
Probabilistic Movement Primitives

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann
Intelligent Autonomous Systems, Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany
{paraschos,daniel,peters,neumann}@ias.tu-darmstadt.de

Abstract

Movement Primitives (MP) are a well-established approach for representing mod-
ular and re-usable robot movement generators. Many state-of-the-art robot learn-
ing successes are based MPs, due to their compact representation of the inherently
continuous and high dimensional robot movements. A major goal in robot learn-
ing is to combine multiple MPs as building blocks in a modular control architec-
ture to solve complex tasks. To this effect, a MP representation has to allow for
blending between motions, adapting to altered task variables, and co-activating
multiple MPs in parallel. We present a probabilistic formulation of the MP con-
cept that maintains a distribution over trajectories. Our probabilistic approach
allows for the derivation of new operations which are essential for implementing
all aforementioned properties in one framework. In order to use such a trajectory
distribution for robot movement control, we analytically derive a stochastic feed-
back controller which reproduces the given trajectory distribution. We evaluate
and compare our approach to existing methods on several simulated as well as
real robot scenarios.

1 Introduction

Movement Primitives (MPs) are commonly used for representing and learning basic movements
in robotics, e.g., hitting and batting, grasping, etc. [1, 2, 3]. MP formulations are compact pa-
rameterizations of the robot’s control policy. Modulating their parameters permits imitation and
reinforcement learning as well as adapting to different scenarios. MPs have been used to solve
many complex tasks, including ‘Ball-in-the-Cup’ [4], Ball-Throwing [5, 6], Pancake-Flipping [7]
and Tetherball [8].

The aim of MPs is to allow for composing complex robot skills out of elemental movements with a
modular control architecture. Hence, we require a MP architecture that supports parallel activation
and smooth blending of MPs for composing complex movements of sequentially [9] and simulta-
neously [10] activated primitives. Moreover, adaptation to a new task or a new situation requires
modulation of the MP to an altered desired target position, target velocity or via-points [3]. Ad-
ditionally, the execution speed of the movement needs to be adjustable to change the speed of, for
example, a ball-hitting movement. As we want to learn the movement from data, another crucial re-
quirement is that the parameters of the MPs should be straightforward to learn from demonstrations
as well as through trial and error for reinforcement learning approaches. Ideally, the same archi-
tecture is applicable for both stroke-based and periodic movements, and capable of representing
optimal behavior in deterministic and stochastic environments.

While many of these properties are implemented by one or more existing MP architectures [1, 11,
10, 2, 12, 13, 14, 15], no approach exists which exhibits all of these properties in one framework. For
example, [13] also offers a probabilistic interpretation of MPs by representing an MP as a learned
graphical model. However, this approach heavily depends on the quality of the used planner and the

1



movement can not be temporally scaled. Rozo et. al. [12, 16] use a combination of primitives, yet,
their control policy of the MP is based on heuristics and it is unclear how the combination of MPs
affects the resulting movements.

In this paper, we introduce the concept of probabilistic movement primitives (ProMPs) as a general
probabilistic framework for representing and learning MPs. Such a ProMP is a distribution over
trajectories. Working with distributions enables us to formulate the described properties by oper-
ations from probability theory. For example, modulation of a movement to a novel target can be
realized by conditioning on the desired target’s positions or velocities. Similarly, consistent parallel
activation of two elementary behaviors can be accomplished by a product of two independent trajec-
tory probability distributions. Moreover, a trajectory distribution can also encode the variance of the
movement, and, hence, a ProMP can often directly encode optimal behavior in stochastic systems
[17]. Finally, a probabilistic framework allows us to model the covariance between trajectories of
different degrees of freedom, that can be used to couple the joints of the robot.

Such properties of trajectory distributions have so far not been properly exploited for representing
and learning MPs. The main reason for the absence of such an approach has been the difficulty of
extracting a policy for controlling the robot from a trajectory distribution. We show how this step can
be accomplished and derive a control policy that exactly reproduces a given trajectory distribution.
To the best of our knowledge, we present the first principled MP approach that can exploit the power
of operations from probability theory.

