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Abstract

Despite the increasing interest on parallel mecha-
nisms during the last years, few researchers have ad-
dressed the motion planning problem for such sys-
tems. The few existing techniques lie onto a repre-
sentation of the workspace of the mechanism (or its
boundary). However, obtaining this representation is
generally too difficult, only partial solutions exist for
particular cases. In this paper we propose a gene-
ral approach based onto probabilistic motion planning
techniques. This approach does not need any modeling
of the robot’s workspace. It combines random sam-
pling techniques with simple but general geometric al-
gorithms that guide the sampling toward feasible con-
figurations satisfying the closure constraints of the pa-
rallel mechanism. The efficiency and the generality of
the method are demonstrated onto several complex me-
chanisms made up with serial or parallel associations
of Stewart platforms, or created with several redundant
robots manipulating an object.

1 Introduction

A parallel manipulator is a mechanism in which
the end-effector is connected to the base by at least
two independent kinematic chains [19]. The most rep-
resentative parallel manipulator is the six-degrees-of-
freedom (d.o.f.) mechanism known as Stewart plat-
form [26, 8]. This definition can be also applied to
more complex multi-closed-chain mechanisms formed
by several manipulators handling an object. In this
paper we address the problem of planning collision-
free motions for such general parallel mechanisms.

The few existing techniques for trajectory valida-
tion and motion planning of parallel mechanisms [22]
use a representation of the workspace of the mobile
platform. The difficulty to compute such representa-
tions limits the generality of these approaches, like
with deterministic motion planning techniques [16]
that first relied on an exact model of the collision-
free configuration-space C'Sy,e. of the mobile system.
Probabilistic motion planning techniques [12] do not
need to build a model of the space where they are ap-
plied. This property was the key of their success du-

problem for a Stewart platform.

ring the last decade. However, the closure constraints
of parallel mechanisms (i.e. multiple closed-chains) re-
main an important challenge for probabilistic motion
planning methods and the few existing approaches
[17, 11, 6] are mostly limited to single-loop mecha-
nisms. We present an extension of our work on mo-
tion planning for closed-kinematic chains [6] using the
PRM framework, to efficiently deal with multi-closed-
chain mechanisms such as general parallel robots.

A first application of the approach is to capture
the self-collision-free workspace of the parallel mecha-
nism into a small data structure (a random visibility
roadmap [25]). Once computed for a given mechanism,
this data structure can be used to generate in real-time
valid motions avoiding self-collisions between the links
of the mechanism. In presence of obstacles, the pro-
posed approach also allows us to solve motion planning
problems like the one illustrated in Figure 1 where the
path to extract the ring mounted onto a Stewart plat-
form from the “s-shaped” obstacle is computed in only
a few seconds.

Section 2 first gives a brief overview of probabilis-
tic motion planning techniques. In this same section,
we discuss about the extension of these techniques to
handle closed kinematic chains. Parallel mechanisms
are presented in Section 3. Our approach for sampling



random configurations of such systems is explained in
Sections 4 and 5. Results in Section 6 show the gene-
rality of the method through different applications for
various kinds of systems.

2 Probabilistic Motion Planning

Probabilistic motion planning techniques appeared
in the last decade as an alternative to determinis-
tic approaches. In particular, Probabilistic RoadMap
(PRM) methods [12] have been mostly developed.
These techniques have demonstrated to be efficient
and general tools for motion computing.

PRM Principle. The general PRM principle is to
construct a graph (roadmap) that captures the topo-
logy of C'Sfree. The nodes are randomly sampled con-
figurations satisfying intrinsic conditions in this space
(e.g. collision-free). The edges are short feasible paths
(local paths) linking “nearby” nodes.

PRM Variants. Several algorithms [1, 3, 27, 25, 2]
have been proposed sharing this basic idea. These
methods mostly differ from their sampling strategies.
In particular, the visibility-PRM approach [25] is used
in our solution. The algorithm building the graph
only keeps the sampled configurations in two cases:
when they link several connected components of the
roadmap or when they can not be connected to any
of these components. The main advantage is to com-
pute a smaller roadmap which significantly decreases
the number of calls to the local planner (the most ex-
pensive step of the roadmap construction) compared
to other approaches. Figure 2 shows two roadmaps
for the same 2D environment. The left one has been
computed by a basic-PRM algorithm that keeps every
valid sampled configuration. The right one, obtained
by the visibility approach, encodes the same informa-
tion in a much smaller structure.

