
Probabilistic Movement Modeling for Intention

Inference in Human-Robot Interaction

Zhikun Wang1,2, Katharina Mülling1,2, Marc Peter Deisenroth2,

Heni Ben Amor2, David Vogt3,

Bernhard Schölkopf1, and Jan Peters1,2

1Max Planck Institute for Intelligent Systems

Spemannstr. 38, 72076 Tübingen, Germany.
2Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany.
3Technical University Bergakademie Freiberg

Bernhard-von-Cotta-Str. 2, 09596 Freiberg, Germany.

Abstract

Intention inference can be an essential step toward efficient human-

robot interaction. For this purpose, we propose the Intention-Driven Dy-

namics Model (IDDM) to probabilistically model the generative process

of movements that are directed by the intention. The IDDM allows to

infer the intention from observed movements using Bayes’ theorem. The

IDDM simultaneously finds a latent state representation of noisy and high-

dimensional observations, and models the intention-driven dynamics in the

latent states. As most robotics applications are subject to real-time con-

straints, we develop an efficient online algorithm that allows for real-time

intention inference. Two human-robot interaction scenarios, i.e., target

prediction for robot table tennis and action recognition for interactive hu-

manoid robots, are used to evaluate the performance of our inference algo-

rithm. In both intention inference tasks, the proposed algorithm achieves

substantial improvements over support vector machines and Gaussian pro-

cesses.

1 Introduction

Recent advances in sensors and algorithms allow for robots with improved perception

abilities. For example, robots can now recognize human poses in real time using depth

cameras (Shotton et al., 2011), which can enhance the robot’s ability to interact with

humans. However, effective perception alone may not be sufficient for Human-Robot
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Figure 1: Graphical models of the Gaussian process dynamical model (GPDM) and the

proposed intention-driven dynamics model (IDDM), where we denote the intention by

g, state by xt, and observation by zt. The proposed model explicitly incorporates the

intention as an input to the transition function (Wang et al., 2012b).

Interaction (HRI), since the robot’s reactions ideally depend on the underlying inten-

tion of the human’s action, including the others’ goal, target, desire, and plan (Simon,

1982). Human beings rely heavily on the skill of intention inference (for example, in

sports, games, and social interaction) and can improve the ability of intent prediction

by training. For example, skilled tennis players are usually trained to possess substan-

tially better anticipation than amateurs (Williams et al., 2002). This observation raises

the question of how robots can learn to infer the human’s underlying intention from

movements.

In this article, we focus on intention inference from a movement based on mod-

eling how the dynamics of a movement are governed by the intention. This idea is

inspired by the hypothesis that a human movement usually follows a goal-directed pol-

icy (Baker et al., 2009; Friesen and Rao, 2011). The resulting dynamics model allows

to estimate the probability distribution over intentions from observations using Bayes’

theorem and to update the belief as additional observation is obtained. The human

movement considered here is represented by a time series of observations, which makes

discrete-time dynamics models a straightforward choice for movement modeling and

intention inference. In a robotics scenario, we often rely on noisy and high-dimensional

sensor data. However, the intrinsic states are typically not observable, and may have

lower dimensions. Therefore, we seek a latent state representation of the relevant in-

formation in the data, and then model how the intention governs the dynamics in this

latent state space, as shown in Fig. 1b. The resulting model jointly learns both the

latent state representation and the dynamics in the state space.

Designing a parametric dynamics model is difficult due to the complexity of hu-

man movement, e.g., its unknown nonlinear and stochastic nature. To address this

issue, Gaussian processes (GPs), see (Rasmussen and Williams, 2006), have been suc-

cessfully applied to modeling human dynamics. For example, the Gaussian Process

Dynamical Model (GPDM) proposed in (Wang et al., 2008) uses GPs for modeling the

2



(a) Robot table tennis. (b) Interactive humanoid robot.

Figure 2: Two examples of HRI scenarios where intention inference plays an important

role: (a) target prediction in robot table tennis games, and (b) action recognition for

human-robot interaction.

generative process of human motion with a nonlinear dynamical system, as shown in

Fig. 1a. Since the GP is a probabilistic nonparametric model, the unknown structure of

the human moment can be inferred from data, while maintaining posterior uncertainty

about the learned model itself.

As an extension to the GPDM, we propose the Intention-Driven Dynamics Model

(IDDM), which models the generative process of intention-driven movements. The

dynamics in the latent states are driven by the intention of the human action/behavior,

as shown in Fig.1b. The IDDM can simultaneously find a good latent state represen-

tation of noisy and high-dimensional observations and describe the dynamics in the

latent state space. The dynamics in latent state and the mapping from latent state to

observations are described by GP models. Using the learned generative model, the hu-

man intention can be inferred from an ongoing movement using Bayesian inference.

However, exact intention inference is not tractable due to the nonlinear and nonpara-

metric GP transition model. Therefore, we propose an efficient approximate inference

algorithm to infer the intention of a human partner.

The remainder of the article is organized as follows. First, in this section, we illus-

trate the considered scenarios (Section 1.1) and discuss the related work (Section 1.2).

Subsequently, we present the Intention- Driven Dynamics Model (IDDM) and address

the problem of its training in Section 2. In Section 3, we study approximate algorithms

for intention inference and extend them to online inference in Section 4. We evaluate

the performance of the proposed methods in the two scenarios, i.e., target prediction in

robot table tennis and action recognition, in Section 5 and 6. Finally, we summarize

our contributions and discuss properties of the IDDM in Section 7.

1.1 Considered Scenarios

To verify the feasibility of the proposed methods, we discuss two representative

scenarios where intention inference plays an important role in human-robot interac-

tions:

(1) Target inference in robot table tennis. We consider human-robot table tennis

games (Mülling et al., 2011), where the robot plays against a human opponent as shown
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in Fig. 2a. The robot’s hardware constraints often impose strong limitations on its

flexibility in such a high-speed scenario; for example, the Barrett WAM robot arm often

cannot reach incomining balls due to a lack of time caused by acceleration and torque

limits for the biomimetic robot table tennis player described in (Mülling et al., 2011).

The robot is kinematically capable of reaching a large hitting plane with pre-defined

hitting movements such as forehand, middle, and backhand stroke movements that are

capable in returning the ball shot into their corresponding hitting regions. However,

movement initiation requires an early decision on the type of movement. In practice,

it appears that to achieve the required velocity for returning the ball for the whole

kinematically reachable hitting plane, this decision needs to be taken at least 80 ms

before the opponent returns the ball (Wang et al., 2011b). Hence, it is necessary to

choose the hitting movement before the opponent’s racket has even touched the ball.

This choice can be made based on inference of the target location where the opponent

intends to return the ball from his incomplete stroke movement. We show that the

IDDM can improve the prediction of the human player’s intended target over a baseline

method based on Gaussian process regression, and can thus expand the robot’s hitting

region substantially by utilizing multiple hitting movements.

(2) Action recognition for interactive humanoid robots. In this setting, we use our

IDDM to recognize the actions of the human, as shown in Fig. 2b, which can improve

the interaction capabilities of a robot (Jenkins et al., 2007). In order to realize natural

and compelling interactions, the robot needs to correctly recognize the actions of its

human partner. In turn, this ability allows the robot to react in a proactive manner.

We show that the IDDM has the potential to identify the action from movements in a

simplified scenario.

In most robotics applications, including the scenarios discussed above, the decision

making systems are subject to real-time constraints and need to deal with a stream of

data. Moreover, the human’s intention may vary over time. To address these issues, we

propose an algorithm for online intention inference. The online algorithm can process

the stream data and fulfill the real-time requirements. In the experiments, the proposed

online intention inference algorithm achieved over four times acceleration over our

previous method in (Wang et al., 2012b).

1.2 Related Work

We review methods for intention inference and for modeling human movements

that are related to the proposed IDDM and inference methods.

1.2.1 Intention Inference

Inference of intentions has been investigated in different settings. Most of previous

work relies on probabilistic reasoning.

Intention inference with discrete states and actions has been extensively studied, us-

ing Hidden Markov Models (HMMs) to model and predict human behavior where dif-

ferent dynamics models were adopted to the corresponding behaviors (Pentland and Liu,

1999). Online learning of intentional motion patterns and prediction of intentions

based on HMMs was proposed in (Vasquez et al., 2008), which allows efficient infer-

ence in real time. The HMM can be learned incrementally to cope with new motion
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patterns in parallel with prediction (Vasquez et al., 2009).

