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Correspondence should be addressed to Valder Ste�en Jr.; vste�en@mecanica.ufu.br

Received 10 July 2013; Accepted 20 January 2014; Published 27 May 2014

Academic Editor: Nuno Maia

Copyright © 2014 Lizeth Vargas Palomino et al.	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Impedance-based structural health monitoring technique is performed by measuring the variation of the electromechanical
impedance of the structure caused by the presence of damage. 	e impedance signals are collected from patches of
piezoelectric material bonded on the surface of the structure (or embedded). 	rough these piezoceramic sensor-actuators, the
electromechanical impedance, which is directly related to the mechanical impedance of the structure, is obtained. Based on the
variation of the impedance signals, the presence of damage can be detected. A particular damage metric is used to quantify the
damage. Distinguishing damage groups from a universe containing di�erent types of damage is a major challenge in structural
health monitoring.	ere are several types of failures that can occur in a given structure, such as cracks, 
ssures, loss of mechanical
components (e.g., rivets), corrosion, and wear. It is important to characterize each type of damage from the impedance signals
considered. In the present paper, probabilistic neural network and fuzzy cluster analysis methods are used for identi
cation,
localization, and classi
cation of two types of damage, namely, cracks and rivet losses. 	e results show that probabilistic neural
network and fuzzy cluster analysis methods are useful for identi
cation, localization, and classi
cation of these types of damage.

1. Introduction

Failures occurring in industrial equipment and structures in
general are associatedwith friction, fatigue, impact, and crack
growth or with other reasons. For an appropriate functioning
of the system, the failure should be located and repaired
timely. In general terms, the problem of damage monitoring
consists in locating and measuring the fault and estimating
the remaining life of the system (damage prognosis). One
of the most important ambitions of modern engineering
is to perform structural health monitoring in real time in
structural components of high cost and considerable respon-
sibility.	us, the creation or improvement of techniques that
enhance the accuracy and reliability of the tracking process is
highly desirable and is the subject of several studies both in
industry and academic environments [1].

	ere are several techniques for monitoring the occur-
rence and propagation of structural damage. One of these

techniques is the so-called impedance-based structural
healthmonitoring [2].	e basic idea behind this technique is
monitoring the changes in the mechanical impedance of the
structure as caused by the presence of damage. As the direct
measurement of themechanical impedance of the structure is
a di�cult task, the method uses piezoelectric ceramics (PZT
patches) bonded to or incorporated into the structure, allow-
ing the measurement of the electromechanical impedance.
As this measure is related to the structure variation of the
impedance signals, the presence of damage can be detected.
A particular damage metric is used to quantify the damage
[3].

	e impedance-based SHM technique was 
rst proposed
by Liang et al. [4] and subsequently themethod was extended
by Chaudhry et al. [5, 6], Sun et al. [7], Park et al. [8–11],
Giurgiutiu and Zagrai [12], Soh et al. [13], Bhalla et al. [14],
Giurgiutiu et al. [15, 16], Moura Jr. and Ste�en Jr. [17], Peairs
[18], Moura Jr. [19], and Neto et al. [20].
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Distinguishing damage groups from a universe contain-
ing di�erent types of damage is amajor challenge in structural
health monitoring. 	ere are various types of failures, which
may occur in a given structure, such as cracks, 
ssures, loss of
joining components (rivets), corrosion, and wear. In the case
of composite structures delamination is a major concern. It is
important to characterize each type of damage for de
ning
appropriate correction e�orts. In order to distinguish the
di�erent damage types, probabilistic neural network and
fuzzy cluster analysis methods for classi
cation can be used
[21, 22].

