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ABSTRACT

Motivation: The problems of protein fold recognition and remote

homology detection have recently attracted a great deal of interest

as they represent challenging multi-feature multi-class problems for

which modern pattern recognition methods achieve only modest

levels of performance. As with many pattern recognition problems,

there are multiple feature spaces or groups of attributes available,

such as global characteristics like the amino-acid composition (C),

predicted secondary structure (S), hydrophobicity (H), van der Waals

volume (V), polarity (P), polarizability (Z), as well as attributes derived

from local sequence alignment such as the Smith–Waterman scores.

This raises the need for a classification method that is able to assess

the contribution of these potentially heterogeneous object descrip-

tors while utilizing such information to improve predictive perfor-

mance. To that end, we offer a single multi-class kernel machine that

informatively combines the available feature groups and, as is

demonstrated in this article, is able to provide the state-of-the-art in

performance accuracy on the fold recognition problem. Furthermore,

the proposed approach provides some insight by assessing the

significance of recently introduced protein features and string

kernels. The proposed method is well-founded within a Bayesian

hierarchical framework and a variational Bayes approximation is

derived which allows for efficient CPU processing times.

Results: The best performance which we report on the SCOP PDB-

40D benchmark data-set is a 70% accuracy by combining all the

available feature groups from global protein characteristics but also

including sequence-alignment features. We offer an 8% improve-

ment on the best reported performance that combines multi-class

k-nn classifiers while at the same time reducing computational costs

and assessing the predictive power of the various available features.

Furthermore, we examine the performance of our methodology on

the SCOP 1.53 benchmark data-set that simulates remote homology

detection and examine the combination of various state-of-the-art

string kernels that have recently been proposed.

Contact: theo@dcs.gla.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Much effort has been directed to the prediction of the 3D

structures of proteins for which no experimental structures are

available (Baker and Sali, 2001). Where there is sequence

similarity to proteins of known structure, a comparative

matching procedure is often adopted. However, where no

such sequence similarity exists, the prediction problem is

formidable, not least because the overall structure may be

unlike that of any protein, the structure of which has been

determined.
In this context, one approach, known as the taxonomic

approach (Ding and Dubchak, 2001; Shen and Chou, 2006),

has been to divide the problem of determining the overall 3D

structure into that of determining its ‘fold’. The term ‘fold’ is

used to denote a particular arrangement of a specific number

of secondary structure components (usually alpha-helices and

beta-strands) that is the basis of the overall structure of several

different proteins which may have little or no amino acid

sequence similarity. The appearances of some of these

arrangements have given rise to names like ‘barrel’, ‘bundle’,

‘sandwich’ and ‘propeller’, although these tend to encompass

several more specific folds e.g. the TIM beta/alpha barrel and

the 5-bladed beta-propeller. Hence, protein fold prediction can

be seen as a challenging multiclass recognition problem where

proteins are classified into folds based on their characteristics

and available measurements.
Past work on the problem of predicting protein folds has

employed artificial neural networks (ANNs), support vector

machines (SVMs), Bayesian networks, Hidden Markov Models

and k-nn classifiers (Chou and Zhang, 1995; Dubchak et al.,

1995; Jaakkola et al., 1999; Raval et al., 2002) with varying

success. In Ding and Dubchak (2001) an extensive study on a

publicly available data-set, consisting of 27 SCOP folds

(Andreeva et al., 2004; Lo Conte et al., 2000), was conducted

exploring the use of various multi-class adaptations of the well-

known binary SVM classifier methodology. In that work, the

best methodology for combining binary SVMs was identified

for the particular problem giving an accuracy of 56%, and

furthermore, via an extensive experimental procedure the most

predictive protein characteristics were selected from the initial

group considered. These were found to be the amino-acid

composition (C), the secondary structure (S) and the hydro-

phobicity (H).
Recently, Shen and Chou (2006) proposed two modifications

to the method of Ding and Dubchak (2001) that raised the best

performance accuracy from 56 to 62.1%. Firstly, they proposed

a somewhat ad hoc ensemble learning approach where*To whom correspondence should be addressed.

1264 � The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/10/1264/177841 by guest on 20 August 2022



multi-class k-nn classifiers individually trained on each feature
space (such as C or S) were later combined and secondly, they

proposed the use of four additional feature groups to replace

the amino-acid composition. These were pseudo-amino acid
compositions (PseAA) (Chou, 2005) designed to capture

sequence-order effects by using a correlation function between

hydrophobicity and hydrophilicity in different intervals of the
protein sequence.

