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PROBABILISTIC MULTI-HYPOTHESIS TRACKING 

1. INTRODUCTION 

In a multitarget, multimeasurement environment, knowledge of the measurement-to-track 
assignments is typically unavailable to the tracking algorithm. This report is a probabilistic 
approach to the measurement-to-track assignment problem; that is, measurement assignments are 
modeled as discrete random variables. Measurements are not assigned to specific tracks as in 
traditional multi-hypothesis tracking (MHT) algorithms; instead, the probability that each 
measurement belongs to each track is estimated using an empirical Bayesian algorithm. The 
probabilistic multi-hypothesis tracking (PMHT) approach proposed in this report treats target 
states and measurement assignments as continuous and discrete random variables, respectively, 
and defines an appropriate joint density on these variables. The PMHT estimation algorithm is in 
the class of so-called empirical Bayesian methods (reference 1); that is, it is a hybrid maximum 
a posteriori (MAP) and maximum likelihood (ML) algorithm. The PMHT estimates are joint 
estimates of target states and measurement-to-track assignment probabilities. This report expands 
earlier work. (See references 2 and 3.) 

The PMHT algorithm requires neither enumeration of measurement-to-track assignments nor 
pruning because all measurements are assigned to all tracks. A measurement is weighted with the 
estimated measurement-to-track assignment probability before it is assigned to a target track. The 
same measurement receives different weights for different tracks. Because pruning is not 
required, the PMHT algorithm is an optimal empirical Bayesian multitarget tracking algorithm 
under idealized assumptions. 

The computational complexity of the PMHT algorithm is much less than the exponential 
complexity of MHT algorithms, which use exhaustive enumeration. Current MHT algorithms 
combine iterative methods for enumeration with careful scoring and pruning (e.g., measurement 
gating and branch elimination) to reduce computational complexity and computer storage 
requirements to manageable levels. The PMHT algorithm presented in this report is potentially 
more advantageous than the MHT algorithms because the PMHT algorithm is amenable to 
parallel computation on high-performance computer architectures. Specifically, PMHT 
measurement-to-track assignment probabilities greatly reduce the need for branching (i.e., 
algorithm flow is smooth and relatively uninterrupted). 

One of the key ideas behind the PMHT algorithm is the avoidance of "hard" measurement-to- 
track assignment decisions. It may be argued that hard assignments should be avoided because 
they are equivalent to statistical decisions, that all statistical decisions are opportunities for error, 
and that erroneous decisions, even if rarely committed, necessarily increase estimation error. 
However, as will be demonstrated, the formulation of the PMHT probability structure does not 
support this argument because the optimal joint MAP estimate of target states and measurement 
assignments comprise state estimates and hard assignments. One of the primary technical 
contributions of the PMHT approach is that it avoids the computational complexity of MAP 
estimation (i.e., the theoretical basis of MHT algorithms) and, yet, is optimal in the empirical 



Bayesian sense. The change in the definition of the likelihood function that results from treating 
assignments as discrete random variables thus has a dramatic effect on the resulting estimation 
algorithm and its computational complexity. 

This report consists often numbered sections, the contents of which are indicated below: 

• Section 1 introduces the PMHT algorithm. 

• Section 2 introduces the PMHT observer and presents a theoretical overview of the 
PMHT estimation method. 

• Section 3 states the likelihood structure of the PMHT observer. Bayesian inference 
networks (BINs) are introduced as a road map for representing the conditional independence 
assumptions that are central to the methods of this study. The validity of the PMHT approach for 
nonlinear non-Gaussian systems is attributed to the fact that these conditional independence 
assumptions, displayed graphically by the BIN, are nonparametric assumptions and, therefore, are 
not limited to linear-Gaussian parameterizations. 

• Section 4 gives a derivation of the PMHT algorithm using the expectation-maximization 
(EM) method. The derivation assumes familiarity with the EM method. 

• Section 5 states the PMHT algorithm in recursive form. The linear-Gaussian case was first 
presented (without proof) in reference 2. 

• Section 6 discusses Fisher information matrices (FIMs) and multitarget observability. FIMs 
relate to PMHT estimation error, and the multitarget observability relates to PMHT algorithm 
convergence. 

• Section 7 discusses several variations and extensions to the PMHT approach, including 
adaptive covariance estimation. 

• Section 8 compares the PMHT system with other multitarget tracking algorithms. 

• Section 9 presents a PMHT example. 

• Section 10 provides concluding remarks and recommendations for further study. 



2. THEORETICAL OVERVIEW 

Section 2 uses an abbreviated form of the notation used in the rest of this report. A complete 
description of the issues mentioned in this section is presented in sections 3 and 4. 

Measurements are outputs from a sensor signal processor, and the task of the postprocessor 
is to compute target tracks from the available measurements. PMHT is an algorithm for the 
postprocessor. Adopting the observer concept is useful when studying the multitarget tracking 
problem. The observer is not particularly interesting for single-target tracking, but its value for 
multitarget tracking becomes clear with use. 

The PMHT algorithm assumes independent targets. In the special case of linear-Gaussian 
statistics, each target has a state motion model of the form 

where w, is white Gaussian process noise with known covariance matrix 0,. Measurements z, 
within each scan Z, are assumed conditionally independent, when conditioned on the collection of 
target states. Measurements in different scans are also assumed conditionally independent. 
Different scans may have different numbers of measurements. 

The PMHT observer is defined by the state of the postprocessor. Since measurements are 
not presented to the postprocessor with labels identifying the correct measurement-to-track 
assignments, the appropriate observer state, denoted O,, for measurement scan Z, comprises the 
collection of target states together with the collection of measurement-to-track assignments. 
Therefore, the observer state has both continuous and discrete components that must be 
estimated. See the last paragraph in this section for a brief description of the PMHT estimation 
methodology (EM). 

Suppose, momentarily, that the observer state is defined so that it does not comprise 
measurement assignments. Then, even if the target states are known exactly, this modified 
observer is unable to determine the correct measurement-to-track assignments. Hence, this 
modified observer cannot be an observer in the strict sense (see reference 4, section 9.2). 
Consequently, the measurement-to-track assignments must be part of the observer state definition. 
Incorporating assignments explicitly into the observer state appears to be novel to this study. 

The probability density function (PDF) of the measurement scan Z, is conditioned solely on 
the scan observer state O,. The PDF of a measurement z,'m Zh conditioned on 0,, is assumed 
known. In the linear-Gaussian case, the measurement PDF has the form 

p{:P) = 7l{zt\HkiXk,Rk), 

where k,\s the discrete component of O, corresponding to r,; i.e., k, denotes the target of origin 
for z,. This is equivalent to writing 



Hkxk.+Vk, 

where v,   is white Gaussian measurement noise with known covariance matrix R, . Because the 

scan measurements are assumed to be independent, conditioned on the observer state, the scan 
likelihood function, denoted by P(Zt\Ot), is the product over all measurements z, in Z, of the 
individual measurement likelihood functionsp(z,\0,). It is important to emphasize that the discrete 
components of the observer Ot are essential to the definition of the scan-likelihood function. 

PMHT is a batch algorithm that uses a finite number of successive measurement scans to 
estimate the batch observer state O. The batch observer is the collection of scan observers in the 
batch, and the batch observer state comprises the collection of the scan observer states, so that 
0= {Ot}. A batch PDF is formulated for the batch observer using the target motion models and 
the scan likelihood functions. The batch PDF is a joint function of the measurements, the 
continuous component X, and the discrete component K of the batch observer state O. 

BINs are used in this report to display the conditional independence assumptions between 
measurements and the batch observer states in a graphical manner. These conditional 
independence assumptions are fundamental to the batch observer joint PDF and are easily 
understood if presented in a BIN graphical form. The BIN for PMHT is shown in figure 1. The 
nodes and edges of the BIN graph are interpreted in such a way that the graph is equivalent to a 
factorization of the batch observer PDF. (See the end of section 3 for a discussion of BINs.) 

TIME t-1 TIMEt 

Figure 1. BIN Fragment for PMHT at Scan t 



The MAP estimate of 0 is the maximum (over the observer's continuous and discrete 
components) of the PDF of O conditioned on the available batch measurements. However, in the 
absence of computationally efficient search techniques (e.g., dynamic programming), the MAP 
estimate is combinatorially hard to compute because it involves enumeration of all possible hard 
measurement-to-track assignments. Computation of such assignments is not required by PMHT. 

The PMHT algorithm differs from the MAP point estimate just described. The PMHT 
estimates of the batch observer state are computed in three separate, but interrelated, steps. In 
the first step, the batch joint PDF is marginalized (summed) over the observer discrete component 
K, i.e., over all measurement-to-track assignments. The marginal density is the joint PDF of the 
batch measurement Z and the continuous component X of the batch observer. The second step 
estimates the target states x from the marginal PDF using an algorithm derived by the EM 
method. This computation yields the PMHT state estimate for each target at each scan in the 
batch. In the third step, the conditional density for the observer discrete component K is 
computed from Bayes theorem by conditioning on the measurements Z and on the PMHT target 
state estimates computed in the second step. This conditional PDF is the probability of 
measurement-to-track assignment for every measurement and track pair. 

The coupling between the three PMHT steps is of fundamental importance. The coupling is 
caused by assignment interference because it must estimate the parameters defining the discrete 
conditional distribution of the observer discrete component K. These parameters are merely the 
measurement-to-track assignment probabilities. The PMHT algorithm is essentially a recursive 
algorithm for estimating assignment interference. 

The second PMHT step yields, upon convergence, a conditional error covariance matrix for 
each target. It will be shown that the inverse covariance matrix for target s, computed in the 
second step, is the expected FIM, where the expectation is, with respect to the conditional 
density, on the observer discrete component K. 

