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Abstract

It has already been shown how Artificial Neural Networks (ANNs) can be incorporated into probabilistic mod-
els. In this paper we review some of the approaches which have been proposed to incorporate them into probabilistic
models of sequential data, such as Hidden Markov Models (HMMs). We also discuss new developments and new
ideas in this area, in particular how ANNs can be used to model high-dimensional discrete and continuous data to
deal with the curse of dimensionality, and how the ideas proposed in these models could be applied to statistical
language modeling to represent longer-term context than allowed by trigram models, while keeping word-order
information.

1 Introduction
Probabilistic models are commonly used to build machine learning applications, and Artificial Neural Networks
(ANNs) could play a useful role in such models. This paper starts from an overview of some of the approaches
that have been proposed to incorporate ANNs into probabilistic models, especially those that are used to model
sequential data. After a discussion of how ANNs can be helpful in this context in order to deal with the curse of
dimensionality, especially for modeling discrete data, the paper presents a proposal for new ANN-based probabilistic
language model.
In the next section, we review how ANNs can be given a probabilistic interpretation and incorporated into proba-
bilistic models such as HMMs (Hidden Markov Models). In section 3, we digress to a recently proposed general
approach to representing joint distributions from the product of conditionals, using ANNs (Bengio and Bengio,
2000). This approach is interesting because it raises the issue of how ANNs can be useful to address the curse of
dimensionality. Finally, in section 4, we propose a new language modeling approach based on these ideas. The
proposed class of models allows to represent long-term context without suffering in principle from the curse of
dimensionality that hurtsn-gram models whenn goes beyond 3.

2 ANNs in Probabilistic Models and IOHMMs
As already described in detail in (Bishop, 1995), it is straightforward to interpret multi-layer neural networks in
a probabilistic setting. For example, the ordinary neural networks with inputx trained to minimize the squared
error between their output�(x) and some desired outputsy can be interpreted as estimating the expected value
�(x) = E[yjx] (see for example (White, 1989) for a demonstration). Minimizing the average squared error of
the ANN is equivalent to maximizing the average log-likelihood of a probabilistic model ofP (yjx) wherey is
conditionally Gaussian with expectation�(x). When regularization terms such as weight decay are incorporated into
the training criterion of ANNs, this corresponds to training the probabilistic model according to the MAP (Maximum
A Posteriori) criterion, which is the sum over the training pairs(xt; yt) of the log-likelihoodslogP (ytjxt) and a
log-priorlogP (�) (where� are the parameters of the ANN). For example, weight decay given by a penalty0:5�k�k2

added to the cost function corresponds to a 0-mean Gaussian prior with variance1=� for the parameters.
To go further in the direction of building a probabilistic model, as in (Bishop, 1995) one can add extra free parameters
to represent the log-variances. Log-variances are not constrained to be positive so they can be learned using the same
gradient-based methods applied to train ANNs. Similarly, in the case of classification, the natural probabilistic model
is a binomial or multinomial, and the ANN can compute conditional class probabilities. When the number of classes
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is greater than 2, thesoftmaxoutput transformation (eq. 1 below) can be used to ensure that the outputs of the ANN
are positive and sum to 1. For example, the ANN can compute the estimated conditional probabilities

P (y = ijx) = egi(x)=
X

j

egj(x) (1)

where

gi(x) = bi +
X

j

wij tanh(cj +
X

k

vjkxk) (2)

with ANN parameters(bi; wij ; cj ; vjk). Softmax outputs can also be used to buildmixtures of experts(Jacobs et al.,
1991), whereP (yjx) is decomposed as

P (yjx) =
X

i

P (E = ijx)P (yjx;E = i)

whereE denotes an expert,P (E = ijx) is the output of a “gating” ANN with a softmax output layer (as in 1), and
P (yjx;E = i) is the model associated to thei-th “expert”. For example, each of these “expert” models could be
conditionally Gaussian, like the simple ANNs initially described in this section. Another way to interpret and build
this model is thatP (yjx) is a Gaussian mixture whose parameters (means, log-variances, and mixture weights)
are the outputs of a large ANN. More generally, one canuse an ANN to compute the parameters�(x) of a
parametrized conditional distribution P (yjx) = P (yj�(x)).
These ideas have been applied to HMMs in order to incorporate ANNs in these probabilistic models and transform
these models into conditional probability models.