While the ProMPs’ representation introduces many novel components, it incorporates many ad-
vantages from well-known previous movement primitive representations [18, 10], such as phase
variables for timing of the movement that enable temporal rescaling of movements, and the ability
to represent both rhythmic and stroke based movements. However, since ProMPs incorporate the
variance of demonstrations, the increased flexibility and advantageous properties of the representa-
tion come at the price of requiring multiple demonstrations to learn the primitives as opposed to past
approaches [18, 3] that can clone movements from a single demonstration.

2 Probabilistic Movement Primitives (ProMPs)

Table 1: Desirable properties and their implemen-
tation in the ProMP

Property Implementation

Co-Activation Product
Modulation Conditioning
Optimality Encode variance
Coupling Mean, Covariance
Learning Max. Likelihood
Temporal Scaling Modulate Phase
Rhythmic Movements Periodic Basis

A movement primitive representation should
exhibit several desirable properties, such as co-
activation, adaptability and optimality in order
to be a powerful MP representation. The goal
of this paper is to unify these properties in one
framework. We accomplish this objective by
using a probabilistic formulation for MPs. We
summarized all the properties and how they are
implemented in our framework in Table 1. In
this section, we will sequentially explain the
importance of each of these property and dis-
cuss the implementation in our framework. As
crucial part of our objective, we will introduce
conditioning and a product of ProMPs as new
operations that can be applied on the ProMPs due to the probabilistic formulation. Finally, we show
how to derive a controller which follows a given trajectory distribution.

2.1 Probabilistic Trajectory Representation

We model a single movement execution as a trajectory τ = {qt}t=0...T , defined by the joint angles
qt over time. In our framework, a MP describes multiple ways to execute a movement, which
naturally leads to a probability distribution over trajectories.

Encoding a Time-Varying Variance of Movements. Our movement primitive representation
models the time-varying variance of the trajectories to be able to capture multiple demonstrations
with high-variability. Representing the variance information is crucial as it reflects the importance of

2



single time points for the movement execution and it is often a requirement for representing optimal
behavior in stochastic systems [17].

We use a weight vector w to compactly represent a single trajectory. The probability of observing a
trajectory τ given the underlying weight vector w is given as a linear basis function model

yt =

[

qt
q̇t

]

= ΦT
t w + ǫy, p(τ |w) =

∏

tN
(

yt|Φ
T
t w,Σy

)

, (1)

where Φt = [φt, φ̇t] defines the n × 2 dimensional time-dependent basis matrix for the joint posi-
tions qt and velocities q̇t, n defines the number of basis functions and ǫy ∼ N (0,Σy) is zero-mean
i.i.d. Gaussian noise. By weighing the basis functions Ψt with the parameter vector w, we can
represent the mean of a trajectory.

In order to capture the variance of the trajectories, we introduce a distribution p(w;θ) over the
weight vector w, with parameters θ. The trajectory distribution p(τ ;θ) can now be computed
by marginalizing out the weight vector w, i.e., p(τ ;θ) =

´

p(τ |w)p(w;θ)dw. The distribution
p(τ ;θ) defines a Hierarchical Bayesian Model (HBM) whose parameters are given by the observa-
tion noise variance Σy and the parameters θ of p(w;θ).

Temporal Modulation. Temporal modulation is needed for a faster or slower execution of the
movement. We introduce a phase variable z to decouple the movement from the time signal as for
previous non-probabilistic approaches [18]. The phase can be any function monotonically increasing
with time z(t). By modifying the rate of the phase variable, we can modulate the speed of the
movement. Without loss of generality, we define the phase as z0 = 0 at the beginning of the
movement and as zT = 1 at the end. The basis functions φt now directly depend on the phase

instead of time, such that φt = φ(zt) and the corresponding derivative becomes φ̇t = φ′(zt)żt.