The mentioned PRM techniques are called multiple-
query. Once the roadmap is computed, motion plan-
ning queries are solved by connecting the start and
goal configurations to the graph and searching a path

Figure 2: Basic-PRM and visibility-PRM in the
same 2D environment.

in it. Other algorithms dedicated to solve simple plan-
ning queries have been developed from the same prin-
ciples than PRM (e.g. RRT [15], SBL-PRM [23]).

All techniques above require the generation of ran-
dom configurations of the mechanism. This is a trivial
process in the case of open kinematic chains. On the
contrary, when the mechanism contains closed chains,
samples must be generated into a sub-dimensional
manifold of C'S. The difficulty to compute (and to
connect) such configurations remains a challenge for
the application of probabilistic motion planners.

PRM and Closure Constraints. Only a few
works extending the PRM framework to deal with
closed chain mechanisms can be found in the litera-
ture [17, 11, 6]. The approach in [6] demonstrates
good performance onto complex 3D closed chains in-
volving tenths of d.o.f.. Each single-loop in the me-
chanism is broken (as initially proposed in [11]) into
two chains (passive and active). The random node
generation combines a sampling technique called Ran-
dom Loop Generator (RLG) with forward kinematics
for the active chain and inverse kinematics for the re-
maining (passive) part of the loop in order to force the
closure. When computing the edges, the local planner
is limited to act onto the active joints. The passive
part of each loop follows the motion of the rest of the
chain using point to point inverse kinematics.

The main interest of RLG is that it produces ran-
dom samples for the active chain that have a high
probability to be reachable by the passive part. The
algorithm in [6] performs well on independent single-
loops and was also applied to some cases of multi-
loops. However, this approach requires an extension
to efficiently handle more general closed-chain mecha-
nisms. Parallel mechanisms are a more complex ins-
tance that presents particular interest.

3 Parallel Mechanisms

Description. A parallel mechanism is composed of
a base B, a platform P and n kinematic chains M;
linking them. We call Ap, and Ap, the frames corres-
ponding to the connections of each M; to B and P
respectively. Fp and Fp are the frames associated to
B and P (see Figure 3).

The situation of P is defined by a vector
gp={z,y,2,04,0,,0.}. The three firts elements repre-
sent the position of Fp with respect to Fiz. The orien-
tation is given by three consecutive rotations around
the axes of Fp !. The platform is considered to be
the end-effector of a parallel mechanism. Hence, an
equivalence can be established between situations of
‘P and points of the workspace of the system.

IThe approach is valid for other representations of the orien-
tation (e.g. Euler angles).




Figure 3: General description of a parallel mechanism.

Workspace. Normally, the workspace WSp of a pa-
rallel mechanism is computed from the workspaces
WS, of the chains M; and the dimensions related to
P. The difficulty is that WSp can not be decoupled
into two three-dimensional (graphically representable)
sub-spaces because of the dependence between posi-
tion and orientation of the end-effector. Therefore,
only sub-sets of the workspace may be represented.
Most of the existing works are limited to the deter-
mination of some particular sections of the positional
workspace with constant orientation of the platform
[10, 18]. Other techniques also compute the feasible
rotations of the platform around a fixed point [21].

Configuration. The configuration of a parallel me-
chanism is defined by the joint values of the chains
M, (and the situation of P). Configurations satisfy-
ing the closure constraints could be easily computed
from a model of its workspace. Hence, a feasible si-
tuation gp could be directly obtained from this repre-
sentation. The situation of the connection-frames Ap,
w.r.t. the Ap, would be given by ¢p, and the configu-
ration of the chains M; linking these frames could be
then computed by inverse kinematics techniques.
However, modeling the workspace of a general pa-
rallel mechanism remains an open problem [20]. In
next section, we describe an algorithm that generates
random configurations of a general parallel mechanism
without requiring the explicit computation of WSp.

4 Random Configuration Sampling
for Parallel Mechanisms

We propose a general approach that combines ran-
dom sampling techniques with simple geometric ope-
rations for generating random configurations of para-
llel mechanisms. Spherical shells approximating the
WS, are used to progressively compute the situation
gp of P. The algorithm first generates the position
parameters of ¢gp and then it computes the rotation
parameters. Such obtained situations of P correspond
to random samples in a conservative approximation of

WSp. Then, the existence of a feasible configuration is
checked for each chain M; linking Ap, and Ap,. The
configuration of the parallel mechanism is kept when
all the M; connect the base and the platform, else the
process is iterated. Next paragraphs detail the main
features of the approach.