2.1 HMMs and IOHMMs

The joint probability distribution of a sequence of observationsyT1 = fy1; y2; : : : ; yT g can always be factored as

P (yT1 ) = P (y1)

TY

t=2

P (ytjy
t�1
1 ):

It appears intractable in general to model sequential data in which the conditional distributionP (ytjy
t�1
1 ) of an

observed variableyt at timet depends on all the details of the previous valuesyt�11 . However, most models have the
property that they assume that the past sequence can be summarized concisely, often using an unobserved random
variable called astate variable, which carries all the information fromyt�11 that is useful to describe the distribution
of the next observationyt.
The most common of these models are the HMMs, which are best known for their contribution to advances in
automatic speech recognition in the last two decades (Rabiner, 1989). See (Bengio, 1999) for a review of Markovian
models such as HMMs and ANN/HMM hybrids. In basic HMMs, a discrete state variableqt is postulated, with the
following conditional independence assumptions:

P (ytjq
t
1; y

t�1
1 ) = P (ytjqt) (3)

P (qt+1jq
t
1; y

t
1) = P (qt+1jqt) (4)

In simple terms, the state variableqt 2 f1; � � � ; ng summarizes all the relevant past values of the observed and
hidden variables when one tries to predict the value of the observed variableyt, or of the next stateqt+1. The
marginalization of the joint distribution of states and observations gives the likelihood of a sequence,

P (yT1 ) =
X

qT
1

P (yT1 ; q
T
1 )

P (yT1 ; q
T
1 ) = P (qT1 )P (yT1 jq

T
1 ) = P (q1)

T�1Y

t=1

P (qt+1jqt)

TY

t=1

P (ytjqt) (5)
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The joint distribution is therefore completely specified in terms of (1) theinitial state probabilitiesP (q1), (2) the
transition probabilitiesP (qtjqt�1) and, (3) theemission probabilitiesP (ytjqt).
Conditional HMMs or Input-Output HMMs (IOHMMs) are described in more detail in (Bengio, 1999) and in dif-
ferent variants in (Cacciatore and Nowlan, 1994; Bengio and Frasconi, 1995; Meila and Jordan, 1996; Bengio and
Bengio, 1996). Whereas HMMs represent the distributionP (yT1 ) of sequencesyT1 , IOHMMs represent the condi-
tional distributionP (yT1 jx

L
1 ) of a sequenceyT1 given another sequencexL1 (which may be of the same length or not

asyT1 , see (Bengio and Bengio, 1996)). The IOHMM distribution is parametrized with two types of ANNs: the
conditional emission modelsrepresentP (ytjxt; qt = i) (they are like the experts in a mixture of experts, there is one
such expert per statei of the model), and theconditional transition modelsrepresentP (qtjxt; qt�1 = i) (they are
like the gating ANNs of the mixture of experts, there is one such gater per statei, and they usually have a softmax
output layer). The data likelihood for IOHMMs can be computed in a way that is very similar to the algorithm used
for HMMs (with the so-called “forward” recurrence (Bengio, 1999)).