Rhythmic and Stroke-Based Movements. The choice of the basis functions depends on the type
of movement, which can be either rhythmic or stroke-based. For stroke-based movements, we use
Gaussian basis functions bG

i , while for rhythmic movements we use Von-Mises basis functions bVM
i

to model periodicity in the phase variable z, i.e.,

bG
i (z) = exp

(

−
(zt − ci)

2

2h

)

, bVM
i (z) = exp

(

cos(2π(zt − ci))

h

)

, (2)

where h defines the width of the basis and ci the center for the ith basis function. We normalize the
basis functions with φi(zt) = bi(z)/

∑

j bj(z).

Encoding Coupling between Joints. So far, we have considered each degree of freedom to be
modeled independently. However, for many tasks we have to coordinate the movement of the joints.
A common way to implement such coordination is via the phase variable zt that couples the mean of
the trajectory distribution [18]. Yet, it is often desirable to also encode higher-order moments of the
coupling, such as the covariance of the joints at time point t. Hence, we extend our model to multiple
dimensions. For each dimension i, we maintain a parameter vector wi, and we define the combined,
weight vector w as w = [wT

1 , . . . ,w
T
n ]

T . The basis matrix Φt now extends to a block-diagonal
matrix containing the basis functions and their derivatives for each dimension. The observation
vector yt consists of the angles and velocities of all joints. The probability of an observation y at
time t is given by

p(yt|w) = N













y1,t
...

yd,t







∣

∣

∣

∣

∣







ΦT
t . . . 0
...

. . .
...

0 · · · ΦT
t






w,Σy






= N (yt|Ψtw,Σy) (3)

where yi,t = [qi,t, q̇i,t]
T denotes the joint angle and velocity for the ith joint. We now maintain a

distribution p(w;θ) over the combined parameter vector w. Using this distribution, we can also
capture the covariance between joints.

Learning from Demonstrations. One crucial requirement of a MP representation is that the pa-
rameters of a single primitive are easy to acquire from demonstrations. To facilitate the estimation

3



of the parameters, we will assume a Gaussian distribution for p(w;θ) = N (w|µw,Σw) over the
parameters w. Consequently, the distribution of the state p(yt|θ) for time step t is given by

p (yt;θ) =

ˆ

N
(

yt|Ψ
T
t w,Σy

)

N (w|µ
w
,Σw) dw = N

(

yt|Ψ
T
t µw

,ΨT
t ΣwΨt +Σy

)

, (4)

and, thus, we can easily evaluate the mean and the variance for any time point t. As a ProMP
represents multiple ways to execute an elemental movement, we also need multiple demonstrations
to learn p(w;θ). The parameters θ = {µ

w
,Σw} can be learned from multiple demonstrations by

maximum likelihood estimation, for example, by using the expectation maximization algorithm for
HBMs with Gaussian distributions [19].

2.2 New Probabilistic Operators for Movement Primitives

The ProMPs allow for the formulation of new operators from probability theory, e.g., conditioning
for modulating the trajectory and a product of distributions for co-activating MPs. We will now
describe both operators in our general framework and, subsequently, discuss their implementation
for our specific choice of Gaussian distributions for p(w;θ).

Modulation of Via-Points, Final Positions or Velocities by Conditioning. The modulation of
via-points and final positions are important properties of any MP framework such that the MP can
be adapted to new situations. In our probabilistic formulation, such operations can be described
by conditioning the MP to reach a certain state y∗

t at time t. Conditioning is performed by adding
a desired observation xt = [y∗

t ,Σ
∗
y] to our probabilistic model and applying Bayes theorem, i.e.,

p(w|x∗
t ) ∝ N

(

y∗
t |Ψ

T
t w,Σ∗

y

)

p(w). The state vector y∗
t represents the desired position and veloc-

ity vector at time t and Σ∗
y describes the accuracy of the desired observation. We can also condition

on any subset of y∗
t . For example, by specifying a desired joint position q1 for the first joint the

trajectory distribution will automatically infer the most probable joint positions for the other joints.