In the present work, we concentrate on the same benchmark
dataset of Ding and Dubchak (2001) with the extra groups of

features proposed by Shen and Chou (2006), and also including

sequence-alignment1 features via a pairwise kernel (Liao and

Noble, 2003), which essentially describes the sequence based
similarity of the proteins. We offer a single multi-class kernel

machine able to operate on all of these groups of features

simultaneously and instructively combine them. This offers a
new and efficient way of incorporating multiple feature

characteristics of the proteins without an increase in the

number of required classifiers. In addition, we assess the
importance and predictive power of the PseAA compositions

proposed by Shen and Chou (2006) together with all the other

available characteristics and gain insight on the protein fold

recognition problem.
Furthermore, we demonstrate the generality of our metho-

dology in a practical setting by addressing the remote
homology problem on the SCOP 1.53 data-set as previously

studied and described by a large number of works, see Leslie

et al. (2004); Liao and Noble (2003); Lingner and Meinicke
(2006); Saigo et al. (2004) and references within, where a variety

of string kernels in conjunction with a discriminative SVM

methodology have been proposed. Following our approach we
select four of these state-of-the-art string kernels and combine

them into an overall composite kernel where the multinomial

probit kernel machine operates.
Related methodologies on kernel machines and multiple

kernel learning (MKL) include the work by Lanckriet et al.

(2004a, b); Lewis et al. (2006a, b); Sonnenburg et al. (2006) and
references within, where semidefinite programming (SDP) or

semi-infinite linear programming techniques are employed in

order to minimize a loss function with respect to the kernel com-
bination. These approaches build upon the SVM methodology

and formulate the kernel combination problem as a further

optimization procedure. The SDP approach suffers from large
requirements in memory and CPU time in the order O(S3N2),

where S is the number of sources and N is the number of

covariates. These methods also carry the inherent drawback of

SVM methodologies, namely their problematic scaling for mul-
ticlass problems as they are based on binary classifiers by nature.

An explicit multi-class classifier within the Gaussian Process
methodology was introduced recently by Girolami and Zhong

(2007) which enables data integration by combining the

covariance functions instead of kernels. Their methodology
has the drawback of employing a first-order approximation for

the inverse of the covariance functions. Finally, recent work by

Melvin et al. (2007) in the context of protein classification
employed adaptive codes to handle the multiclass prediction

problem. However their methodology is based on learning a

weighting of binary classifiers which, we argue, is not an

efficient strategy especially for multiple feature space problems

such as the one considered in this study.

2 APPROACH

The approach adopted is based on the motivation to reduce the

number of classifiers needed for such challenging multi-class

recognition problems where multiple feature sets are avail-

able, while improving performance. Combining binary classi-

fiers as in the work by Ding and Dubchak (2001) increases

heavily the computational resources needed since, e.g. for

the best performing all-vs-all method, we need to deploy

S� C C� 1ð Þ=2 ¼ 2106 classifiers, where S is the number of

feature spaces or sources (only six in their work) and C the

number of classes.
Furthermore, even when employing multi-class classifiers in

an ensemble learning framework such as the one proposed by

Shen and Chou (2006), we still need as many classifiers as there

are available feature spaces. Considering the nature of the

protein fold prediction problem, where the fold type of a

protein can depend on a large number of protein characteristics

and also noting that even in the taxonomic approach the

number of fold types already approaches the 1000 boundary,

it is straightforward to see the need for a methodological

framework that can cope with a large number of classes and can

incorporate as many as there are available feature spaces while

assesing their informational content.
The proposed approach, as can be seen from Figure 1, is

based on the ability to embed each object description via the

kernel trick (Shawe-Taylor and Cristianini, 2004) into a kernel

space (Hilbert space). This produces a similarity measure

between proteins in every feature space and then, having1Despite the apparent low homology dataset.

INPUT PROTEIN

KERNEL H

. . .

. . .