PMHT reliance on marginalization is unusual from the perspective of multitarget tracking, 
but it is natural from a probabilistic perspective. Marginalization is also a traditional method of 
treating so-called nuisance variables in statistical problems. Marginalization removes dependence 
on knowledge of particular outcomes of the variables marginalized, but the dependence on the 
distributional parameters of these variables remains. In the multitarget tracking problem, the 
measurement-to-target assignments are the nuisance variables, and they are marginalized out. 
The parameters of the nuisance variable distributions are estimated from the marginal distribution 
using the EM method. 

5/6 
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3. PMHT OBSERVER LIKELIHOOD STRUCTURE 

Let M > 1 denote the assumed number of independent target motion models. The integer 
M should be at least as large as the number of targets present in the measurement sequence. 
Choosing M greater than the number of targets may have practical utility for background noise or 
clutter normalization purposes. 

The PMHT algorithm is a batch algorithm. Let T > 1 denote the length of the current 
batch. The measurement scans are numbered so that the batch comprises scans from time t = 1 
to time / = T. The PMHT observer is a batch observer, so it is convenient to define the batch 
observer as a collection of scan observers. For t > 11 the PMHT scan observer state is denoted by 

O = (X, K \ and it comprises the continuous component vector Xt and the discrete component 

vector Kt. The continuous component Xt comprises the M target states. Explicitly, Xt is given by 

*,=(*„>-.**,).      t = l,...,T, 

where x!s denotes the state of target s at time /. Component states xts and xtm ofXt are 

independent, for s * m because the targets are assumed to be independent. The a priori PMHT 

scan observer state is denoted by O0 = (X0,K0), where the discrete component K0 = 0 (the 

empty set) because, by definition, measurements are unavailable at / = 0. The continuous 

component XQ = (xov...,xou) is discussed below. The target state vector Xm comprises the 

state of target m at each time in the batch, that is, 

*" = (*o«.x.«'---.x7J.      m = \,...,M. 

Let N    denote the dimension of the target state for model s. The state dimension NXt may vary 

from target model to target model, but it is assumed constant from scan to scan. 

Let <p(xis x j ) denote the process model for target s, \<s<M. Target model 5 assumes 

that x0s is a realization of the a priori distribution denoted by <p,(x0s) ■ The time dependence of 

the functions [cpY is indicated implicitly by the function argument. In the special case of 

linear-Gaussian target process models, 

mix x , \ = 7t[x, F,I, ,G, , a . G;, V    / = i,...,r, 
(1) 

where #(-|/U,Z) denotes a multivariate Gaussian PDF with mean vector p. and covariance matrix 

Z. Equation (1) is equivalent to the conventional form 



x  = F , x ,   +G , w , ,      t = \,2,...,T, ... 
tS /-1.5     l-l.S t-\,S      t-\,s' '     ' '        ' (2) 

where w    s is a white Gaussian process with (positive definite) covariance matrix Ot] s. Noise 

processes u>      and w       are assumed to be independent because s *m. The matricesFt] s, 

G , , and 0 , .are assumed known for all / > 0 and s. 

The target process models hold for t = 0, so state xu is a realization of the distribution 

-J-CO 

P,0Ü=J  P,(*jO P,0ÜÄo,- 
(3) 

The initial target states [xQj J can therefore be eliminated without altering the batch likelihood 

structure. In this report, however, target states are initialized at time / = 0 for notational 
convenience. For the linear-Gaussian case, xQs is a realization of the a priori Gaussian PDF 

<Ps{X0s) = 7t(X0sK>Z0s), 

where the mean xQs and covariance matrix Z0i are given, and the distribution (3) is given by 

<p (x, )=N(X, \Fnxn, Fn Sn F! +Gn On G' ), 

where the mean and covariance of <Ps(xu) are the predictive statistics. 

Let xVx denote the PDF of the scan observer continuous component X,. The time 

dependence of x¥x will be indicated implicitly by its argument. For t> 1, the PDF of X, is 

conditioned on Xt].   From the assumption of independent targets, it follows that 

M 

The a priori PDF of the continuous component X0 defining the initial observer is given by 

M 

where independent target initialization has been assumed. 

(5) 

(6) 



For t > 1, the discrete component Kt of the scan observer state Ot comprises a unique 
measurement-to-track assignment for every measurement in scan Z,. The discrete component Kt 

and the continuous component X, are assumed to be statistically independent. Let n, denote the 
number of measurements in scan Z,. For notational simplicity it is assumed that «, > 1; however, 
no theoretical difficulty arises if«, = 0. Recall that Ko = 0. Let ztr denote measurement r in scan 

Zt =lztl,zl2,...,ztn J. The discrete component Kt is defined by 

K =(kl,k„...,k   1 
t        y   M'    ,2'        '    l.n, r 

where 1 < k,r <Mfor all r = 1,2,...,«,. Thus, measurement ztr is assigned by K, to the track motion 
model with index ktr eKr It is assumed that the discrete components ikir} are independent, that 

is, ktr and ktr, are independent if r * r'. Finally, the discrete component vectors \kt j are assumed 

statistically independent from scan to scan, that is, K, is independent of Kt-,because / * t'. 

The PMHT measurement PDF is defined for measurement ztr by 

■ viz \0) = p(z \X,K) = C (z\x )\   t   ,        t>\. 
r\   tr\    tj      -r\   tr\      ,'      tj      ' m\   tr\   tmf\m=klr,' 

All measurements in all scans are assumed (for simplicity) to have the same dimension, denoted by 
N2. Under linear-Gaussian assumptions, 

C (z \x  \ = 7t(z \H x  ,R ) (7) 
~m\   tr\    tmf \   tr\      Im    (m'     Im) K   ' 

The linear-Gaussian case can also be written in the equivalent form 

z   =H x   +v  , 
tr tm   tm tm7 

where v^, is an additive white Gaussian noise process with covariance Rtm. The PMHT scan 
likelihood function is a PDF defined over the measurements in scan Z,, and it is conditioned on the 
observer state Ot. Explicitly, because the measurements are conditionally independent, 

P(Z \0 ) = P(Z\X„K\ = f|Ck \H, x, ,R )\   . . \    t\     l I \    t\      t'      t I       1 J   "ml   lr       tm    Im'     tm)\m=k„ 

-i ' (8) 

The discrete component k,r of the vector K, serves as a pointer to the appropriate target model 
and is thus an integral component of measurement conditioning. The parameters defining 
probability mass function of the discrete components of the measurements in scan K, are not part 
of the observer state. (Reference to the BIN of figure 1 will clarify this important distinction.) 

Let n    represent the probability that a measurement in scan Z, is assigned to target motion 

model m, where / > 1. The probability nm reflects the fraction of scan measurements assigned to 

9 



target m at time /. These target measurement probabilities are needed because some targets may 
produce more measurements per scan than others because of individual target characteristics 
(e.g., signal-to-noise ratio), environmental effects, sensor properties, and other application 
considerations. Denote the "within-scan" measurement probability vector by 

71, s(*",i.^'••■•'O- (9) 

The vector n parameterizes the distribution of the discrete component ktr for the measurement ztr 

in scan Z,. Because measurements within a scan are assumed conditionally independent and 
identically distributed, the distribution it t is assumed to be the same for all measurements made at 

time t   Thus  K   - Prob[&  = ml for all measurement assignments k,r. The batch target 
'        tm [    tr J 

measurement probabilities II = TlT = (xv...,nT) are estimated by the PMHT algorithm from the 

batch measurement data.. Alternative assumptions concerning II are possible. For instance, a 
Bayesian a priori density can be assumed for nt if desired. A Bayesian a priori density for K, is 

analogous to the initialization (3) for A",. This and other alternatives are described in section 7.1. 

Let ¥   denote the discrete PDF (or, probability mass function) of the discrete component 

K, of the scan observer O,. The time dependence of ¥K is indicated implicitly by its argument. 

The PDF of K, takes the form 

^(j^Probf*,,,...,*,, J-fK (10) 

The product in (10) follows from the assumption that different measurements within a scan have 
statistically independent and identically distributed discrete components k,r. It turns out (see 
equation (22) and the ensuing discussion) that the measurement independence assumptions imply 
that ntm are mixing proportions of a mixture density modeling the scan measurements. For the 
linear-Gaussian case, the means of the Gaussian components of the mixture are the target state 
estimates for the scan. 

The batch observer state, denoted 0 = 0T = (XT, KT), comprises the continuous and 

discrete components of the T-scan observers in the current batch. The dependence of the 
observer and its components on batch length T\s suppressed throughout the remainder of this 
report. Thus, the continuous and discrete components of the batch observer O are 

XsXTs[X0,Xv..,XT) (l 1) 

and 

K = KT=[KQ,Kv...,KTj, (12) 

10 



respectively. K0 is a place holder in (12) because K0 = 0. The batch measurement is denoted 

z^zT^(zv...,zT). 
(13) 

It is assumed that measurement scans and measurements within scans are statistically independent, 
conditioned on the batch observer state O. 

The PMHT batch observer PDF is a joint function of the measurements Z and the batch 
observer state O. Because no measurements are made at time t = 0, the a priori PDF of the scan 
observer at time t = 0 is defined to be 

M 

*(0o)=rk(*ov} 
v=l 

(14) 

The scan observer at time t > 1 is conditionally dependent on the scan observer at time / - 1. The 
scan observer continuous and discrete components are independent, so the observer conditional 
PDF is given by 

Substituting the expressions (5) and (10) gives for t > 1 

*(o,|oM)-{n».(*.ku)}m". m=k„ 

The batch observer PDF is, from the conditional independence assumptions, 

P(Z,0) E P(Z,X, K) = ¥(0o)n V{0\0,_)P{Z\0). 
t=\ 

(15) 

(16) 

Substituting (8) and (15) into this expression gives the batch observer joint PDF in the form 

P{Z,X,K)^cpX^m (17) 
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When the parametric dependence on the probabilities n is made explicit, the joint PDF is written 
P(Z,X,K: n). The batch PDF (17) is the fundamental probabilistic structure of the PMHT 
algorithm. The derivation of the PMHT algorithm is given in section 4. 