For Gaussian trajectory distributions the conditional distribution p (w|x∗
t ) for w is Gaussian with

mean and variance

µ[new]
w

= µ
w
+ΣwΨt

(

Σ∗
y +ΨT

t ΣwΨt

)−1 (

y∗
t −ΨT

t µw

)

, (5)

Σ[new]
w

= Σw −ΣwΨt

(

Σ∗
y +ΨT

t ΣwΨt

)−1

ΨT
t Σw. (6)

Conditioning a ProMP to different target states is also illustrated in Figure 1(a). We can see that, de-
spite the modulation of the ProMP by conditioning, the ProMP stays within the original distribution,
and, hence, the modulation is also learned from the original demonstrations. Modulation strategies
in current approaches such as the DMPs do not show this beneficial effect [18].

Combination and Blending of Movement Primitives. Another beneficial probabilistic operation
is to continuously combine and blend different MPs into a single movement. Suppose that we
maintain a set of i different primitives that we want to combine. We can co-activate them by taking

the products of distributions, i.e., pnew(τ ) ∝
∏

ipi(τ )
α[i]

where theα[i] ∈ [0, 1] factors denote the

activation of the ith primitive. This product captures the overlapping region of the active MPs, i.e.,
the part of the trajectory space where all MPs have high probability mass.

However, we also want to be able to modulate the activations of the primitives, for example, to
continuously blend the movement execution from one primitive to the next. Hence, we decompose

the trajectory into single time steps and use time-varying activation functions α
[i]
t , i.e.,

p∗(τ ) ∝
∏

t

∏

ipi(yt)
α

[i]
t , pi(yt) =

´

pi(yt|w
[i])pi(w

[i])dw[i]. (7)

For Gaussian distributions pi(yt) = N (yt|µ
[i]
t ,Σ

[i]
t ), the resulting distribution p∗(yt) is again

Gaussian with variance and mean

Σ∗
t =

(

∑

i

(

Σ
[i]
t /α

[i]
t

)−1
)−1

, µ∗
t = (Σ∗

t )
−1

(

∑

i

(

Σ
[i]
t /α

[i]
t

)−1

µ
[i]
t

)

(8)

Both terms, and their derivatives, are required to obtain the stochastic feedback controller which is
finally used to control the robot. We illustrated the co-activation of two ProMPs in Figure 1(b) and
the blending of two ProMPs in Figure 1(c).

4



time [s]
0 0.3 0.7 1

(a) Conditioning

q
[r

a
d

]

time [s]
0 0.3 0.7 1

-2

-1

0

1

2

3
Demonstration 1
Demonstration 2
Combination

0 0.3 0.7 1
0

1 α
1
α

2

(b) Combination

q
 [
ra

d
]

0 0.3 0.7 1
-2

-1

0

1

2

3
Demonstration 1
Demonstration 2
Blending

0 0.3 0.7 1
0

1 α
1
α

2

(c) Blending

Figure 1: (a) Conditioning on different target states. The blue shaded area represents the learned
trajectory distribution. We condition on different target positions, indicated by the ‘x’-markers. The
produced trajectories exactly reach the desired targets while keeping the shape of the demonstrations.
(b) Combination of two ProMPs. The trajectory distributions are indicated by the blue and red
shaded areas. Both primitives have to reach via-points at different points in time, indicated by
the ‘x’-markers. We co-activate both primitives with the same activation factor. The trajectory
distribution generated by the resulting feedback controller now goes through all four via-points.
(c) Blending of two ProMPs. We smoothly blend from the red primitive to the blue primitive. The
activation factors are shown in the bottom. The resulting movement (green) first follows the red
primitive and, subsequently, switches to following the blue primitive.

2.3 Using Trajectory Distributions for Robot Control

In order to fully exploit the properties of trajectory distributions, a policy for controlling the robot
is needed that reproduces these distributions. To this effect, we analytically derivate a stochastic
feedback controller that can accurately reproduce the mean vectors µt and the variances Σt for all t
of a given trajectory distribution.

