires so as to elicit information about the agents' rank ordering. This yields more information
about preferences than data on solely the highest ranked alternatives, and it is therefore very useful for
empirical analysis. This type of modeling approach has for example been applied to analyze the
potential demand for products that may be introduced in the market, see Section 4.8.

The systematic devel opment of stochastic models for ranking started with Luce (1959)
and Block and Marschak (1960). Specifically, they provided a powerful theoretica rationae for the
structure of the so-called ordered Luce model. The theoretical assumptions that underly the ordered
Luce model can briefly be described as follows.

Let R(B)=(R,(B),R,(B),...,R,(B)) bethe agent’srank ordering of the alternativesin
B, where misthe number of alternativesin B, and B = S. This meansthat R;(B) denotes the element

in B that hasthei'th rank. As above let P, (B), j € B, be the probability that the agent shall rank

alternative j on top when B is the set of feasible alternatives. Recall that the empirical counterpart of
these probabilitiesis the respective number of times the agent chooses a particular rank ordering to the

total number of times the experiment is replicated, or aternatively, the fraction of (observationally

identical) agents that choose a particular rank ordering. Let p(B)=(p;,p,.....pm ), Where the

components of the vector p(B) are distinct and p, € B for al k<m.

Similarly to Definition 1 one can define a system of ranking probabilities formally. Since
the extension from Definition 1 to the case with ranking is rather obvious we shall not present the

formal definition here.

Definition 5
A system of ranking probabilities constitute a random utility model if and only if

P(R(B)=p(B))=P(U(p,)>U(p,)>..>U(p,))

for BcS, where {U(j), j € S}, arerandom variables.

The next definition is a generalization of 1A to the setting with rank ordering. For

simplicity we rule out the case with degenerate choice probabilities equal to zero or one.
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Definition 6: Generalized | 1A (I1AR)
A system of ranking probabilities satisfies the Independence from Irrelevant Alternatives

(HAR) property if and only if for any B S

(3.39) P(R®B)=p(®B))=P, B)P, (B\{p})...P, ({Pn1.on})-

Definition 6 states that an agent's ranking behavior can (on average) be viewed asa
multistage process in which he first selects the most preferred alternative, next he selects the second
best among the remaining alternatives, etc. The crucia point here isthat in each stage, the agent's
ranking of the remaining alternativesisindependent of the aternatives that were selected in earlier
steps. In other words, they are viewed as “irrelevant”.

Werealize that Definition 3 isaspecia case of Definition 6.

Let

Q;(B)={p(B):p,(B)=], j € B}.
Theinterpretation of Q,(B) isasthe set of rank orderings among the alternatives within B, where

alternativej isranked highest.

Theorem 5

Let { P(p(B)); bea system of ranking probabilities, defined by
{P(p

P(p(B))=P(R(B)=p(B)). This system constitutes a random utility mode! if and only if

P(B)= D P(p®).

P (@)

A proof of Theorem 5 is given by Block and Marschak (1960, p. 107).

Theorem 6
Assume that a system of ranking probabilities is consistent with a random utility model
and that I1AR holds. Then there exists positive scalars, a(j), j €S, such that the ranking probabilities

are given by
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ap)  ap) Al
ZkeB a(k) zkeB\{pl} a(k) a(pm—1)+a(pm)

(3.39) P(R(B)=p(B)) =

for BcS. Thescalars, {a(j)}, are uniquely determined up to multiplication by a positive constant.

Conversely, the model (3.41) satisfies11AR.
Block and Marschak (1960, p. 109) have proved Theorem 6, cf. Luce and Suppes (1965).

Example 3.10

Consider the rankings of different brands of beer. Let B={1,2,3} wherealternative 1is
Tuborg, aternative 2 is Budweiser and alternative 3 is Becks. Suppose one has data on consumers
rank ordering of these brands of beer. If [IAR holds then the probability that for example pg =(2,31),

i.e., Budweiser isranked on top and Becks second best. According to (3.39) we obtain that the
probability of pg equals

a2  a®

PRE)=(@31)= 0 a2+ 2@ absa®’

The next result shows that (3.39) is consistent with a simple random utility representation.

Theorem 7

Assume a random utility model with U(j)=v(j)+ ¢, , where ¢; , j €S, arei.i.d. with

standard extreme value distribution function that isindependent of {v(j), j € S}. Then

P(R(B)=p(B))= P(U(p)>U(p,)>..>U(p,))
(3.40) _ ()  epMp) &Xp(V(n-1)) _
Dien @PVK) X, o @0(VK)  exp(V(an))+ep(v(an)

Also here we realize that Theorem 1 isa specia case of Theorem 6 and Theorem 3isa
special case of Theorem 7 because the choice probability P(B) is equal to the sum of al ranking
probabilitieswith p; =j. A proof of Theorem 7 is given in Strauss (1979).
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3.6. Stochastic dependent utilities across alter natives

In the random utility models discussed above we only focused on models with random terms that are
independent across aternatives. In particular we noted that the independent extreme value random
utility model is equivalent to the Luce model. It has been found that the independent multinomial
probit model is“close” to the Luce model in the sense that the choice probabilities are close provided
the structural terms of the two models have the same structure (see for example, Hausman and Wise,
1978). However, the assumption of independent random terms is rather restrictive in some cases,

which the following example will demonstrate.

Example 3.11
Consider a consumer choice problem in which there are two soda alternatives, namely
“Cocacola’, (1), “Fanta’, (2). Thefractions of consumers that buy Coca cola and Fanta are 1/3 and

2/3, respectively. If we assume that Luce's model holds we have

_ 8 1
a+a, 3

P({L2})

With a, =1 it followsthat a, = 2. Suppose now that another Fanta alternative is introduced
(alternative 3) that is equal in al attributes to the existing one except that its bottles have a different
color from the original one. Since the new Fanta alternative is essential equivalent to the existing one

it must be true that the corresponding response strengths must be equal, i.e., a; =a, =2.
Consequently, since the choice set is now equal to {1,2,3} we have according to (3.6) that

Qy 1
a,+a,+a; 1+2+2

P ({123})= é

which implies that

alN

P, ({12.3}) =P ({123}) =

But intuitively, this seems unredistic because it is plausible to assume that the consumers will tend to

treat the two alternatives as a single alternative so that

P ({123})=

Wik

and
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Wk

P <{1’2’3}) = Ps({l2,3}) =

This example demonstrates that if alternatives are “similar” in some sense, then the Luce model is not

appropriate. A version of this example is due to Debreu (1960).

Example 3.12
Let us return to the general theory, and try to list some of the reasons why the random
terms of the utility function may be correlated across alternatives.

For expository simplicity consider the (true) utility specification
(3.41) UJ-:21-1[31+X12j1[32+XZZJ-2[33+£]-

and suppose that only Z;; and X are observable for al j. Thus, in practice we may therefore be

tempted to resort to the misspecified version

(342 U, =Z,B, +X,Z,B, +¢;
where
(3.43) g =€, +X,Z B

Let Z'=(Zyy,Z5,....Z ) - From (3.38) it follows that

Cov(e; &1 X1,2Y) = Cov(X, 2By X5 2, B X127
(3.4 =B ECOV(X, 215, X, Zio | X1,21, X, )
+ B2 (:ov(E(x2 25| X028 X, ) E(X, 2o xl,zl,xz))
=B E(X3|X,) Cov(Z,. 24, | 2Y) + B3 Var (X, | X1) E(Z,,| 27) E(2Zia | 2Y)
This shows that unobservable attributes and individual characteristics may lead to error terms that are

correlated across aternatives. Suppose next that Cov (Z i21Zk2 ‘ Z 1) =0. Then (3.44) reducesto

(3.45) Cov(e],ex| X1, 2" =BS E(Z | 2") E(Zo| 27) Var (X, | X,).