WSy, Approximation. In a similar way than in
[6], spherical shells bounding the reachable workspace
(only in position) of the chains M; are used. A trade-
off between accuracy and computing time justifies this
choice. A spherical shell is defined by the intersection
of the volume between two concentric spheres and a
cone whose vertex coincides with their common cen-
ter. Spherical shells are used in collision detection
as boundary volumes of objects because of the fast
computation of their intersections [14]. Parameters
characterising the spherical shell are derived from the
features of the chains M;. The external and inter-
nal radii correspond with the maximun and minimum
extension. The cone cutting the full shell can be com-
puted from a further analysis of the joint limits and
of the link lengths.

Platform Position. Given the fixed situation of the
Ap, in Fp, a plane Il;,, . can be computed by inter-
polating the position of the frame origins (when there
are more than two). We next explain the method to
generate the position of the platform w.r.t. the frame
F11 associated to this plane.

First, a rectangle Cy, approximating the orthogo-
nal projection of WSp on 1l,y,, .. is computed as fol-
lows. The spherical shell approximating each WSy, is
augmented by the distance from Ap, to Fp. The pro-
jection of the external portion of sphere on Il,,,, .. co-
rresponds in general to an ellipse. Cy, is the rectangle
bounding the intersection of these ellipses. Figure 4
illustrates this process in the case of four chains M;.
For clarity purpose, we have only represented the ex-
ternal surface of the augmented shell of the chain M.

The generation of a situation of P begins by ran-
domly sampling a point p,, in C,. Then, the in-

Figure 4: Tllustration of the computation of Cyy.



Figure 5: Illustration of the computation of I, , .

tersection of the line perpendicular to Il,,, .. passing
through p,, with each one of the augmented spherical
shells is computed. When one or several volumes are
not intersected, a new point p,, must be sampled. The
result of this operation are one or several intervals in
z (relative to Il,y,,.,) for each M;. The intersection
of such intervals represents a conservative approxima-
tion of the set of reachable positions of the platform
for a given p,. The z coordinate of P is generated by
randomly sampling in this set.

Platform Orientation. For a given position of P,
its orientation is generated by progressively computing
the three elementary rotations. We next explain the
process for one rotation.

The rotation of P around an axis k produces a circu-
lar motion of each Ap,. The intersection of the sphe-
rical shell approximating each WSy, with the circle
generated by its corresponding Ap, is computed. The
result is the set Iy, of values of the rotation param-
eter making Ap, reachable (in position) by M; (con-
sidering our approximation). Figure 5 illustrates this
operation. When the circle intersects all the shells,
the value of the rotation 6 is obtained by randomly
sampling in the interval(s) resulting of the intersection
of the Iy, , sets. The process is iterated when any of
the computed intersections is null.

M,; Configuration & Validation. The conserva-
tiveness of the approach is essential in order to guaran-
tee that WSp will be completely sampled. However,
the validity of each configuration must be tested. A
configuration is valid when the situation of the plat-
form induces feasible joint values of all the chains M;.

For parallel manipulators (Stewart platform type)
obtaining the configuration of the M; for a given si-
tuation of P is straightforward due to the simple na-
ture of these chains. In the general context this pro-
cess is more complex. Each triplet {Ap,,Ap,,M;} is
treated as a closed kinematic chain. When M; is a
non-redundant system, its configuration can be di-
rectly obtained by inverse kinematics. In case of re-
dundancy, we use the RLG algorithm presented in [6]
to generate it.

Note that this approach also allows to handle par-
ticular cases such as mechanisms where the position
of the platform is fixed w.r.t. the base and/or the ro-
tational mobility is limited (i.e. rotating only around
one or two axes).

5 Complex Mechanisms

The presented approach has been extended to han-
dle more complex systems obtained by the associations
of parallel mechanisms. It has been also adapted to a
particular case of highly-redundant chains M.

Associations. When n parallel mechanisms are
connected in series (see left image in Figure 8), each
platform P;, i=1..n—1, becomes the base for the next
platform. The process of generation and validation
of the configuration is progressively achieved for each
platform starting from the base (P1) to the top (P).
When the sampled situation of a given P; is not valid,
the process does not re-start completely. It is only ite-
rated from P;_;. When several parallel mechanisms
are disposed in parallel (see right image in Figure 8)
they form a “main” parallel system. Each mechanism
can be considered as a chain M; of the main system.
Therefore, their platforms become passive elements of
the whole mechanism.