Insight and understanding of the structure of P(Z,X,K) is enhanced by displaying its 
conditional independence assumptions in a mathematically equivalent graphical format. A BIN is 
a very effective representational technique designed for just such a purpose. A fragment of the 
fundamental graphical structure of the PMHT batch PDF for measurements at scan / is portrayed 
as a BIN in figure 1. The BIN of figure 1 is a directed graph, and its nodes represent random 
variables in the batch observer PDF P{Z,X,K). The directed edges depict the conditioning of 
these random variables in the following way: Each node is conditioned jointly on all of its 
"parents." The overall likelihood structure of the BIN is defined to be the product of all the 
conditional PDFs. There are precisely as many conditional PDF factors as there are nodes in the 
graph. Following this procedure for the BIN of figure 1 shows that its joint likelihood function is 
identical, factor by factor, to the factorization ofP(Z,X,K) given by equation (17). The precise 
mathematical forms of the individual conditional PDF factors are not defined by the BIN, but they 
are stipulated by the requirements of the specific application. The Gauss-Markov equation (2), 
the Gaussian initialization (3), and the measurement conditioning equation (7) are specific to 
PMHT. The directed graph provides global likelihood structure, while the specific conditional 
PDFs provide local structure. The graph may not have "directed cycles" because they result in 
improper factorizations of the global joint likelihood function. 

The special caseM= 1 of the PMHT batch PDF (17) is identical to the PDF of a fixed- 
interval Kaiman filter formulated for multiple measurements. The reason for these identical PDFs 
is that, in this case, the batch discrete component K and the within-scan target measurement 
probabilities n are trivial because there is only one target and all batch measurements are 
necessarily assigned to it. In addition, if each scan has precisely one measurement, the PMHT 
batch likelihood function is identical to the likelihood function of the usual textbook Kaiman filter 
(see reference 5). 
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4. DERIVATION OF THE PMHT ALGORITHM 

In this discussion, the authors assume the reader is familiar with the EM method. For 
background material on this very general technique, see reference 6 and the references mentioned 
therein. For PMHT, the "missing data" in the sense of EM is the discrete component K of the 
batch observer, and the "complete data" comprises Z, X, and K. This confusing nomenclature is 
not used in this report. In the special case of linear-Gaussian statistics with known covariances, 
the target measurement probabilities II and the states AT of the continuous component are batch 
parameters to be estimated. This case is especially simple because the parameters defining the 
target process and measurement PDFs are linear functions of the state means, and the estimated 
means are the target state estimates. In general, however, it is necessary to distinguish between 
state parameter estimates and state estimates. For nonlinear, non-Gaussian processes, therefore, 
it is assumed that A" is the parameter set defining the target process and measurement PDF. This 
slight abuse of notation should not cause confusion. 

The discussion in this section derives the expectation step (E-step) of the EM method for the 
general case because the E-step is done as easily in general as it is for linear-Gaussian 
assumptions. As is seen below, the measurement probabilities II and target parameters X are 
treated separately in the maximization step (M-step) even in the general case. The M-step treats 
the probabilities II for the general case. The M-step for the parameter estimates X is significantly 
easier to understand for linear-Gaussian statistics, so this special case is treated separately first. 
Subsequently, the general case for A" is treated. 

The E-step begins by defining a PDF on the discrete component K. Let "K denote this PDF. 
On convergence of the PMHT algorithm, ogives the measurement-to-track assignment 
probabilities for all possible measurement and target pairs. From Bayes theorem, the conditional 
PDF on K is defined by 

K       '      p^x.n) (lg) 

where the denominator of (18) is the marginal distribution of the PMHT likelihood function over 
the discrete component K. When the parametric dependence on the probabilities II is made 
explicit, the conditional PDF (18) is written X(K\Z, X:Tl)  The marginal distribution of F\Z,X,K) 

over K is defined by 

P(Z,X) = P(Z,XTl)^ P(Z,X,K), 

(19) 

where the summation over the batch component K is defined by 

A' t-1      Kt Kl KT (20) 
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and where the sum over the scan component K, is defined by 

M M 

Z = Z Z -z-z 
AT, r=l     k,=\ *„=1 kln<=\ 

(21) 

Using the most expanded of the summation forms (20) and (21), it is straightforward to verify the 
important algebraic identity 

***)={n*w}n- 
" M 

*,-u)lfl 
Jr=l 

y ^ <- (z \x) 
l—t       tm   ' m\  tr\   lm) 
m=\ 

(22) 

PMHT computes an ML estimate of the continuous component X and the target measurement 
probabilities n from the marginal PDF (22). The distribution P(Z,X) is, thus, the appropriate 
PDF for a batch observer whose state definition does not explicitly include discrete components. 
The marginal PDF is fundamental to multitarget observability questions, and observability is 
related to PMHT algorithm convergence. (See section 6 for additional information.) 

The marginal PDF (22) exhibits clearly the underlying assumption that the measurements 
within scan Z are conditionally independent. It also provides the useful interpretation that the 

components of the batch target measurement probability vector n, are the mixing proportions of 
the measurement PDF mixture 

tm    ~ m\   tr\    tm/' 

from which the measurements in scan Z, are drawn. Substituting (17) and (22) into definition (18) 
gives 

T «, 

X(K\Z,X) = YIY\ w 
t=]      r-\ 

(23) 

where the weight wstr > 0 is a function of Z, X, and fl and is given by 

w 
sir M 

n C \z\x\ 
\*P s\   tr\    is) - ^ 

I>  C (z \x  ) 
(24) 
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The expression (23) does not include a product over the state models because terms involving 

up) cancel out of the ratio (18). The weight wstr is interpreted, using Bayes theorem, as the 

conditional probability that measurement ztr is assigned to the target model s, conditioned on the 
continuous component X and the measurements Z; that is, 

From the definition (24), it is straight forward to verify the algebraic identities 

£2r(nqz,x) = i, 
K 

and 
(25) 

K\k„ 
s=K. (26) 

where, in (26), the sum over K\k,r is the sum over all indices in K except ktr. 

The E-step is concluded by evaluating the expectation of the logarithm of the PMHT batch 
PDF (17), where the expectation is with respect to the conditional PDF (23). Let X' denote a 
given value for the continuous component of the batch observer, and let IT denote a given value 
for the target measurement probabilities. The primes on these variables do not denote the 
matrix/vector transpose operator. The expectation required by the E-step is written explicitly as 

ö = ß(n,*in',x') = Z {iogP(z,x,ur:n)} Z(K\Z,X':II'). 
(27) 

The function Q is called the auxiliary function in reference 6, and it is closely related to cross- 
entropy and the Kullback-Leibler distance. In this report function Q is called the cross-entropy 
function. Taking the logarithm of the PMHT batch PDF (17) gives 

M T    M 

log P{Z,X,K:U)   =   X log <pv(xj + ZZ l0§ P,(*J*,-u) 
V=l (=1    J=l 

T  "'   r i 
+ ZZ [lo^tm + lQg CMXJ\ 

t=\   r=l 

Substituting this expression into the definition (27), interchanging the summation order so that, 
for example, 

Ktr t r        k„      K\kn 
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f=l 

and then using the identities (25) and (26) gives the cross-entropy function in the form 

T M 

Q   = Z ß,.n   +   Z Öm,x> 

where 

(28) 

A/ 

r=\     m=\ (29) 

0..*s Öm,x[^1z,(^)',(^)'] 

=   log Vjxj + Y  log ^m0y*_,,m) + Z M/fr log ^(rjxjl 
r=l 

(30) 

and where the weights w'mtr = w'mtr(Z,X',Il') are defined as in (24). In equations (29) and (30), 
the notations 

X' = w,x;,...,x;) = [(xly,...,(xuy] 
and 

n' = (^,...,^) = [M',...,(0'], 

have been used. Again, the primes on these variables do not denote transpose. 

The M-step is a maximization problem. Explicitly, given values W and X\ the M-step 
requires computing values n and X for which 

ß(n,Äin\*') = max Q(Tl,X\W,X') 
n,x (31) 

The given variables II' and X' comprise the current values of the PMHT algorithm, and the 

variables n and X comprise updated values of the algorithm. The PMHT recursion is stated 
explicitly in section 5. On convergence of the PMHT algorithm, ft and X are ML-parameter 
estimates. Equations (28), (29), and (30) demonstrate that the maximization problem (31) 
decouples into a maximization problem for each of the ^-probability vectors n, and a 

maximization problem for each of the M-target state sequences Xm . The weights \w'\ change 

from M-step to M-step, but within each M-step, the weights are fixed. 
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The maximization problem for nt is constrained by the requirement 

M 

"=' (32) 

so the appropriate Lagrangian for this problem is 

f M \ 

V m=l ' 

where y, is the Lagrange multiplier. Differentiating the Lagrangian with respect to nm and setting 
the result to zero gives the necessary condition 

1    "' 
k   =— Yw'  . 

tm „„       £—j      mtr 

Summing these equations from m = 1 to M and using the constraint (32) gives 

",        M 

" t        £—1    £u mtr' 
r=\     m=\ 

From the expression (24) for the weights, it follows easily that yt = nt, so the unique stationary 
point of the Lagrangian Lt is 

1    "' 
k - — y w' . 

tm i-^        mir 

'   r=] (33) 

By lemma 2 of reference 7, it follows that k = {kn,ki2,...,ktMf is the unique global maximum of 

the cross-entropy function QtU. It follows from (33) and (24) that ktm = 0, if and only if 

k.  = 0. Because Q „ = -°° and, hence, O = -°o if k   = 0, it is assumed without loss of 

generality that the initial probabilities IT are chosen to be strictly positive. 