Eqg. (3.45) shows that even if the unobservable attributes are uncorrelated the error terms will still be
correlated if Var(X,|X,)#0. (If Var(X,|X,)=0, X;is perfectly predicted by X1.)
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3.7. The multinomial Probit model

The best known multinomial random utility model with interdependent utilities is the multinomial
probit model. In this model the random terms in the utility function are assumed to be multinormally
distributed (with unknown covariance matrix). The concept of multinomial probit appeared already in
the writings of Thurstone (1927), but due to its computational complexity it has not been practically
useful for choice sets with more than five alternatives until quite recently. In recent years, however,
there has been a number of studies that apply simulation methods in the estimation procedure,
pioneered by McFadden (1989). Still the computational issueis far from being settled, since the
current simulation methods are complicated to apply in practice. The following expression for the

multinomial choice probabilities is suggestive for the complexity of the problem. Let h(x; Q) denote

the density of an m-dimensional multinormal zero mean vector-variable with covariance matrix Q. We

have
(3.46) h(x; Q)= (275)_'“/2 |Q|_1j2 exp(—%x’ Q™ xj

where |Q| denotes the determinant of Q. Furthermore

(3.47) P(vj+ej:r|2an§(vk+ek)): J. IJ J. h(xl,...,xj,...,xm;Q)dxl...dxj...dxm.

—oo —oco —oo

From (3.47) we see that an m-dimensional integral must be evaluated to obtain the choice
probabilities. Moreover, the integration limits also depend on the unknown parametersin the utility
function. When the choice set contains more than five alternatives it is therefore necessary to use

simulation methods to eval uate these choice probabilities.

3.8. The Generalized Extreme Value model
McFadden (1978) and (1981) introduced the class of GEV model which is arandom utility model that

contains the Luce model as a specia case. He proved the following result:

Theorem 8
Let G be a non-negative function defined over R that has the following properties:
(i)  Gishomogeneous of degree one,

(i) M G(Yy, VoY) =20, i =12,...,m,
Yi—ee
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(iii) thek™ partial derivative of G with respect to any combination of k distinct components exist, are
continuous, non-negativeif k is odd, and are non-positiveif kis even.

Then

(3.48) F(X)= exp(—G (e‘xl e . en ))

isawell defined multivariate (type I11) extreme value distribution function. Moreover, if

(€,.€5,....€,) hasjoint distribution function given by (3.51), then it follows that

aG(e"1 e, ..en )/av,.

G(e"1 e” ,...,evm)

(3.49) P, e =max(v, +2,) | -

! k<m

The proof of Theorem 8 is analogous to the proof of Lemma A2 in Appendix A.

Conditions (ii) and (iii) are necessary to ensure that F(x) isawell defined multivariate
digtribution function (with non-negative density), while condition (i) characterizes the multivariate
extreme value distribution.

Above we have stated the choice probability for the case where al the choice alternatives
in S belong to the choice set. Obvioudly, we get the joint cumulative distribution function of the
random terms of the utilities that correspond to any choice set B by letting x; =<, for al i ¢ B. This

correspondsto letting v, =— oo, for al i ¢ B intheright hand side of (3.49).

To seethat the Luce model emerges as a special case, let

m

(3.50) G(Y1re¥Ym) =D Vi

k=1

from which it follows by (3.49) that

P.(B)=

keB

Example 3.13
Let S={1,2,3} and assume that
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0
(3.51) G(y1,Y2rYa)=ys+(v2* +y3°)

where 0<0<1. It can be demonstrated that 6 has the interpretation

(352) corr (g,,85) =1— 67
and

corr(el,sj) =0, j=23.
From Theorem 8 we obtain that

\Z1

e

0
eVt +(ev2/6 + eVg/e)

(3.53) P.(S) =

and

(evzle 4%l )9—1 "’

e )
ev1_+_(ev2/e_i_ev3/9)

(3.54) P(9=

for j=23. If B={12}, then

Vi

e

(3.55) (2=

When dternative 2 and alternative 3 are close substitutes 6 should be close to zero. By applying

I'Hobpital's rule we obtain
lim@log(e"?’® +e"*'®) = max(v,,Vv,).
60 g( ) ( 2 3)

Consequently, when 6 is close to zero the choice probabilities above are close to

V.

(3.56) P.(S) = e
e" +exp(max(v,,v,))
and
e
(3.57) P, 9= v v
e"r +e%
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if v, > v, and zero otherwise, and similarly for P5(S). For v, =v, weobtain

\"

(3.58) P(S= %
e +e”
and
e'?

(3.59) P(=———

2(e" +e")
for j=23.

Consider again Example 3.11. Withv, =v,, v, =0 and e"2 =2. Eq. (3.58) and (3.59)
yield
P, ({12})=1/3

and

P,({12,3}) = P,({1.23}) =1/3.

Thus the model generated from (3.51) with 6 close to zero is able to capture the underlying structure
of Example 3.11.

3.8.1. The Nested multinomial logit model (nested logit model)

The nested logit model is an extension of the multinomial logit model which belongs to the GEV class.
The nested logit framework is appropriate in a modelling situation where the decision problem has a
“tree-structure”. This means that the choice set can be partitioned into a hierarchical system of subsets
that each group together alternatives having several observable characteristicsin common. It is
assumed that the agent chooses one of the subsets A, (say) in the first stage from which he selectsthe
preferred alternative. The choice problem in Example 3.11 has such atree structure: Here the first
stage concerns the choice between Coca cola and Fanta while the second stage alternatives are the two

Fanta variants in case the first stage choice was Fanta.
Example 3.14

Toillugtrate further the typical choice situation, consider the choice of residentia

location. Specifically, suppose the agent is considering a move to one out of two cities, which includes
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aspecific location within the preferred city. Let Uy denote the utility of location ke L ; within city |,

=12, whereL; isthe set of relevant and available locations within city j. Let Ui =Vix +€, where

(3.60) P( () (en<xu). [) (Ea <X )] = exp(—G (€772, e e ))

kel kel,

and

2 E
(3.61) G(Yir: Yz Yorr) = D {Z y}f’} .

=1 kel;

The structure (3.61) impliesthat

(3.62) corr( - ) 1-07, for r=k,
and
(3.63) corr (g€, ) =0 for j=i, and al k and r.

The interpretation of the correlation structure is that the alternatives within L; are more “similar” than
aternatives where one belongs to L ; and the other belongsto L.