3 Dealing with the Curse of Dimensionality in Joint Distributions
Although the fact that ANNs can be incorporated into probabilistic models is interesting in itself, some recent work
suggests that it may bring a notable benefit. In (Bengio and Bengio, 2000), a probabilistic ANN-based model of
the joint distribution of many discrete or continuous variables is presented. The objective of this work is to use the
ANN representation to deal with thecurse of dimensionalitythat hits when trying to represent the joint distribution
of many variables. For example, if we have 100 binary variables, one needs in principle2100 � 1 free parameters
to represent their joint probability function: these parameters are the probabilities assigned to each of the possible
combinations of values of the variables. In the 60’s, approximations of the joint probability function of a large
number of binary variables have been proposed, essentially based onpolynomial approximations(Bahadur, 1961;
Duda and Hart, 1973) of the probability function. In (Frey, 1998), an approximation based on the logistic distribution
was proposed, called LARC (logistic auto-regressor classifier). This can be seen as an ANN without hidden units,
for each of the random variables, giving its conditional probabilityP (yijy

i�1
1 ) given the previous variables in some

arbitrary order.
In (Bengio and Bengio, 2000), this idea is extended to ANNs with hidden units, using an architecture that maintains
the constraint that the functions computed by the network,pi;j = fi;j(y

i�1
1 ) = P (yi = jjyi�11 ) depend only on the

first i� 1 input values, withj = 1 to number of values ofyi, i = 1 to the number of variables. From the conditional
probabilitiespi;zi = fi;zi(z

i�1
1 ) = P (yi = zijy

i�1
1 ) computed by the network, one can obtain the joint probability

P (y1 = z1; y2 = z2; � � � ; yn = zn) simply by multiplying the values of the selected output units
Q

i pi;zi . In the
case whereyi is binary, a sigmoid output unit can be used to computepi;1 (with pi;0 = 1� pi;1). In the case where
yi is a discrete variable takingni values, a group of output units with a softmax function can be used to obtain
probabilitiespi;j for theni possible values ofyi. Both for the discrete inputs and outputs of the ANN, aone-hot
representation is therefore used (a “high” value at thek-th position and “low” values at the others, to represent
yi = k).
It is interesting to compare this ANN model with other models of the joint distribution. In the polynomial approx-
imation of the probability function ofn random variables, all thek-th order dependencies (between groups ofk
variables) will be represented, but at the cost of having to estimateO(nk) parameters, which the amount of data
may not allow, so one is typically restricted tok = 2. In that case, the joint probability is expressed as a constant
plus a linear combination of the variable values, plus a linear combination of all the pairs of variables products. In
the ANN of (Bengio and Bengio, 2000), the number of free parameters isO(Hn2), whereH scales the number
of hidden units, butdependencies of potentially any order can be represented. Although an ANN withH small
does not allow to represent all of them, those that are most important to explain the data will be “chosen” through
learning. In addition to this advantage in terms of the order of the dependencies that can be represented, ANNs
bring another feature that is very important for generalization. It is the fact that they allow totransfersomething
learned on some combination of the input variables to other combinations. In contrast, when “learning” the joint
probability function of a set of variables by counting co-occurences, it is not clear how to assign probabilities to
new combinations of values not seen in the training set (since most out-of-sample combinations are likely to be new
combinations of the values of the variables). The maximum likelihood model would assign 0 probability to unseen
cases (this is disastrous for generalization!). A multinomial model trained with the MAP criterion would typically
give a constant small probability to unseen combinations. Instead the ANN will give a non-constant probability to
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new combinations, depending on how “far” they are or how they relate (in some sense learned by the parameters of
the ANN) to previously seen combinations.
Interestingly, in experiments described in (Bengio and Bengio, 2000), the above approach was found to generalize
very well in terms of out-of-sample log-likelihood, on four publically available data sets, against different models
including polynomial models, simple belief networks, the naive Bayes model, and the LARC model. As proposed
in (Bengio and Bengio, 2000), this approach can be extended to modeling both continuous and discrete random vari-
ables as well as conditional probabilities (following the principles illustrated in the previous section and in (Bishop,
1995)).

