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Probabilistic Neural-Network Structure Determination for Pattern Classification
K. Z. Mao, K.-C. Tan, and W. Ser

Abstract—Network structure determination is an important
issue in pattern classification based on a probabilistic neural
network. In this study, a supervised network structure determi-
nation algorithm is proposed. The proposed algorithm consists of
two parts and runs in an iterative way. The first part identifies
an appropriate smoothing parameter using a genetic algorithm,
while the second part determines suitable pattern layer neurons
using a forward regression orthogonal algorithm. The proposed
algorithm is capable of offering a fairly small network structure
with satisfactory classification accuracy.

Index Terms—Genetic algorithms, orthogonal algorithm,
pattern classification, probabilistic neural network (PNN).

I. INTRODUCTION

Applications of neural network to pattern classification have
been extensively studied in the past many years. Various kinds
of neural-network architecture including multilayer perceptron
(MLP) neural network, radial basis function (RBF) neural net-
work, self-organizing map (SOM) neural network, and proba-
bilistic neural network (PNN) have been proposed. Because of
ease of training and a sound statistical foundation in Bayesian
estimation theory, PNN has become an effective tool for solving
many classification problems (e.g., [7], [10], [11], [13], [16]).
However, there is an outstanding issue associated with PNN
concerning network structure determination, that is determining
the network size, the locations of pattern layer neurons as well
as the value of the smoothing parameter. As a matter of fact, the
pattern layer of a PNN often consists of all training samples of
which many could be redundant. Including redundant samples
can potentially lead to a large network structure, which in turn
induces two problems. First, it would result in higher computa-
tional overhead simply because the amount of computation nec-
essary to classify an unknown pattern is proportional to the size
of the network. Second, a consequence of a large network struc-
ture is that the classifier tends to be oversensitive to the training
data and is likely to exhibit poor generalization capacities to the
unseen data ([2]). On the other hand, the smoothing parameter
also plays a crucial role in PNN classifier, and an appropriate
smoothing parameter is often data dependent.

The two problems mentioned above have been realized by
some researchers and some algorithms for reduction of training
samples have been proposed ([3], [12], [14], [17], [21]). The
vector quantization approach was employed to group training
samples and find cluster centers to be used for PNN in [3] and
[21]. In [12] and [17], the probability density function of a PNN
was approximated by a small number of component densities
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and the parameters of the components were estimated from
the training set by using a Gaussian clustering self-organizing
algorithm. In [14], the clustering technique of the restricted
Coulomb energy paradigm was used to find cluster centers and
associated weights corresponding to the number of samples
represented by each cluster. Basically, all the above mentioned
PNN reduction algorithms are based on the clustering approach.
Since the classification error has not been used directly in the
process of neuron selection, these algorithms can be classified
into the category of unsupervised learning.

In this study, we propose a supervised PNN structure deter-
mination algorithm. A strength of this supervised learning algo-
rithm is that the requirements on classification error rate and
model size are incorporated directly in the process of deter-
mining the network structure. Indeed, we propose to solve the
PNN structure determination problem by minimizing the net-
work size under the constraint of meeting a specific classifica-
tion error rate. The proposed algorithm consists of two parts and
runs in an iterative way. The first part of the algorithm performs
smoothing parameter selection. Since there is no known quan-
titative relationship among the network size, classification error
rate and the smoothing parameter, a genetic algorithm (GA),
instead of others that demand such a quantitative relationship,
is employed to find an appropriate smoothing parameter. The
second part of the proposed algorithm performs pattern layer
neuron selection. With the use of the smoothing parameter al-
ready determined in the first part, the output of a summation
layer neuron becomes a linear combination of the outputs of pat-
tern layer neurons. Subsequently, an orthogonal algorithm ([1],
[4]) is employed to select important neurons. Because of the
incorporation of an orthogonal transform in neuron selection,
the proposed algorithm is computationally more efficient than
other algorithms that use genetic algorithms (GAs) to search all
parameters of the neural networks structure (e.g., [20]).

This paper is organized as follows. In Section II, a brief
overview of the PNN is presented and the associated problems
are analyzed. Pattern layer neuron selection using an orthogonal
algorithm is discussed in Section III-A. In Section III-B, a
PNN smoothing parameter selection algorithm is proposed.
Numerical examples are presented in Section IV to demonstrate
the effectiveness of the proposed algorithm.