Let P, denote the joint probability of choosing location r e L; and city j. Now from

Theorem 8 we get that

aG g, e’z /av
P, =Pl U, =max| maxU, ||=
i N 5212\ kel G(e"ﬂ,e" )

0;,-1
(364) [ evjk 16; ] evi,/ej

Note that we can rewrite (3.64) as
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6
Z evjk/ej
Vi 10; V.19,

kel; LA e
(3.65) Py = ; : 0 & V3 /6 =P s Vi /6
[ Viklei] z © Z ¢
z Z e kel, kel ;
i=1 kel;
where
(3.66) P=2 Pu.

kel;

The probability P, is the probability of choosing to moveto city j (i.e. the optimal location lies within

city j). Furthermore

I:)'r
(3.67) L=

is the probability of choosing location rel ;, given that city j has been selected. We notice that
P, /P, does not depend on aternatives outside L;. Thus the probability P, can be factored as a product

consisting of the probability of choosing city j times the probability of choosing r from L;, where the
last probability has the same structure as the Luce model. However, this will not be the case if a subset
different from L, and L, were selected in afirst stage. Graphically, the above tree structure looks as

follows:

Locaﬁon within Location within
city one city two

So far no deep theoretical characterization of the GEV class of models has been given,
apart from the property that it contains the Luce model as a specia case. Specifically, and interesting
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question is how restrictive the GEV classis. Thisissue has been addressed by Dagsvik (1994, 1995).
He proves that any (additive) random utility model can be approximated arbitrarily closely by GEV
models. In other words, one can approximate, as closely as desired, the choice probabilities of any
(additive) random utility model by choice probabilities of a GEV model. This means that the GEV

class represents no essential restrictions beyond being an additive random utility model.

3.9. The mixed logit model

Recently the so-called mixed logit model has become popular. Thistype of modelsis also known as
random coefficient model. The idea of this approach isto allow the unknown parameters of the logit
model be individual specific and distributed across the population according to some distribution
function. The digtribution function of the parameters may be specified parametrically or may be
specified nonparametrically. McFadden and Train (2000) have shown that one can approximate any
random utility model arbitrarily closely by mixed logit models.

To illustrate the idea explicitly, assume for example that one has specified the
multinomial logit model conditional on the parameter vector § asin (3.17), that is
(3.68) P, (B) :mexp(#ﬂ) .
> exp(z, )

k=1

Then one obtains the unconditional choice probability by taking expectation with respect to the
random vector . That is, one "integrates out" with respect to the distribution of . Thus, the resulting

choice probability for choosing alternative j becomes

(3.69) P =E{M}

J m

Y epz,f)

k=1

The econometrician's problem is now to estimate the unknown parameters in the distribution of {3.
Train (2003) discusses practical estimation techniques based on simulation methods.
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4. Applications of discrete choice analysis

4.1. Labor supply
Consider the binary decision problem of choosing between the alternatives “working” and “not
working”. Take the standard neo-classical model as a point of departure. Let V(C,L) be the agent's

utility in consumption, C, and annual leisure, L. The budget constraint equals

(4.1) C=hwW+1

where W is the wage rate the agent faces in the market, h is annual hours of work and | is non-labor

income (for example the income provided by the spouse). The time constraint equals

(4.2) h+L <M (=8760).

According to thismodel utility maximization implies that the agent supplies|abor if
4.3 W>2—"Z2=W"
(4.3) 5 )
where d; denotes the partial derivative with respect to component j. If the inequality is reversed, then

the agent will not wish to work. W' is called the reservation wage. Suppose for example that the utility

function has the form

BM,

1 0P

(4.9 V(CL)= {

where o, <1, a, <1, B, >0, B,>0. Then V(C,L) isincreasing and strictly concavein (C,L). The

reservation wage equals

«_0V(ILM) _Bo1g
(4.5) W =81V(I,M)_|31| .

After taking the logarithm on both sides of (4.3) and inserting (4.5) we get that the agent will supply
labor if

(4.6) logW > (1-o.,)log| +Iog(l;—2)

1
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Suppose next that we wish to estimate the unknown parameters of this model from a sample of
individuals of which some work and some do not work. Unfortunately, it is a problem with using (4.6)
as a point of departure for estimation because the wage rate is not observed for those individual s that
do not work. For al individualsin the sample we observe, say, age, non-labor income, length of
education and number of small children. To deal with the fact that the wage rate is only observed for

those agents who work, we shall next introduce a wage equation. Specifically, we assume that

4.7 logW =X, a+¢,

where X, consists of length of education and age and ais the associate parameter vector. €, isa
random variable that accounts for unobserved factors that affect the wage rate, such as type of
schooling, the effect of ability and family background, etc. We assume furthermore that the parameter

B,/B1 depend on age and number of small children, X,, such that

(4.8) Iog(g—zj =X,b+eg,

1

where g, is arandom term which accounts for unobserved variables that affect the preferencesand b is
a parameter vector. For smplicity we assume that o, iscommon to al agents. If €; and €, are

independent and normally distributed with E¢; =0, Vare; = cjz, we get that the probability of

working equals a probit model given by

Xs+(oc1—l)I0gI]

Joi+a5

where ®(-) isthe cumulative normal distribution function and sis a parameter vector such that

(4.9) P, EP(W>W*)=<1>[

Xs=X,a—X,b. From (4.9) weredize that only

can be identified.
If the purpose of this model isto analyze the effect from changesin level of education,
family size and non-labor income on the probability of supplying labor then we do not need to identify

the remaining parameters. Let us write the model in a more convenient form;
(4.10) P, =®(Xs -clogl),
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where c=(1—oc1)/w/csf +05 and s =sj/ o7 + 065 . Wehave that

{ (Xs*—clogl)z]

’ * exp B 2

(4.12) dlogh, _ (XS ~clog|] ——c i .
dlogl @(Xs' -clogl) ®(Xs' -clogl)2n

Eqg. (4.11) equals the easticity of the probability of working with respect to in non-labor income.
Suppose dternatively that 6, =6, and that the random terms 6¢; and 6¢;, are i.i. standard
extreme value distributed. This meansthat 6 =1/0+/6, cf. LemmaAL. Theniit followsthat P,

becomes a binary logit model given by
exp(0 ElogW) 1

4.12 P, = = )
*.12 " exp(0ElogW)+exp(0 ElogW" ) 1+ exp(~ X9+ (1— oy )Blogl)

From (4.12) we now obtain the elasticity with respect to | as

alogpz__ ~ B _ (l—Otl)G
(4-13) alog| - (1 (xl)e(l PZ)_ 1+exp(XSG—(1—061)9|09|).

A further discussion on the application of discrete choice modelsin the analysis of labor supply is
given by Dagsvik (2004).