Probabilistic approaches to plan recognition in artificial intelligence (Liao et al.,

2007) typically represent plans as policies in terms of state-action pairs. When the

intention is to maximize an unknown utility function, inverse reinforcement learning

(IRL) infers the underlying utility function from an agent’s behavior (Abbeel and Ng,

2004). IRL has also been applied to model intention-driven behavior. For instance,

maximum entropy IRL (Ziebart et al., 2008) has been used to model goal-directed

trajectories of pedestrians (Ziebart et al., 2009) and target-driven pointing trajecto-

ries (Ziebart et al., 2012).

In cognitive science, Bayesian models were used for inferring goals from behav-

ior in (Rao et al., 2004), where a policy conditional on the agent’s goal is learned to

represent the behavior. Bayesian models can be used to interpret the agent’s behavior

and predict its behavior in a similar environment with the learned model (Baker et al.,

2006). In a recent work (Friesen and Rao, 2011), a computational framework was pro-

posed to model gaze following, where GPs are used to model the dynamics with actions

driven by a goal. These methods assume that the states can be observed. However, in

practice the states are often not well-defined or not observable for complex human

movement.

One can also consider the intention inference jointly with decision making, such

as autonomous driving (Bandyopadhyay et al., 2012), control (Hauser, 2012), or nav-

igation in human crowds (Kuderer et al., 2012). For example, when the state space

is finite, the problem can be formulated as a Partially Observable Markov Decision

Process (Kurniawati et al., 2011) and solved efficiently (Wang et al., 2012a). In con-

trast, our method assumes that the robot’s decision does not influence the intention of

the human and considers intention inference and decision making separately, which

allows us to efficiently deal with high-dimensional data stream and fulfill the real-time

constraints.

1.2.2 Gaussian Process Dynamical Model and Extensions

Observations of human movements often consist of high-dimensional features. Deter-

mining a low-dimensional latent state space is an important issue for understanding

observed actions. The Gaussian Process Latent Variable Model (GPLVM) (Lawrence,

2004) finds the most likely latent variables while marginalizing out the function map-

ping from latent to observed space. The resulting latent variable representation allows

to model the dynamics in a low-dimensional space. For example, the Gaussian Process

Dynamical Model (Wang et al., 2008) uses an additional GP transition model for the

dynamics of human motion on the latent state space.

In robotics applications, the GPLVM can also be used for learning dynamical

system motor primitives (Ijspeert et al., 2002) in a low-dimensional latent space, to

achieve robust dynamics and fast learning (Bitzer and Vijayakumar, 2009). Nonpara-

metric dynamics models are also applied for tracking a small robotic blimp with two

cameras (Ko and Fox, 2009), where GP-Bayes filters were proposed for efficient fil-

tering. In a follow-up work (Ko and Fox, 2011), the model is learned based on the

GPLVM, so that the latent states need not be provided for learning.

The use of a GP transition model renders exact inference in the GPDM and, hence,
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in the IDDM, analytically intractable. Nevertheless, approximate inference methods

have been successfully applied based on filtering and smoothing in nonlinear dynami-

cal systems. For the GPDM and its extensions, approximate inference can be achieved

using Particle Filters (GP-PF), Extended Kalman Filters (GP-EKF), and Unscented

Kalman Filters (GP-UKF) as proposed by (Ko and Fox, 2009). GP Assumed Density

Filters (GP-ADF) for efficient GP filtering, and general smoothing in GPDMs were

proposed in (Deisenroth et al., 2009) and (Deisenroth et al., 2012), respectively. These

filtering and smoothing techniques allow the use of Expectation-Maximization (EM)

framework for approximate inference (Ghahramani and Roweis, 1999; Turner et al.,

2010; Wang et al., 2012b).

2 Intention-Driven Dynamics Model

We propose the Intention-Driven Dynamics Model (IDDM), which is an extension of

the GPDM (Wang et al., 2008). The GPDM is a nonparametric approach to learning the

transition function in the latent state space and the measurement mapping from states to

observations simultaneously. As shown in Fig. 1a, the transition function in the GPDM

is only determined by the latent state. However, in the applications considered in this

paper, the underlying intention, as an important drive of human movements, can hardly

be discovered directly from the observations. Considering that the dynamics can be

substantially different when the actions are based on different intentions, we propose

the Intention-Driven Dynamics Model. As shown in Fig. 1b, the IDDM explicitly

incorporates the intention into the transition function in the latent state space. This

dynamics model was inspired by the hypothesis that the human action is directed by

the goal (Baker et al., 2009; Friesen and Rao, 2011). For example, in table tennis, the

player swings the racket in order to return the ball to an intended target. The target is,

hence, a driving factor in the dynamics of the racket.

We present the proposed model and address the problem of its training in this sec-

tion. Later, in Section 3, we study approximate algorithms for intention inference, and

extend it for online inference in Section 4.

2.1 Measurement and Transition Models

In the proposed IDDM, one set of GPs models the transition function in the latent space

conditioned on the intention g. A second set of GPs models the measurement mapping

from the latent states x and the observations z. For notational simplicity, we assume the

intention variable g is discrete or a scalar. The model and method can easily generalize

to multi-variate intention variables. We detail both the measurement and transition

models in the following.

This article extensively uses properties of the Gaussian processes, e.g., predictive

distribution and marginal likelihood. We refer to (Rasmussen and Williams, 2006) for

a comprehensive introduction to GPs.

6



2.1.1 Measurement model

The observations of a movement are a time series z1:T , [z1, . . . , zT ], where zt ∈
R

Dz . In the proposed generative model, we assume that an observation zt ∈ R
Dz is

generated by a latent state variable xt ∈ R
Dx according to

zt = Wh(xt) +Wnz,t , nz,t ∼ N (0,Sz) , (1)

where the diagonal matrix W = diag(w1, . . . , wDz
) scales the outputs of h(xt). The

scaling parameters W allow for dealing with raw features that are measured in differ-

ent units, such as positions and velocities. We place a GP prior distribution on each

dimension of the unknown function h, which is marginalized out during learning and

inference. The GP prior GP(mz(·), kz(·, ·)) is fully specified by a mean function mz(·)
and a positive semidefinite covariance (kernel) function kz(·, ·). Without specific prior

knowledge on the latent state space, we use the same mean and covariance function for

the GP prior on every dimension of the unknown measurement function h, and use the

noise (co)variance Sz = s2zI. The predictive probability of the observations zt is given

by a Gaussian distribution zt ∼ N (mz(xt),Σz(xt)) , where the predictive mean and

covariance are computed based on training inputs Xz and outputs Yz , given by

mz(xt) = YzK
−1
z kz(xt), (2)

Σz(xt) = σ2
z(xt)I, (3)

σ2
z(xt) = kz(xt,xt)− kz(xt)

TK−1
z kz(xt) , (4)

where, we use the shorthand notation kz(xt) to represent the cross-covariance vector

between h(Xz) and h(xt), and use Kz to represent the kernel matrix of Xz .

2.1.2 Transition model

We consider first-order Markov transition model, see Fig. 1b, with a latent transition

function f , such that

xt+1 = f(xt, g) + nx,t, nx,t ∼ N (0,Sx) . (5)

The state xt+1 at time t + 1 depends on the latent state xt at time t as well as on the

intention g. We place a GP prior GP(mx(·), kx(·, ·)) on every dimension of f with

shared mean and covariance functions. Subsequently, the predictive distribution of

the latent state xt+1 conditioned on the current state xt and intention g is a Gaussian

distribution given by xt+1 ∼ N (mx([xt, g]),Σx([xt, g])) based on training inputs Xx

and outputs Yx, with

mx([xt, g]) =YxK
−1
x kx([xt, g]), (6)

Σx([xt, g]) =σ2
x([xt, g])I, (7)

σ2
x([xt, g]) =kx([xt, g], [xt, g])− kx([xt, g])

TK−1
x kx([xt, g]) , (8)

where Kx is the kernel matrix of training data Xx =
[
[x1, g1], . . . , [xn, gn]

]
. The

transition function f may also depend on environment inputs u, e.g., controls or motor

commands. We assume that environment inputs are observable and omit them in the

description of model for notational simplicity.
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2.2 Covariance Functions

By convention, we use GP prior mean functions that are zero everywhere for notational

simplicity, i.e., mz(·) ≡ 0 and mx(·) ≡ 0. Hence, the model is determined by the

covariance functions kz(·, ·) and kx(·, ·), which will be motivated in the following.