II. A B RIEF REVIEW OF THE PNN’S

The PNN was first proposed in [13]. The architecture of a typ-
ical PNN is as shown in Fig. 1. The PNN architecture is com-
posed of many interconnected processing units or neurons orga-
nized in successive layers. The input layer unit does not perform
any computation and simply distributes the input to the neurons
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Fig. 1. Diagram of a PNN.

in the pattern layer. On receiving a patternfrom the input layer,
the neuron of the pattern layer computes its output

(1)

where denotes the dimension of the pattern vector, is the
smoothing parameter and is the neuron vector. The summa-
tion layer neurons compute the maximum likelihood of pattern

being classified into by summarizing and averaging the
output of all neurons that belong to the same class

(2)

where denotes the total number of samples in class. If
the a priori probabilities for each class are the same, and the
losses associated with making an incorrect decision for each
class are the same, the decision layer unit classifies the pattern
in accordance with the Bayes’s decision rule based on the output
of all the summation layer neurons

(3)

where denotes the estimated class of the patternand
is the total number of classes in the training samples. One

outstanding issue associated with the PNN is the determination
of the network structure. This includes determining the network
size, the pattern layer neurons and an appropriate smoothing
parameter. Some algorithms for pattern layer neurons selection
have been proposed ([3], [12], [14], [15], [17], [21]). Since the
classification error has not been used directly in the process of
PNN structure determination, the algorithms mentioned above
can be classified into the category of unsupervised learning.

Fig. 2. Diagram of the proposed PNN structure determination algorithm.

III. D ETERMINING THE PNN STRUCTURE USING AN

ORTHOGONAL ALGORITHM AND THE GENETIC ALGORITHM

In this section, we propose a supervised PNN structure deter-
mination algorithm that incorporates an appropriate constraint
on classification error rate. The proposed algorithm consists of
two parts and runs in an iterative way as shown in Fig. 2, of
which the first part identifies a suitable smoothing parameter
using a genetic algorithm (GA) [6], while the second part per-
forms pattern layer neurons selection using an orthogonal algo-
rithm [4]. Recently, an algorithm with similar architecture for
RBF neural networks structure determination was proposed [5].
However, we developed our algorithm independently, and sub-
mitted our work for review before the publication of [5]. The
difference bewteen our algorithm and that in [5] is discussed in
Section III-A.

A. Construct the Pattern Layer Using the Forward Regression
Orthogonal Algorithm

At this stage, it is assumed that the smoothing parameter has
been chosen. The objective is to select representative pattern
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layer neurons from the training samples. As described in the
previous section, for theth training pattern in class denoted
by vector , the maximum likelihood to be classified to is

(4)

where

Note that is a nonlinear function of the smoothing
parameter and the pattern layer neuron vectors. But if the
smoothing parameter is set to a prespecified value, and the
output of each neuron is considered as an auxiliary
regression variable, becomes a linear combination of
these auxiliary variables as shown in (4). Linear orthogonal
transforms can therefore be applied to decompose the coupling
between these auxiliary variables so as to facilitate an evalua-
tion of the importance of each neuron.

Equation (4) can alse be written in a matrix form as

(5)

where

...
...

...
...

Applying an orthogonal transform to the regression matrix,
one can obtain

(6)

where , are an orthogonal basis, is a trian-
gular matrix as follows:

...
...

...
...

The importance of theth candidate neuron in class is
evaluated based on the norm of

(7)

Under the condition that all neurons have the same smooth
parameter, a larger value of indicates that more neurons are
closest to the corresponding neuron. Therefore the larger the

is, the more important the corresponding neuron is. The crite-
rion given by (7) is simple to implement and often provides a
satisfactory evaluation of the importance of the neurons.

The neuron importance evaluating and ranking procedure is
summarized as follows:

1) To determine the most representative neuron for class
, all the training samples in class are consid-

ered as the possible candidate. It requires a computa-
tion of the output of each candidate neuron to classify
all training samples in class

(8)

The importance is evaluated as follows:

(9)

The sample that corresponds to the maximum impor-
tance index, say , is considered as the most repre-
sentative neuron for class and is used to generate

.
2) To determine theth representative neuron for class,

all the remaining samples in class , say
, , are considered as the candi-

date. Compute the importance index

(10)

(11)

The sample with the maximum importance index is
considered as theth representative neurons.