The solution for the state sequence X" for target m is derived first for the special case of 
linear-Gaussian statistics. The insight provided by this special case is helpful in understanding the 
general case, which is discussed beginning with equation (39). Recall the general gradient identity 

V^ {Fx-M)'Z-\Fx-ri = 2FT\Fx-M). (34) 
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Substituting the linear-Gaussian models (1), (4), and (7) into the definition of the cross-entropy 
function Qm_x and taking the gradient of Qm,x with respect to the state vector xtm for / = 0,1,..., T 
gives a symmetric block tridiagonal system of linear equations for the state sequence for target 
model m. This system is written 

-BLx,-^+(A»+D^»-BJ<M*=»t*J*LKZ* f = l,...,7M, (35) 

~BT,m
XT-lm + ATm

Xm = n^TmHTmK^ 

where the block matrices Am, D^, and Bm are given by 

A   Y"1 

Atm= {Gt_,mQ,_hG;_]my +ntxtmH'lmR^Htm, \<t<T, 

D,m= FL{GtmQtG'tm) Ftm, 0</<T-l, 

B   =F'(G Q G'\\ 0<t<T-\ 

and the synthetic measurement z   is defined by 

X  = —^- y    w' z , \<t<T. 
ntntm     r=l (37) 

The solution of the system (35) is the updated M-step state sequence Xm. This completes the 
algorithm derivation for the linear-Gaussian case. 

The number nthtm in (36) and (37) represents the expected number of measurements in scan 

Z, that are assigned to target m. From (33), it follows that the synthetic measurement ztm is the 

probabilistic centroid for target m of the measurements in scan Z,; that is, zm is the expected 

measurement for target m at time /. The probabilistic centroid ztm always lies in the convex hull 

of the scan measurements. (The convex hull of a given set is, intuitively, the smallest convex set 
that contains the given set as a subset. By definition, the convex hull is the intersection of all 
convex sets containing the given set.) 

The solution of the block tridiagonal system (35) can proceed along strictly algebraic lines, 
following the methods suggested in section 5.5 of reference 8. Unfortunately, this procedure 
provides little insight into the resulting algorithm, and it does not yield state error-covariance 
matrices. A direct connection with available Kaiman filtering techniques overcomes both these 
deficiencies. 
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The connection is established by noting that exp(öm x) is the PDF of a linear-Gaussian 

Kaiman filter. From (30), 

T     \ nt r 

(38) 

(=1 *- 
«MJ* 

z   //, x, ink, YR 
tm\     tm    tm'\   t     tm) 1 

where the target measurement centroid z[m is defined by (37). These proportional expressions are 

derived by algebraically manipulating the state-dependent terms of the Gaussian exponents. The 
right-hand side of (38) is the PDF of a Kaiman filter whose plant is identical to the target m 
process model and whose measurement is the target measurement centroid ztm. The conditional 

independence relationships implicit in likelihood function (38) are displayed graphically in the BIN 
of figure 2. The directed graph of figure 2 is a subgraph of the full PMHT graph, where the full 
graph comprises all the BIN fragments depicted in figure 1. Well-known, fixed-interval Kaiman 
filter-smoothing recursions (reference 5, section 7.4) can therefore be used to compute the ML- 
state sequence. These recursions are used in the PMHT algorithm summary described below in 
equations (49) through (56). This approach shows that the solution of the block tridiagonal 
system (35) is identical to the state estimates of a fixed-interval Kalman-smoothing filter. 

If the solution of (35) or (37) exists and is unique, then it maximizes the cross-entropy 
function Q     as required by the M-step. The fact that such a solution must be a maximum for 

Q v, is not evident from the strictly algebraic development, but it follows immediately from 

equation PDF (38). In general, however, the solution may not exist and, if it exists, it may not be 
unique. Significant insight into these possibilities is provided by the PDF (38) because they are 
related to the observability problems associated with the Kaiman filter. Further discussion of 
convergence issues are given in section 6. 

Figure 2. BIN Structure of an Interval Kaiman Filter 
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Error covariances corresponding to the state sequence Xm are readily computed using 
established fixed-interval recursions for the Kalman-smoothing filter (38). These recursions are 
given by (57) and (58). For further discussion and derivation of these recursions, see page 189 of 
reference 5 and the references therein. It is stressed, however, that the M-step of the PMHT 
algorithm does not explicitly use error covariances. 

It is intuitively clear that the PMHT error covariances computed from (38) for Xm are 
important in the multitarget tracking application. However, the cross-entropy function does not 
directly provide a statistical interpretation for error covariances. Section 7 gives such an 
interpretation in terms of a randomized decision rule applied to the measurement-to-track 
assignments. As will be seen, this interpretation also holds in the nonlinear non-Gaussian case. 

The M-step for the PMHT algorithm is now easily treated for the general case. As discussed 
in the beginning of this section, for nonlinear non-Gaussian processes, AT denotes a parameter set 
defining target and measurement distributions, and not state estimates as in the linear-Gaussian 
case. Instead of (38), one obtains from (30) the expression 

exp(<2m,x) = 9m(x0m)flk^k.J ft {C(^k)r"'} 
J (39) 

(=1 r=l 

. T 

QC pm(*oj n{p„(*j*,-,.B) s„(z,k)}> 

where, for an appropriate normalization constant c, 

E [Z\xt ) = cjl {C (z \x  )}w- 

(40) 

(41) 

defines a conditional PDF on the full-scan measurement. (The conditional PDF (41) is different 

from the observer scan PDF (8).) The parameter sequence Xm that maximizes (40) is the 

updated parameter set required by the M-step. The computation of Xm requires, in general, 
using an iterative numerical algorithm. This numerical procedure is conceptually equivalent to a 
single-target MAP tracker, and its availability is assumed. Whether the MAP tracker is 
computationally efficient is irrelevant to the M-step: All that is necessary is that it compute the 

MAP parameter estimate Xm. The computation of A"" using the MAP tracker completes the M- 
step in the general case. 

The conditional PDF (41) is assumed known because it is either known explicitly or because 
it can be derived from quantities that are given. In the most general case, it is possible to write 
only 

Z   -h (x  ,v  \ 
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where the measurement function htm is given, and the PDF of the measurement noise vtm is 

assumed known. Theoretically, the PDF £" Jz lx(m) can be derived from (42) and the noise PDF. 

The conditional PDF E(Zt \xtm 1 can then be derived directly from definition (41). 

Expressions simpler than (41) are not available in general. If sufficient statistics for the 

samples Zt are known for the family of distributions \C™
r \ > then it is possible to write the 

product (41) succinctly. A special case is that of additive Gaussian measurement noise, that is, 

z
tr=hSxJ + vtm> (43) 

where v^, denotes white Gaussian noise with covariance Rm,. Because (43) is equivalent to 

C (z )= 1t\z \h (x ),R 
~ m\   tr) tr\   tm\    tm P     tr, 

the PDF (41) can be written 

(44) 

E (Z\x ) = 7t\z  (Z)\h (x \(n7t  YR 
m\    t|    tmj tm\    t}\   tm\   Imp \   t     tm)        tr. 

(45) 

where the centroid z(z\ is given by equation (37). The sufficient statistics are the 

measurement centroids jzl and the weighted covariance matrices {(«7r/nJ  Rtm\ 

The posterior state PDF corresponding to the parameter sequence Xm can be derived from 
the right-hand side of (40) and, subsequently, state estimates derived from the posterior PDF. 
Error covariances may also be derived from the posterior PDF. However, useful expressions for 
the state estimates in the general case are unavailable. 
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5. EXPLICIT STATEMENT OF THE PMHT ALGORITHM 
IN RECURSIVE FORM 

5.1 LINEAR-GAUSSIAN CASE 

The PMHT algorithm is summarized in this section for the special case of linear-Gaussian 
statistics. The batch measurement Z is assumed given. Initialize the target measurement 

probabilities n    = \TVJ\ so that nr-fj > 0. Initialize a target state sequence f^,^°' x^A 

for each of the M target models. Let / > 0 denote the PMHT iteration index. 

For /' > 0, compute the assignment weights 

,,+n     TT
{,)
 Tt{z \H x(,),R ) 

(' + 1)  _ Im v   lr<       Im   tm'     Im' 
W 

mir M 

TV0 1t(z \H x(i\R ) Z—(    Is v   tr'      Is    Is  '     Is' 

s=\ (46) 

for m = \,...M, t = l,...,T, and r = \,...,nr Thus, an assignment weight is computed for every 
target and measurement combination at each scan in the batch. Update the target measurement 
probabilities 

tm Z-J mir 

'   r=1 (47) 

A target measurement probability is computed for every target and scan in the batch. Update the 
target measurement centroids 

ninim r=l (4g) 

—     T    W™Z   , t=l, 
l + l)      Z_l mir        lr' ' 

A centroid is computed for each target at each scan in the batch. The effective covariance matrix 
for the centroid (48) is proportional to the covariance matrix Rtm; explicitly, 

R^ =[ny;+])]-]R ,      t = l,...,T. 
tm L    I     tm     J tm' '        ' f49^ 

Target state sequences for each of the M targets are updated using fixed-interval Kaiman 
smoothers whose inputs are the target measurement centroids. Let the output of the Kaiman 

smoother for target model m at iteration / + 1 be denoted by (xi"fl,.x,(,*1) x{'*])). These ° J    \   Om \m Tm    J 

estimates are computed via a forward and a backward recursion. Initialize intermediate variables 
of the forward recursion by 
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Ao        XOm (50) 

P  =z  . 0|0 dm (52) 

Intermediate variables are dummy variables, so their dependence on model m and iteration number 
/ is suppressed for notational simplicity. The forward recursion is defined for t- 0,1,...,T- 1 by 

P    =F P,F' +G Q G' , t+\\t tm   l\l    tm lm*~-tm    tm' 

w =p  H'   {H , p  H'   +/?0';0)"', 
f + 1 f + l|j      lfl,m[     I + l,m   /+l|i      ;+l,m l+l,ml      ' 

P       =P    -W H     P 
t+\\t + ] t + \\l t+\     I+l,m   t+\\t' 

y =f  y    +W    [z{M)-H       F   V   ) 
Sl + U + l tmSt\) r+1 (   1 + l.m l+\,m    im*t\l y 

The updated PMHT state estimate for model m at time T is given by 

(52) 

(53) 

(54 

(55 

Tm S T\T' 
x: -=yTtT, 

(56) 

and the updated PMHT state estimates for / = T - 1,..., 1,0 are given by the backward recursion 

x(,+n = 0, +PF'P-\\X
{'\])-Fy\ 

tm J t\i i\t    tm   l + \\t\    t + \,m tm-' t\t J izn\ 

Equations (50) through (57) comprise a bank of M Kaiman smoothers that are run in parallel for 
each PMHT iteration; however, these smoothing filters are not independent because they are 

linked via the assignment weights JH^
1
' j defined by (46). 