We follow a model-based approach. First, we approximate the continuous time dynamics of the
system by a linearized discrete-time system with step duration dt,

yt+dt = (I +Atdt)yt +Btdtu+ ctdt, (9)

where the system matrices At, the input matrices Bt and the drift vectors ct can be obtained by first
order Taylor expansion of the dynamical system1. We assume a stochastic linear feedback controller
with time varying feedback gains is generating the control actions, i.e.,

u = Ktyt + kt + ǫu, ǫ ∼ N (ǫu|0,Σu/dt) , (10)

where the matrix Kt denotes a feedback gain matrix and kt a feed-forward component. We use a
control noise which behaves like a Wiener process [21], and, hence, its variance grows linearly with
the step duration2 dt. By substituting Eq. (10) into Eq. (9), we rewrite the next state of the system as

yt+dt = (I + (At +BtKt) dt)yt +Btdt(kt + ǫu) + cdt = F tyt + f t +Btdtǫu,

with F t = (I + (At +BtKt) dt) , f t = Btktdt + cdt. (11)

For improved clarity, we will omit the time-index as subscript for most matrices in the remainder
of the paper. From Eq. 4 we know that the distribution for our current state yt is Gaussian with

mean µt = ΨT
t µw and covariance3 Σt = ΨT

t ΣwΨt. As the system dynamics are modeled by a
Gaussian linear model, we can obtain the distribution of the next state p (yt+dt) analytically from
the forward model

p
(

yt+dt

)

=

ˆ

N
(

yt+dt|Fyt + f ,Σsdt
)

N (yt|µt,Σt) dyt

=N
(

yt+dt|Fµt + f ,FΣtF
T +Σsdt

)

, (12)

1If inverse dynamics control [20] is used for the robot, the system reduces to a linear system where the terms
At, Bt and ct are constant in time.

2As we multiply the noise by Bdt, we need to divide the covariance Σu of the control noise ǫu by dt to
obtain this desired behavior.

3The observation noise is omitted as it represents independent noise which is not used for predicting the
next state.

5



where dtΣs = dtBΣuB
T represents the system noise matrix. Both sides of Eq. 12 are Gaussian

distributions, where the left-hand side can also be computed by our desired trajectory distribution
p(τ ;θ). We match the mean and the variances of both sides with our control law, i.e.,

µt+dt = Fµt + (Bk + c)dt, Σt+dt = FΣtF
T +Σsdt, (13)

where F is given in Eq. (11) and contains the time varying feedback gains K. Using both con-
straints, we can now obtain the time dependend gains K and k.

Derivation of the Controller Gains. By rearranging terms, the covariance constraint becomes

Σt+dt −Σt = Σsdt + (A+BK)Σtdt +Σt (A+BK)
T

dt +O(dt2), (14)

where O(dt2) denotes all second order terms in dt. After dividing by dt and taking the limit of
dt → 0, the second order terms disappear and we obtain the time derivative of the covariance

Σ̇t = lim
dt→0

Σt+dt −Σt

dt
= (A + BK)Σt +Σt(A + BK)

T
+Σs. (15)

The matrix Σ̇t can also be obtained from the trajectory distribution Σ̇t = Ψ̇
T

t ΣwΨt +ΨT
t ΣwΨ̇t,

which we substitute into Eq. (15). After rearranging terms, the equation reads

M +MT = BKΣt + (BKΣt)
T
, with M=Φ̇tΣwΦ

T
t -AΣt-Σs/2 . (16)

Setting M = BKΣt and solving for the gain matrix K

K = B†
(

Ψ̇T
t ΣwΨt −AΣt −Σs/2

)

Σ−1
t , (17)

yields the solution, where B† denotes the pseudo-inverse of the control matrix B.