An arti
cial neural network is a mathematical model,
computational model, or metamodel that mimics the struc-
ture by using functional aspects of biological neural networks.
It consists of an interconnected group of arti
cial neurons
and processes information by using a connectionist approach
for computation [23]. In most cases an arti
cial neural
network is an adaptive system that changes its structure based
on external or internal information that �ows through the
network during the learning phase. Modern neural networks
can be understood as nonlinear statistical data modeling
tools. 	ey are usually used to model complex relationships
between input and output or to 
nd patterns in data [23].
	ere are several types of arti
cial neural network; one of
them is the probabilistic neural network.	is arti
cial neural
network can be used for classi
cation tasks. 	e network
is an implementation of the statistical algorithm called
kernel discriminate analysis [24] in which the operations are
organized into a multilayered feedforward network with four
layers, namely, the input layer, pattern layer, summation layer,
and output layer [25].

Fuzzy clustering is an unsupervised learning operation
that aims at decomposing a given set of objects into subgroups
or clusters based on similarity.	e goal is to divide the dataset
in such a way that objects or cases belonging to the same
cluster are as similar as possible, whereas objects belonging
to di�erent clusters are dissimilar [26]. 	e main potential of
clustering is to detect the underlying structure in data, not
only for classi
cation and pattern recognition, but also for
model reduction and optimization.

In the present paper, the probabilistic neural networks
and the fuzzy cluster analysis methods are used for identi-

cation, localization, and classi
cation of damage in metallic
aeronautic structures.	e impedance signalmeasurement set
is used as the input of the probabilistic neural network and
the output is the type of damage (crack, rivet loss, or pristine
condition). 	e Gustafson-Kessel fuzzy clustering algorithm
was also implemented. 	e impedance signal measurement
set is used as the object to be classi
ed by the fuzzy cluster
analysis algorithm and the results represent the type of
damage. 	e results show that the methods are useful for
identi
cation, localization, and classi
cation of damage.

1.1. Probabilistic Neural Network. Arti
cial neural networks
are parallel distributed systems composed of simple process-
ing elements (neurons) that calculate given mathematical
functions (usually nonlinear). Such units are arranged in
one or more layers and interconnected by a large number of
connections, usually unidirectional. In most models, these

connections are associated with weights, which store the
knowledge represented in the model and consider the input
received by each neuron in the network. 	e operation of
these networks is inspired by a physical structure designed
by nature, the human brain [27]. 	ere are di�erent types of
neural networks; the probabilistic neural network is one of
them [25].

	e probabilistic neural network is predominantly a
classi
er. It is based on the probability distribution function,
and is an implementation of a statistical algorithm known as
kernel discriminating analysis [24], in which the operations
are organized into a multilayered feedforward network with
four layers, namely, the input layer, pattern layer, summation
layer, and output layer. 	e architecture for this system is
shown in Figure 1.

When a sample X is presented, the input layer distributes
this sample to the pattern layer neurons (second layer). 	e
function described in the following equation is calculated for
each j-neurons of the i-class in the pattern layer:

���,� (�) = 1
(2�)�/2���

exp[
[
−(� −
�,�)� (� −
�,�)

2�2�
]
]
,
(1)

where ���,�(�) is the contribution of the j-neuron in the i-
class; � is the transfer function and
�,� is the weight of the
j-neuron of the i-class. In each i-neuron of the summation
layer the contribution of each neuron of the pattern layer that
belongs to the i-class is added. In the output layer, the sample
X is associatedwith the class with the highest probability [25].

	e training process consists in a unique step, that is,
the weight of each pattern layer neuron is formed by the
characteristic vector of each training sample [25].

1.2. Fuzzy Cluster Analysis Method. In clustering analysis
the sampled points (or the population) are divided into a
quantity of de
ned groups by using the similarities between
these members. In many 
elds of knowledge, these clustering
techniques have been used to distinguish groups by their
features [28]. 	e clustering analyses can be divided into
two subclassi
cations, the hierarchical and nonhierarchical
clustering techniques [28]. Both methods considered in the
present contribution are nonhierarchical techniques.

	e nonhierarchical techniques 
nd directly the � ele-
ments of the � clusters or groups in such a way that these
partitions follow two criteria, namely, the similarity (or
internal cohesion) and separation of the formed groups [28].
	e Gustafson-Kessel algorithm is based on the behavior of
the objective function. 	e basic idea considers an objective
or evaluation function that assigns to each possible cluster
partition a quality or error value that has to be optimized.
	e optimal solution is the cluster partition that obtains the
best evaluation. In this sense, an optimization problem is
to be solved when cluster analysis is performed [29]. 	e
corresponding objective function is given by

� =
�
∑
�=1

�
∑
�=1
(���)��2 (��, V�) , (2)
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Figure 1: Probabilistic neural network architecture.
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Figure 2: Aluminum aircra� panel equipped with eight PZT patches.