The underlying dynamics of human motion are usually nonlinear. To account for

nonlinearities, we use a flexible Gaussian tensor-product covariance function for the

dynamics, i.e.,

kx([xi, gi], [xj , gj ];α) = kx(xi,xj ;α)kx(gi, gj ;α) + knoise (9)

= α1 exp
(
−α2

2 ‖xi − xj‖2 − α3

2 (gi − gj)
2
)
+ α4δij ,

where α = [α1, α2, α3, α4] is the set of all hyperparameters, and δ is the Kronecker

delta function. When the intention g is a discrete variable, we set the hyperparameter

α3 =∞ such that kx(gi, gj ;α) ≡ δij .

The covariance function for the measurement mapping from the state space to ob-

servation space is chosen depending on the task. For example, the GPDM in (Wang et al.,

2008) uses an isotropic Gaussian covariance function

kz(x,x
′;β) = exp

(

−β1

2 ‖x− x′‖2
)

+ β2δx,x′ , (10)

parameterized by the hyperparameters β, as, intuitively, the latent states that generate

human poses lie on a nonlinear manifold. Note that the hyperparameters β do not

contain the signal variance, which is parameterized by the scaling factors W in Eq. (1).

In the context of target prediction in table tennis games, we use the linear kernel

kz(x,x
′;β) = xTx′ + β1δx,x′ , (11)

as the observations are already low-dimensional, but subject to substantial noise.

2.3 Learning the IDDM

The proposed IDDM can be learned from a training data set D = {Z, g} of J move-

ments and corresponding intentions. Each movement Zj consists of a time series of

observations given by Zj = [zj1, . . . , z
j
T ]

T . We construct the overall observation ma-

trix Z by vertically concatenating the observation matrices Z1, . . . ,ZJ , and the overall

intention matrix g from g1, . . . , gJ . In the robot table tennis example, one movement

corresponds to a stroke of the opponent, represented by a time series of observed racket

and ball configurations. We assume the intention g can be obtained for training, for ex-

ample by post-processing the data. In the robot table tennis example, the observed

intention corresponds to the target where the opponent returns the ball to (see Fig. 5

for an illustration). In the table-tennis training data, we can obtained the target’s co-

ordinates by post-processing. In the action recognition, the label of action is provided

directly in the training data.

Similar to the GPDM (Wang et al., 2008), we find maximum a posteriori (MAP)

estimates of the latent states X. Alternative learning methods and an empirical com-

parison can be found in (Turner et al., 2010; Damianou et al., 2011). Given the model
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hyperparameters, the posterior distribution of latent states X can be decomposed into

the probability of the observations given the states and the probability of the states

given the intention, i.e.,

p(X|Z, g,α,β,W) ∝ p(Z|X,β,W)p(X|g,α), (12)

both obtained by the GP marginal likelihood (Rasmussen and Williams, 2006). The

GP marginal probability of the observations Z given the latent states X is given by a

Gaussian distribution

p(Z|X,β,W) = |W|M√
(2π)MDz |Kz|Dz

exp
(

− 1
2 tr
(

K−1
z ZWW⊤ZT

))

, (13)

where M , JT is the length of observations Z, and Kz is the kernel matrix computed

by the kernel function kz(·, ·). Given the intention g, the sequence of latent states X

has a Gaussian probability

p(X|g,α) = p(X1)p(X2:T |X1:T−1, g,α)

= p(X1)√
(2π)mDx |Kx|Dx

exp
(

− 1
2 tr
(

K−1
x X2:TX

T
2:T

))

, (14)

where Xt, t ∈ {1, . . . , T} is constructed by vertically concatenating state matrices

x1
t , . . . ,x

J
t , m , J(T −1) is the length of X2:T , and Kx is the kernel matrix of X2:T ,

computed by the kernel function kx(·, ·). We use a Gaussian prior distribution on the

initial states X1.

Based on Eqs. (13)–(14), the MAP estimates of the states are obtained by maximiz-

ing the posterior in Eq. (12). In practice, we minimize the negative log-posterior

L(X) =Dz

2 log |Kz|+ 1
2 tr
(
K−1

z ZWW⊤ZT
)
−M log |W|

+ Dx

2 log |Kx|+ 1
2 tr
(
K−1

x X2:TX
T
2:T

)
+ 1

2 tr
(
X1X

T
1

)
+ const (15)

with respect to the states X, using the Scaled Conjugate Gradient (SCG) method (Møller,

1993).

2.4 Learning Hyperparameters

A reliable approach to learning the hyperparameters Θ = {α,β,W} is to maximize

the marginal likelihood

p(Z|g,Θ) =

∫

p(Z,X|g,Θ)dX, (16)

which can be achieved approximately by using the Expectation-Maximization (EM)

algorithm (Bishop, 2006). The EM algorithm computes the posterior distribution of

states q(X) = p(X|Z, g,Θ), given in Eq. (12), in the Expectation (E) step and updates

the hyperparameters by maximizing the expected data likelihood Eq[p(Z,X|g,Θ)] in

the Maximization (M) step. However, the posterior distribution q(X) is difficult to

compute in the IDDM. Following (Wang et al., 2008), we draw samples of the states
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Algorithm 1: Learning the model hyperparameters α,β, and W by maximizing

the marginal likelihood, using the Monte Carlo EM algorithm.

Input : Data: D = {Z, g}
Input : Number of EM iterations: L
Output: Model hyperparameters: Θ = {α,β,W}
for l← 1 to L do1

for i← 1 to I do2

Initialize X by its MAP estimate ;3

Draw sample X(i) from p(X|Z, g,Θ) using HMC;4

Maximize 1
I

∑I

i=1 log p(Z,X
(i)|g,Θ) w.r.t. Θ using SCG;5

X(1), . . . ,X(I) from the posterior distribution using hybrid Monte Carlo (Andrieu et al.,

2003), and, hence, the data likelihood is estimated via Monte Carlo integration accord-

ing to

Eq[p(Z,X|g,Θ)] ≈ 1

I

I∑

i=1

p(Z,X(i)|g,Θ). (17)

In the M step, we use SCG to update the hyperparameters. In practice, we choose the

number of samples I = 50 and the number of EM iterations L = 10. Although this

procedure, as described in Algorithm 1, is time-demanding, in practice, we can learn

the hyperparameters off-line.

In practice, the maximum likelihood estimate of the hyperparameters may lead to

over-fitting. For the IDDM, we found that the noise variance α4 in Eq. (9) of the tran-

sition model is occasionally underestimated, e.g., α4 < e−6, as Algorithm 1 estimates

it based on only a few samples. The underestimated noise variance may prevent the

learned model from generalizing to test data that have significant deviation from the

training data. This phenomenon of over-confidence has been discussed in (Lawrence,

2005; Wang et al., 2008). To alleviate this problem, we add a small constant e−3 to the

learned noise variance α4.

The model also depends on the hyperparameter Dx, i.e., the dimensionality of the

latent state space. Choosing an appropriate Dx is important. If the dimensionality is

too small, the latent states cannot recover the observations, which leads to significant

prediction errors. On the other hand, a high-dimensional state space results in redun-

dancy and can cause a drop in performance and computational efficiency. Nevertheless,

model selection, based on cross-validation for example, is conducted before learning

and applying the model.

To summarize, the modelM = {X,Θ} can be learned from a data set D. Subse-

quently, we use the model to infer the unobserved intention of a new ongoing move-

ment, as described in the following section.
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3 Approximate Intention Inference

After learning the modelM from the training data setD, the intention g can be inferred

from a sequence of new observations z1:T . For notational simplicity, we do not explic-

itly condition on the model M and the data set D. The measurement model defined

in Eq. (1) scales the observations by a diagonal matrix W. Therefore, we pre-process

every received observation with the scaling matrix W and omit W hereafter as well.