Derivation of the Feed-Forward Controls. Similarly, we obtain the feed-forward control signal k
by matching the mean of the trajectory distribution µt+dt with the mean computed with the forward
model. After rearranging terms, dividing by dt and taking the limit of dt → 0, we arrive at the
continuous time constraint for the vector k,

µ̇t = (A + BK)µt +Bk + c. (18)

We can again use the trajectory distribution p(τ ;θ) to obtain µt = Ψtµw and µ̇t = Ψ̇tµw and
solve Eq. (18) for k,

k = B†
(

Ψ̇tµw − (A+BK)Ψtµw − c
)

(19)

Estimation of the Control Noise. In order to match a trajectory distribution, we also need to
match the control noise matrix Σu which has been applied to generate the distribution. We first

compute the system noise covariance Σs = BΣuB
T by examining the cross-correlation between

time steps of the trajectory distribution. To do so, we compute the joint distribution p
(

yt,yt+dt

)

of
the current state yt and the next state yt+dt,

p
(

yt,yt+dt

)

= N

([

yt

yt+dt

]

∣

∣

∣

[

µt

µt+dt

]

,

[

Σt Ct

CT
t Σt+dt

])

, (20)

where Ct = ΨtΣwΨT
t+dt is the cross-correlation. We can again use our model to match the

cross correlation. The joint distribution for yt and yt+dt is obtained by our system dynamics by

p
(

yt,yt+dt

)

= N (yt|µt,Σt)N
(

yt+dt|Fyt + f ,Σu

)

which yields

p
(

yt,yt+dt

)

= N

([

yt

yt+dt

]

∣

∣

∣

[

µt

Fµt + f

]

,

[

Σt ΣtF
T

FΣt FΣtF
T +Σsdt

])

. (21)

The noise covariance Σs can be obtained by matching both covariance matrices given in Eq. (20)
and (21),

Σsdt = Σt+dt − FΣtF
T = Σt+dt − FΣtΣ

−1
t ΣtF

T = Σt+dt −CT
t Σ

−1
t Ct (22)

The variance Σu of the control noise is then given by Σu = B†ΣsB
†T . As we can see from

Eq. (22) the variance of our stochastic feedback controller does not depend on the controller gains
and can be pre-computed before estimating the controller gains.

6



−2 0 2 4 6

0

2

4

6

−2 0 2 4 6 −2 0 2 4 6

x−axis [m]
−2 0 2 4 6 −2 0 2 4 6

0

2

4

6

y
−

a
x
is

 [
m

]

0

2

4

6

t = 0s t = 0.25s t = 0.5s t = 0.75s t = 1.0s

Figure 2: A 7-link planar robot has to
reach a target position at T = 1.0s
with its end-effector while passing a
via-point at t1 = 0.25s (top) or t2 =
0.75s (middle). The plot shows the
mean posture of the robot at different
time steps in black and samples gen-
erated by the ProMP in gray. The
ProMP approach was able to exactly re-
produce the demonstration which have
been generated by an optimal control
law. The combination of both learned
ProMPs is shown in the bottom. The
resulting movement reached both via-
points with high accuracy.

Figure 3: Robot Hockey. The robot shoots a hockey puck. We demonstrate ten straight shots for
varying distances and ten shots for varying angles. The pictures show samples from the ProMP
model for straight shots (b) and angled shots (c). Learning from combined data set yields a model
that represents variance in both, distance and angle (d). Multiplying the individual models leads to a
model that only reproduces shots where both models had probability mass, in the center at medium
distance (e). The last picture shows the effect of conditioning on only left and right angles (f).

3 Experiments

We evaluated our approach on two different real robot tasks, one stroke based movement and one
rhythmic movements. Additionally, we illustrate our approach on a 7-link simulated planar robot.
For all real robot experiments we use a seven degrees of freedom KUKA lightweight robot arm. A
more detailed description of the experiments is given in the supplementary material.