4.2. Transportation

Suppose that commuters have the choice between driving own car or taking abus. Oneisinterested in
estimating a behavioral model to study, for example, how the introduction of a new subway line will
affect the commuters' transportation choices. Consider a particular commuter (agent) and let U;(x) be

the agent'sjoint utility of commodity vector x and transportation alternativej, j=1,2. Assume that the

utility function has the structure
(4.14) U;(x)= Uy, + U(x).
The budget constraint is given by

(4.15) p’x=y-q;,x=0,



where p isavector of commodity prices and g; is the per-unit-cost of transportation. By maximizing

U;(x) with respect to x subject to (4.15) we obtain the conditional indirect utility, given j, as

(4.16) Vj(p,y—qj)=U1;+V*(p7Y—qj)

where the function V'(p,y) is defined by

(4.17) Vi(py)= gE)y(fJ(x).
Assume that
(4.18) Uy =BT, +e;

where T; isthe travelling time with alternative j, B is an unknown parameter and {a j} arerandom

terms that account for the effect of unobserved variables, such as walking distances and comfort. We

assume that £, and &, arei.i. standard extreme value distributed. Assume furthermore that

(4.19) V' (p.y-a;)=V(p)+6log(y - q;)
where 6> 0 isan unknown parameter. The assumptions above yield

(4.20) Vi(p.y - a;)=BT; +6logly - a; )+ V(p) +¢,

which implies that

b (L2 PBT, +ologly—a,)

(4.21) ,
zk:1 eXp(BTk +0log (y =0y ))

for j=1,2. After the unknown parameters 3 and 6 have been estimated one can predict the fraction of

commuters that will choose the subway alternative (aternative 3) given that T; and gz have been
specified. Here, it is essential that one believes that T; and g are the main attributes of importance. We

thus get that the probability of choosing alternative j from{1,2,3} equals

(4.22) P (fL23})= —, &P (BT, +0logly ;) .

zk:1 eXp(BTk +06 IOg(y =0y ))
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4.3. Potential demand for alter native fuel vehicles

This exampleistaken from Dagsvik et al. (2002). To assess the potential demand for aternative fuel
vehicles such as; “electric” (1), “liquid propane gas’ (Ipg) (2), and “hybrid” (3), vehicles, an ordered
logit model was estimated on the basis of a“stated preference” survey. In this survey each responent
in arandomly selected sample was exposed to 15 experiments. In each experiment the respondent was
asked to rank three hypothetical vehicles characterized by specified attributes, according to the
respondent's preferences. These attributes are: “Purchase price”, “Top speed”, “ Driving range between
refueling/recharging”, and “Fuel consumption”. The total sample size (after the non-respondent
individuals are removed) consisted of 662 individuals. About one half of the sample (group A)
received choice sets with the alternatives “electric”, “Ipg”, and “gasoline” vehicles, while the other
half (group B) received “hybrid”, “Ipg” and “gasoline” vehicles. In this study “hybrid” means a
combination of electric and gasoline technology. The gasoline alternative is labeled alternative 4.

Theindividuals' utility function was specified as
(4.23) U ()=2Z;(t)B+u; +¢&(t)

where Zj(t) is a vector consisting of the four attributes of vehiclej in experimentt, t=12,...,15, and
and 3 are unknown parameters. Without loss of generality, we set 1, =0. Asmentioned above group
A haschoiceset, C, ={12,4} , while group B haschoice set, Cg ={2,34}. Let P;(C) bethe
probability that an individual shall rank alternative i on top and j second best in experiment t, and let

Yi;‘ (t)=1if individual hranksi ontop and j second best in experiment t, and zero otherwise. From

Theorem 3 it follows that if {a j (t)} are assumed to bei.i. standard extreme value distributed then

_ep(zmprw)  ep(Z;0B+w))
(429 P”t(C)_Z ep(Z, (OB+1,) D, ep(Z,(H)B+u,)
reC reC\{i}

where Cisequal to C, or Cg,. We also assume that the random terms {e i (t)} are independent across

experiments. Consequently, it follows that the loglikelihood function has the form

(4.25) e:i (Z DD YiM®IogR(CA)+D. D D Yi?(t)logpm(cB)].

t=1 \heA | | heB i |

The sampleis further split into six age and gender groups, and Table 4.1 displays the estimation

results for these groups.
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Table4.1. Parameter estimates’ for the age/gender specific utility function

Age

18-29 30-49 50-
Attribute Females Males| Females Males| Females Males
Purchase price (in 200 000 NOK) -2530 -2.176| -1549  -2159| -1550 -1.3%4
(-17.7)  (-15.2)| (-15.00 (-206)| (-119 (-11.8)
Top speed (100 knvh) -0.274 0488 -0.820 -0571| -0320 -0.339
(-0.9) (1.5) (-3.3) (-2.4) (-1.1) (-1.2)
Driving range (1 000 km) 1.861 2.130 1.018 1.465 0.140 1.000
(3.2 (3.3 (2.0) (3.2 (0.2 (1.8)
Fuel consumption (liter per 10 km) -0.902 -1.692 -0.624 -1.509 -0.446 -1.030
(-3.0) (-5.2) (-2.5) (6.7) (-1.5) (-3.7)
Dummy, electric 0.890  -0.448 0.627  -0.180 0.765  -0.195
(4.2 (-2.0) (3.6) (-1.2) (3.6) (-1.0)
Dummy, hybrid 1.185 0.461 1.380 0.649 1.216 0.666
(7.6) (2.8) (10.6) (5.6) (7.7 (4.6)
Dummy, Ipg 1.010 0.236 0.945 0.778 0.698 0.676
(8.2 (1.9 (9.2 (8.5) (5.7 (5.6)
# of observations 1380 1110 2070 2325 1290 1455
# of respondents 92 74 138 150 86 96
log-likelihood 2015.1 17478 3140.8 3460.8| 20409 23338
McFadden's p? 0.19 0.12 0.15 0.17 0.12 0.10

") t-valuesin parenthesis.

Table 4.1 displays the estimates when the model parameters differ by gender and age. We
notice that the price parameter is very sharply determined and it is slightly declining by age in absolute
value. Most of the other parameters also decline by age in absolute value. However, when we take the
standard error into account this tendency seems rather weak. Further, the utility function does not
differ much by gender, apart from the parameters associated with fuel-consumption and the dummies
for dternative fuel-cars. Specifically, males seem to be more sceptic towards alternative-fuel than

females.

To check how well the model performs, we have computed McFadden's p? and in
addition we have applied the modéd to predict the individuals rankings. The prediction results are
displayed in Tables 4.2 and 4.3, while McFadden's p? isreported in Table 4.1. We see that
McFadden's p? has the highest values for young females, and for males with age between 30-49 years.
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Table 4.2. Prediction performance of the model for group A. Per cent

First choice Second choice Third choice

Gaso- Gaso- Gaso-
Gender Electric  Lpg line | Electric  Lpg line | Electric  Lpg line

Females:
Observed 52.1 26.1 219 22.3 46.5 31.2 25.6 274 46.9
Predicted 45.6 36.3 18.1 32.8 38.5 28.8 21.6 25.3 53.2
Males:
Observed 40.0 34.5 25.5 20.3 435 36.2 39.7 22.0 38.3
Predicted 32.6 44.2 23.3 321 355 324 35.3 20.3 44.3

Table 4.3. Prediction performance of the model group B. Per cent

First choice Second choice Third choice

Gaso- Gaso- Gaso-
Gender Hybrid Lpg line Hybrid Lpg line Hybrid Lpg line

Females:
Observed 45.0 42.0 13.0 33.0 449 22.1 22.0 131 64.9
Predicted 43.0 40.3 16.7 36.9 37.8 25.3 20.1 21.9 58.0
Males:
Observed 38.1 46.2 15.7 329 41.0 26.2 29.0 12.8 58.1
Predicted 35.3 45.2 195 374 35.0 27.6 27.3 19.8 52.9

Theresultsin Table 4.3 show that for those individuals who receive choice sets that
include the hybrid vehicle aternative (group B) the model fits the data reasonably well. For the other
half of the sample for which the electric vehicle dternative is feasible (group A), Table 4.2 shows that
the predictions fail by about 10 per cent pointsin four cases. Thus the model performs better for group
B than for group A.