The IDDM models the generative process of movements, represented by observa-

tions z1:T , given an intention g. Using Bayes’ rule, we estimate the posterior probabil-

ity (belief) on an intention g from observations z1:T . The posterior is given by

p(g|z1:T ) =
p(z1:T |g)p(g)

p(z1:T )
(18)

∝ p(g)

∫

p(z1:T ,x1:T |g)dx1:T , (19)

where computing the marginal likelihood p(z1:T |g) requires to integrate out the la-

tent states x1:T . Exactly computing the posterior in Eq. (19) is not tractable due to

the use of nonlinear GP transition model. Hence, we resort to approximate inference.

In (Wang et al., 2012b), we introduced an EM algorithm for finding the maximum like-

lihood estimate of intention. However, this point estimate may not suffice for the re-

active policies of the robot that also take into account the uncertainty in the intention

inference (Wang et al., 2011a,b; Bandyopadhyay et al., 2012). For example, in the ta-

ble tennis task, the robot may need to choose the optimal time to initiate its hitting

movement, and such a choice is ideally made based on how certain the prediction of

target is (Wang et al., 2011b). In this article, we extend our previous inference method

introduced in (Wang et al., 2012b), such that the uncertainty about the intention is ex-

plicitly modeled and taken into account when making decisions.

The key challenge in estimating the belief in Eq. (19) is integrating out the latent

states x1:T . A common approximation to the log marginal posterior is to compute a

lower bound B(g) ≤ log p(g|z1:T ) based on Jensen’s inequality (Bishop, 2006). The

bound is given by

B(g) , Eq [log p(z1:T ,x1:T , g)] +H(q) (20)

= log p(g|z1:T )− KL (q||p(x1:T |z1:T , g))
≤ log p(g|z1:T ) ,

which holds for any distribution q(x1:T ) on the latent states. Here, the Kullback-

Leibler (KL) divergence KL (q||p(x1:T |z1:T , g)) determines how well B(g) can ap-

proximate the belief. Based on this approximation, the inference problem consists of

two steps, namely, (a) finding an approximation q(x1:T ) ≈ p(x1:T |z1:T , g), and (b)

computing the approximate belief B(g). When using the EM algorithm for the maxi-

mum likelihood estimate of the intention g, as in (Wang et al., 2012b), the E-step and

M-step correspond to these two steps, respectively.

For step (a), we approximate the posterior of latent states p(x1:T |z1:T , g) by a

Gaussian distribution q(x1:T ). For this purpose, we use the forward-backward smooth-

ing method proposed in (Deisenroth et al., 2009, 2012), which is based on moment

11



matching. Typically, Gaussian moment-matching provides credible error bars, i.e., it is

robust to incoherent estimates. The resulting approximate distribution q that we use in

the lower bound B in Eq. (20) is given by

q(x1:T ) = N (µq,Σq) ≈ p(x1:T |z1:T , g), (21)

with the mean and block-tri-diagonal covariance matrix

µq =






µx
1|T

...

µx
T |T




 , Σq =









Σx
1|T Σx

1,2|T 0

Σx
2,1|T

. . .
. . .

. . .
. . . Σx

T−1,T |T

0 Σx
T,T−1|T Σx

T |T









, (22)

where we only need to consider the cross-covariance between consecutive states1.

For step (b), based on the approximation q(x1:T ), the posterior belief p(g|z1:T ) can

then be approximated by the lower bound B(g) in Eq. (20).

In the following, we first detail step (a), i.e., the computation of q for our IDDM,

in Section 3.1. Subsequently, we discuss step (b), i.e., efficient belief estimation, in

Section 3.2.

3.1 Filtering and Smoothing in the IDDM

To obtain the posterior distribution p(x1:T |z1:T , g), approximate filtering and smooth-

ing with GPs are crucial in our proposed IDDM. We place a Gaussian prior on the initial

state x1. Subsequently, Gaussian approximations q(xt−1,xt) of p(xt−1,xt|z1:T , g)
for t = 2, . . . , T are computed. We explicitly determine the marginals p(xt|z1:T , g)
for t = 1, . . . , T , and the cross-covariance terms cov[xt−1,xt|z1:T , g], t = 2, . . . , T .

These steps yield a Gaussian approximation with a block-tri-diagonal covariance ma-

trix, see Eq. (22). These computations are based on forward-backward smoothing (GP-

RTSS) as proposed in (Deisenroth et al., 2012).

As a first step, we compute the posterior distributions p(xt|z1:T , g) with t =
1, . . . , T . To compute these posteriors using Bayesian forward-backward smooth-

ing in the IDDM, it suffices to compute both joint distributions p(xt−1,xt|z1:t−1, g)
and p(xt, zt|z1:t−1, g). The Gaussian filtering and smoothing updates can be ex-

pressed solely in terms of means and (cross-)covariances of these joint distributions,

see (Deisenroth and Ohlsson, 2011; Deisenroth et al., 2012). Hence, we have

µx
t|t = µx

t|t−1 +Σxz
t|t−1(Σ

z
t|t−1)

−1(zt − µz
t|t−1) , (23)

Σx
t|t = Σx

t|t−1 −Σxz
t|t−1(Σ

z
t|t−1)

−1Σzx
t|t−1 , (24)

µx
t−1|T = µx

t−1|t−1 + Jt−1(µ
x
t|T − µx

t|t−1) , (25)

Σx
t|T = Σx

t−1|t−1 + Jt−1(Σ
x
t|T −Σx

t|t−1)J
⊤
t−1 , (26)

1We use the short-hand notation a
d

b|c
where a = µ denotes the mean µ and a = Σ denotes the

covariance, b denotes the time step of interest, c denotes the time step up to which we consider measurements,

and d ∈ {x, z} denotes either the latent space (x) or the observed space (z).
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where we define

Jt−1 = Σx
t−1,t|t−1(Σ

x
t|t−1)

−1 . (27)

In the following, we first detail the computations required for a Gaussian approxima-

tion of the joint distribution p(xt−1,xt|z1:t−1, g) using moment matching. Here, we

approximate the joint distribution p(xt−1,xt|z1:t−1, g) by the Gaussian

N
([

µx
t−1|t−1

µx
t|t−1

]

,

[

Σx
t−1|t−1 Σx

t−1,t|t−1

Σx
t,t−1|t−1 Σx

t|t−1

])

. (28)

Without loss of generality, the marginal distribution N (xt−1 |µx
t−1|t−1,Σ

x
t−1|t−1),

which corresponds to the filter distribution at time step t − 1, is assumed known. We

compute the remaining elements of the mean and covariance in Eq. (28) in the follow-

ing paragraphs. We will derive our results for the more general case where we have

a joint Gaussian distribution p(xt−1,xt, g|z1:t−1). The known mean and covariance

of distribution p(xt−1, g|z1:t−1) are given by µ̃t−1|t−1 = [(µx
t−1|t−1)

⊤,µ⊤
g ]

⊤ and

Σ̃t−1|t−1, respectively, where the covariance matrix Σ̃t−1|t−1 is block-diagonal with

blocks Σx
t−1|t−1 and Σg . By setting the mean µg = g and Σg = 0, we obtain the

results from (Wang et al., 2012b). For convenience, we define x̃ = [x⊤, g]⊤.

Using the law of iterated expectations, the a-th dimension of the predictive mean

of the marginal p(xt|z1:t−1) is given as

(µx
t|t−1)a = Ext−1

[
Efa [fa(x̃t−1)|x̃t−1]|z1:t−1

]
(29)

=

∫

ma
x(x̃t−1)p(x̃t−1|z1:t−1)dx̃t−1 ,

where we substituted the posterior GP mean function for the inner expectation. Note

that if g is given then Σg = 0. Writing out the posterior mean function and defining

γa := K−1
x ya, with yai

, i = 1, . . . ,M , being the training targets of the GP with target

dimension a, we obtain

(µx
t|t−1)a = q⊤γa , (30)

where we define

q⊤ =

∫

kx([xt−1, g],Xx)p(x̃t−1|z1:t−1)dx̃t−1 . (31)

Here, Xx denotes the set of the M GP training inputs x̃i = [x⊤
i , g

⊤
i ]

⊤ of the transition

GP. Since kx is a Gaussian kernel, we can solve the integral in Eq. (31) analytically

and obtain the vector q with entries qi with i = 1, . . . ,M as

qi = α1|Ω|−
1
2 exp

(
− 1

2ζ
⊤
i (ΛΩ)−1ζi

)
, (32)

ζi = x̃i − µ̃t−1|t−1 , Ω = Σt−1|t−1Λ
−1 + I , (33)
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where Λ is a diagonal matrix of concatenated length-scales α2I and α3I. By applying

the law of total variances, the entries σx
ab of the marginal predictive covariance matrix

Σx
t|t−1 in Eq. (28) are given by

σx
ab =

{
γ⊤
a (Q

x − qq⊤)γb if a 6= b ,

γ⊤
a (Q

x − qq⊤)γb + α1 − tr
(
(Kx + α4I)

−1Qx
)
+ α4 if a = b .