Equations (46) through (57) comprise one step of the PMHT algorithm for the special case 
of linear-Gaussian statistics. The associated error covariance estimates are readily computed. 
Denote the PMHT error covariance matrix of target m at time / by £,„,. At time T, Zrm = P-lT- 

The covariances at other times in the batch are computed by a backward recursion. Explicitly, 
because /= T- 1,...,0, 

T   =P+PF'P~
]
\Y      -P    ]P'] F P 

*—lm t\t t\t    tm    f + l|r|^» + l,m / + I|/J   » + 1|/    tm    t\t' (58) 

The covariances P   and P     used in (58) are the intermediate variables computed from (52) and 

(54) during the final PMHT iteration; hence, they depend on the target model m and are different 

24 



for different targets. Because of the computational complexity of the error covariances (58), it is 
fortunate that they must be computed only once, after the PMHT algorithm has converged. 

Unlike the single-target Kaiman filter, the error covariances (58) cannot be computed 
offline. This result is attributed to the fact that Kaiman gains (53) are coupled by assignment 
interference; that is, the number of measurements each target receives is unknown and must be 
estimated. The ML estimate of this number is the reciprocal of the coefficient of Rlm in equation 
(49). It is possible to compute the covariances offline only if this coefficient is known. The 
single-target Kaiman filter is thus a degenerate case; that is, the assumption of precisely one target 
implies perfect knowledge of all measurement assignments. 

Numerical problems can arise if one or more of the target measurement probabilities 

7V^' become small during PMHT iteration. This problem is easily eliminated by rewriting the 

equations to cancel the common factors of TV^ implicit in (48). Explicitly, the modified weights 

are defined as 

CO 
7t(z \H x{i),R ) 

(' + 0 _    v   tr I      tm   tm'     tm' 

mtr M 

2X} *(zj#ft*«,/o 
J=I (59) 

The updated target measurement probability n,+' takes the form 

(,+i)    —(,+i)  (,) 

tm ml tm J 

(60) 

where the mean measurement weight for target m at time t is defined by 

mt ^^ mtr 
nt   r=1 (61) 

The target measurement centroid defined by (48) is then rewritten in the form 

?(.*D = —\— y  ÖJo+Dz 
"" „ 7:0 + 1)      i—t mtr        tr' 

"t<°m, -1 (62) 

Similar modification of equation (52) gives the algebraically equivalent form 

W ,  = n y*1' P „//'„ [n ,x{i+!]H ,   P  , H',   +R ,   V'. 
( + 1 / + 1     l + \,m     I + l|(      ( + l|m I    1+1     I + l.rn     I+l,m    ( + l|i     I + l.m ( + l,m I (63) 

The use of equations (59) through (63) eliminates numerical difficulties associated with small 
target measurement probabilities. 
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Numerical difficulties may be encountered with generic Kaiman filtering if covariance 
matrices are computed explicitly. These kinds of difficulties are very closely related to the well- 
known numerical problems that can arise with linear least-squares computations if the normal 
equations are solved directly. Strictly numerical techniques such as QR factorization or singular 
value decomposition (SVD) (see reference 8) are very useful in practical computations; however, 
good numerical methods cannot prevent problems that arise because of observability limitations. 
Numerically stable forms of the Kaiman filter have been studied. For example, see reference 9. 

5.2 GENERAL CASE 

Initialize the PMHT target measurement probabilities II(0) > 0 and a target parameter 

sequence (x^,x\^,...,x^ for each of the M-targets. For / > 0, compute the assignment 

weights 

,,.+n 7T0) £   (Z   |JC(0) 
<■' + <)    _ tm   ~ m'-   tr<    tm ' w 
mtr 

i—i      Is    ~ sK   tr<    ts   ' 

(64) 

for m = 1,...,M, / = l,...,T, and r = \,...,nt. The target measurement probabilities are updated 
exactly as before using equation (47). Define the conditional PDF 

(65) 

where c ,+   is an irrelevant normalization constant. The parameters {xtm} are unknown variables 
in (65). Apply the assumed available single-target MAP tracker to compute updated parameters 

^inK(^,KiKw,(zR0)} 

=,    max     a) 
\X0jifX\m*"">XTln) ^-i 

(*ojn{^(^k...)si;+,,^k)}- (66) 

The updated state parameters {J£
+1)

} 
are MAP estimates, and they depend on the current 

estimates (64) of the assignment interference. The PMHT algorithm is a multitarget tracking 
algorithm that uses the single-target MAP tracker as an essential building block; thus, the PMHT 
algorithm is conceptually equivalent to an iteratively reweighted bank of MAP trackers. 
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The computational complexity and numerical characteristics of the PMHT algorithm are 
closely related to the complexity and numerical accuracy of the single-target MAP tracker. The 
total computational effort is proportional to the product of number of targets M, the number of 
PMHT iterations needed to estimate the assignment interference to sufficient accuracy, and the 
effort needed to solve the single-target MAP parameter estimates from (66). Precise estimates of 
computational effort depend on the particular application. 

In the special case of independent, additive white Gaussian state and measurement noises, 
the maximization problem (66) is equivalent to a nonlinear least-squares problem. This is easily 
seen using (45) and the fact that 

XUn=f,-lm(Xt-lJ + W,- I,IB (67) 

is equivalent to 

<P (x \x , '   mx    tm'    t-\,m 
) = 7t 

Jt-\,m\Xt-\,mp^l- (68) 

where Q, ,    is the covariance of the white Gaussian noise w, ,   . The state evolution function J='/-],m t-\,m 

ft] m and the a priori distribution at the initial batch time / = 0 are assumed given. Using the 

Gaussian a priori densities (4), the centroids (48), and the effective covariances (49) gives the 
following nonlinear least-squares problem equivalent to (66): 

mm 
fX0»l'Xl«l X7>!) 

(X0m      X0m)  ^0m'X0m      X0m' 

T ' +Z[x,m-/,-.,m(x,-.,m)] fe_,m) '[*,„-/,-,.„(*<-J] 

+Y\z^-h (x  )](R^Y\z^-h (x )] 
L—4 [   tm tm\   tmJl   \    t-\,m j     I    tm tm\   tm/ \ 

(69) 

The solution of (69) is the updated parameter vector(x^'^x^1^...,^1']. In this case, a special 

purpose algorithm such as Levenberg-Marquardt (reference 10, chapter 14.4) can be used to 
solve (69) and can serve as the single-target MAP tracker. Further consideration of these issues 
lies outside the scope of this report. 
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6. THEORETICAL ASPECTS OF THE PMHT ALGORITHM 

6.1 CONVERGENCE PROPERTIES OF THE PMHT ALGORITHM 

Algorithms derived from the EM method have two useful properties. These algorithms are 
guaranteed to converge under very mild assumptions, and they typically get very close to the limit 
point during their first few iterations, even when poorly initialized. It is known that the 
convergence rate of EM algorithms is only asymptotically linear; however, these results do not 
explain the practical observation of rapid early-convergence rate. Considering the various 
modeling approximations that are made in practical problems, it is unlikely that exact solutions are 
really necessary for the multitarget tracking application — a good approximation is typically 
sufficient. 

If greater precision is required than is provided by computing a few steps of the EM method, 
it may be wiser to use a compound computational procedure: Begin with EM to get close to the 
solution quickly, and then switch to a more rapidly convergent algorithm (e.g., Newton-Raphson). 
The choice of optimization algorithm is theoretically irrelevant, as long as ML estimates are 
computed from the marginal PDF (22), the basis of the PMHT formulation. The EM method was 
chosen in this study for this estimation problem because it is structurally compatible with the 
notions of the single-target Kaiman filter. 

At every iteration, the PMHT algorithm is guaranteed to either increase the likelihood of the 
marginal PDF P(Z,X), defined by equation (22), or to be converged to a stationary point of the 
marginal PDF. This property alone does not guarantee convergence, however. For example, if 
the marginal is unbounded above, the PMHT iterates may be attracted to infinite singularities of 
the likelihood function, and this can happen even though each iterate is well defined 
mathematically. The general theory (see reference 6) shows that boundedness from above 
guarantees convergence to either an ML point or a stationary point of the marginal PDF (22). 
Although stationary points may seem of little practical importance, convergence to local ML 
solutions instead of a global ML solution may sometimes cause difficulties. Section 9 discusses a 
meaningful local solution for an example involving two crossing targets. In a multitarget tracking 
application, PMHT requires sliding the batch as new measurement scans arrive; consequently, it is 
probable that careful initialization of the starting point of the PMHT algorithm for each new 
batch, using the solution from the previous batch, will result in convergence to global ML 
solutions. This aspect of PMHT requires further research. 

Under linear-Gaussian statistics, an appropriate observability condition guarantees that the 
PMHT marginal PDF is bounded. One such condition is that the individual target-error- 
covariances are positive definite throughout the batch for all possible measurement-to-track 
assignments K. There is, however, an easily overlooked subtlety. Consider target m in isolation. 