4.4. Oligopolistic competition with product differentiation
This example is taken from Anderson et a. (1992). Consider m firms which each produces a variant of
adifferentiated product. The firms' decision problem isto determine optimal prices of the different
variants.

Assume that firmj produces at fixed marginal costs ¢; and has fixed costs K;. Thereare N

consumers in the economy and consumer i has utility



for variant j, whereyy; is the consumersincome, g is an index that captures the mean value of non-
pecuniary attributes (quality) of variant j, w; isthe price of variant j, g; is an individual-specific
random taste-shifter that captures unobservable product attributes as well as unobservable individual -

specific characteristicsand ¢ > 0 is aparameter (unknown). If we assume that €, ]=12,...,m,

i=12,...,N, arei.i. standard extreme value distributed we get that the aggregate demand for variant j
equals NP, where

(4.27) P =Q;(w)=

Assume next that the firm knows the mean fractional demands {Q j (w)} as afunction of prices, w.

Consequently, afirm that produces variant j can calculate expected profit, m;, conditiona on the prices;

(4.29) nj:(wj—cj)NQj(W)—Kj.

Now firm | takes the prices set by other firms as given and chooses the price of variant j that
maximizes (4.28). Anderson et a. (1992) demonstrate that there exists a unique Nash equilibrium set

of prices, w” =(w1w2wm) which are determined by

(4.29) Wi =c; +

4.5. Social network

This exampleis borrowed from Dagsvik (1985). In the time-use survey conducted by Statistics
Norway, 1980-1981, the survey respondents were asked who they would turn to if they needed help.
The respondents were divided into two age groups, where group (i) and (ii) consist of individualsless
than 45 years of age and more than 45 years of age, respectively. Here, we shall only analyze the
subsample of individual s less than 45 years of age. The univers of aternatives S consisted of five

aternatives, namely

S={Mother (2), father (2), brother (3), sister (4), neighbor (5)} .
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However, the set of feasible alternatives (choice set) were less for many of the respondents.

Specifically, there turn out to be 11 different choice sets in the sample; B,,B,,...,B,;. Thedatafor

each of the 11 groups are given in Table 4.5. Group (i) consists of 526 individuals.
The question is whether the above data can be rationalized by a choice model. To thisend
we first estimated a logit model

e’

(4.30) P(B,)= —, jeBy,

3 e

re By

where k=12,...,11, and v = 0. Thusthis model contains four parameters to be estimated. L et IE’jk

be the observed choice frequencies conditional on choice set By. Let ¢ denote the loglikelihood

obtained when the respective choice probabilities are estimated by IE’jk ,jeB,. FromTable4.5it

followsthat ¢* =— 405.8. Inthelogit model there are four free parameters, while there are 24 “free”

probabilitiesin the 11 multinomial modelsin the a priori statistical model. Consequently, if ¢, denotes
the loglikelihood under the hypothesis of alogit model it follows that —2(51 - E*) is (asymptotically)

Chi squared distributed with 20 degrees of freedom. Since the corresponding critical value at 5 per
cent significance level equals 31.4 it follows from estimation results reported in Table 4.4 that the logit
model is rgjected against the non-structural multinomia model. One interesting hypothesis that might
explain thisrgjection isthat alternative five (“neighbor”) differs from the “family” alternativesin the
sense that the family alternatives depend on alatent variable which represents the “family aspect”, that
make the family alternatives more “close” than non-family alternatives. As a consequence, the family
aternatives will have correlated utilities. To allow for this effect we postulate a nested logit structure

with utilities that are correlated for the family alternatives. Specifically, we assume that
(4.31) corr (U;, U, ) =1-67,
fori=j, i,j#5, and

(4.32) corr(U;,Ug)=0,

for i <5, where 0<0<1. Thisyields

evj/e

reB

(4.33) P.(B)=

50



when B35,

0-1
(4.34) P.(B)= reB\E}

0
e+ > el
reB\{5}

Vs

when jz5, 5eB, and

e
—.
e+ > el
[reB\{5}

The parameter estimatesin the nested logit case are also given in Table 4.4. We notice

(4.35) P.(B) =

Asaboveweset v, =0.

that while only v, and v, are precisely determined in the logit case all the parameters are rather
precisely determined in the nested logit case. The estimate of 6 implies that the correlation between
the utilities of the family alternatives equals 0.79.
From Table 4.4 we find that twice the difference in loglikelihood between the two models
equals 17.6. Since the critical value of the Chi squared distribution with one degree of freedom at 5
per cent level equals 3.8, it follows that the logit model is rejected against the nested logit alternative.
As above we can also compare the nested logit model to the non-structural multinomial
model. Let /7, denote the loglikelihood of the nested logit model. Since the nested logit model hasfive

parametersit follows that —2(€2 s ) is (asymptotically) Chi squared distributed with 19 degrees of
freedom (under the hypothesis of the nested logit model). The corresponding critical valueis30.1 at 5
per cent significance level and therefore the estimate of —2(62 - 6*) in Table 4.4 impliesthat the

nested logit model is not rejected against the non-structural multinomial model. As measured by

M cFaddens p?, the difference in goodness-of-fit is only one per cent.
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Table 4.4. Parameter estimates

Logit model Nested logit model
Parameters Estimates t-values Estimates t-values
vy 2.119 18.9 1.932 31.8
Vs -0.519 0.7 0.654 55
V3 0.099 0.2 0.801 8.3
Vg 0.725 4.8 1.242 16.8
0 0.455 15.0
loglikelihood ¢, -424.9 -416.1
McFadden's p® 0.33 0.34
—2(¢,-0") 38.2 20.6

In Table 4.5 we report the data and the prediction performance of the two model versions.

Thetable shows that the nested logit model predicts the fractions of observed choices rather well.

At this point it is perhaps of interest to recall the limitation of this type of statistical

significance testing. Of course, when the sampl e size increases we will always get rejection of the null

hypothesis of a"perfect model". Since we already know that our models are more or less crude

approximations to the "true model", thisis asit should be, but is hardly very interesting. What,

however, is of interest is how the model performsin predictions, preferably out-of-sample predictions.

Since the logit and the nested-logit model predict almost equally well within sample, itis

not possible to discriminate between the two models on the basis of (aggregate) predictions. One

argument that supports the selection of the nested logit model is that even if this model contains an

additional parameter, the precision of the estimatesis considerably higher than in the case of the logit

model. This suggests that the nested logit model captures more of the "true”" underlying structure than

the logit model.
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Table 4.5. Prediction performance of the logit- and the nested logit model