7-link Reaching Task. In this task, a seven link planar robot has to reach a target position in
end-effector space. While doing so, it also has to reach a via-point at a certain time point. We
generated the demonstrations for learning the MPs with an optimal control law [22]. In the first set of
demonstrations, the robot has to reach the via-point at t1 = 0.25s. The reproduced behavior with the
ProMPs is illustrated in Figure 2(top). We learned the coupling of all seven joints with one ProMP.
The ProMP exactly reproduced the via-points in task space while exhibiting a large variability in
between the time points of the via-points. Moreover, the ProMP could also reproduce the coupling
of the joints from the optimal control law which can be seen by the small variance of the end-effector
in comparison to the rather large variance of the single joints at the via-points. The ProMP could
achieve an average cost value of a similar quality as the optimal controller. We also used a second set
of demonstrations where the first via-point was located at time step t2 = 0.75, which is illustrated
in Figure 2(middle). We combined the ProMPs learned from both demonstrations, which resulted
in the movement illustrated in Figure 2(bottom). The combination of both MPs accurately reaches
both via-points at t1 = 0.25 and t2 = 0.75.

7



(a)

q
 [

ra
d

]

time [s]
1 2 3 4 5 6 7 8 9 10

1.3

1.4

1.5

1.6

1.7

Desired

Feedback Controller

(b)

q
 [

ra
d

]

time [s]
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Demonstration 1

Demonstration 2

Combination

(c)

Figure 4: (a)The maracas task. (b) Trajectory distribution for playing maracas (joint number 4). By
modulating the speed of the phase signal zt, the speed of the movement can be adapted. The plot
shows the desired distribution in blue and the generated distribution from the feedback controller
in green. Both distributions match. (c) Blending between two rhythmic movements (blue and red
shaded areas) for playing maracas. The green shaded is produced by continuously switching from
the blue to the red movement.

Robot Hockey. In the hockey task, the robot has to shoot a hockey puck in different directions and
distances. The task setup can be seen in Figure 3(a). We record two different sets of demonstrations,
one that contains straight shots with varying distances while the second set contains shots with a
varying shooting angle. Both data sets contain ten demonstrations each. Sampling from the two
models generated by the different data sets yields shots that exhibit the demonstrated variance in
either angle or distance, as shown in Figure 3(b) and 3(c). When combining the two individual
primitives, the resulting model shoots only in the center at medium distance, i.e., the intersection
of both MPs. We also learn a joint distribution over the final puck position and the weight vectors
w and condition on the angle of the shot. The conditioning yields a model that shoots in different
directions, depending on the conditioning, see Figure 3(f).

Robot Maracas. A maracas is a musical instrument containing grains, such that shaking it pro-
duces sounds. Demonstrating fast movements can be difficult on the robot arm, due to the inertia
of the arm. Instead, we demonstrate a slower movement of ten periods to learn the motion. We
use this slow demonstration and change the phase after learning the model to achieve a shaking
movement of appropriate speed to generate the desired sound of the instrument. Using a variable
phase also allows us to change the speed of the motion during one execution to achieve different
sound patterns. We show an example movement of the robot in Figure 4(a). The desired trajectory
distribution of the rhythmic movement and the resulting distribution generated from the feedback
controller are shown in Figure 4(b). Both distributions match. We also demonstrated a second type
of rhythmic shaking movement which we use to continuously blend between both movements to
produce different sounds. One such transition between the two ProMPs is shown for one joint in
Figure 4(c).

4 Conclusion

Probabilistic movement primitives are a promising approach for learning, modulating, and re-using
movements in a modular control architecture. To effectively take advantage of such a control archi-
tecture, ProMPs support simultaneous activation, match the quality of the encoded behavior from the
demonstrations, are able to adapt to different desired target positions, and efficiently learn by imita-
tion. We parametrize the desired trajectory distribution of the primitive by a Hierarchical Bayesian
Model with Gaussian distributions. The trajectory distribution can be easily obtained from demon-
strations. Our probabilistic formulation allows for new operations for movement primitives, includ-
ing conditioning and combination of primitives. Future work will focus on using the ProMPs in a
modular control architecture and improving upon imitation learning by reinforcement learning.