(34)

We define the entries of Qx ∈ R
M×M as

Qx
ij =

kax([xi, gi], [µ̃t−1|t−1])k
b
x([xj , gj ], [µ̃t−1|t−1])

√

|R|
exp

(
1
2z

⊤
ijT

−1zij
)

with

R := Σ̃t−1|t−1(Λ
−1
a +Λ−1

b ) + I , T =
(
Λ−1

a +Λ−1
b + Σ̃−1

t−1|t−1

)
,

zij := Λ−1
a (x̃i − µ̃t−1|t−1) +Λ−1

b (x̃j − µ̃t−1|t−1) .

For a detailed derivation, we refer to (Deisenroth, 2010; Deisenroth et al., 2012).

To fully determine the joint Gaussian distribution in Eq. (28), the cross-covariance

Σx
t−1,t|t−1 = cov[xt−1,xt|z1:t−1, g] is given as the upper part of the cross-covariance

cov[xt−1,xt, g|z1:t−1] =
M∑

i=1

γai
qai

Σ̃t−1|t−1Ω
−1(x̃i − µ̃t−1|t−1) ,

when we set µg = g and Σg = 0. Note that q and Ω are defined in Eq. (32) and (33),

respectively.

Up to now, we have computed a Gaussian approximation to the joint probabil-

ity distribution p(xt−1,xt|z1:t−1, g). Let us now have closer look at the second joint

distribution p(xt, zt|z1:t−1, g), which is the missing contribution for Gaussian smooth-

ing (Deisenroth and Ohlsson, 2011), see Eq. (23)–(26). To determine a Gaussian ap-

proximation

N
([

µx
t|t−1

µz
t|t−1

]

,

[

Σx
t|t−1 Σxz

t|t−1

Σzx
t|t−1 Σz

t|t−1

])

(35)

to p(xt, zt|z1:t−1, g) it remains to compute the mean and the covariance of the marginal

distribution p(zt|z1:t−1, g) and the cross-covariance terms cov[xt, zt|z1:t−1, g]. We

omit these computations for the nonlinear Gaussian kernel as they are very similar to

the computations to determine the joint distribution p(xt−1,xt|z1:t−1, g).
For the linear measurement kernel in Eq. (11), we compute the marginal mean

µz
t|t−1 in Eq. (35) for observation dimension a = 1, . . . , Dz according to

Eh,xt−1
[ha(xt)|z1:t−1, g] =

∫

m(xt)p(xt|z1:t−1, g) dxt

=

∫

x⊤
t X

⊤
z p(xt|z1:t−1, g) dxtξa = q⊤ξa , (36)

q = Xzµ
x
t|t−1 .
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Here, Xz comprises the training inputs for the measurement model and ξa = K−1
z Yza ,

where Yza are the training targets of the ath dimension, a = 1, . . . , Dz . The elements

σz
ab of the marginal covariance matrix Σz

t|t−1 in Eq. (35) are given as

σz
ab =

{
ξ⊤a (Q

z− qq⊤)ξa if a 6= b ,

Σx
t|t−1+µx

t|t−1(µ
x
t|t−1)

⊤−tr
(
K−1

z Qz
)
+ξ⊤a (Q

z−qq⊤)ξa if a = b ,

(37)

a, b = 1, . . . , Dz , where we define

Qz =

∫

Xzxtx
⊤
t Xz

⊤p(xt|z1:t−1, g) dxt = Xz(Σ
x
t|t−1 + µx

t|t−1(µ
x
t|t−1)

⊤)Xz
⊤ .

The cross-covariance Σxz
t|t−1 = cov[xt, zt|z1:t−1, g] in Eq. (35) is given as

Σxz
t|t−1 = Σx

t|t−1X
⊤
z ξa (38)

for all observed dimensions a = 1, . . . , Dz . The mean µz
t|t−1 in Eq. (36), the covari-

ance matrix Σz
t|t−1 in Eq. (37), and the cross-covariance in Eq. (38) fully determine the

Gaussian distribution in Eq. (35). Hence, following (Deisenroth and Ohlsson, 2011),

we can now compute the latent state posteriors (filter and smoothing distributions) ac-

cording to Eq. (23)–(26).

These smoothing updates in Eq. (23)–(26) yield the marginals of our Gaussian ap-

proximation to p(x1:T |z1:T , g), see Eq. (22). The missing cross-covariances Σx
t−1,t|T

of p(x1:T |z1:T , g) that finally fully determine the block-tri-diagonal covariance matrix

in Eq. (22) are given by

Σx
t−1,t|T = Jt−1Σ

x
t|T , (39)

where Jt−1 is given in Eq. (27). For detailed derivations, we refer to (Deisenroth,

2010).

These computations conclude step (1) on lower-bounding the posterior distribution

on the intention, see Eq. (20), i.e., the computation of the approximate distribution q in

Eq. (21). It remains to compute the bound B itself, which is described in the following.

3.2 Estimating the Belief on Intention

For a given intention g, we compute a Gaussian approximation q(x1:T ) to the posterior

p(x1:T |z1:T , g), given by

q(xt,xt+1) = N
([

µx
t|T

µx
t+1|T

]

,

[

Σx
t|T Σx

t,t+1|T

Σx
t+1,t|T Σx

t+1|T

])

(40)

for t = 1, . . . , T − 1. The belief p(g|z1:T ) ≈ exp(B(g)) is estimated using Eq. (20),

where the computation can be decomposed according to

B(g) =
T−1∑

t=1

Eq [log p(xt+1|xt, g)]
︸ ︷︷ ︸

Qt(g)

+p(g) +H(q) + const. (41)

15



Here the smoothing distribution q(x1:T |g) ≈ p(x1:T |z1:T , g) is computed given the

intention g. As we only need to estimate the unnormalized belief, the constant term

needs not to be computed. The entropy H(q) of the Gaussian distribution q can be

computed analytically, and is given by

H(q) = 1

2
(TDx + TDx log(2π) + log |Σq|) . (42)

We define

Qt(g) , Eq [log p(xt+1|xt, g)] (43)

=

∫∫

q(xt,xt+1) log p(xt+1|xt, g)dxt+1dxt

=

∫∫

q(xt,xt+1) log (p(xt+1|xt, g)q(xt))
︸ ︷︷ ︸

≈q̃(xt,xt+1)

dxt+1dxt−
∫

q(xt) log q(xt)dxt,

where p(xt+1|xt, g)q(xt) can be approximated by a Gaussian distribution q̃(xt,xt+1) =
N (µq̃,Σq̃) based on moment matching (Quiñonero-Candela et al., 2003). Here, we

only compute the diagonal elements in the covariance matrix of Σq̃. As a result,

Eq. (43) is approximated as

Qt(g) ≈ KL
(
q(xt,xt+1)||q̃(xt,xt+1)

)
+H

(
q(xt,xt+1)

)
+H

(
q(xt)

)
, (44)

where H(q) is the entropy of the distribution q and KL(q||q̃) is the Kullback-Leibler

(KL) divergence between q and q̃, both of which are Gaussians. The KL divergence

also has a closed-form expression, given by

KL(q||q̃) = 1

2

(

tr(Σ−1
q̃ Σq) + (µq − µq̃)

TΣ−1
q̃ (µq − µq̃)− log

|Σq|
|Σq̃|

)

+ const.

As a result, we can compute the unnormalized belief B(g) for a given intention g
approximately according to Eq. (41).