Alternatives

Choice 1 2 3 4 5 # obser-
sets Mother Father Brother Sister Neighbor vations

Observed 30 NF NF NF 6 36
B, Predicted Logit 321 NF NF NF 39

Predicted Nested logit 314 NF NF NF 4.6

Observed NF NF 36 NF 20 56
B, Predicted Logit NF NF 29.4 NF 26.6

Predicted Nested logit NF NF 38.6 NF 17.3

Observed 21 NF 2 NF 1 24
Bs Predicted Logit 19.2 NF 25 NF 2.3

Predicted Nested logit 194 NF 15 NF 2.9

Observed NF NF 9 21 2 32
B, Predicted Logit NF NF 8.5 15.8 1.7

Predicted Nested logit NF NF 7.0 18.6 6.4

Observed NF 5 NF NF 2 7
Bs Predicted Logit NF 2.6 NF NF 44

Predicted Nested logit NF 4.6 NF NF 2.4

Observed 65 3 NF NF 10 78
Be Predicted Logit 65.4 4.7 NF NF 79

Predicted Nested logit 64.5 39 NF NF 9.6

Observed 50 4 4 NF 6 64
B, Predicted Logit 48.3 35 6.4 NF 5.8

Predicted Nested logit 49.2 3.0 4.1 NF 7.7

Observed 23 NF NF 7 8 38
Bs Predicted Logit 27.8 NF NF 6.9 3.3

Predicted Nested logit 275 NF NF 6.0 44

Observed 45 2 NF 5 8 60
Bg Predicted Logit 41.7 3.0 NF 10.3 5

Predicted Nested logit 415 25 NF 9.1 6.8

Observed 21 NF 2 6 8 37
Bio Predicted Logit 247 NF 3.3 6.1 3.0

Predicted Nested logit 25.2 NF 21 55 4.2

Observed 64 4 5 15 6 9
By Predicted Logit 60.0 43 7.9 14.8 7.2

Predicted Nested logit 61.3 3.7 51 134 10.5

NF = Not feasible.
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5. Maximum likelihood estimation of multinomial probability
models

Suppose the multinomial probability model has been specified. Let Y;; =1, if agent i in asample of

randomly selected agents, fallsinto category j and zero otherwise, and let
P(Y;=1]Z, X)) = H(Z, X;; B)

{H i (X 0 B)} be the corresponding multinomial logit probabilities, where X; is the vector of individua

characteristics for agent i and Z = (Z4, Z»,...,Z) . Thetotal likelihood of the observed outcome equals

N m

I1 H,(Z,X;; B)%

i=1 ]

where N is the sample size. The loglikelihood function can therefore be written as

N m

(5.1) (=3 > YylogH (Z,X;; B).
=l j=1
By the maximum likelihood principle the unknown parameters are estimated by maximizing ¢ with
respect to the unknown parameters.
Thelogit structure implies that the first order conditions of the loglikelihood function
eguals

N

aﬂrk ; Z Xl’ﬁ) |k):o

(5.2)

forr=23,....m, k=12,...,K, where X; isthe k-th component component of X;, with associated

coefficient By.



5.1. Estimation of the multinomial logit model

Suppose next that the logit model has the structure

ep(n(2,. )]

(5.3) H(Z,X;;B) =

Z exp( (Z, X )B)
where
(5.4) h(z;.X;)B=2 h,(Z,.%)B, .

r=1

Examples of this structure were given in Section 3.5. Note that in this case the parameters are not
alternative-specific.
When the logit model has the structure given by (5.3) and (5.4), then thefirst order

conditionsyidld

(5.5) W:Z Zr_n: (Yy —H,(Z.X;:B))h(Z;.X,)=0

for k=12,...,K
McFadden (1973) has proved that when the probabilities are given by (5.3) and (5.4), the
loglikelihood function is globally strictly concave, and therefore a unique solutionto (5.5) is

guarantied.

5.2. Berkson's method (Minimum logit chi-square method)

If we have a case with several observations for each value of the explanatory variable it is possible to
carry out estimation by Berkson's method (Berkson, 1953). Model (3.17) in Example 3.1isan
example of a case where this method is applicable, since this model does not depend on individual
characteristics. Let

o 1
i=NZY

i=1

and replace H; by H; in (3.17). We then obtain
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i
(5.6) IOQ[H']=(Z;—21)B+W

1

where n; isarandom error term. By the strong law of large numbers I:|j — H; with probability one as

the sample size increases, the error term n; will be small when N is*“large”. Also by first order Taylor

approximation we get

Iog[ ij =logH, _|Og|:|lz|og(%j+(Hj_Hj)_(Hl_Hl)

1 1

>

T

which shows that

En; =Elog(|:|j

5.7) :Iog(HjJ+ EH, - H, _(Eﬁl—Hl)_(Zj_zl)B
H

1

= |og[:"]—(zj ~7,)p=0.

1

>
~—
I
N
|
N

Thus, even in samples of limited size the mean of the error terms {n j} is approximately

egual to zero. Define the dependent variable \7j by

Y =1 il
.= Og — .
j A,

We now realize that dueto (5.6) we can estimate 3 by regression analysis with {\7]} as dependent

variables and {Z = Zl} as independent variables. However, the error termsin (5.6) are correlated

with covariance matrix that depends on the probabilities. Therefore one needsto apply GL S methods
to obtain efficient estimation. See Maddala (1983, p. 30) for amore detailed treatment of Berkson's
method.
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6. The nonstructural Tobit model

In this section we shall describe atype of statistical model, usualy called the Tobit model. The Tobit
model (Tobin, 1958) is specified as follows: The dependent variable Y is defined by

(6.1) :{XB‘FUG if Xp+uo>0

0 otherwise,

where 6 > 0 isascale parameter, and u is a zero mean random variable with cumulative distribution

function F(-). Another way of expressing (6.1) isas

(6.2 Y =max (0,XB +uo).

Tobin (1958) assumed that u is normally distributed N(0,1), but it is also convenient to work with the
logistic distribution.
An example of aTobit formulation is the standard labor supply model. Here we may

interpret Xpc+ ucc as an index that measures the desire to work of an agent with characteristics X.

Specifically, one may interpret Xpc+ ucc as the difference between the utility of working and the
utility of not working. When thisindex is positive, the desired hours of work istypically assumed
proportional to XBc+ ucsc where 1/cisthe proportionality factor. The variable vector X may contain
education, work experience, and the unobservable term u may capture the effect of unobservable
variables such as specific skills and training. When the index Xpc+ ucc isnegative and large, say, it
means that the agent has strong tendence to choose leisure. Since the actual hours of work always will
be non-negative we therefore get the structure (6.1).

As regards structural models, see for example Hanemann (1984) and Dubin and
M cFadden (1984) and McFadden 1981) who discuss multivariate structural discrete/continuous choice
models of the Tobit type.

6.1. Maximum likelihood estimation of the Tobit model
Notice first that due to the form of (6.2) ordinary regression analysis will not do because of the
nonlinear operation on the right hand side of (6.2).

From (6.2) it follows that
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(6.3) P(Y =0)=P(u<-XB/c)=F-XB/ o)

where F(y) denotes the cumulative distribution of u, and

(6.4) P(Y e(y,y+dy))= P(u(je(y_XB,y+dy_XB))=éF,(y—XB) dy,

o

for y>0. Consider now the estimation of the unknown parameters based on observations from a
random sample of individuals, and as above, let i =1,2,... be an indexation of the individualsin the
sample. Let S; be the set of N, individuasfor which Y, >0 and S, the remaining set of individuals
for whom Y; =0. We shall distinguish between two cases, namely the cases where we observe X; and

Y; for al theindividuals (Case 1), and the case where we do not observe X; when i € S, (Casell).

Casel: X;isobserved for al i € §, u S, (Censored case)

From (6.4) it follows that the density of Y; when Y, >0 equals

(X0 1

(¢ (¢

while, by (6.3), the probability that i € S, equals

22)

Therefore the total loglikelihood equals

(6.5) =Y [IogF’(Yi_—XiB]—Iogcsj+Z IogF(iiBj.

ieS, Y ieSy Y
Example 6.1
Suppose F(y) is astandard normal distribution function, ®(y). Then, since

1 2
(I)’(U)z e—u 12

J2n

it follows that the loglikelihood in this case reduces to
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5 (Yi-Xxp)’ “XiB) N,
(6.6) E——;‘l 2(52—N1I0g(5+§‘0 Iogd)(cj—zlog(Zn).

