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Abstract 
A novel method for human activity recognition is 
presented. Given a video sequence containing human 
activity, the motion parameters of each frame are first 
computed using different motion parameter models. The 
likelihood of these observed motion parameters is 
optimally approximated, based directly on a multivariate 
Gaussian probabilistic model. The dynamic change of 
motion parameter likelihood in a video sequence is 
characterized using a continuous density hidden Markov 
model. Activity recognition is then posed as a motion 
parameter maximum likelihood estimation problem. 
Experimental results show that the method proposed here 
works well in recognizing such complex human activities 
as sitting, getting up from a chair, and some martial art 
actions. 
 

 

1. Introduction 
Human activity analysis in video has many 

applications in video surveillance, human computer 
interface etc. Typical activities include walking, running, 
jumping, turning around, sitting down on a chair, and 
getting up from a chair. In martial art activities, such 
activities can be more complex. These typical human 
activities usually involve changes in the environment, 
object occlusion etc. Therefore, feature point based or 
region-based techniques that work well on facial 
expression, lip reading, gesture recognition [7], cannot be 
directly applied to human activity recognition  

Given the complexity of human body motion, 
techniques that do not require explicit image feature 
detection or segmentation are of much interest. Among 
the early work is Davis and Bobick [2], wherein they use 
temporal templates for human movement recognition. 
Their method requires less computation, but is sensitive to 
variances in the movement. Little and Boyd [3] use the 
moments of moving points to represent the optic flow for 
the purpose of periodic human gait recognition.  Yacoob 
and Black [9] propose recognition of activities based on 

matching of principal component under global temporal 
change, in particular affine transforms.  

Our proposed method, similar to those using global 
motion fields, does not require image feature tracking or 
segmentation. The work is motivated by two-dimensional 
object recognition.  We introduce motion parameters to 
compute the likelihood of observed video sequences. It 
approximates the motion parameter likelihood of a video 
frame in an optimal way. The state transitions of the 
motion parameters are modeled using the continuous 
density hidden Markov model (HMM). Recognition of 
activity is then posed as a maximum likelihood parameter 
estimation problem.  

2. Motion Parameter Estimation  
   The first step in activity detection is motion estimation. 
Here, we use a model-based approach posed in [1].  For a 
motion model, the motion parameter mP  for a given 
motion vector V at a given position ( , )x y=x can be 
represented as: 

( ) ( ; )m=V x V x P     (1) 
This model can be projective, plannar, affine, optic 

flow, etc. In our experiment, we choose affine motion 
parameters and optic flow as features for activity 
recognition.  The latter is the simplest case, i.e. the motion 
vector V . 

 

   
(a)First Frame (b) Middle Frame (c) Last Frame 

   
(d) Subject (e) x direction motion (f) y direction motion 

Figure 1.  Video frames from a “su” Sequence 
and corresponding optic flow information. 

It is generally not necessary to use the motion 
parameters of the whole video frame for activity 
recognition. Instead, a smaller region of interest is chosen 



 

 

in our experiment. To illustrate, figure 1(d) shows an 
example region of interest inside the window drawn in 
figure 1(b). Figure 1(e)-(f) show the corresponding 
normalized optic flow along the x - and y - directions 
respectively, for this region.   

3. Computation of Motion Parameter 
Likelihood  
Consider a motion parameter 1 2( , ,...... )m dp p p=P , 

computed at each pixel location, where d is the dimension 
of the parameter. For example, mP could be the affine 
motion parameters, or a 2-D optic flow vector. These 
parameter values are then organized into a large vector by 
row scanning the image. Let  L  be the number of pixels 
in a video frame or a region of interest in a frame (ordered 
according to a row scan). Let  

1 2 1 2 1 2
1 1 1 2 2 2,( , ...... , , ...... ...... , ...... )L L L T

d d dp p p p p p p p p=Z (2) 
Note that Z  is a N d L= × dimensional vector.  We 

model Z  as a multivariate Gaussian. Let the mean of this 
Gaussian be m  and the covariance be Q . Then, given Z  
from an observation class Ω, we can write the conditional 
probability ( | )P ΩZ  as:  
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If we have activity in class Ω, then (3) gives the 
likelihood of the motion parameters for a given frame. 
This is essential in later statistic modeling of the activities 
using HMM. This approach to modeling the observation 
is similar to the work in [4], where the observation vector 
is the image intensity, and the application is object 
recognition. In the following discussion, we will refer to 
Z  as the parametric motion object (PMO). 