The orthogonal transform has been employed in determining
the structures of RBF and fuzzy basis funcion (FBF) neural net-
works ([4], [5], [18], [19]). If extended to multiple-output sys-
tems, the algorithms in [4], [5] are applicable to pattern clas-
sification problems. Determining the structure of the mutiple-
output RBF structure using the extended algorithms of [4], [5]
is equlivalent to determining the structure of the PNN based
on the minimization of the mean squared error (MSE) between
the output vectors of summation layer neurons and the desired
output vectors, whose elements can be set to one or zero to indi-
cate the input patterns belonging to or not belonging to the class.
However, for the PNN-based classifier, one is more concerned
with the error of decision layer than that of the summation layer
since a smaller MSE of the summation layer does not neces-
sarily lead to a better classification. Therefore we have chosen
to determine the structure of the PNN based on the minimization
of the decision layer error, in which the Bayesian decision rule
is incorporated in the process of determining network structure.
This is the main difference between our algorithm and those in
[4], [5]. In addition, algorithms developed in the present study
is applicable to problems with small numbers of training sam-
ples. Indeed, PNN’s were considered as variants of RBF neural
networks. But unlike the RBF neural networks whose weights
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are adjustable, the weights of PNN’s are all set to one. Prob-
ably because of this, PNN’s is applicable to problems with a
small number of training samples and is less likely to overfit the
training data. This is an advantage of PNN since a small number
of training sample is often encountered in pattern classification.
For example, only seven training samples are available for each
class in Experiment 3.

Based on the sample importance evaluating and ranking pro-
cedure Steps 1), 2), the PNN classifier construction procedure
is summarized as follows.

1 ) Select the most representative neuron for each class
from all the training samples using the neuron impor-
tance evaluating and ranking procedure Step 1).
2 ) Construct a probabilistic neural-network classifier
using all the selected representative neurons. Classify
the training samples in each class and compute the clas-
sification error rate, which is defined as the ratio of the
number of misclassifications to the number of training
samples in each class.
3 ) Select one additional representative neuron using
the neuron importance evaluating and ranking proce-
dure Step 2) for classes that the requirement on classi-
fication error rate is not satisfied.
4 ) Goto Step 2) until the requirement on classification
error rate of all classes are satisfied. If the training sam-
ples are poor, the required classification accuracy might
not be met even if all the training samples are used to
construct the pattern layer. If this is the case, a higher
classification error rate will be used.

Because only the most important neuron is selected at every
step, the above procedure is capable of selecting a fairly small
PNN with satisfactory classification accuracy.

B. Selecting the Smoothing Parameter Using Genetic
Algorithms

In Section III-A, it is assumed that the smoothing parameter
is set to a prespecified value. But an appropriate smoothing pa-
rameter is often data dependent. Therefore, it requires a proper
procedure for smoothing parameter selection as we shall pro-
pose here.

When a neural-network classifier is constructed, classifica-
tion accuracy and network size are the most important aspects
that need to be taken into consideration. Often it is desired that
the network architecture could be minimized under the condi-
tion that the classification error rate is smaller than a prespeci-
fied tolerance bound. Therefore we solve the PNN structure de-
termination as the following constrained optimization problem
in the present study

(12)

subject to

(13)

where denotes the network size, i.e., the number of selected
pattern layer neurons, is the classification error rate which is
defined as the ratio between the number of misclassifications
and all the training samples,is a prespecified upper bound of

classification error tolerance. Since there is no known quantative
relationship among the network size, the classification error rate
and the smoothing parameter, a GA [6], instead of others that
demand such a quantative relationship, is empolyed to slove the
above optimization problem. The GA-based network structure
determination algorithm is outlined as follows.

1) Generate a set of random real number for the
smoothing parameter.

2) Set the smoothing parameter to the values already de-
fined, construct classifiers using the orthogonal algo-
rithm-based PNN construction procedure Steps 1)–4)
of Section III-A.

3) Classify all the training samples and compute the clas-
sification error rate for each class.

4) Perform genetic operations on the values of smoothing
parameter and generate a new set of smoothing param-
eter.

5) Go to Step 2) until the number of iteration reaches a
prespecified value.

GAs are a class of random search procedure which were ini-
tially motivated by the principles of natural evolution and popu-
lation genetics ([6]). GA-based optimization is a guided random
search method which could find an optimal solution without ex-
austively testing all possible solutions.

Typically, a genetic algorithm consists of the following
operations; encoding, fitness value assignment, reproduction,
crossover and mutation. Details of the GA-based PNN structure
detection algorithm are described below.