Table 1: States of the aircra� panel.

Number State Description Measurements number

1 Baseline 	e panel with all rivets 1–200

2 Damage 1 	e panel without one of the rivets (Figure 2(c)) 201–400

1 Baseline 	e panel with all rivets 401–600

3 Damage 2 	e panel with all rivets and localized corrosion 601–800
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Figure 3: Initial degree of pertinence for aircra� panel.

Table 2: Probabilistic neural network for damage classi
cation.

Layer Number of neurons

Input 190

Pattern 570

Summation 3

Output 1

Baseline Damage 1 Damage 2

Training set 360 180 180

Test set 40 20 20
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Figure 4: Final degree of pertinence for the aircra� panel.

where V� is the center of the cluster i, �� is the data j, �(��, V�)
is the distance between �� and cluster center V�, m is the
fuzzy parameter, and ��� is the probability of the element ��
to pertain to the cluster �. 	e objective function constraints
are presented in the following:

0 ≤ ��� ≤ 1, (3)

�
∑
�=1
��� = 1, ∀� = 1, . . . , �. (4)

Mahalanobis distance used in the Gustafson-Kessel (GK)
algorithm and the corresponding formulation is presented in
the equation below.	is technique provides greater �exibility
to adapt to the shape and dimensions of each cluster but
has higher computational complexity [28]. Consider the
following:

�2 (��, V�) = (�� − V�)��� (�� − V�) , (5)
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Figure 5: Aluminum aircra� window containing ten PZT patches.

where �� are the fuzzy covariance matrices that are obtained
from

�� =
∑��=1 ���� (�� − V�) (�� − V�)�

∑��=1 ����
. (6)

	e process consists in minimizing the objective function,
(4), and the results obtained are the cluster centers V and the
pertinence matrix u.

2. Case Study Number 1:
Aluminum Aircraft Panel

	e 
rst test presented in this work corresponds to an
80 × 80 cm aircra� panel, as shown in Figure 2(a). 	e
structure was tested by using eight PZT patches to capture
the impedance signals. A 
rst type of damage was simulated
by removing a rivet located close to PZT3, as shown in
Figure 2(c). A�er the measurements have been made for this
state, the rivet was reattached at its former position. 	en, to
simulate a corrosion type of damage, hydrochloric acid was
spread in the vicinity of the rivet. A localized corrosion area
was obtained (see Figure 2(c)).

A description of each state of the structure is presented
in Table 1. Two hundred (200) measurements were taken for
each state. Every measured signal contains 200 points.

To classify damage, the impedance signals measured in
the panel were used as inputs of the neural networks. Eight
probabilistic networks (one for each PZT) were implemented
to analyze the structure. All these networks were built with
the same architecture, since they were all intended to the
same purpose (classifying the damage in the panel). 	e
descriptions of the networks together with their training sets
are presented in Table 2. 	e results obtained with the test
set for each of the eight probabilistic neural networks are
presented in Table 3. 	e error percentages found in damage
classi
cation for PZT1, PZT2, and PZT6 were greater than
48%, which means that they did not detect the damage. 	e
PZT3 and PZT4 showed error percentages greater than 10%,
although it should be noted that the damage 1 (loss of the
rivet) was perfectly detected by both of these patches (PZT3
and PZT4). PZT3 and PZT4 were dedicated to this speci
c
damage. 	e PZT5, PZT7, and PZT8 had error percentages
smaller than 4%, similar to the results obtained for simpler
structures (beam and plate) [30]. One can thus conclude that
these three PZT patches succeeded to properly detect the
types of damage that were inserted into the structure.