If even one of the process gain matrices \Glm J (first defined in equation (1)) is less than full rank, 

then the PDF (38) is unbounded because at least one of the process PDFs \(pm \x\xt     1 > 

degenerate Gaussian distribution. It is a simple matter to require all the matrices \Gtn\ to have 

29 

is a 



füll rank to avoid the degeneracy; however, most kinematic process models have deficient rank, 
so this requirement is overly restrictive. (Increases in the marginal PDF are easily verified 
numerically under full-rank conditions, and this serves in practice to check the implementation of 
the PMHT algorithm.) Fortunately, the marginal PDF (22) is bounded above on the linear 
subspace in which the individual target processes are confined. Because the PMHT estimates are 
themselves confined to the same linear subspace, the PMHT algorithm is guaranteed to converge. 
Further study of this topic is outside the scope of this report. 

6.2 FISHER INFORMATION MATRICES FOR PMHT 

The PMHT error-covariance matrices, or inverse FIMs, for the target states appear 
incidentally as a by-product of the M-step of the PMHT algorithm, and it is unclear from the EM 
method context exactly how these matrices should be interpreted. The difficulty stems from the 
fact that the cross-entropy function is defined for its desirable analytical properties, and not 
derived from statistical assumptions concerning the measurements. Consequently, quantities, such 
as FIMs, that are computed from the cross-entropy function lack statistical interpretation in the 
general theory of the EM method. The purpose of this subsection is to present one such statistical 
interpretation for the FIMs defined for the PMHT algorithm. The interpretation presented is not 
theoretically completely satisfactory, and, therefore, further work on this topic is justified. 

The PDF (40) is easily interpreted statistically in terms of a Markov-state sequence and the 

scan PDF E^ZjxJ. The difficulty lies in the statistical interpretation of Em(z \x).  z(z\x) 

is not equivalent to a PDF that corresponds to making hard assignments because the weights (24) 
do not converge to hard assignment decisions; that is, no weight converges to either zero or one. 

The interpretation adopted is that E (z\x ) is the PDF of a randomized decision rule defined 

over the ensemble of all possible batch measurements {Z}. Each member of the ensemble is 
assumed to have exactly the same number of measurements in every scan as the given batch 
measurement Z, the only measurement available in practice. For each member of the ensemble, 
hard measurement-to-track assignments are made; however, assignments are discrete random 
variables, and the probability of different assignments are given by the weights (24). The PMHT 
algorithm and the given batch measurement Z are used to obtain the weights (24), and these 
weights are applied to the ensemble {Z}. The appropriate PDF for a randomized decision rule 

conceptualized in this manner is the scan PDF E(Z \X). The FIM corresponding to this 

interpretation of the measurements is computed by the PMHT algorithm from the function (40). 

FIMs for unbiased estimators are derived directly from a given joint PDF. The joint PDF 
may incorporate nonrandom parameters, random parameters (see reference 11, pp. 72, 84-5), and 
mixed random and nonrandom parameters. Unfortunately, the FIM is undefined for the PMHT 
observer PDF (17) because the full parameter list comprises the random parameters AT and K, and 
the gradient with respect to K does not exist because K is discrete. This difficulty is circumvented 
by deriving the FIM from the observer marginal PDF P(Z,Xn), defined by (22), by treating it as 
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a joint PDF whose full parameter list comprises the random parameter A!-and the nonrandom 
parameter IX This FIM, called the marginal FIM, for X and IT is defined by 

J(H) --JJ  [Vxn{v;n log P(Z,X:U)}]p(Z,X:U)dZdX 
(70) 

where n is the true value of IT. The marginal FIM for X and II is very difficult to evaluate 
explicitly in the multitarget case because the targets are coupled by assignment interference, as 
discussed in section 2. A study of the marginal FIM is outside the scope of this report. 
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7. VARIATIONS AND EXTENSIONS OF PMHT 

7.1 TARGET MEASUREMENT PROBABILITIES, II 

Several interesting variations of the PMHT likelihood function have cross-entropy O 
functions that are easily obtained. Because of the decoupling of the estimation steps for n and X, 
these variations result in only slight changes in the PMHT algorithm and are readily implemented. 
This subsection discusses two alternatives for n. 

Some applications may require that the target measurement probability vectors nt be 

identical across the batch, but not assumed known a priori. The BIN for this variation is 
unchanged from that of figure 1 because it is equivalent to a constraint on the parameterization of 
the joint PDF; that is, the conditional independence assumptions of the random variables are 

unaltered by this constraint, but are only reparameterized. In this case, the [Qtn\ terms (29) are 

modified by substituting 

n = 7T, K 
2s 

= 71. 
Ts> 1, M. (71) 

The probability n   is used only in this section, and it is not to be confused with the probability 

vector ni given by equation (9). The constraint (71) modifies the M-step slightly. Using the 

notational conventions of section 5, the updating recursions (46) through (49) are replaced by the 
recursions 

w 0+D  _ 
n™7l(z \H x{'\R  ) 

m v   tr>      tm    tm '     tm' 

s=\ (72) 

71 
(>+D   _ 

AT 1 
zz *r. 

:|   r=\ (73) 

j-o+i) _ 
tm i—i mir 

r=\ 
mir        ir' 

r=] (74) 

^o+.) = 
tm Lm^ mir 

r=\ 

R 

(75) 

respectively, where the constant N in (73) is given by 
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N = «  +  •■•+ n   . 
(76) 

The recursions (50) through (57) are unchanged. The appropriate equations in the general case 
are derived similarly. This variation is not considered further. 

If the target measurement probabilities II are assumed known a priori, for example, 

nm = 1 / M for all / and m, then the Q function for this case comprises the terms \0    ) in 

equation (30), but it does not include the terms fo n} ■ The M-step in this case updatesXin 

exactly the same way as before, but it uses the specified a priori IT instead of the estimated n. 
More generally, the 0 function is easily modified to incorporate a specified a priori distribution 
on IT, if one is available. These variations are not considered further in this report. 

7.2 ADAPTIVE CO VARIANCE ESTIMATION 

The measurement and target-covariance matrices {/?/m} and (<9(m] are assumed known in 

the above development for the linear-Gaussian case. When these matrices are unknown, they can 
be treated as parameters to be estimated from the batch measurement data. Although covariance 
estimation problems are outside the scope of this report, the necessary conditions are easily 
obtained and are presented below because of their potential use. 

The EM approach to covariance estimation does not alter the likelihood structure (15) or the 
cross-entropy Q function, but it does significantly alter the M-step because the covariance matrix 
estimates are coupled to the state estimation equations. The 0 function for this case is identical 
to (28), but its gradient with respect to each of the matrices R   and 0   must now be taken and 

set to 0. Taking the gradient of (30) with respect to Rm, applying the identity (reference 5, 

section 2.14.2) 

vz iog#(x|AZ) = -Z-' + z-\x-M)(x-Myz~\ 

and setting the result to zero gives the estimate 

f",        \ -i 

R   = 
Im .  Z K,r S WL,rK ~ HJlm){zim-Hj,m)   ■ (77) 

Vr=l / r=l 

The estimate (77) is full rank (with probability one) if the dimension JV  of the measurements is 

less than the number of measurements. Similarly, assuming the matrices Glm are nonsingular, the 

gradient of (30) with respect to Qm gives the estimate 
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Ö   =\G~'(X ,   -F x )]\G-
]
(X ,   -F x )] . (78) 

•~lm        I      tm \   t+\,m tm    tm)]\      tm \   t+\,m tm    tm)\ x       ' 

The estimate (78) is full rank only if the dimension of the target-state variable NXm is exactly 1. 

Rank difficulties for covariance matrix estimation within a scan are significantly reduced by 
requiring the covariance matrices to be stationary throughout the batch, that is, R[m = Rm  and 

Q.  =Q   for all t. This additional requirement gives the measurement covariance estimate 

r T n,     v1 

R  = Yjw'       YYw'  (z   -H x  )(z   -H x  ). (79) 
l^^t L—t     mir Is 1—u     mlr\   tm tm    tm)\   tm tm   tm) x       ' 

V(=l   r=\ J      t=\  r=\ 

The covariance matrix estimate (79) is theoretically of full rank (with probability one) only if the 
the total number N of individual measurements is greater than the dimension Nz of the 

measurement variables. Similarly, assuming Gtm = Gm, the estimate for the process covariance is 

given by 

Q  =-y\G-l(x ,   -F x ^G'Hx ,   -F x )] . (80) 
*--m 'rZ_i|      m  \    t+\,m tm    "" / \\      ">  \    t+\,m tm    tm JI v       ' 

The estimate (80) is the average of the estimates (78), and it is theoretically of full rank (with 
probability one) if Tis greater than the dimension NXm of the state variables for target m. 

Equations (77) through (80) are nonlinearly coupled with the M-step state estimates, but 
they are decoupled into M smaller systems, one for each target model. An explicit solution of 
these nonlinear equations is not available. However, it is straightforward to show that the 
estimates (79) and (80) are the basic equations for the generalized EM algorithm (reference 6) for 
estimating covariances. 

Implementing the covariance estimates in the mathematical forms given above will 
unnecessarily square the numerical condition number of the underlying "data matrix." Numerical 
ill-conditioning arising from this source is completely avoided by the use of QR methods 
(reference 12). QR algorithms are stable numerically and require very little additional 
computational effort, so they are highly recommended for avoiding sample covariance matrix 
formation. Another source of numerical ill-conditioning for the estimate (79) is the reduction of 
the effective numerical rank that occurs when one or more of the summand coefficients becomes 
extremely small. QR algorithms can limit, but not fully overcome, ill-conditioning due to the 
dynamic range of these coefficients. 
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8. COMPARISONS WITH OTHER METHODS 

8.1 MAXIMUM LIKELIHOOD DATA ASSOCIATION 

Avitzour, in reference 13, considers data association using an ML algorithm that is based on 
the EM method. Several of the ideas described are closely related to the ideas developed in this 
report; however, there are also significant differences. The points of similarity are discussed first. 
Both methods consider data association for multitarget tracking from a probabilistic perspective, 
and both consider batch measurements. Both also use the EM method to estimate target states 
and assignment probabilities. Moreover, both recognize the significance in the multitarget 
tracking application of the assignment probabilities (24). Avitzour is "not concerned with finding 
the correct association of measurements to targets/clutter" because assignment probabilities are 
"obtained as a by-product" of state estimation. This view of measurement assignments is identical 
to the view expressed in this report. Finally, both discuss data association using hard assignments 
as joint MAP estimation of states and discrete random variables called assignments and derive 
MAP state estimates from a marginal distribution over the assignments using the EM method. 