COMPOSITE KERNEL

β1 β2 βS+ + +

MULTICLASS CLASSIFIER

OUTPUT PROTEIN FOLD

MULTINOMIAL PROBIT

A SINGLE COMPOSITE

ONE OF TWENTY SEVEN

KERNEL
SPACES

FEATURE
SPACES

FEATURE SPACE

UNDER A VB APPROXIMATION

POSSIBLE FOLDS

C HS

KERNEL C KERNEL S

Fig. 1. Diagrammatic representation of the kernel combination

methodology (VBKC) for protein fold prediction. The original feature

spaces are first embedded into kernels (Hilbert spaces) and then

combined into a composite kernel where the multiclass kernel machine

operates on.
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a common measure, we can combine informatively these

similarities onto a composite kernel space. Hence now, a

single multi-class kernel machine can operate on that composite

space effectively ‘disregarding’ the number of feature spaces

used. Inference by Bayes theorem on our hierarchical multiclass

model enables us to learn the significance of each source/feature

space and their predictive power by the corresponding kernel

weights b, to learn the regressors and the kernel parameters

without resorting to ad-hoc ensemble learning, combination of

binary classifiers or parameter tuning.

3 MATERIALS AND METHODS

3.1 Fold recognition

The original dataset from Ding and Dubchak (2001) (based on SCOP

PDB-40D) consists of 313 proteins for training and 385 proteins for

testing with535% sequence identity between any two proteins in the

train and the test set. Furthermore, the extensions proposed by Shen

and Chou (2006) exclude four proteins from the original dataset,

namely proteins 2SCMC and 2GPS from the training set plus 2YHX_1

and 2YHX_2 from the test set, due to lack of sequence records.

The 27 SCOP fold types (Dubchak et al., 1995) together with the

original feature spaces in Ding and Dubchak (2001), the four proposed

by Shen and Chou (2006) which describe PseAA compositions

estimated on different intervals of the protein sequence, and the two

local alignment Smith–Waterman (SW) based feature spaces, with

different scoring matrices, are described in Tables 1 and 2 in the Online

Supplementary Materials (OSM hereafter).

3.2 Remote homology detection (RHD)

The SCOP 1.53 benchmark data-set2 as described in Liao and Noble

(2003) is employed to simulate the RHD problem. It consists of 4 352

proteins belonging to one of 54 families and the positive training is

performed on low-homologs while the positive testing on members of

the same family. We consider four state-of-the-art string kernels,

namely a local alignment (LA) kernel (Saigo et al., 2004), a mismatch

(MM) kernel (Leslie et al., 2004), an oligomer kernel (Mono) (Lingner

and Meinicke, 2004) and a pairwise (PW) kernel (Liao and Noble,

2003), taking the best performing case from each string kernel category

as a separate informational source. We follow the above past works

within the kernel machine paradigm by adding a class-dependent

regularization parameter to the diagonal of the kernels to improve

performance on this highly imbalanced problem.

3.3 Methodology

Consider now S feature spaces or sources of information; From each

one we have input variables xsnas object descriptors such as strings or Ds

– dimensional vectors for s¼ 1, . . . ,S and corresponding multinomial

target variables tn2 {1, . . . ,C} for n¼ 1, . . . ,N where N is the number of

observations and C the number of classes. By applying the kernel trick

on the individual feature spaces created by the S sources we can define

the N�N composite kernel as

Kb? ¼
XS
s¼1

�sK
shs

with each element of the matrix given as

Kb? xi;xj
� �

¼
XS
s¼1

�sK
shs xsi ; x

s
j

� �

where b is an S� 1 column vector, indicating each kernel’s contribution

and significance, and ? is an S�Ds matrix, describing the

Ds – dimensional kernel parameters hs of all the base kernels Ks,

which intuitively corresponds to the level of smoothing within each

kernel. Now as we can see the mean composite kernel is a weighted

summation of the base kernels, where each one describes a similarity

measure between proteins based on specific features, with �s as the

corresponding weight for each one.

Following the standard approach for the multinomial probit by

Albert and Chib (1993), we introduce auxiliary variables Y2R
C�N and

define the relationship between the auxiliary variable ycn and the target

variable tn as

tn ¼ i if yin4yjn 8j 6¼ i ð1Þ

Now, the model response regressing on the variable ycn with model

parameters W2R
C�N, where wcn is the weight with which data point n

‘votes’ for class c, and assuming a standardized normal noise model as

in Albert and Chib (1993) and Girolami and Rogers (2006) is given by

ycnjwc;k
b?
n � N ycn wck

b?
n ; 1

� �
ð2Þ

where N x(m, v) denotes the normal distribution of x with mean m and

variance v, W and Y are C�N matrices, wc is a 1�N row vector and

kb?n is an N� 1 column vector from the nth column of the composite

kernel Kb?. Note that wck
b?
n is similar for any two data points n, n0 that

are similar in feature space. Hence now, the likelihood, can be expressed

as the following by simply marginalizing over the auxiliary variable yn
and making use of relations 1 and 2:

P tn ¼ ijW; kb?n
� �

¼

Z
P tn ¼ ijyn
� �

P ynjW; kb?n
� �

dyn

¼

Z
� yin4yjn8j 6¼ i
� �YC

c¼1

N ycn wck
b?
n ; 1

� �
dyn

¼ EpðuÞ

Y
j 6¼i

� uþ wi � wj

� �
kb?n

� �( ) ð3Þ

where the expectation E is taken with respect to the standardized

normal distribution p(u)¼N (0, 1). Hence, we can easily calculate the

likelihood by averaging the quantity inside the expectation for a

sufficient number of random samples of u.

The proposed graphical model as depicted in Figure 2 is completed

by considering prior distributions on the model variables and, following

a hierarchical approach, hyper-prior distributions on the parameters of

the first. We place a product of zero mean Gaussian distributions on the

regressors W �
QC

c¼1

QN
n¼1 N wcn

0; �cnð Þ with variance �cn (described by

the variable Z in the graph) and a gamma distribution on each scale

with hyper-hyper-parameters �, �, reflecting our lack of prior knowl-

edge and taking advantage of the conjugacy of these distributions.

Furthermore, we place a gamma distribution with associated hyper-

hyper-parameters !, � on each kernel parameter since ysd2Rþ. In the

case of the mean composite kernel, a Dirichlet distribution with

parameters q is placed on the combinatorial weights in order to satisfy

the constraints imposed on the possible values which are defined on a

simplex. A further gamma distribution is placed on each �s with

associated hyper-hyper-parameters �, 	. The hyper-hyper-parameters

.¼ {�, �, !, �, �, 	} can be set by type-II maximum likelihood or set

to uninformative values and the hyper and first level parameters

)¼ {Y,W,b,q,?,Z} are sampled accordingly.

It is now straightforward to see that a Gibbs sampler can be readily

constructed and standard MCMC approaches (Andrieu, 2003) can be

employed for Bayesian inference in our model. In this article though we

offer a variational Bayes approximation in order to achieve efficient

computational processing times without loss of predictive performance.

Hence, we bound the model evidence by using an ensemble of factored

posteriors to approximate the joint parameter posterior distribution.2Available from http://www.ccls.columbia.edu/compbio/svm-pairwise
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The joint likelihood of the model is defined as p(t,)|X,.)
¼ p(t|Y) p (Y|W,b,?) p (W|Z) p (Z|�,�) p (b|q) p (?|!,�) p (q|�,	) and

the factorable ensemble approximation of the required posterior is

p()|., X, t)�Q())¼Q(Y)Q (W)Q (b)Q (?)Q(Z)Q (q). We can bound

the model evidence using Jensen’s inequality

log p tð Þ � EQ )ð Þflog p t;)j.ð Þg � EQ )ð ÞflogQ )ð Þg ð4Þ

and minimize it as usual with distributions of the form

Q )ið Þ / exp EQ ��ið Þflog p t;)j.ð Þg
� �

, where Q(��i) is the factorable

ensemble with the ith component removed.

The resulting posterior distributions for the approximation are given

below with full details of the derivations in OSM. First, the

approximate posterior over the auxiliary variables is given by

Q Yð Þ /
YN
n¼1

� yi;n4yk;n8k 6¼ i
� �

� tn ¼ ið ÞN yn
eWk
ebe?
n ; I

� �
ð5Þ

which is a product of N C – dimensional conically truncated Gaussians.

The shorthand tilde notation denotes posterior expectations in the usual

manner, i.e. gfðbÞ ¼ EQ bð ÞffðbÞg, and the posterior expectations for the

auxiliary variable follow as

eycn ¼ ewck
ebe?
n �

EpðuÞfN u ewck
ebe?
n �ewik

ebe?
n ; 1

� �
�n;i;c

u g

EpðuÞf� uþewik
ebe?
n �ewck

ebe?
n

� �
�n;i;c

u g

ð6Þ

eyin ¼ ewik
ebe?
n �

X
c6¼i

eycn �ewck
ebe?
n

 !
ð7Þ

where � is the standardized cumulative distribution function (CDF)