1) Encoding: GA works with the coding of parameters
rather than the parameter themself. If samples are normalized,
the smoothing parameter should be smaller than one, only
fraction part needs to be coded. A four-bit decimal coding
is employed in the present study to encode the smoothing
parameter . For example, one individual is , this
value can be represented by the following decimal string:

where denote the bit of 10 . The physical interpretation of
the above string is that the 10 bit is six, the 10 bit is two,
the 10 bit is five, the 10 bit is seven.

2) Fitness Evaluation:Each individual represents a
smoothing parameter value. With the use of neuron selection
algorithm developed in Section III-A and smoothing parame-
ters defined by all individuals, a number of candidate network
structures can be obtained. The objective is to minimize the
neural-network size, therefore the fitness function should be
inversely proportional to the number of selected neurons. The
fitness can be computed using the following mapping scheme:

(14)

where denotes the fitness value of theth individual. ,
, and , are the minimum and maximum size

of candidate network structure in the current population, and
the minimum and maximum fitness values, respectively. In this
study and are set to 0.5 and 1, respectively.
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3) Reproduction:Theroulette wheelapproach is employed
to implement the reproduction procedure. Each string is allo-
cated a slot of theroulette wheelsubtending an angle propor-
tional to its fitness. A random number in the range of 0 to 2
is generated. A copy of string goes to the mating pool if the
random number falls in the slot corresponding to the string. The
reproduction is repeated to generate a mating pool with a pre-
specified size.

4) Crossover: The purpose of crossover operation is to gen-
erate new solutions by exchanging bits between individuals. As-
suming two randomly selected parent individuals are given by
string and string

string

string

First, randomly select the bit at which the two strings will be
changed, for example . Then exchanging the values at bit
for the two strings yields two offspring strings:

string

string

5) Mutation: The purpose of employing mutation is to gen-
erate an individual that is not easy to achieve by the crossover
operation. In this study, the mutation is achieved by changing
the selected bit with a random number between zero to nine. For
example if the bit of string is supposed to mutate, changing
this bit to a random generated number, say eight, yields the fol-
lowing string:

string

6) Summary of the Proposed Algorithm:The proposed PNN
network structure determination algorithm can be summarized
as follows.

1) Generate an initial population setconsisting of
individuals, each individual represents a smoothing

parameter. Set the current generation number .
2) With the use of neuron selection algorithm devel-
oped in Section III-A and smoothing parameters de-
fined by all individuals, a number of candidate network
structures can be obtained. Compute the fitness value.
Form a mating pool using all individuals in the pop-
ulation set at the probabilities assigned to each indi-
vidual proportional to the corresponding fitness value.
3) Randomly select a pair of parent strings from the
mating pool . Choose a random crossover point and
exchange the parent string bits to produce two off-
springs and put the offsprings in the offspring set.
The procedure is repeated until the number of offspring
strings are the same as the number of parent strings.
4) Mutate each bit of each offspring in the setwith
a prespecified mutation rate and calculate the fitness

value of each mutated offspring using the procedure
summarized in Step 2).
5) Select the fittest individuals from sets and
by comparing fitness values.
6) Reset the set with the newly selected individ-
uals, reset the number of generations , and
nullify the offspring set .
7) Steps 2)–6) are repeated until a prespecified
number of generations arrives.

Remark 1: A single smoothing parameter is used in the
algorithm developed above. This is the same as the original
PNN. But employing a single smoothing parameter might not
be a good choice in some cases. Consider a two-class problem,
where samples in class A scatter widely, while samples in class
B concentrate, and region A is very close to region B. Classifiers
using a large smoothing parameter cannot capture the classes
well. Employing a small smoothing parameter can capture
the classes, but this would lead to a large network structure.
To alleviate this problem, we can employ multiple smoothing
parameters, where each class has a smoothing parameter. By
modifying the coding scheme, the algorithm developed above
is applicable to the case of multiple smoothing parameters. For
example, for a two-class problem, , ,
the smoothing parameters are coded as follows:

Remark 2: GAs have been used in neural-networks structure
determination ([9], [20] and the references therein), in which
all parameters of the networks were optimized using GAs. The
parameters can be weights of the MLP neural networks, or lo-
cations of hidden layer neurons and width of RBFs of the RBF
neural networks. In theory, the GAs could find the optimal so-
lution. In practice, however, the optimal solution, even the sub-
optimal solution is difficult to find if the number of parameters
to be optimized is very large. This is because the search space
expands dramatically with the increase of the number of param-
eters. In our study, the GAs were used in a different way, where
the pattern layer neurons were selected using the forward regres-
sion orthogonal decomposition, the smoothing parameter was
optimized by the genetic algorithms. Since GAs were used to
optimize just the smoothing parameter, the large search space
problem mentioned above was alleviated. Of course, our solu-
tion might not be optimal due to the suboptimality of the forward
regression orthogonal decomposition that was employed in our
study, but the algorithm is computationally tractable and often
results in a small network structure.