One of the important differences between reference 13 and this report is that Avitzour does 
not fully interpret the EM method in the context of the multitarget tracking application. In 
particular, an observer whose state includes the assignments is not defined explicitly in reference 
13. It is this important feature of the observer that distinguishes PMHT from joint probabilistic 
data association (JPDA) and MHT, enables the EM method to be applied effectively, and provides 
a unified cogent exposition of the probabilistic issues. 

Error-covariance estimates are estimated and discussed in this report, but are absent from 
reference 13. The primary reason this study can estimate covariances is the recognition that the 
exponential of the cross-entropy function is proportional to the likelihood structure of a Kaiman 
filter (compare with equations (38) and (40)) that treats an entire measurement scan Zt as a single 
measurement. This important relationship between the M-step and the Kaiman filter is not 
recognized in reference 13. 

The central role played by conditional independence in multivariate statistical problems such 
as multitarget tracking is not emphasized by Avitzour. The BIN graphical representation of 
conditional independence structure of the PMHT approach is novel to this study and is not used in 
reference 13. The BIN graph helps clarify the differences between PMHT and JPDA. 

In reference 13, Avitzour does not allow process noise, although he does allow moving 
targets. This is not a serious difference, however, as it is possible to extend his method to include 
process noise. Finally, Avitzour presents a potentially useful termination criterion for the EM 
method. This termination criterion may be useful in this study also, but it is not used here. 
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8.2 JOINT PROBABILISTIC DATA ASSOCIATION 

In the case of linear-Gaussian statistics, the PMHT algorithm resembles the JPDA 
algorithm; however, PMHT is fundamentally different from JPDA. The resemblance is closest 
for a unit batch of size (T= 1), which is the batch size assumed for PMHT in the present 
discussion. Linear-Gaussian statistics are assumed thoughout this discussion. 

Both PMHT and JPDA assume that the measurements within a scan are independent 
samples of a random variable with a mixture Gaussian PDF. JPDA assumes a priori that the 
scan measurement mixture is uniform-Gaussian, that is, the mixing proportions of the Gaussian 
components are equal and their means are the predicted measurement means. JPDA use of 
predicted states is one source of track bias. In contrast to JPDA, PMHT uses ML estimates of 
the mixing proportions and the means of the Gaussian components in the scan measurement 
mixture. Because targets may not be equally represented by the measurements, PMHT use of 
nonuniform mixing proportions permits improved modeling of scan measurements. The ML 
estimates of the component means are the estimated target measurement means for the current 
scan. Because PMHT uses estimated - as opposed to predicted (as in JPDA) - target 
measurement means, PMHT target state estimates should often have smaller biases, smaller 
critical separation distances at which tracks coalesce, and better tolerance to target maneuvers 
than JPDA. 

JPDA first tracks measurements and then smoothes the resulting state estimates using 
convex combinations. The convex combinations yield the output state estimates and their 
corresponding error covariances. Convex combinations occur in the JPDA state space because 
of the way in which JPDA treats assignments as events. In contrast, PMHT first smoothes 
measurements using convex combinations, and then tracks the smoothed measurement. The 
convex combinations of measurements are the probabilistic measurement centroids (62), and the 
centroids constitute synthetic measurements to be tracked. Convex combinations occur in the 
PMHT measurement space because assignments are incorporated into the observer (compare 
with equation (22)). 

PMHT error covariances are different from those of JPDA. Covariances computed by 
JPDA are readily interpreted statistically because JPDA treats assignments as events. 
Unfortunately, a similar interpretation is not applicable to PMHT covariances. The PMHT 
covariances are tied implicitly to the use of the EM method to compute ML state estimates from 
the marginal PDF (22). For further discussion see section 6.2. 

Measurement gates are used to censor measurements that are too far from predicted 
measurements to be associated with targets. Gates will probably always be needed to protect 
theoretical mathematical models from the vagaries of real data as well as to improve computation 
time in practical systems. JPDA is explicitly formulated using gates, but PMHT does not use 
gating in its formulation. However, gates are readily derived for PMHT by thresholding the 
assignment weights (24). 
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Gates are equivalent to applying zero weights to certain measurements. JPDA and PMHT 
discount zero-weighted measurements in very different ways. In JPDA, the convex combination 
of state estimates is unaffected by the addition of zero-weighted estimates. In PMHT, zero- 
weighted measurements contribute a multiplicative factor of+1 to the conditional PDF defined by 
equation (41). Consequently, zero-weighted measurements do not affect PMHT state estimates. 
The robustness of the PMHT and JPDA state estimates to measurements with small weights (i.e., 
outliers) remains to be studied. 

8.3 GAUSSIAN SUM TRACKING FILTERS 

Sorenson and Alspach (references 14 and 15) describe a Gaussian sum tracking filter for 
nonlinear estimation. This approach is also discussed in reference 5, section 8.4. The problem 
they studied was restricted to single targets - multiple targets are not mentioned. The main 
reason to mention multiple targets in this report is that the PMHT marginal PDF defined by 
equation (22) can be thought of as a Gaussian sum approximation of a nonlinear measurement 
PDF. This interpretation suggests that the PMHT approach may be applied to general nonlinear 
estimation problems. 

The general nonlinear estimation problem is investigated in references 14 and 15 as a 
problem in the approximation of the posterior PDF. The form of PDF approximation used is that 
of a Gaussian mixture, so this approach is fundamentally different from the extended Kaiman 
filter. In reference 14, the main problem discussed is that of a system with linear process and 
measurement equations with additive non-Gaussian noises. A Gaussian mixture approximates the 
prior density, and the additive process and measurement noises have PDFs that are approximated 
by Gaussian mixtures. Under these assumptions, the posterior density is shown to be exactly a 
Gaussian mixture. In reference 15, nonlinear process models are approximated by Gaussian 
mixtures by linearizing the process model about the mean of each Gaussian in the mixture. The 
primary conceptual drawback to this approach is that the number of Gaussian components in the 
mixture representing the posterior PDF grows rapidly as time evolves; therefore, pruning terms 
from the Gaussian mixture is necessary in practice. 

Sorenson and Alspach estimated the parameters of the approximating mixtures by applying 
gradient-based numerical methods because, at the time their papers were written, the method of 
EM had not been developed in generality and was largely unknown outside the statistical 
community.  The primary similarity with PMHT lies in their recognition that the state estimate 
produced by the Gaussian sum tracking filter is obtained as a convex combination of several 
linear-Gaussian filters. The filters Sorenson and Alspach refer to, however, are independent filters 
that are not coupled by assignment interference. 

8.4 CENTROID GROUP TRACKING 

Blackman, in section 11.2 of reference 16, discusses tracking groups of closely spaced 
targets by tracking the centroid of the group. This application is a specialized multitarget tracking 
problem, and the approach described is quite different from PMHT. Nonetheless, there are 
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similarities in certain details. In particular, the centroids of the measurements are used as 
synthetic measurements for updating the group track centroid. It is necessary in this approach to 
gate the measurements before forming the measurement centroids, and such gating is tantamount 
to making hard assignments of measurements to different groups. The PMHT equivalent of hard 
assignments and gates is to threshold the PMHT weights (24). There are also similarities between 
determining the number of targets in a group and the choice of the parameter Min the PMHT 
algorithm, a model-order selection problem that falls outside the scope of this report. 

Formation group tracking is also discussed by Blackman in reference 16, section 11.3. In 
formation tracking the targets are not assumed to be independent, and the availability of 
information concerning their coordinated behavior is exploited to advantage. Although the 
PMHT approach is not limited to independent targets, this topic also falls outside the scope of this 
report. 

40 



9. CROSSING TARGETS WITH LINEAR-GAUSSIAN STATISTICS 

Section 9 provides an example that demonstrates PMHT ability to estimate measurement- 
to-track assignments. It is given that two targets (M= 2) are present and constrained to move in 
the xy plane. For simplicity, positions are given in meters. Both target tracks begin at t = 0, are 
simulated without process noise, and have constant velocity. Target 1 is heading 45° from the 
+x-axis, has speed +1 m/s, and begins its track at the origin (0, 0) of the x-y-plane. Target 2 is 

heading +90° from the +x-axis, has speed V212 « 0.707 m/s, and its track begins at +12.5 m on 

the x-axis. Given this geometry, the targets become superposed at 12.5V2» 17.68 s. 
Measurement scans are taken at 1-second intervals, and the batch length is T=25 s. One 
measurement is simulated from each target for t = 1,2,...,25 s. No measurements are simulated at 
/ = 0. For simplicity, false alarms are not simulated, and each target generates exactly one 
measurement in the simulation. The number of measurements per scan is always nt = 2, so that 

the total number of measurements in the batch is 50. The state vector of each target comprises 
the x- and y-components of position and velocity. For estimation, the PMHT target state models 
are 
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(81) 

where the process noise is white Gaussian with covariance matrix given by the 4 x 4-identity 
matrix scaled by the dimensionless quantity a2

stau = 10~2. The Gaussian a priori distributions 

(compare with equation (4)) for targets 1 and 2 have mean vectors 

Target 1:   (0 m, a m/s, 0 m, a m/s) 
Target 2: (12.5 m, 0 m/s, 0 m, a m/s), 

where the dimensionless constant a = V2 / 2 . The covariances of the a priori distributions are 

equal to the 4 x 4-diagonal matrix £Äagfl6 m2, 9 m2 / s2, 16m2, 9 m2 / s2l for both targets. 