The Karhunen-Loeve transform (KLT) is used to 
simplify the computation of (3). Let mZZ

~

−= . The 

covariance matrix can be decomposed as: TQ ΦΛΦ= , 
where the columns of Φ  are the orthonormal 
eigenvectors of Q , and Λ  corresponds to the diagonal 

eigenvalue matrix of Q .  Let    =
~

TY Φ Z , then (3) can 
be computed as:  
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Where M is the dimension of the principal subspace, iy is 

the ith component of Y , and iα  is the ith  eigenvalue of 

Q .  
In (4), we divide the likelihood for a PMO into two 

parts. The first part, ( | )PP ΩZ , corresponds to the 
likelihood of the PMO in the principal subspace as used in 
principal component analysis (PCA). The second part 

( | )
P

P− ΩZ corresponds to the likelihood of the PMO in the 

complementary orthogonal subspace of the principal 
subspace. PCA has been successfully used for face 
recognition [8] and activity analysis [9]. The principal 
space is enough for general representation and 
approximation purposes. However, note that the 
likelihood in the principal space ( | )PP ΩZ  does not 
provide an optimal approximation of the likelihood 

( | )P ΩZ  in the whole space. The second part ( | )
P

P− ΩZ  

plays an important role in the recognition process. This is 
also observed in our experiments, discussed in section 5.   

Direct computation of ( | )
P

P− ΩZ is too expensive for 

practical application, therefore, following [4] we use an 
optimal approximation of it:  
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4. Modeling Activity Using HMM 
 In the context of human motion recognition, promising 

results have been obtained using the HMM. The 
experiment in [10] is perhaps the first one.  A generic 
HMM [5] can be represented as { , , , }A Bl p= X , where 

'1 1{ , ,...... }Nq q qΞ =  denotes the 'N  possible states, 

{ }ijA a=  denotes the transition probabilities between the 
hidden states, { (.)}jB b= denotes the observation symbol 
probability corresponding to the state j, and π  denotes 
the initial state distribution. Given a video sequence 

1 2{ , , ....... }TO O O , where T  is the length of the sequence, we 
then want to find one model from a given dictionary 

1 2{ , ,...... }Eλ λ λ  which maximizes the likelihood ( | )P O l .  
Our initial experiments consist of two sets. To motivate 

discussion, we introduce the first set here. In this part, 
eight office activities are to be recognized.  We separate 
these activities into two groups.  In the first group, we 
have:  turning of the body from left to front (“l2f”), front 
to left (“f2l”), front to right (“f2r”) and right to front 
(“r2f”).  In the second group we have: standing up (“su”), 



 

 

sitting down (“sd”), starting to sit down but returning to 
the standing position without sitting down (“bu”), and 
starting to get up (from a sitting position) but returning to 
the sitting position without getting up (“bd”). The second 
group is designed in such a way that the sequences have 
similar sub-processes. Figure 1(a-c) shows three  frames 
from a “su” sequence. 
 
4.1. Model  
 

We choose a four-state continuous density HMM for 
activity recognition here. The number of states is 
empirically determined and we observed that an increase 
to a larger number of states did not result in any 
performance gains on our initial data sets. An example of 
the HMM structure before and after training for a “bd” 
sequence is shown in Figure 2. Note that our HMM has a 
typical left to right graph structure. 
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(a). HMM for “bd” 
before training 
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(b). HMM for “bd” 
after training 

Figure 2. An example HMM for the “bd” 
sequence. 

4.2. Training  
 

The first step of our HMM training is to obtain the 
observation model B . Since the motion pattern at any 
given short interval can be regarded as unchanged, we can 
divide the sequence into temporal segments where each 
segment corresponds to a state. We uniformly segment 
each training sequence into four segments before 
clustering. Each segment is assigned a state number that is 
the same as its segment order in the sequence. As in 
speech recognition, this method provides a good initial 
clustering of states. The position of the PMO in each 
frame is manually selected around the moving subject.  
Then, we compute m  and Q , and consequently Φ and 
Λ , for each state. After this step, we follow the 
conventional K-means clustering method to iteratively 
classify the frames based on their likelihood computed 
using (4).  Any misclassified initial segmentation can be 
corrected in the clustering process. Note that we have one 
set of bases for each hidden state, unlike PCA based 
applications that have only a single set of bases for a 
whole database.   

At this stage we have the observation model B , with 
m  and Q  computed. The next step is to obtain the state 

transition matrix A. This is done using the EM algorithm 
as proposed in [6]. A  is initialized as shown in Figure 
2(a). Note that we do not need to compute π , as in our 
model we always start in state 1. The trained HMM 
structure for the “bd” activity is shown in Figure 2(b). 
Figure 3 shows the normalized likelihood of each frame 
from one of the “sd” sequences, based on four different 
“sd” state models. The transition from one state to the 
next is clearly evident, and it confirms our initial 
segmentation assumption (see the regions labeled state 1 
to state 4). 