and �n;i;c
u ¼

Q
j 6¼i;c � uþewik

ebe?
n �ewjk

ebe?
n

� �
. Next, the approximate

posterior for the regressors can be expressed as

Q Wð Þ /
YC
c¼1

N wc
eycKebe?Vc;Vc

� �
ð8Þ

where the covariance is defined as

Vc ¼
XS
i¼1

XS
j¼1

g�i�jKiehiKjehj þ eZc

� ��1
 !�1

ð9Þ

andeZc is a diagonal matrix of the expected variancese�i, . . . ,e�N for each

class. The associated posterior mean for the regressors is thereforeewc ¼ eycKebe?Vc and we can see the coupling between the auxiliary

variable and regressor posterior expectation.

The approximate posterior for the variances Z is an updated product

of inverse-gamma distributions and the posterior mean is given in the

OSM or Denison et al. (2002). Finally, the approximate posteriors for

the kernel parameters Q(?), the combinatorial weights Q(b) and the

associated hyper-prior parameters Q(q) can be obtained by importance

sampling (Andrieu, 2003) in a similar manner to Girolami and Rogers

(2006) since no tractable analytical solution can be offered.

Having described the approximate posterior distributions of the

parameters and hence obtained the posterior expectations we turn back

to our original task of making class predictions t* for Ntest new proteins

X* that are represented by S different information sources Xs�

embedded into Hilbert spaces as base kernels K�shs;bs and combined

into a composite test kernel K�?;b. The predictive distribution

for a single new protein x
* is given by p t� ¼ cjx�;X; tð Þ ¼R

p t� ¼ cjy�ð Þ p y�jx�;X; tð Þ dy� ¼
R
��c p y�jx�;X; tð Þ dy� which ends up,

see OSM, as

p t� ¼ cjx�;X; tð Þ ¼ EpðuÞ

Y
j 6¼c

�
1e
�j ue
�c þfm�

c �
fm�

j

� �" #( )
ð10Þ

where, for Ntest objects, fm�
c ¼eycK K�K�T þ V�1

c

� ��1
K�fV�

c andfV�
c ¼ Iþ K�TVcK

�
� �

while we have dropped the notation for the

dependance of the train K(N�N) and test K*(N�Ntest) kernels on ?, b

for clarity.

In Algorithm 1 we summarize the VB approximation in a pseudo-

algorithmic fashion.

4 RESULTS AND DISCUSSION

Reported results are averaged over 20 (fold recognition) and 10

(RHD) randomly initialized trials in order to obtain statistical

measures of accuracy and precision. We monitor convergence

via the lower bound to the marginal likelihood and convergence

is assumed when there is50.01% increase of the lower bound

progression or when a maximum of 100 (fold recognition) and

20 (RHD) iterations have been completed. Throughout this

study we have employed second-order polynomial kernels for

the global characteristics and inner product kernels for the

b

t

r

u w f m l

w

t

N

C×N

C×N S

Q

Y

Z
S×Ds

Fig. 2. Plates diagram of the model’s random variables. The S plate

indicated by dashed lines is omitted when a fixed summation of base

kernels is employed instead of the general mean composite case.
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local characteristics (SW) as they were found to provide a better

embeding of the feature spaces. CPU times reported are for

a 2GHz Intel based PC with 2Gb RAM running Matlab codes.

4.1 Fold recognition

First we examine the performance from individual feature

spaces to gain an overall understanding of their predictive

abilities. This however does not draw the complete picture as

complementary information, may be shared across sources

achieving low performances. In Table 1 we present the mean

percentage accuracy with std. from our method (VBKC)

together with the best ones reported by Ding and Dubchak

(2001) on the original dataset.

Regarding the original features employed by Ding and

Dubchak (2001), we are in agreement with their observations as

the best performing feature space, seems to be the amino-acid

composition (C). The 	¼ 1 and 	¼ 4 PseAA achieve the second

best global individual performance and as the ‘step’ 	 increases

further, the individual performances decrease. Although accord-

ing to Shen and Chou (2006), the PseAA composition ‘has the

same form as the conventional amino-acid composition, but

contains much more information’ it seems at this stage that none

of the PseAA is as predictive as the conventional amino-acid

composition. Furthermore, the local characteristics (SW) sur-

prisingly outperform every global one and SW1 achieves a higher

accuracy than the best SVM-combinations proposed by Ding

and Dubchak (2001). This is because although most of the

proteins have535% sequence similarity, this seems to be an

adequate similarity level to achieve a good accuracy.
In Table 2 we report the effect of sequentially adding the

feature spaces in the order of Ding and Dubchak (2001),

extending that to the addition of the PseAA compositions and

finally adding the sequence similarity based features. We

compare against the best performing SVM combination

methodology as reported in Ding and Dubchak (2001) and

the ensemble method of Shen and Chou (2006). As we can see

in all the steps the proposed method outperforms the best

reported accuracies and offers the current state-of-the-art in

this data-set.