4 A New Language Model
Can the type of ANN described in the previous section be applied to modeling the joint probability of word se-
quences, i.e. to build a language model? State-of-the-art language models are based on a very crude estimation of
the word sequence joint probability through so-calledn-grams:

P (yT1 ) =
Y

t

P (ytjy
t�1
t�n)

whereyt 2 V is the symbol associated to the word observed at positiont in a word sequence, in the vocabulary
V . The parameters are obtained easily fromco-occurence counts. Because of the curse of dimensionality, the best
models are based onn=2 (trigrams) and because most triplets are infrequent, the probability is smoothed (Jelinek
and Mercer, 1980) using bigrams (P (ytjyt�1)) and unigrams (P (yt)) (for example with a mixture between the
predictions of the trigram, bigram and unigram, with more weight given to bigram and unigram when the triples are
rare).
Let us see how one could learn such conditional probabilities with an ANN. One problem is that each word is a
discrete variable that can take aroundjV j = 10; 000 to several100; 000’s different values, depending on the size of
the vocabularyV . With a one-hot encoding of the input words, that would make a very large number of network
weights and therefore a very large number of computations. For statistical models based on co-occurence counts
the number of required parameters may grow asjV jn+1. UsingVariable-Length Markov Models(Ron, Singer and
Tishby, 1996), one would only learn the probabilities associated to contexts that occur sufficiently in the data, i.e.
the number of parameters would grow likeO(nT jV j) whereT is the length of the corpus in words (in the millions,
or even hundreds of millions!). However, in both cases, the only “generalization” that would occur from contexts
seen in the training corpus to new contextsyt�1t�n (which will be seen out-of-sample) is obtained by considering a
shorter contextyt�1t�n0 with n0 < n (a context short enough to have been seen in the training data, and to have been
seen enough to make more reliable predictions on the next word). In the case of a straightforward ANN taking a
one-hot representation of the previousn words in inputs, withH hidden units, the number of parameters would grow
as(n+1)jV jH ornjV j2+(n+1)jV jH (depending on whether or not there are direct input to output connections).
To make the computation with the ANN more manageable and to improve its chances of generalizing, we propose
to use a different representation for the words, one which has been proposed for a long time in the connectionist
language modeling litterature (Miikkulainen and Dyer, 1991). The idea is to use adistributed representationin
which each word is represented by a real-valued code that is a point in a low-dimensional vector space (e.g. inR

50 )
rather than using the “one-hot” representation. In input to the ANN, there will be the low-dimensional code vector
for each of then input wordsyt�1 to yt�n. With this distributed representation, each element of the code vector
associated to a word represents a “direction” in a sort of semantic space. Wordsi andj that are close in this space
should be easily replaced for each other in the same context, i.e.P (yt = ijyt�11 ) is “close” toP (yt = jjyt�11 )
for most contextsyt�11 . But how do we choose this particular representation (i.e. the code vector, e.g. inR

50 , for
each word in the vocabulary)? The idea of mapping words to low-dimensional real vectors has already been used
successfully for information retrieval, e.g. see the “Latent Semantic Indexing” (Deerwester et al., 1990) and “Word
Space” ideas (Sch¨utze, 1992), both using asingular value decompositionof a high-dimensional sparse representation
of words based on co-occurence counts in different contexts. Ideally, we would like tolearn this low-dimensional
representationsuch that it helps to build a good language model (one that gives high probabilities to plausible word
sequences in the language of interest).
This can be achieved as follows. Letvi 2 R

m be the low-dimensional real code vector associated to wordi. We
want to learn the matrixv whose columns arevi along with the parameters of the ANN that computes conditional
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word probabilities. We will construct a parametrized function (e.g. an ANN) with parametersw computing the
vector-valued functionf(vyt�1

; vyt�2
; � � � ; vyt�n

;w) whose value is in(0; 1)jV j, with a softmax output layer (i.e.
fi > 0 and

P
i fi = 1). The i-th element of the output vector,fi is an estimate of the conditional probability

P (yt = ijyt�1t�n). The number of weights of such a network, withH hidden units (and no direct input-output
connections) isO(nmH + jV jH).
The maximum likelihood training criterion is simply