We aim to determine the posterior distribution p(g|z1:T ) of the intention g. Us-

ing the posterior distribution instead of point estimates allows us to express uncer-

tainty about the inferred intention g. Computing Gaussian approximations of the pos-

terior distributions can be done using the unscented transformation (Deisenroth et al.,

2012), for instance. However, when the posterior is not unimodal, a Gaussian ap-

proximation may lose important information. Particle filtering can preserve all the

modes (Ko and Fox, 2009), but will not be sufficiently efficient due to the real-time

constraints. As we focus on one-dimensional intentions in this article, we advocate the

discretization of intention. For example, in the table tennis task, the intention (oppo-

nent’s target position) is a bounded scalar variable g ∈ [gmin, gmax], where the bounds

are given by physical constraints such as the table width and the length of robot arm.

We uniformly choose {v1, . . . , vK} from [gmin, gmax] and represent intention by the

index, i.e., g ∈ {1, . . . ,K}.
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Algorithm 2: Inference of the discretized intentions by computing the posterior

probabilities for every value of the intention.

Input : Observations x1:T

Output: Posterior probabilities for every intention value g ∈ {1, . . . ,K}
foreach g ∈ {1, . . . ,K} do1

Compute smoothing distribution q(x1:T ) ≈ p(x1:T |z1:T , g) ;2

Compute the value of B(g) = Eq [log p(x1:T |g)] + log p(g) using the3

approximation in Eq. (44) ;

Estimate the posterior p(g|x1:T ) ≈ expB(g)/(
∑K

g′=1 expB(g′)).4

3.3 Discussion of the Approximate Inference Method

To summarize, the algorithm for computing the posterior distribution over discrete

or discretized intentions g is given in Algorithm 2. The smoothing distribution q de-

fined in Eq. (40) depends on the current estimate of intention g.

However, it is often time-demanding to enumerate the intention g and compute the

smoothing distribution q for each g individually. The computational complexity of the

smoothing step in Algorithm 2 isO(TK(D3
z+DxD

2
z+N2D3

x)) when using the linear

kernel function for the measurement mapping, and O(TK(D3
z +N2Dx(D

2
x +D2

z)))
when using the Gaussian kernel function, where T is the number of observations ob-

tained, K the number of (discretized) intentions, N the number of training data, and

Dx and Dz the dimensionality of state and observation. The complexity of com-

puting the belief is O(TKN2D2
x). The computational efficiency can be improved

to meet the tight time constraints in robotics applications by introducing further ap-

proximations, such as adopting GP pseudo inputs to reduce the size of training data

N (Snelson and Ghahramani, 2006; Quiñonero-Candela and Rasmussen, 2005), using

dimensionality reduction or feature selection techniques to obtain a small number of

features Dz (van der Maaten et al., 2009; Ding and Peng, 2005), and reducing the sam-

ple size K of intention g. However, the dependence of complexity on the number of

observations T still prevents the algorithm from being applied to online scenarios. For

these, T keeps growing as new observations come, whereas observations obtained a

long time ago do not provide as much information as recent ones. To address this

issue, we will introduce an approximation in the online inference method in Section 4.

4 Online Intention Inference

The introduced inference algorithm can be seen as a batch algorithm that relies on the

segmentation of human movements. However, in online human-robot interaction, the

intention inference algorithm faces new challenges to deal with the stream of observa-

tions. The complexity of Algorithm 2 grows with the number of existing observations,

which does not fulfill the real-time requirements of an online method. In addition, the

intention can vary over time in an online inference scenario. For example, the intended

targets in table tennis games vary between strokes. Hence, the online method should

model and track the change of intention.

To address these issues, we generalize the inference method to an online scenario.
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Figure 3: The graphical model of the IDDM in an online manner, which can handle a

stream of observations.

That is, the observations are obtained constantly, and the belief on the intention is re-

estimated after receiving a new observation. A computational bottleneck in the batch

method is that the smoothing distribution q is computed for every value of intention.

For efficient inference, we compute a marginal smoothing distribution q according to

current belief on intention p(g), i.e., we integrate out the intention,

q(x1:t) ,
∑

g

p(g)qg(x1:t). (45)

The online inference algorithm then estimates the belief Bt(g) on the intention based

on the marginal smoothing distribution q after receiving an observation, which can be

sufficiently efficient for real-time intention inference with a small sacrifice in accuracy.

Based on the marginal smoothing distribution, we update the belief on intention

using dynamic programming. which will be discussed as follows.

4.1 Online Inference using Dynamic Programming

Assuming the marginal smoothing distribution q is given, we develop an online in-

ference method using dynamic programming (see Fig. 3). The method maintains the

belief (i.e., log of the unnormalized posterior) of the intention g based on the obtained

observations z1:t−1 according to Eq. (41), given by

Bt−1(g) ≈ Eq [log p(g,x1:t−1)] + const. (46)

Here, we consider discretized intentions g ∈ {1, . . . ,K}, and write the belief Bt−1 as

a vector of length K. For a new observation zt, we decompose p(g,x1:t) according to

p(g,x1:t) = p(xt|xt−1, g)p(g,x1:t−1). (47)

As a result, the belief Bt becomes

Bt(g) = Eq [log p(g,x1:t)] + const (48)

= Eq [log p(xt|xt−1, g)] + Eq [log p(g,x1:t−1)] + const (49)

= Eq [log p(xt|xt−1, g)] +Bt−1(g) + const, (50)
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which is in a recursive form and can be computed efficiently using dynamic program-

ming. Given a new observation zt, the belief is updated based on Eq [log p(xt|xt−1, g)],
which is computed according to Eqs. (43)-(44). The belief Bt is then normalized, i.e.,
∑

g exp(Bt(g)) = 1.

In addition, the intention can vary over time in an online inference scenario. As the

new observation zt can be more informative than the previous observations z1:t−1, we

introduce a forgetting factor ǫ to shrink the belief Bt−1. The recursive formula of the

belief is subsequently given by

Bt(g) = Eq [log p(xt|xt−1, g)] + (1− ǫ)Bt−1(g), (51)

where the shrinking factor ǫ determines how fast the algorithm forgets the previous

observations.

4.2 Marginal Smoothing Distribution

The inference method relies on the smoothing distribution q at time t, which in turn

depends on the intention belief Bt−1. In analogy to the EM algorithm, we itera-

tively update the belief on intention B and the smoothing distribution q. However,

full forward-backward smoothing on x1:t is impractical as the computational complex-

ity grows when we obtain more observations. Full smoothing is also not unnecessary

since we do not update the previous belief B1:t−1 on the intention. Hence, given a

new observation zt, we only need to compute q(xt−1:t), which requires a single-step

forward filtering and a single-step backward smoothing, based on the current belief

Bt−1.

The filtering and smoothing need to integrate out the uncertainty in the intention.

For discrete intentions, we can simply compute the smoothing distributions qg for every

value of intention gt−1, and average over them

q(xt−1:t) ∝
∑

g

qg(xt−1:t)pt−1(g), (52)

where the belief pt−1(g) ∝ exp(Bt−1(g)). The resulting distribution q will still be a

Gaussian distribution.

For continuous intentions, enumerating the discretized intention may be inefficient.

To address this problem, we use the moment matching to approximate the distribu-

tion on intention by a Gaussian distribution, which is also adopted in the filtering and

smoothing method. Specifically, we compute the mean µg and variance σ2
g according

to the belief Bt−1. As a result, the marginal smoothing distribution is given by

q(xt−1:t) ≈
∫

qg(xt−1:t)N (g|µg, σ
2
g)dg, (53)

which is computed using moment matching.

4.3 Discussion of the Online Inference Method

The online inference algorithm described in Algorithm 3 iteratively updates the

belief of intention and latent states.
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Algorithm 3: The online algorithm for the inference of discrete intention g ∈
{1, . . . ,K}.

Obtain the initial observation z1 ;1

Initialize the approximate distribution q(x1) ;2

Initialize B1(g) = log p(g) according to the prior ;3

for t = 2, 3, . . . do4

Obtain the observation zt ;5

Compute marginal filtering distribution q(xt) according to current belief6

Bt−1 ;

Update marginal smoothing distribution q(xt−1) according to current belief7

Bt−1 ;

foreach gt = {1, . . . ,K} do8

Compute B
0(g) = Qt−1(g) using the approximation in Eq. (44) ;9

Update the belief Bt = B
0 + (1− ǫ)Bt−1 ;10

Normalize the belief Bt ← Bt − log
(
∑

g exp(Bt(g))
)

;11

The computational complexity of the smoothing step in Algorithm 3 is O(D3
z +

DxD
2
z +N2D3

x) when using the linear kernel function for the measurement mapping,

and O(D3
z + N2(DxD

2
x + D3

x)) when using the Gaussian kernel function, which no

longer depends on the number of observations T and the number of intentions K. The

complexity of computing the belief isO(KN2D2
x). Comparing to the batch algorithm,

the efficiency is improved by a factor of T .