The best performances can be seen in Table 3 in comparison

with the best ones reported in the cited past work. We achieve

an improvement over both past methods while we employ a

single multiclass kernel machine without resorting to ensemble

learning techniques or combining multiple binary classifiers.
When we consider a weighted combination of the base

kernels, with
PS

i¼1 �i ¼ 1 �i � 0 we are able to infer the

significance of the corresponding feature descriptions. In

Figure 3 we plot a summary of the weights over 20 runs

depicting the lower quartile, median and upper quartile values.
As we can observe, the amino-acid composition and the

secondary structure are judged as more important, followed by

Table 3. Best single run performances (% accuracy)

Feature Spaces Ding and

Dubchak

Shen and

Chou

VBKC

CSHP 56.5 � 59.3

SHPVZ	1	4	14	30 � 62.1 63.5

CSHPVZ	1	4	14	30 � � 63.9

CSHPVZ	1	4	14	30SW1 SW2 � � 70

No. of Classifiers 2,106 9 1

Table 1. Average individual F.S percentage accuracy

Feature Space VBKC Ding and Dubchak

Amino acid composition (C) 51.2� 0.5 44.9

Predicted secondary structure (S) 38.1� 0.3 35.6

Hydrophobicity (H) 32.5� 0.4 36.5

Polarity (P) 32.2� 0.3 32.9

van der Waals volume (V) 32.8� 0.3 35

Polarizability (Z) 33.2� 0.4 32.9

PseAA 	¼ 1 (	1) 41.5� 0.5 �

PseAA 	¼ 4 (	4) 41.5� 0.4 �

PseAA 	¼ 14 (	14) 38� 0.2 �

PseAA 	¼ 30 (	30) 32� 0.2 �

SW with BLOSUM62 (SW1) 59.8� 1.9 �

SW with PAM50 (SW2) 49� 0.7 �

� Not employed in the Ding and Dubchak dataset.

0.6

0.5

0.4

0.3b i

0.2

0.1

0

C H P Z S V λ1 λ4 λ14 λ30 SW1 SW2

Fig. 3. Combinatorial weights when all the feature spaces are

employed.

Table 2. Effect of F.S combination (% accuracy reported)

Feature spaces VBKC Ding and Dubchak

(AvA)

C 51.2� 0.5 44.9

CS 55.7� 0.5 52.1

CSH 57.7� 0.6 56.0

CSHP 57.9� 0.9 56.5

CSHPV 58.1� 0.8 55.5

CSHPVZ 58.6� 1.1 53.9

CSHPVZ	1 60.0� 0.8 �

CSHPVZ	1	4 60.8� 1.1 �

CSHPVZ	1	4	14 61.5� 1.2 �

CSHPVZ	1	4	14	30 62.2� 1.3 �

CSHPVZ	1	4	14	30SW1 66.4� 0.8 �

CSHPVZ	1	4	14	30SW1 SW2 68.1� 1.2 �

Shen and Chou

SHPVZ	1	4	14	30 61.0� 1.4 62.1

� Not employed in the Ding and Dubchak dataset.

1268

T.Damoulas and M.A.Girolami

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/10/1264/177841 by guest on 20 August 2022



the PseAA 	¼ 1. However, it is worth noting that by taking out

the amino-acid composition we have only a small loss in

performance as we have seen in Table 2. These two observa-

tions suggest that the original amino-acid (C) and the pseudo-

ones (	i) carry redundant information. Furthermore, despite

the individual accuracies of the SW features, they are not

heavily weighted. This is because they depend solely on the

sequence similarity between proteins and their quality of

discriminative information is strongly related to which end of

the 0–35% sequence similarity the two proteins will belong.

In reality, for the real ‘twilight-zone’ of low-homology proteins

(much 535% similarity) such features have little effect by

definition.

In Figure 4 the confusion matrix for a single run is depicted.