Prior distributions are centered on the simulated target state at / = 0, but they have large 
uncertainties in position and velocity. Because the simulation is defined in such a way that each 
target generates one and only one measurement, the measurement equations can be written in the 
form 
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where the measurement noise is white Gaussian with covariance matrix given by the 2 x 2-identity 
matrix scaled by the dimensionless quantity a].  Equation (82) is obtained by substituting r = m 

in equation (7); however, the target labeling implicit in (82) is not used by the PMHT algorithm. 

It is unnecessary to randomly shuffle the measurements {^,,^l2} in the data file before calling the 

PMHT algorithm because data order does not alter the algorithm, as can be seen from equations 
(46) through (48). 

The measurement scale a] in equation (82) is chosen to control the "effective" duration of 

the track-crossing time. The duration of the track-crossing event is defined to be the total time 
the two targets lie within three measurement noise standard deviations in the x-y-plane. Given the 
above geometry, it is readily seen that the crossing duration, denoted by tc, is linearly proportional 

to the measurement standard error; specifically, the tc = 6y[2~ az «8.485 <rz. The measurement 

scale a] is selected so that tc = 2 s; hence, a2 = 0.2357.' 

Targets 1 and 2 are initialized in the correct states for all time / = 0,1,...,25. This no-target- 
error initialization is a best-case scenario for determining the number of iterations to convergence. 
Using an absolute error convergence criterion on the sequence of overall likelihood function 
iterates, the PMHT algorithm converged in 38 iterations when the convergence error e = 0.0001. 
The final value of the log likelihood, loge P(Z,X), was +392.92. Experience with the PMHT 

algorithm reveals that it is very robust to poor target initialization; therefore, perfect initialization 
is unimportant in this example. (With clutter, however, sensitivity to poor target initialization is 
an important topic. The form of the PMHT algorithm presented here assumes no clutter in order 
to focus clearly and solely on the assignment problem. Incorporating clutter models into the 
PMHT approach is straightforward and is the subject of an ongoing investigation.) 

Figure 3a depicts the true track positions overlaid with the measurements, and figure 3b 
depicts the true track positions overlaid on the PMHT-estimated track positions. Figure 4 depicts 
the root-mean-square error in the estimated track position and speed components for each target. 
The PMHT assignment weights are given in figure 5 for both targets and each measurement. The 
estimated weights are clearly indicative of the correct assignments (known only via simulation) 
everywhere except in the crossover regime. During crossover, the evidence from the data is 
inconclusive concerning correct assignments, and this uncertainty is reflected by the nearly equal 
weights given measurements in this regime. 
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Figure 5. Converged PMHT Assignment Weights (18) for Two Measurements (82) 

Poor PMHT initialization may result in convergence to suboptimal solutions; i.e., the PMHT 
algorithm may converge to only a local ML solution - not the global solution - to the tracking 
problem. In the multitarget tracking application, these suboptimal solutions may be meaningful 
because more than one interpretation of the measurements is often possible. A multiplicity of 
meaningful local solutions appears to be an important feature of good probabilistic models of the 
problem: If the observer PDF has only one peak, namely the global peak, then it does not contain 
within it alternative interpretations of the measurements. Alternative interpretations are conceived 
as local ML solutions whose likelihoods, determined by the PMHT algorithm, are significantly 
lower than the likelihood of the global solution. This view is discussed quantitatively for the two 
target-crossing examples presented above. 

Two ML solutions, one global and the other local, are given in table 1. These solutions 
were obtained using identical a priori distributions (for all values of tc) and measurement sets (for 
each value of tc), but different initializations of the PMHT algorithm. The initializations used to 
obtain these solutions were obtained by swapping portions of the true tracks (known from 
simulation) in the obvious manner. The solution likelihoods given in table 1 are estimated using 
the PMHT algorithm and are values of the marginal PDF (22). The number of iterations required 
for PMHT convergence is also given in table 1. The three columns in table 1 correspond to easy 
(tc = 1), moderately difficult (tc = 4), and difficult (tc = 8) crossing-trajectory problems, where 
problem difficulty is quantified by the crossing-time duration lc. As seen from table 1, for a given 
level of difficulty, the solutions, ranked by decreasing likelihood, are in the same rank order as 
was anticipated intuitively. The likelihood ratio shows that the crossing-track solution is 
significantly more likely than the switching-track solution. The likelihood ratio also shows that 
the dynamic range of the likelihoods of the two solutions decreases with increasing problem 
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difficulty. Interpreting solution likelihood as solution explanatory power, the decrease in dynamic 
range means that the local solutions provide less differentiated explanations of the data as the 
tracking problem becomes more difficult. In the limit as tc -> oo, all local solutions provide 

equally good explanations of the data. 

Table 1. Local ML Tracking Solutions Ranked by Total Likelihood and 

Crossing-Track Duration, tc 

Solution Loge P(Z,X) and Number of PMHT Iterations 

Track description /c=l 

(easy) 
tc = 4 

(moderately difficult) 
/c=8 

(difficult) 

Crossing tracks 469.20 
3 iterations 

327.54 
29 iterations 

258.22 
34 iterations 

Switching tracks 459.62 
3 iterations 

318.88 
52 iterations 

252.88 
30 iterations 

Likelihood ratio 1.45 xlO4 5.77 xlO3 2.09 xlO2 

The solutions listed in table 1 are not the only solutions to the problem. In particular, 
because the observer PDF is unchanged by interchanging the roles of targets 1 and 2, two other 
solutions are readily obtained. These alternative solutions, however, cannot be considered 
different from those listed in table 1. The interchangeability of certain observer PDF parameters is 
related to the more general issue of parameter "identifiability," as it is known in the general 
statistical literature. This statistical terminology is unrelated to the system identifiability 
terminology in the Kaiman filtering literature. 
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10. CONCLUSIONS AND RECOMMENDATIONS 

10.1 CONCLUSIONS 

The study presented in this report is a probabilistic approach to the measurement-to-track 
assignment problem. Measurements were not assigned to tracks as in traditional multi-hypothesis 
tracking (MHT) algorithms; instead, the probability that each measurement belongs to each track 
was estimated using a maximum a posteriori (MAP) method. These measurement-to-track 
probability estimates are intrinsic to the multitarget tracker called the probabilistic multi- 
hypothesis tracking (PMHT) algorithm. The PMHT algorithm is computationally practical 
because it requires neither enumeration of measurement-to-track assignments nor pruning. The 
PMHT algorithm is an optimal MAP multitarget tracking algorithm. 

10.2 TOPICS OF PRACTICAL IMPORTANCE 

The following topics of practical importance related to the PMHT approach remain to be 
investigated. 

1. The choice of the number of target models M is an important model-order selection 
problem that is of practical importance to a mature multitarget tracking algorithm. It is 
anticipated that PMHT will be robust to mismatch between the true number of targets and the 
number M assumed by PMHT, provided that Mis at least as great as the true number of targets. 
The reason for suspecting such tolerance for PMHT is that "extra" target models can be used to 
model background clutter and noise levels. 

2. Outputs from the previous batch can be used to initialize the PMHT algorithm for the 
current batch, but this procedure does not reduce computational complexity because it is not 
recursive. Development of a recursive PMHT algorithm that operates between successive 
measurement batches is an important subject for future work. 

3. The robustness of PMHT algorithms against target coalescence is of particular 
importance. All tracking algorithms will coalesce sufficiently closely spaced targets. Because 
PMHT estimates are optimal empirical Bayesian estimates, it is anticipated that PMHT ability to 
resolve closely spaced targets will be at least as good as other currently available methods. (A 
closely related topic is track estimation bias.) 

4. The sensitivity of the PMHT algorithm to target maneuvers must also be studied. 

5. Bayesian priors for the assignments K can be used in the PMHT approach, if they are 
available. Such priors might be found by exploiting additional target information that is not 
resident in the sensor measurements Z; however, such priors have not been studied. 
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10.3 TOPICS OF THEORETICAL INTEREST 

The following topics of theoretical interest should be studied further. 

1. The sequence of error covariances generated by the PMHT algorithm is significant 
because multitarget FIMs are not readily definable using other approaches. (See section 6.) 

2. Convergence of the PMHT algorithm is related to target observability. The multitarget 
observability condition for PMHT stated in section 6 essentially requires that all targets be 
individually observable. Conditions under which it may be possible to weaken this requirement 
would be very interesting. For instance, if the targets are not independent because they move in a 
coordinated formation, it may be possible to improve the effective target observability. 

3. The relationship between the linear-Gaussian PMHT algorithm and Gaussian sum 
approximation methods (see references 14 and 15) for single-target tracking problems with 
nonlinear non-Gaussian state and measurement processes deserves investigation. In this case, 
PMHT approximates the exact nonlinear state distributions by a (convex) linear superposition of 
several linear-Gauss-Markov processes that are linked by assignment interference. The PMHT 
approach may result in efficient algorithms for these methods. 

10.4 TOPICS OF BOTH THEORETICAL AND PRACTICAL INTEREST 

The following topics of both theoretical and practical interest merit further study. 

1. The adaptive estimation of target covariances (i.e., Qm) and the measurement 

covariances (i.e., Rim) using the EM method need further study. The equations for adaptive ML 

covariance estimates are given in section 7. These adaptive equations are coupled with the 
PMHT target-state estimates because of assignment interference. Algorithms for solving these 
coupled equations efficiently remain to be investigated. 

2. Non-EM methods for solving for the parameters of the marginal density (22) may be very 
useful in practice, but have not been considered in this report. 
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