Mobile M, bases. Such case occurs for exam-
ple when the M; chains correspond to mobile ma-
nipulators (i.e. articulated system composed of an
arm mounted on a mobile base [13], see Figure 10).
Spherical shapes are suitable to bound the reachable
workspace of the arm, but not for the whole mobile
manipulator. We have extended the approach to the
case where the Ap, can freely move on parallel planes.
While computing ¢p, these frames are considered to
be placed at the position that maximizes the variation
of each parameter. Then, feasible random configura-
tions of the chains M; are computed by RLG.

6 Results

The approach has been implemented into the mo-
tion planning software Move3D [24]. In this section
we comment some of the obtained results for very dif-
ferent parallel mechanisms. Numerical results corres-
pond to tests performed with a Sun Blade 100 work-
station.

Self-collision-free motions. The first experiment
aims to demonstrate the performance of the approach
to compute self-collision-free motions of the Stewart
platform. The roadmap computed for this mecha-
nism can be used to generate such motions in real-
time. The left image in Figure 6 shows an example
of the self-collision configurations to be avoided. The
graph illustrated in the other image of this figure was
computed by the visibility-PRM [25] approach in 22
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Figure 6: Illustration of the self-collision-free
visibility-PRM computed for a Stewart platform.

- -

seconds. It only contains one connected component
made up with 11 configurations. This small graph
covers more than the 99.99% of the robot workspace.
The roadmap construction required the generation of
17442 configurations of the mechanism, of which 2328
were found to be collision-free. Using our sampling
strategy, 30840 situations of the platform were tested
for the generation of valid configurations (more than
50% of success). With similar tests performed using
standard random sampling techniques to generate the
situation of the platform 2, less than a 2% of the sam-
ples produced valid configurations of the mechanism.
This illustrates the important gain (about 25 times
faster) using the proposed sampling approach.

Motion planning for Stewart mechanisms. The
second example illustrated by Figure 7 shows a cons-
trained motion planning problem for the Stewart plat-
form. The figure shows the start and goal configura-
tions and the trace of the solution path. Note that
the motion requires extreme deformations of the me-
chanism. A graph containing this solution was com-
puted in 60 seconds. Once computed, it allows to pro-
cess motion planning queries in some hundredths of
second. The two images in Figure 8 correspond to mo-
tion planning problems involving associations of para-
llel mechanisms. The manipulator of the left image
is a model of the Logabex-LX4 [5]. The arm is com-

2Samples are taken in a six-dimensional-box bounding the
space of feasible situations of P.

Figure 7: Sequence of the solution motion
for the s-bar problem.

Figure 8: Examples of associations of Stewart platforms.

posed of four Stewart platforms connected in series.
Motion planning queries solving problems where the
manipulator with the grasped bar changes from one
to another opening of the bridge were computed by
RRT algorithm [15] in a few seconds. The right image
illustrates an example where two sets of three Stewart
platforms cooperate in a assembly task. This type of
association as been proposed in [4] for the manipula-
tion of large objects. The motion to assemble the two
puzzle-like parts was computed in only 15 seconds.

Parallel systems including manipulator arms.
The two last examples show the generality of the ap-
proach. In both cases, the mechanism consists of se-
veral robotic arms grasping an object. The problem
illustrated in Figure 9, where four 6R manipulators
have to unhook an object and to insert it into the
cylindrical axis, was solved using RRT in less than 1
second. The last example (see Figure 10) combines
two types of difficulty. First, the system composed
by the three holonomic mobile manipulators and the
piano is a very complex parallel mechanism (9 d.o.f.
for each M; chain). Also, the complexity of the
scene makes the validation of collision-free configura-
tions and local paths harder. A graph that permits
to rapidly compute any feasible motion in this scene
was computed using the visibility-PRM approach in
about 5 minutes. In this example, the redundancy of
the manipulators (M, chains) is treated by the RLG
algorithm as explained in Section 5.

Figure 9: Four robotic arms manipulate an only object.



Figure 10: A piano mover problem with three
cooperating mobile arms.

7 Conclusions

The proposed approach allows to extend the PRM
framework to efficiently handle complex mechanisms
with multiple closed-chains. Our aim is to reach the
highest level of generality. The approach can deal with
the most general definition of parallel mechanisms and
its efficacy was demonstrated onto complex examples
(e.g. serial/parallel associations of Stewart platforms,
parallel system with redundant chains). A possible
improvement of this approach could be to integrate
constraints for avoiding singular configurations along
the trajectory [7, 20].

We are currently investigating the application of
our closed-chain PRM approach to highly-articulated
chains encountered in molecular models. Hence, tools
for analyzing the motion of loops in protein structures
[9] could help biologists to better understand the pro-
tein folding process.
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