IV. EXPERIMENTS

A. Experiment 1

In the first experiment, the proposed algorithm was tested
using the uniformly distributed data set which was used for
the work reported in [3]. There are two classes of data and a
total of 2000 data samples were generated for each class, where
500 samples of each class were used for training, the remaining
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Fig. 3. Training samples for Experiment 1 (�—class 1,�—class 2).

TABLE I
SELECTED NETWORK STRUCTURE USING

THE PROPOSEDALGORITHM FOR EXPERIMENT 1

TABLE II
BESTRESULTS OFLVQ-PNN REPORTED IN[3] FOR EXPERIMENT 1

1500 samples were used for test. The feature space is two-di-
mensional, and the training samples are shown in Fig. 3. The
proposed PNN network structure determination algorithm was
used to select neurons and the smoothing parameter. The eight
selected neurons are shown in [4], the network structure is listed
in Table I. Although only eight neurons are used, the PNN clas-
sifier achieves 99.8% correct classification for the training data
set and 98.85% correct classification for the test data set. For a
comparison, the best results of the (LVQ)-PNN reported in [3]
are listed in Table II, where 96.999% and 98.166% correct clas-
sification were achieved for classifiers with ten and 100 pattern
layer neurons, respectively. It was not mentioned in [3] whether
the classification process was carried out based on the training
data set or the test data set or a mixture of both. But even with
only eight neurons and using the test, but not training, data set,
our algorithm achieves a relatively better classification result, as
well as offering an automatic selection of the smoothing param-
eter (for the LVQ-PNN method [3], the smoothing parameter
has to be selected by trial and error).

An interesting phenomenen in this example is that the
selected pattern layer neurons are approximately symmetrical
about the boundary of the two classes as shown in Fig. 4.
Indeed, if the selected neurons are exactly symmetrical, 100%
correct classification can be achieved over both training and
test data sets. This result shows that the PNN based classifier is
quite effective to solve linear boundary classification problems

Fig. 4. Selected pattern layer neurons for the Experiment 1.

TABLE III
SELECTEDNEURONSUSING THEPROPOSEDALGORITHM FOREXPERIMENT 2

(it was reported in [3] that PNN was not effective to classify
classes with linear boundary).

B. Experiment 2

In the second experiment, the popular Iris
data set at UCI Machine Learning Repository
(http://www.ics.uci.edu/\~mlearn/MLRepository.html) was
used to test the proposed algorithm. The Iris data set consists of
150 samples of three classes, where each class has 50 samples.
The dimension of the feature space is four. The 150 samples
were equally divided into two subsets. One subset was used for
training and the another subset was used for test.

By using our algorithm, only three neurons listed in Table III
were selected, where each class had one neuron. The PNN clas-
sifier constructed using the three neurons achieved a result of
only one misclassification among the 150 samples, where the
number of misclassification over the training data and the test
data are one and zero, respectively. The automatically selected
smoothing parameters for the three classes were 0.2221, 0.2503,
and 0.2791, respectively.

Comparisions between our algorithm and other commonly
used algorithms such as the LVQ, the fuzzy LVQ called
GLVQ-F, the heuristic LVQ called dog-rabbit (DR), the random
search (RS) and the GAs were performed. The best results
achieved by using our algorithm and those obtained by using
other algorithms reported in [8] are listed in Table IV. Notice
that in [8] the 150 samples were used for both training and test.