We realize that applying OLSto the equation Y = X3 + uc corresponds to neglecting the last term in
(6.6) and will therefore produce biased estimates.

Example 6.2

Suppose that F(y) is astandard logistic distribution, L(y), given by (2.12). Since
1-L(-y)=L(y) and
(6.7) L'(y)=L(y)(1-L(y))
it follows from (6.5) that the loglikelihood function in this caseis

(68) (=2 ('c’gL(\(i_GXiB]Jrlog(l—L(WjD—Nllogc+z IogL(_>((5il3

ics, c S

)

Casell: Xjisnot observed for i € §, (Truncated case)

In this case we must evaluate the conditional likelihood function given that the
individuals belong to S;. The conditional probability of Y; €(y,y +dy),y>0, giventhatY; >0
equals

(y-XB) 1
P(Y, €(y.y+dy).Y, >0) _P(Y, e(y.y+dy)) _ r)ee

P(Y; e(y,y +dy)|Y; >0)= P(Y, >0) ~ P(Y;>0) 1 F(E—XB)

Therefore, the conditional loglikelihood giventhat Y, >0 for all i, equals

(6.9) = (Iog F(Y'_GX'B] —Iog(l— F(_XG'BD) - N, logo.

ieS;

6.2. Estimation of the Tobit model by Heckman's two stage method
Heckman (1979) suggested a two stage method for estimating the tobit model. We shall briefly review

his method for the case where F(y) is either the normal distribution or the logistic distribution.
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6.2.1. Heckman's method with normally distributed random terms

As above ®(-) denotes the cumulative normal distribution function. From (6.2) we get
(6.10) E(Y|Y>0)=XB+cE(ulY>0).

Since E(u| Y > O) in genera is different from zero we cannot, as mentioned above, do linear

regression analysis based on the subsample of individualsin S;. Now note that

P(Ue(y,y+dy)|Y>o)= P(UG(y,y-pdy) U>—X?Bj

6.11 XP
(6.11) P(u e(y,y+dy)u> —G] _ Plue(y,y+dy)) @’(y)dy

o) ) o)

since -u has the same distribution as u due to symmetry. We therefore get

(6.12) E(uY>0)= ; Tud)’(u)du.
B) %
‘I’(oj-f
But
T 7 u7 - _u; 1 XB)? [ XB
(6.13) _Lu@(u)du=_L sz du=—_£ﬁf/zzﬁ.exp(—(c] /2]:@(?]

which together with (6.11) yields

4

)
o

where the last notation (A) is introduced for convenience.

(6.14) E(ulY>0)= sx(x?ﬁj

Heckman suggested the following approach: First estimate B/c by probit anaysis, i.e., by

maximizing the likelihood with the dependent variable equal to oneif i € S; and zero otherwise. The

corresponding loglikelihood equals
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(6.15) 1= log @(XTiBj +> Iog(l— <D(XT'B)] .

ieS; €Sy
From the estimates B of p/c, compute

. (XB)
* (X ,B")

and estimate 3 and ¢ by regression analysis on the basis of

(6.16) Y, :XiBJFGXi +m;
by applying the observations from S;. This gives unbiased estimates because it follows from (6.10)
and (6.14) that

E(n,|Y, >0)=E(Y, -X B-oh |V, >0)

= E(csui —oh | Y, >O)=csE(ui Y, >0)—c571i

=G7L(XTiBj —Gii =0.

Heckman (1979) has also obtained the asymptotic covariance matrix of the parameter estimates that
take into account that one of the regressors, A, is represented by the estimate, ii .

Note that this procedure leads to two separate estimates of ¢, namely the one obtained as
aregression coefficient in (7.21) and the one that follows by dividing the mean component value of

the estimated B by the corresponding mean based on .

6.2.2 Heckman's method with logistically distributed random term
Assume now that u is distributed according to the logistic distribution L(y). Then by LemmaA3in
Appendix A it is proved that

(6.17) E(u]Y >0)=(1+exp(-XB / 6))log(1+exp(XB / 6)) - XB /.

In this case the regression model that corresponds to (6.21) equals

(6.18) Yi:XiB+Géi +1;

where
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(6.19) 0, :(1+exp(—XiB*))Iog(1+exp(xi[3*))—XiB*

and B’ isthe first stage maximum likelihood estimate of B/c based on the binary logit model with
loglikelihood equal to (6.15) with ®(y) replaced by L(y).

A modified version of Heckman's method

Since

1

Ry >0)= 1+exp(-Xp/ o)

it followsfrom (6.17) that

EY = (Y > 0)(E(u] Y >0)5 +XB)
(6.:20) =clog(1+exp(XB / o))
=olog(1+exp(-XB / 6)) + XBp=XB —clogP(Y >0).

Eq. (6.20) impliesthat we may alternatively apply regression analysis on the whole sample based on

the regression equation

(6.21) Y, =X;B+0o[l; +9;
where
(6.22) i, = Iog(1+ exp(—XiB*))

and §; is an error term with zero mean. Thisis so because (6.20) implies that

ES, =E(Y,-X,B+clogP(Y; >0))=0.

With the present state of computer software, where maximum likelihood procedures are readily

available and easy to apply, Heckman's two stage approach may thus be of lessinterest.

6.3. Thelikelihood ratio test
Thelikelihood ratio test is a very general method which can be applied in wide variety of cases. A
typical null hypothesis (H) isthat there are specific constraints on the parameter values. For example,

several parameters may be equal to zero, or two or more parameters may be equal to each other. Let

ﬁ” denote the constrained maximum likelihood estimate obtained when the likelihood is maximized
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subject to the restrictions on the parameters under H. Similarly, let ﬁ denote the parameter estimate

obtained from unconstrained maximization of the likelihood. L et f(ﬁ“) and K(B) denote the

loglikelihood values evaluated at [3“ and B , respectively. Let r be the number of independent

restrictions implied by the null hypothesis. By “independent restrictions” it is meant that no restriction
should be afunction of the other restrictions. It can be demonstrated that under the null hypothesis

is asymptotically chi squared distributed with r degrees of freedom. Thus, if —2(%([3“ ) - E(ﬁ)) is

“large” (i.e. exceedsthe critical value of the chi squared with r degrees of freedom), then the null
hypothesisis rejected.

In the literature, other types of tests, particularly designed for testing the “Independence
from Irrelevant Alternatives’ hypothesis have been developed. | refer to Ben-Akivaand Lerman
(1985, p. 183), for areview of these tests.

6.4. M cFadden's goodness-of-fit measure

As a goodness-of-fit measure M cFadden has proposed a measure given by

6.23 2=1 K(B)
(6.23) pe= ~ 0

where, as before, E(B) isthe unrestricted loglikelihood evaluated at [3 and /(0) istheloglikelihood

evaluated by setting all parameters equal to zero. A motivation for (6.23) is as follows: If the estimated

parameters do no better than the model with zero parameters then E(ﬁ)=€(0) , and thus p? =0. Thisis

the lowest value that p® can take (since if E(ﬁ) islessthan ¢(0), then [3 would not be the maximum

likelihood estimate). Suppose instead that the model was so good that each outcome in the sample
could be predicted perfectly. Then the corresponding likelihood would be one which means that the

loglikelihood E(ﬁ) isequal to zero. Thusin this case p2 =1, which isthe highest value p? can take.