	e initial degrees of pertinence for the Gustafson-Kessel
algorithm are shown in Figure 3. A�er several iterations
(Table 4) the algorithmwas interrupted by the convergence of
the process for every PZT patch that was used. One may then
observe the 
nal degree of pertinence as shown in Figure 4.
	e results of PZT1, PZT2, and PZT6 con
rm again that these
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Table 3: Classi
cation of test set of probabilistic neural networks for each PZT patch in the aircra� panel.

Baseline Damage 1 Damage 2 Error%

PZT1
✓ 23 10 5

52,5%M 17 10 15

Total 40 20 20

PZT2
✓ 20 9 8

55%M 20 11 12

Total 40 20 20

PZT3
✓ 35 20 16

11,25%M 5 0 4

Total 40 20 20

PZT4
✓ 32 20 14

17,5%M 8 0 6

Total 40 20 20

PZT5
✓ 40 19 18

3,75%M 0 1 2

Total 40 20 20

PZT6
✓ 40 20 18

48,75%M 19 8 12

Total 40 20 20

PZT7
✓ 40 20 19

1,25%M 0 0 1

Total 40 20 20

PZT8
✓ 40 20 18

2,5%M 0 0 2

Total 40 20 20

Table 4: Optimization results of the Gustafson-Kessel algorithm for the aircra� panel.

Iteration Initial objective function value Final objective function value

PZT1 139 3173,262 446,395

PZT2 102 831,342 118,823

PZT3 67 532244,526 5803,566

PZT4 47 602945,975 2788,759

PZT5 18 186,055 95,991

PZT6 131 3644,445 1594,554

PZT7 13 1041994,032 23013,747

PZT8 25 1452335,476 10885,113

PZTs failed to detect damage and thus made the classi
cation
impossible. 	e PZT3 and PZT4 correctly identi
ed the
damage 1; nevertheless the damage 2 was impossible to be
distinguished from the Baseline. Finally, the PZT5, PZT7, and
PZT8 managed to correctly classify the two types of damage
with a degree of pertinence greater than 80%.

3. Case Study Number 2:
Aluminum Aircraft Window

A second aircra� structure was used to test the arti
cial
intelligence techniques in structural health monitoring for
damage classi
cation. For this aim a window located in an
aluminum aircra� structure, as illustrated in Figure 5(a),

was used. Due to the size and complexity of the structure,
ten PZT patches were considered in the experiment. 	is
number of PZT patches was arbitrary since no preliminary
study was performed to optimize the test con
guration. Since
the beginning of the tests, the PZT10 showed poor stability
and repeatability and has therefore been ignored in the test.
To simulate two di�erent types of damage in the structure,
two experiments were performed as follows. First, a weight
was added to the structure as shown in Figure 5(b). Second,
a�er the mentioned weight was removed, one of the clamps
(located close to the PZT2) was removed (Figure 5(c)). For
every state of the structure 200 measurements were made as
shown in Table 5. For every measurement 200 points were
taken.



8 Shock and Vibration

Table 5: States of the aircra� window.

Number State Description Measurements number

1 Baseline Window with all the clamps 1–200

2 Damage 1 Window with all the clamps and the weight 201–400

1 Baseline Window with all the clamps 401–600

3 Damage 2 Window with one clamp missing near PZT2 (Figure 5(c)) 601–800

Table 6: Classi
cation of test set of probabilistic neural networks for each PZT patch of the aircra� window.