To summarize, we proposed an efficient online method for intention inference from

a new movement. The online method updates the belief of the intention by taking into

account both the current belief and the new evidence (i.e., new observation). We list the

employed approximations in both the batch and online inference methods in Table 1.

5 Target Prediction for Robot Table Tennis

Playing table tennis is a challenging task for robots, and, hence, has been used by

many researchers as a benchmark task in robotics (Anderson, 1988; Billingsley, 1984;

Fässler et al., 1990; Matsushima et al., 2005; Mülling et al., 2011). Up to now, none of

the groups that have been working on robot table tennis ever reached levels of a young

child, despite having robots with better perception, processing power, and accuracy

Table 1: Important approximations employed in the batch and online inference.

batch online

belief p(g|z1:T ) Jensen’s lower bound B(g); cf. Eq. (20)

approx. belief B(g) moment matching; cf. Eq. (44)

distr. p(x1:T |z1:T , g) q(x1:T |g) for each g q(x1:T ) for all g; cf. Eq. (53)

stream of observations sliding window recursive update; cf. Eq. (51)
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than humans (Mülling et al., 2011). Likely explanations for this performance gap are

(i) the human ability to predict hitting points from opponent movements and (ii) the

robustness of human hitting movements (Mülling et al., 2011). In this article, we focus

on the first issue: anticipation of the hitting region from opponent movements.

Using the proposed method, we can predict the where the ball is likely to be shot

before the opponent hits the ball, which gives the robot a head start of more than

200 ms additional time to initiate its movement2. This additional time can be crucial

due to robot’s hardware constraints, for example, acceleration and torque limits in the

considered setting (Mülling et al., 2011).

Note that the predicted intention is only used to choose a hitting type, e.g., forehand,

middle, or backhand. Fine-tuning of the robot’s movement can be done when the robot

is adjusted to the forehand/middle/backhand preparation pose and once the returned

ball can be reliably predicted from the ball’s trajectory alone. Hence, a certain amount

of intention prediction error is tolerable since the robot can apply small changes to its

basic hitting plan based on the ball’s trajectory. However, the robot cannot return the

ball outside the corresponding hitting region once it is adjusted to a preparation pose,

see the video3. Therefore, prediction accuracy directly influences the performance of

the robot player (Wang et al., 2011b).

5.1 Experimental Setting

Our anticipation system has been evaluated in conjunction with the biomimetic robot

table tennis player (Mülling et al., 2011), as this setup allowed exhibiting how much of

an advantage such a system may offer. We expect that the system will help similarly or

more when deployed within our skill learning framework (Mülling et al., 2013) as well

as many of the recent table tennis learning systems (Huang et al., 2013; Yang et al.,

2010; Matsushima et al., 2005).

We used a Barrett WAM robot arm to play table tennis against human players.

The robot’s hardware constraints impose strong limitations on its acceleration, which

severely restricts its movement abilities. This limitation can best be illustrated using

typical table tennis stroke movements as shown in Fig. 4, see (Ramanantsoa and Durey,

1994; Mülling et al., 2011), which consist of four stages, namely awaiting stage, prepa-

ration stage, hitting stage, and finishing stage. In the awaiting stage, the ball moves

toward the opponent and is returned by the opponent. The robot player moves to

the awaiting pose and stays there during this stage. The preparation stage starts when

the hitting movement is chosen according to the predicted opponent’s target. The arm

swings backward to a preparation pose. The robot requires sufficient time to execute a

ball-hitting plan in the hitting stage. To achieve the required velocity for returning the

ball in the hitting stage, movement initiation to an appropriate preparation pose in the

preparation stage is needed, which is often before the opponent hits the ball. The robot

player uses different preparation poses for different hitting plans. Hence, it is neces-

sary to choose among them based on modeling the opponent’s preference (Wang et al.,

2Our methods allows the robot to initiate its movement at least 80 ms before the opponent hits the ball.

As the ball can usually be reliably predicted more than 120 ms after the opponent returns, the robot could

gain more than 200 ms additional execution time by using our prediction method.
3http://robot-learning.de/Research/ProbabilisticMovementModeling
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(a) Awaiting Stage (b) Preparation Stage

(c) Hitting Stage (d) Finishing Stage

Figure 4: The four stages of a typical table tennis ball rally are shown with the red curve

representing the ball trajectories. Blue trajectories depict the typical racket movements

of players. The racket of human player is to the left of the table in the pictures. Figures

are adapted from (Mülling et al., 2011).

2011a) and inference of the opponent’s target location for the ball (Wang et al., 2011b).

The robot perceives the ball and the opponent’s racket in real-time, using seven

Prosilica GE640C cameras. These cameras were synchronized and calibrated to the

coordinate system of the robot. The ball tracking system uses four cameras to capture

the ball on both courts of the table (Lampert and Peters, 2012). The racket tracking

system provides the information of the opponent’s racket, i.e., the position and orien-

tation (Wang et al., 2011b). As a result, the observation zt includes the ball’s position

and velocity as well as the opponent’s racket position, velocity, and orientation before

the human plays the ball. For the anticipation system described here, we process the

observations every 80ms. Here, the position and velocity of the ball were processed on-

line with an extended Kalman filter, based on a known physical model (Mülling et al.,

2011). However, the same smoothing method cannot be applied to the racket’s tra-

jectory, as its dynamics are directed by the unknown intended target. Therefore, the

obtained states of the racket were subject to substantial noise and the model has to be

robust to this noise. The proposed inference method can jointly smooth on the racket’s

trajectory, given by the smoothing distribution q, and infer the intended target, given

by the belief B.

In our setting, the robot always chooses its hitting point on a virtual hitting plane,

which is 80 cm behind the table, as shown in Fig. 5. We define the human’s intended

target g as the intersection of the returned ball’s trajectory with the robot’s virtual hit-

ting plane. As the x-coordinate (see Fig. 5) is most important for choosing among

forehand/middle/backhand hitting plans (Wang et al., 2011b), the intention g consid-

ered here is the x-coordinate of the hitting point. Physical limitations of the robot

restrict the x-coordinate to the range to ±1.2 m from the robot’s base (table is 1.52 m
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Figure 5: The robot’s hitting point is the intersection of the coming ball’s trajectory and

the virtual hitting plane 80 cm behind the table. Figure is adapted from (Mülling et al.,

2011).

wide).

To evaluate the performance of the target prediction, we collected a data set with

recorded stroke movements from different human players. The true targets were ob-

tained from the ball tracking system. The data set was divided into a training set of

100 plays and a test set of 126 plays. The standard deviation of the target coordinate

in the test set is 102.2 cm. A straightforward approach to prediction is to learn a map-

ping from the features zt (including the position, orientation, and velocity of the racket

and the position and velocity of the ball) to the target g. We compared our method to

this baseline Gaussian Process Regression (GPR) using a Gaussian kernel with auto-

matic relevance determination (Rasmussen and Williams, 2006). We considered using

a sliding window on the sequence of observations, and conducted model selection to

choose the optimal window size. The best accuracy of GPR was achieved when us-

ing a sliding window of size two, i.e., the input features consist of zt−1 and zt. The

hyperparameters were learned by maximizing the marginal likelihood of training data,

following the standard routine (Rasmussen and Williams, 2006).

For every recorded play, we compared the performance of the proposed IDDM in-

tention inference and the GPR prediction at 80ms, 160ms, 240ms, and 320ms before

the opponent hits the ball. Note that this time step was only used such that the algo-

rithms could be compared, and that the algorithms were not aware of the hitting time of

the opponent in advance. We evaluated both the batch algorithm and online algorithm.

5.2 Results

As demonstrated in Fig. 6, the proposed IDDM model outperformed the GPR baseline.