From Table IV, we can see that the PNN classifier having only
three pattern layer neurons achieved the result of only one mis-
classification. This result is better than those of nearest proto-
type classifiers using the same number of prototypes selected by
LVQ, GLVQ-F and DR, whose number of misclassification are
17, 16, and ten, respectively. Our result is also slightly better
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TABLE IV
NUMBER OFMISCLASSIFICATION OFDIFFERENTALGORITHMS WITH THE SAME

NUMBER OF SELECTED PROTOTYPES FOREXPERIMENT 2

TABLE V
NUMBER OF PROTOTYPESNEEDED TO ACHIEVE ONLY ONE

MISCLASSIFICATION FOREXPERIMENT 2

than those achieved by using RS and GAs, whose number of
misclassification are both two.

On the other hand, to achieve the result of only one misclassi-
fication, our algorithm selected only three neurons, while GAs
and RS based algorithms selected eight and seven prototypes,
respectively, as shown in Table V. It was not reported in [8] the
exact number of prototypes that would be selected to achieve
the result of only one misclassification for LVQ, GLVQ-F, and
DR based algorithms, but the number would be larger than nine.

The above results are not surprising, since our algorithm con-
figures the PNN classifier by minimizing the number of pattern
layer neurons under the constraint of meeting required classifi-
cation accuracy, while LVQ, GLVQ-F and DR employ other op-
timization criterion. Beacuse the PNN has additional adjustable
parameters (smoothing parameters), our algorithm selects less
prototypes than RS and GA-based algorithms.

C. Experiment 3

Face recognition is a typical pattern classification
problem. Face image database of the University of Bern
(ftp://iamftp.unibe.ch/pub/Images/FaceImages/) was used in
this experiment. The database contains frontal views of 30
people, where each person has ten face images corresponding
to different head positions. The image size is of 512342
pixels.

A typical face recognition system consists of three modules,
namely, face detection, feature extraction and classification.
Since the main concern in the present study is the classifica-
tion algorithm, it was assumed that face images of 6448
pixels, as illustrated in Fig. 5, had been detected manually or
by automatic face detection algorithms. The face images of
64 48 pixels were downsized to 16 12 pixels by uniform
subsampling. The downsized face images as illustrated in Fig. 6
were used as features for classification in the present study.

The face images were represented by matrices. To apply the
proposed algorithm, the pattern features are required to put in a
vector. Assume that denotes the greylevel of the pixel atth

Fig. 5. Face image examples for Experiment 3.

Fig. 6. Downsized face image examples for Experiment 3.

row, th column of the downsized face image, the feature vector
was formed as follows:

Obviously, the face recognition problem under study is a
complex pattern classification problem which involves 192
pattern features and 30 pattern classes.

The ten samples in each class were first equally divided into
two subsets. Then ten samples were randomly selected from one
of the two subsets, and were put into the another subset. The
subset that contains seven samples was used for training, the
subset that contains three samples was used for test. Totally 210
samples were used for training, 90 samples were used for test.

It was assumed that the number of neurons for each class
(person) was the same. The number of neurons and the corre-
sponding classification error rate are listed in Table VI. The dia-
gram of classification error rate (percentage) versus the number
of neurons from each class is illustrated in Fig. 7. The smoothing
parameter for ecah class is 0.15.

Fig. 7 shows that the classifier achieved zero classification
error over the training data and 8.89% error rate over the test
data when five neurons were selected for each class. With the in-
crease of the number of neurons, the error rate over the test data
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TABLE VI
CLASSIFICATION ERRORRATE AND THE NUMBER OF NEURONS FOREXPERIMENT 3

Fig. 7. Classification error rate versus the number of neurons for Experiment
3 (solid—training data, dashed—test data).

is increasing though the error rate over training data is perfect.
If the number of neuron is less than five, with the decreasing of
the number of neurons, the error rates over both training data
and test data are increasing. Therefore five is the appropriate
number of pattern layer neurons.

As a matter of fact, the ten face images of each person cor-
respond to five head positions, where each position has two im-
ages (but the two images are not exactly the same). The proba-
bility density function underlying in the ten samples can there-
fore be approximated using just five samples. Employing less
or more than five samples has the potential of underfitting or
overfitting. Our experiment results are in coincidence with the
above analysis. More importantly, our algorithm has found the
five most representative samples.

V. CONCLUDING REMARKS

Despite considerable progress in probabilistic neural net-
works, there has been a room for improvement as far as network
structure determination is concerned. In this study, a supervised
PNN structure determination algorithm has been proposed.
A crucial feature of this supervised learning algorithm is that
the requirements on the network size and classification error
rate are directly incorporated in the process of determining
network structure. As a consequence, the proposed algorithm
often leads to a fairly small network structure with satisfactory
classification accuracy.
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