L(w; v) =
X

t

log fyt(vyt�1
; vyt�2

; � � � ; vyt�n
;w):

where the sum is over the whole training corpus (seen as a very long sequence). Note that we only consider the
probability associated to the “correct” next word,fyt .
One can also view this model as a neural network with an additional hidden layer with shared weights and local
connectivity, and whose input layer would have a 0/1 one-hot encoding for the input words. The input units would
be organized asn groups ofV units. In this additional first hidden layer there would also ben groups, each with
m linear units (m is the dimension of the code vector for a word). Thei-th group of hidden units of this first layer
would only receive connections from thei-th group of input units, and its input weight matrix would bev, i.e. the
same for all the groups. Because there would be only a single non-zero entry in the input units for wordi, the vector
computed at thei-th hidden group would bevyt�i

. In practice, one would not implement this first hidden layer with
actual matrix multiplications (that would be very wasteful), but using a simple table look-up (to mapyt�i to vyt�i

).
Because of the immense size of the training data set (several hundred million words), the only training algorithm
that seems practicable is stochastic gradient. Note that stochastic gradient has already been successful at training
very large neural networks for character recognition with hundreds of thousands of examples (Bottou et al., 1994).
To initialize v, we propose to use a singular value decomposition of a large sparse matrix whose entries are co-
occurence counts and other informations about each word, such that words that can easily be replaced in the same
context have similar entries. An extension of the above model would deal in a straightforward way withnew words
not already seen in the training corpus, and could also be used in a second phase of initialization ofv. Instead
of assigning a dummy symbol and an arbitrary low probability to unseen words, as in the count-based statistical
models such as trigrams, we could use the model itself to assign a code vector to new words, depending on the
context in which they occur. The idea is to train the ANN not only to compute the probability of the next word
within the seen vocabularyV , but also to train it to predict theexpected valueof the next word inv-space, i.e.
�t = E[vyt jvyt�1

; vyt�2
; � � � ; vyt�n

]. This can be done by addingm extra output units which will be compared
with vyt in the training criterion. In this way, when a new word is encountered, we can use this expected vector
as the initial code-word for the new word, and feed it back in the input window in order to predict the words that
follow. In order to properly train these extra outputs, one has to form an estimate ofP (ytjy

t�1
t�n) from �t. This can

be obtained by postulating a conditional Gaussian model for each word, and forming and maximizing the products
of P (ytjy

t�1
t�n) = e�0:5(�t�vyt )

2

=
P

i e
�0:5(�t�vi)

2

(i.e. a softmax of the squared distances).
The number of computations remain fairly large, but not exponential inn. The computational bottleneck is in the
output layer, which requiresO(jV jH) computations. However, it is likely that this can be easily reduced by pre-
selecting a “small” (compared toV ) set of likely next words. This could be done for example with a language
model based on a table look-up, such as a trigram model. Another solution is to form a hierarchical clustering in
v-space and train the ANN to predict in which clusters the next word may occur. Then one needs only compute the
probabilities of the words from the clusters with significantly non-zero probability.
Since we know that there is a lot of local sequential structure in language, one could use convolutional (or time-
delay) neural networks instead of ordinary feedforward neural networks (to extract progressively higher-level con-
textual information from groups of neighboring words). One could also attempt to use recurrent networks to learn
a continuous state function in order to capture longer-term dependencies (although some learning problems may be
anticipated in this case (Bengio et al., 1994)).

5 Conclusion
Starting from a brief overview of how ANNs have been incorporated into probabilistic models, in particular those that
concern sequential data, such as HMMs, we have discussed how ANNs could be useful to address the generalization
problem also known as the curse of dimensionality when trying to model the joint or conditional distributions of
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many discrete variables. We have then proposed a new approach to language modeling that takes advantage of
the power of ANNs to represent the joint distribution between many variables without involving an exponential
number of parameters. Taking stock of earlier work on connectionist models of language, this approach is based
on learning a low-dimensional distributed representationfor each word in a vocabulary, in such a way that this
encoding provides the best predictive probabilities of the next word given the previous words in a training corpus.
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