At 80ms before the opponent hit the ball, the batch algorithm resulted in the mean

absolute error of 31.5 cm, which achieved a 11.3% improvement over the GPR, whose

average error was 35.6 cm. The online algorithm had a mean absolute error of 32.5 cm,
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Figure 6: Mean absolute error of the ball’s target with standard error of the mean. The

algorithms use the observations obtained before the opponent has hit the ball.

which also outperformed GPR by an 8.5% improvement in the accuracy. One model-

free naive intention prediction is to always predict the median of the intentions in the

training set. This naive prediction model caused an error of 78.8 cm. Hence, both the

GPR and IDDM substantially outperformed naive goal prediction.

The online algorithm, with a shrinking factor ǫ = 0.2 given in Eq. (51), took on

average 70ms to process every observation, which can potentially fulfill the real-time

requirements of 80ms. The batch algorithm used a sliding window of size 4, and took

on average 300ms to process every observation. The online algorithm was signifi-

cantly faster than the batch algorithm, with a small loss in accuracy4. Nevertheless, a

certain amount of error is tolerable since the robot can apply small changes to its basic

hitting plan based on the ball’s trajectory. Therefore, we advocate the use of the online

algorithm for applications with tight real-time constraints.

We performed model selection to determine the covariance function kz , which can

be either an isotropic Gaussian kernel, see Eq. (10), or a linear kernel, see Eq. (11).

Furthermore, we performed model selection to find the dimension Dx of the latent

states. In the experiments, the model was selected by cross-validation on the training

set. The best model under consideration was with a linear kernel and a four dimensional

latent state space. Experiments on the test set verified the model selection result, as

shown in Table 2.

4The reason is that the online algorithm only updates the smoothing distribution q(xt−1:t) instead of

the entire smoothing distribution q(x1:T ), and, hence, reduces the time complexity by a factor of T , see

Section 3.3 and 4.3
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Table 2: The mean absolute errors (in cm) with standard error of the mean of the

goal inference made 80ms before the opponent hits the ball, where Dx denotes the

dimensionality of the state space.

kernel Dx = 3 Dx = 4 Dx = 5 Dx = 6
linear 41.5± 3.0 31.5 ± 2.2 35.4± 2.4 37.0± 2.6
Gaussian 38.5± 2.7 34.2± 2.5 34.4± 2.7 37.3± 2.7

(a) Forehand pose. (b) Middle pose. (c) Backhand pose.

Figure 7: Preparation poses of the three pre-defined hitting movements in the prototype

system, i.e., (a) forehand, (b) middle, and (c) backhand. The shadowed areas represent

the corresponding hitting regions.

Our results demonstrated that the IDDM can improve the target prediction in robot

table tennis and choose the correct hitting plan. We have developed a proof-of-concept

prototype system in which the robot is equipped with three pre-defined hitting move-

ments, i.e., forehand, middle, and backhand movements, with their hitting regions

shown in Fig. 7. As exhibited in Fig. 8, our method allows the robot to choose the

responding hitting movement before the opponent has hit the ball himself, which is of-

ten necessary for the robot to have sufficient time to execute the hitting movement, and

substantially expands the robot’s overall hitting region to cover almost the entire ac-

cessible workspace, see the video. Furthermore, we expect that the method can further

enhance the robot’s capability when equipped with more and self-improving hitting

primitives (Mülling et al., 2013).

6 Action Recognition in Human-Robot Interaction

To realize safe and meaningful human-robot interaction, it is important that robots

can recognize the human’s action. The advent of robust, marker-less motion capture

techniques (Shotton et al., 2011) has provided us with the technology to record the

full skeletal configuration of the human during HRI. Nevertheless, recognition of the

human’s action from this high-dimensional data set poses serious challenges.

In this paper, we show that the IDDM has the potential to infer the intention of

actions from movements in a simplified scenario. Using a Kinect camera, we recorded

the 32-dimensional skeletal configuration of a human during the execution of a set of
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Table 3: Comparison of the accuracy and efficiency using different algorithms for the

action recognition task. Here, n denotes the size of sliding windows and ǫ is the shrink-

ing factor of the online method.

algorithm accuracy time(s)

SVM(n=5) 77.5% <0.01

GPC(n=5) 79.4% >1

batch(n=4) 79.0% 0.27

batch(n=5) 83.8% 0.32

batch(n=6) 83.0% 0.39

online(ǫ=0.3) 83.0% 0.07

online(ǫ=0.2) 83.0% 0.07

online(ǫ=0.1) 82.6% 0.07

actions namely: crouching (C), jumping (J), kick-high (KH), kick-low (KL), defense

(D), punch-high (PH), punch-low (PL), and turn-kick (TK). For each type of action

we collected a training set consisting of ten repetitions and a test set of three repe-

titions. The system down-sampled the output of Kinect and processes three skeletal

configurations per second.

In this task, the intention g is a discrete variable and corresponds to the type of ac-

tion. Action recognition can be regarded as a classification problem. We compared our

proposed algorithms to Support Vector Machines (SVMs), see (Schölkopf and Smola,

2001), and multi-class Gaussian Process Classification (GPC), see (Khan et al., 2012).

We used off-the-shelf toolboxes, i.e., LIBSVM (Chang and Lin, 2011) and catLGM5,

and followed their standard routines for prediction.

The algorithms made a prediction after observing a new skeletal configuration. The

batch algorithm used a sliding window of length n = 5, i.e., it recognized actions based

on the recent n observations. We chose the IDDM with a linear covariance function

for the covariance function kz of the measurement GP and a two-dimensional latent

state space. The batch algorithm achieved the precision of 83.8%, which outperformed

SVM (77.5%) and GPC (79.4%) using the same sliding windows. The online algorithm

achieved the precision of 83.0% with significantly reduced computational time. We

observed that both the SVM and GPC confused crouching with jumping, as they were

similar in the early and late stages. In contrast, the IDDM could distinguish between

crouching (C) and jumping (J) from their different dynamics, which became clearly

separable while the human performed the actions.

The batch algorithm needs to choose the size of sliding windows, which influences

both the accuracy and efficiency. As shown in Table 3, the batch algorithm could

yield real-time action recognition in 3Hz with a sliding window of size 5. The online

algorithm, as shown in Table 3, achieved a speedup of over four times compared to the

batch algorithm with a sliding window. The online algorithm relies on the shrinking

factor ǫ in Eq. (51), which describes how likely the type of actions is expected to

change. We also found that the performance of online algorithm is not sensitive to this

5http://www.cs.ubc.ca/~emtiyaz/software/catLGM.html
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parameter.

7 Discussion

In this article, we have proposed the intention-driven dynamics model (IDDM), a

latent-variable model for inferring intentions from observed human movements. We

have introduced efficient approximate inference algorithms that allow for real-time in-

ference. Our contributions include: (1) suggesting the IDDM, which simultaneously

finds a latent state representation of noisy and high-dimensional observations and mod-

els the dynamics that are driven by the intention; (2) introducing an online algorithm

to efficiently infer the human’s intention from an ongoing movement; (3) verifying

the proposed model in two human-robot interaction scenarios. In particular, we have

considered target inference in robot table tennis and action recognition for interactive

robots. In these two scenarios, we show that modeling the intention-driven dynamics

can achieve better predictions than algorithms without modeling the dynamics.

The proposed method outperformed the GPR in the robot table tennis scenario and

SVM and GPC in the action recognition scenario. Nevertheless, we would not draw

the overstated conclusion that IDDM is a better model than SVM or GP based on

these empirical results, as this discussion would be a comparison of generative and

discriminative models. The performance of IDDM and SVM/GP should be studied on

a case-by-case basis. However, two important properties of these approaches should be

noticed: (1) computational efficiency and (2) robustness to measurement noise. Firstly,

the IDDM is often more computationally demanding than GP and SVM. Nevertheless,

the proposed online inference method, and described possible approximations, make

the IDDM applicable to real-time scenarios. As demonstrated in the prototype robot

table tennis system, the IDDM was successfully used in a real system with tight time

constraints. Secondly, the IDDM is generally less prone to measurement noise than

SVM/GP, as it models the noise in the generative process of observations.

In conclusion, the IDDM takes into account the generative process of movements

in which the intention is the driving factor. Hence, we advocate the use of IDDM when

the movement is indeed driven by the intention (or target to predict), as the IDDM

captures the causal relationship of the intention and the observed movements.
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