State 1 State 2 State3 State 4

 
Figure 3. Normalized likelihood of one “sd” 

sequence. 

4.3.  Recognition 
 
Given a test video sequence O , we first compute its 

motion parameters. A window of the same size as the 
training PMO is moved around the video frame to find the 
position where the maximum likelihood for a state model 
is obtained using (4). The likelihood is used as (.)jb  for 
a given state model j. A Kalman filter can be applied to 
track the window in order to speed the searching process. 
The recognition of the activity *iλ  follows from the 
maximum likelihood estimate: 

1
[ ( / )]* arg max i

i E
P Oi λ

≤ ≤
=    (5) 

5. Experimental Results 
Experiments are performed using 352x240 pixel 

resolution video, captured at 30 frames per second. For 
simplicity, the cameras are put in front of the subjects at a 
constant distance. We collect 20 sequences for each 
activity. There are a total of 160 training sequences and 
160 test sequences. Each sequence contains 20 to 56 
frames. Half of the video sequences are used for training, 
while the other half are used for evaluation.  A window of 
fixed size that covers the human body is used in 
computing the PMO. Affine motion parameters and optic 
flow vectors are used to to compute the PMO. The PMOs 
are normalized to a zero-mean unit-norm.  

In the first set of experiments, we use office activity 
video for testing. The fixed window size is 128x224.  The 
sequences are introduced in section 4. In the second set of 
experiments, we test eight martial art activities. The fixed 
window size is 160x224. A subject stands in front of the 



 

 

camera to perform martial arts. During the performance, 
he plants one foot on the ground, and follows a set of 
motions closely. The images in Figure 4 show the 
representative frames from each of the eight activities. In 
this case, we put all the activities in a single group, 
regardless of their complexity. Table 1 summarizes these 
results.  

 

    

    

Figure 4. Representative frames from martial art 
activity sequences. 

Table 1. Experimental results on the test 
sequences. 

Office 
Activity 

Group1 Group2 
Martial

Art 
6 bases 40% 30% 30% PCA 10 bases 45% 40% 35% 
6 bases 50% 50% 45% 

Affine 
model  PMO 10 bases  60% 50% 47% 

6 bases  70% 55% 77% PCA 10 bases 70% 60% 81% 
6 bases  100% 90% 89% 

Optic 
Flow  PMO 10 bases  100% 95% 91% 

 
Results for group 1 are better than those for group 2 

activities in the office set. This is partly due to the fact 
that group 2 activities share similar sub-processes, making 
their estimation more difficult. Also, group 2 activities are 
more complex. For example, the first state of “su” is the 
same as the first state of “bu”.  In addition, the transitions 
in “bu” and “bd” are also more complicated than those in 
group 1.  The martial art activities are in general more 
complex than the office activities. There are occlusions 
among different parts of the body. This can be very 
difficult for feature tracking based methods. However, our 
motion parameter based method still achieves a 
recognition rate of about 90%.  

Note that the optic flow based modeling performs 
better than the more informative affine model. One 
possible explanation is that the affine motion parameters 
are more sensitive than the optic flow, and variations are 
not well captured within the four-state HMM used in our 
experiments. Increasing in the training dataset perhaps 
helps to improve its accuracy. Two different numbers of 
principal subspace dimensions are also tested. In general, 
larger dimensions of principal subspaces perform better 
than smaller ones, but we did not observe significant 
differences here between six and ten dimensions.   

PCA based method is also tested here. It is done by 
taking ( | )

P
P− ΩZ  out of computation in (4). It is essentially 

the same feature used in  [4]. It can be seen from 
experiment that in general PMO method outperforms the 
PCA method.  

6. Discussion and Conclusion  
We have presented a general method for complex 

human activity recognition. The likelihood of the 
observed motion parameters is computed based on a 
multivariate Gaussian probabilistic model. The temporal 
change of the likelihood is modeled using HMM. Our 
initial test results containing activities such as sitting, 
getting up from a chair, and martial arts appear quite 
promising. The framework proposed here can be fit in a 
more general Bayesian network [4] for human activity 
understanding. 

While the proposed method has been investigated in 
two different settings, more work is needed to investigate 
how this method scales to different environments. The 
experiments have been carried out on sequences that have 
approximately the same spatial resolution. Our 
preliminary experiments indicate that scaling can be 
handled by re-normalizing the motion field appropriately, 
but more investigation is needed.  
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