The values on the matrix are normalized according to

Rij ¼ Pj=Ni, where Ni is the total number of proteins belonging

in class i and Pj is the number of these Ni proteins that were

predicted to belong to class j. For example when all of the

proteins in class c were predicted correctly, then Rcc¼ 1 and

Rcj¼ 0 8 j2 {1,C}.

First, it is worth noting that there are two areas where

consistent misclassification occurs. The first one is when

proteins of class 10–13 (conA-like barrel, SH3-like barrel,

OB, beta-trefoil) are classified as Class 7 (fold: immunoglobulin

like), and the second one is when proteins of class 19–20 and 24

(Rossmann fold, P-loop, periplasmic binding protein-like) are

classified as class 16 (fold: TIM-barrel). Noting that folds 7 and

16 are represented by the top two largest numbers in the

training set (30 and 29 proteins, respectively), this seems to

imply that these classes are over-represented in comparison

with other folds (mean size of 10 proteins) and that features

such as (pseudo- or not) amino-acid composition and

secondary structure offer little discriminative power on the

distinction problem in these two areas.
Furthermore, besides the proteins in the fifth class (fold:

4-helical cytokines) that are correctly classified as expected by

previous observations by Ding and Dubchak (2001), now the

first class (fold: globin-like) is also achieving a 100% accuracy

together with three more classes (7, 16, 27) (folds: immunoglo-

bulin-like, TIM-barrel, small inhibitors) above the 90% level.

4.2 Remote homology detection

As a generalization of the proposed methodology to other

related problem-domains, we consider the simulated remote

homology problem (RHD) as described in the works of Liao

and Noble (2003); Lingner and Meinicke (2006); Leslie et al.

(2004); Saigo et al. (2004). The results from the combination of

the string kernels are depicted in Table 4 together with the best

previously reported results within the SVM methodology. We

achieve a state-of-the-art performance via the combination of

the kernels and match the overall best performing SVMmethod

outperforming other string kernels. In Figure 5 the number of

families that achieve certain ROC scores is depicted in

comparison with some of the best performing methods reported

in the literature.
Furthermore, by employing the weighted combination, we

infer the contribution of each string kernel and as it can be seen

from Figure 6 the Monomer (Mono) and the LA kernel are
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Fig. 4. Confusion matrix with each element normalized to Rij.

Table 4. ROC, ROC50 and median RFP scores

Method Mean ROC Mean ROC50 Mean mRFP

VBKC 0.924 0.567 0.0661

SVM (SW) 0.896 0.464 0.0837

SVM (LA) 0.925 0.649 0.0541

SVM (MM) 0.872 0.400 0.0837

SVM (Mono) 0.919 0.508 0.0664
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Fig. 5. ROC score (AUC) distributions for the proposed string

combination method and two state-of-the-art string kernels with SVMs.
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Fig. 6. Combinatorial weights when all the string kernels are employed.
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weighted most heavily as expected from Table 4 and previously

reported results.

5 CONCLUSION

In this article we offer a single probabilistic multi-class multi-

kernel machine that is able to operate simultaneously in

multiple feature spaces via a kernel combination methodology.

Furthermore, we illustrate the capabilities of our method in

a well-benchmarked dataset by Ding and Dubchak (2001) in

which recent studies (Shen and Chou, 2006) have improved

predictive performance by the introduction of additional

pseudo-amino acid composition feature spaces. We show that

the additional feature spaces although overall improve perfor-

mance by a factor of 1�2% in reality carry non-complementary

information with the original amino-acid composition. The

need for such information to tackle the two misclassification

patterns can also be seen in the work of (Shahbaba and Neal,

2007) where even when the problem is treated as a hierarchical

classification with parent classes, the performance is not

improving beyond 61.4%.
Furthermore, our methodology offers a significant reduction

in computational resources as it is based on a single classifier

operating over a composite space which retains the dimension-

ality (N�N) of any of the individual contributing feature

spaces (N�N). This, in contrast with the past work of

employing thousands of binary classifiers or an ensemble of

individually trained classifiers is a significant improvement. We

provide, the state-of-the-art on the problem under consider-

ation with a best performance of 70% accuracy without

resorting to ad-hoc approaches but employing a solid Baysian

formalism which enables us to infer the informative content of

the feature spaces.
Finally, we extend our approach to the remote homology

problem and demonstrate the generality of our approach in a

practical setting by achieving a state-of-the-art performance via

a combination of string kernels.
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