Baseline Damage 1 Damage 2 Error%

PZT1
✓ 21 8 12

48,75%M 19 12 8

Total 40 20 20

PZT2
✓ 36 16 20

10%M 4 4 0

Total 40 20 20

PZT3
✓ 20 3 7

62,5%M 20 17 13

Total 40 20 20

PZT4
✓ 19 7 13

51,25%M 21 13 7

Total 40 20 20

PZT5
✓ 21 8 13

47,5%M 19 12 7

Total 40 20 20

PZT6
✓ 17 9 9

56,25%M 23 11 11

Total 40 20 20

PZT7
✓ 40 19 20

1,25%M 0 1 0

Total 40 20 20

PZT8
✓ 33 15 20

18,75%M 7 8 0

Total 40 20 20

PZT9
✓ 33 15 20

11,25%M 7 5 0

Total 40 20 20

Table 7: Optimization results of the Gustafson-Kessel algorithm for the aircra� window.

Iteration Initial objective function value Final objective function value

PZT1 130 107992,545 13922,783

PZT2 44 1951882,844 3723,708

PZT3 112 11418,915 1011,319

PZT4 131 14063,77 1106,733

PZT5 105 73130,147 3914,543

PZT6 83 187017,9 8330,349

PZT7 9 209498,097 1474,566

PZT8 101 71861,057 7189,752

PZT9 40 149831,047 652,42
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Figure 6: Initial degrees of pertinence for the aircra� window.

In this case, nine probabilistic networks were imple-
mented (one for each PZT) to analyze this structure as shown
in Table 2. 	e results obtained with the test set for each one
of the nine probabilistic neural networks are presented in
Table 6.

	e damagemisclassi
cation percentages of PZT1, PZT3,
PZT4, PZT5, and PZT6 were greater than 48%. 	ese PZT
patches are not meant to detect damage.	e types of damage
(structural modi
cations in this case) were inserted in the
back panel and the PZT patches were bonded to the rein-
forcing beams. 	e PZT2, while installed in a reinforcement

beam, was able to detect the damage 2 without errors; this
success is due to the fact that this sensor is close to the
clamp position.	e PZT8 and PZT9 detected only the clamp
removal without errors, with an overall error percentage of
less than 20%. Finally, the PZT7, which was bonded directly
onto the panel and close to the removed clamp, was able to
identify all states with an error percentage of 1.25%.

	e initial degrees of pertinence for the Gustafson-Kessel
algorithm are shown in Figure 6. A�er several iterations
(Table 7), the algorithm was interrupted by the convergence
of the process for each of the PZT patches. 	e 
nal degrees
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Figure 7: Final degrees of pertinence for the aircra� window.

of pertinence are shown in Figure 7. 	e results of the PZT1,
PZT3, PZT4, PZT5, and PZT6 con
rm once again that
these PZT patches failed to detect damage, which made the
classi
cation impossible due to the position of the patches on
the structure.	e PZT2, PZT8, and PZT9 correctly classi
ed
damage 2, with a degree of pertinence of 99%. However, the
damage 1 was impossible to discriminate from the baseline.
Finally, for the PZT7, the Gustafson-Kessel algorithm was
able to correctly classify all measurements with a degree of
pertinence greater than 95%.

4. Conclusion

	e probabilistic neural network and fuzzy cluster analysis
methods were applied to real-world structures in the context
of impedance-based structural healthmonitoring for damage
detection, localization, and classi
cation purposes inmetallic
aeronautic structures. Impedance signal responses were used
as the input of the probabilistic neural network. 	e output
was the type of damage (crack, rivet loss, or pristine condi-
tion). 	e Gustafson-Kessel fuzzy clustering algorithm was
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also implemented. 	e results demonstrated the e�ciency of
these techniques in accomplishing these tasks. It should be
pointed out that the tests were performed at constant room
temperature (approximately 20∘C). 	e PZT patches that
presented the largest error percentages for both techniques
used were the ones that did not succeed to detect damage due
to their inappropriate location along the structure [30]. 	is
means that the location of the PZT patches is amajor concern
in impedance-based structural health monitoring. Further
studies will focus on temperature compensation regarding
its in�uence on the damage classi
cation approach. Also, the
authors have designed a compact network signal analyzer for
electromechanical impedancemeasurements, which includes
post-processing computation for damage metrics calculation
and temperature compensation, aiming at on board/online
structural health monitoring.
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