Acknowledgements

The research leading to these results has received funding from the European Community’s Frame-
work Programme CoDyCo (FP7-ICT-2011-9 Grant.No.600716), CompLACS (FP7-ICT-2009-6
Grant.No.270327), and GeRT (FP7-ICT-2009-4 Grant.No.248273).

8



References

[1] A. Ijspeert and S. Schaal. Learning Attractor Landscapes for Learning Motor Primitives. In Advances in
Neural Information Processing Systems 15, (NIPS). MIT Press, Cambridge, MA, 2003.

[2] M. Khansari-Zadeh and A. Billard. Learning Stable Non-Linear Dynamical Systems with Gaussian Mix-
ture Models. IEEE Transaction on Robotics, 2011.

[3] J. Kober, K. Mülling, O. Kroemer, C. Lampert, B. Schölkopf, and J. Peters. Movement Templates for
Learning of Hitting and Batting. In International Conference on Robotics and Automation (ICRA), 2010.

[4] J. Kober and J. Peters. Policy Search for Motor Primitives in Robotics. Machine Learning, pages 1–33,
2010.

[5] A. Ude, A. Gams, T. Asfour, and J. Morimoto. Task-Specific Generalization of Discrete and Periodic
Dynamic Movement Primitives. Trans. Rob., (5), October 2010.

[6] B. da Silva, G. Konidaris, and A. Barto. Learning Parameterized Skills. In International Conference on
Machine Learning, 2012.

[7] P. Kormushev, S. Calinon, and D. Caldwell. Robot Motor Skill Coordination with EM-based Reinforce-
ment Learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2010.

[8] C. Daniel, G. Neumann, and J. Peters. Learning Concurrent Motor Skills in Versatile Solution Spaces. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

[9] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot Learning from Demon-
stration by Constructing Skill Trees. International Journal of Robotics Research, 31(3):360–375, March
2012.

[10] A. dAvella and E. Bizzi. Shared and Specific Muscle Synergies in Natural Motor Behaviors. Proceedings
of the National Academy of Sciences (PNAS), 102(3):3076–3081, 2005.

[11] M. Williams, B.and Toussaint and A. Storkey. Modelling Motion Primitives and their Timing in Biologi-
cally Executed Movements. In Advances in Neural Information Processing Systems (NIPS), 2007.

[12] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras. Learning Collaborative Impedance-Based
Robot Behaviors. In AAAI Conference on Artificial Intelligence, 2013.

[13] E. Rueckert, G. Neumann, M. Toussaint, and W.Pr Maass. Learned Graphical Models for Probabilistic
Planning provide a new Class of Movement Primitives. 2012.

[14] L. Righetti and A Ijspeert. Programmable central pattern generators: an application to biped locomotion
control. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006.

[15] A. Paraschos, G Neumann, and J. Peters. A probabilistic approach to robot trajectory generation. In
Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2013.

[16] S. Calinon, P. Kormushev, and D. Caldwell. Compliant Skills Acquisition and Multi-Optima Policy
Search with EM-based Reinforcement Learning. Robotics and Autonomous Systems (RAS), 61(4):369 –
379, 2013.

[17] E. Todorov and M. Jordan. Optimal Feedback Control as a Theory of Motor Coordination. Nature
Neuroscience, 5:1226–1235, 2002.

[18] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning Movement Primitives. In International
Symposium on Robotics Research, (ISRR), 2003.

[19] A. Lazaric and M. Ghavamzadeh. Bayesian Multi-Task Reinforcement Learning. In Proceedings of the
27th International Conference on Machine Learning (ICML), 2010.

[20] J. Peters, M. Mistry, F. E. Udwadia, J. Nakanishi, and S. Schaal. A Unifying Methodology for Robot
Control with Redundant DOFs. Autonomous Robots, (1):1–12, 2008.

[21] H. Stark and J. Woods. Probability and Random Processes with Applications to Signal Processing (3rd
Edition). 3 edition, August 2001.

[22] M. Toussaint. Robot Trajectory Optimization using Approximate Inference. In Proceedings of the 26th
International Conference on Machine Learning, (ICML), 2009.

9