This goodness-of-fit measure is similar to the familiar R* measure used in regression analysisin that it
ranges between zero and one. However, there are no general guidelines for when ap? valueis

sufficiently high.
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Appendix A

Some properties of the extreme value and the logistic distributions
In this appendix we collect some classical results about the logistic and the extreme value
distributions.

LetX,,X,,..., beindependent random variables with a common distribution function

F(x). Let

(A.2) M, =max (X, X,,...,X,).
Theorem Al
Suppose that, for some >0,

(A2 limx“ (1- F(x))=c,

X—> 00

where ¢>0. Then

M _ -
(A3) lim P(—'} 3xj= ep(-x7) for x>0,
nse | (cn)/® 0 for x<0.

Theorem A2
Suppose that for some x,,, F(X,)=1, and that for some ¢ >0,

(A4) lim (%, —X) (1~ F(x) =c,

X—=Xp

where ¢>0. Then

(A5) |imp(Mﬂ_XOSX]: eXp(—|x|"’) for x<0O
e L en) 1 for x>0.

Theorem A3
Suppose that
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(A.6) lime* (1- F(¥))=c,

X—> 00

where ¢>0. Then
(A7) lim P(Mn—log(cn)gx)zexp(—e‘x)

for all x.

Proofs of Theorems A1 to A3 are found in Lamperti (1996), for example. Moreover, it
can be proved that the distributions (A.3), (A.5) and (A.7) are the only ones possible.

The three classes of limiting distributions for maxima were discovered during the 1920s
by M. Fréchet, R.A. Fisher and L.H.C. Tippett. In 1943 B. Gnedenko gave a systematic exposition of
limiting distributions of the maximum of a random sample.

Note that there is some similarity between the Central Limit Theorem and the results
abovein that the limiting distributions are, apart from rather general conditions, independent of the
original distribution. While the Central Limit Theorem yields only one limiting distribution, the
limiting distributions of maxima are of three types, depending on the tail behavior of the distribution.
The three types of distributions (A.3), (A.5) and (A.7) are called standard type I, 1 and 111 extreme
value distributions, cf. Resnick (1987).

The extreme value distributions have the following property: if X, and X, aretype 1l

independent extreme value distributed with different location parameters, i.e.,
P(X;<x/)= exp(—eb‘_Xj )

where b, and b, are constants, then X =max (X, X, ) isalso type Il extreme value distributed. Thisis

seen as follows: We have

P(X<x)=P((X; <x)n (X, <x))

where
b= Iog(ebl +eP )
Similar results hold for the other two types of extreme value distributions.
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In the multivariate case where the random variables are vectors, there exists similar
asymptotic results for maxima as in the univariate case, where maximum of avector is defined as
maximum taken componentwise. The resulting limiting distributions are called multivariate extreme
value distributions, and they are of three types asin the univariate case. A characterization of typelll
isgiven in Theorem 8 in Section 3.10. More details about the multivariate extreme value distributions
can be found in Resnick (1987).

A general type Il extreme value distribution has the form
exp(_e—(x—b)/a)

and it has the mean b+ 05772...., and variance equal to an?/6, cf. LemmaA1l below.

LemmaAl

Let £be standard type |11 extreme value distributed and let s<1. Then

Ee* =7 (1-59

where 77(-) denotesthe Gamma function. In particular

Ee=-I"(1)=05772...
and

7[2

Var e=7I"(1)- I""(1)? = 5

Pr oof:

We have

Ee* = T e™ exp(—e‘x)e‘X dx.

—oo

By change of variable t =€e™ this expression reducesto

Ee* = j toetdt=T(1-9).

—oo
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Moreover, the formulaes Ee=—T"(1) and Ee?=T"(1) followsimmediately. The values of I'"(1)
and I'”’(2) can befound in any standard tables on the Gamma function.

QE.D.

LemmaA2
Suppose U, =V, +¢,;, where (g,,€,,...,&,,) ismultivariate extreme value distributed.

Then

P(max, U, <y|U; =max, U, )= P(U; <y|U, =max, U, )= P(max, U, <y).

Proof: According to the definition of the multivariate extreme value distribution

(A8) P(U;<y;,U, <Yy, Uy SY) =F(Y1 Y ) =oxp(-G (6" €72, e¥n))

where G(-) is homogeneous of degree one. For notational simplicity let j=1, sincethe general caseis

completely analogous. Let d; denote the partial derivative with respect to component j. We have

(A.9)

P(maxk U, €(z,z+dz),U; =max, U, )= P(Ule(z,z+dz),U2 <z,...,U SZ)zalF(z,z,...,z)dz.

m

Since by assumption

(A.10) G(e", 2 . e¥nn )| e G(ehIY @Y gt
we get

(A.11) 9, F(2.2..)= exp(—e‘z G(e”,e",....e" ))alc;(evl e, 8" e,
Hence
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P(max, U, <y,U;=max, U, )= Jy. 0,F(z.z,...,2)dz
(A.12) =e"9,G(e",e",....e") Jy. exp(—e‘Z G(e",e",....e" ))e‘z dz

et alG(e"l,eVZ,...,eVm)

G(evl,eVZ,...,eVm)

~exp(—e‘y G(e"l,evz,...,evm ))

With y = in (A.12) werealize that the first factor on the right hand side equals the choice
probability, P(U, =max, U, ). Hence we have proved Theorem 8 aswell. Thisimplies also that the
second factor on theright hand side equals P(max, U, <y). Moreover, it follows that the events
{U;=max, U, } and {max, U, <y} arestochastically independent.

Q.E.D.

LemmaA3

Assumethat Y=+ ou, where

1
Pluy)= .
(u=y) 1+exp(-y)
Then
1+exp(—ﬂj
A13 Plu>y|Y>0)=—— 9=
( ) ( >y| g ) 1+exp(y)
for y>—ﬁ, and equal to one for yéﬁ. Furthermore,
o o
logP(Y<O0
(A.14) E(ulY>0) =(1+exp[—ﬁjj Iog(1+exp(ﬁ)j _EZ_M_E_
o o)) o P(Y>0 o

Pr oof:

For y>—E we have
c
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P(u>y,u>—“)
c

P(u>—ij

P(-u<-y) _ P(u<-y) _ 1+exp(—ij
P(—u<i) P(u<2) L+exp(y)

P(u>y|Y>0)=

(A.15)

which proves (A.13).
Consider next (A.14). Let Y =Y/c. Thenfor y>0

A.16 P(Y > \?>o:P(\?>y’\?>o):P(\7>y)= 1+€Xp(_ij

(A.16) (V>y]¥>0) P(Y>0)  P(V>0) ]_+exp(y—i)-
720 is( - ool )]

(A.17) (1+exp(——)j]; 1+eEp(_)d§ (1+exp(—%j) I(—IOQ(Hexp(%—y)n

VR

= [1+ exp(—%)] log (1+ exp

Thisimpliesthat

E(ulY>0)= ( ‘Y>O)—%_(1+exp( i))log(“exp(%)j—%

and (A.14) has thus been proved.

)

Q.ED.
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