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Abstract

It can be shown that by replacing the Sigmoid activation function often
used in neural networks with an exponential function, a neural network can
be formed which computes nonlinear decision boundaries. This technique
yields decision surfaces which approach the Bayes optimal under certain
conditions. There is a continuous control of the linearity of the decision
boundaries -- from linear for small training sets to any degree of
nonlinearity justified by larger training sets.

A four-layer neural network of the type proposed can map any input
pattern to any number of classifications. The input variables can be either
continuous or binary. Modification of the decision boundaries based on new
data can be accomplished in real-time simply by defining a set of weights
equal to the new training vector.

The decision boundaries can be implemented using analog "neurons" which
operate entirely in parallel. The organization proposed takes into account
the pin limitations of neural net chips of the future. A chip can contain
any number of neurons which store training data, but the number of pins
needed is limited to the dimension of the input vector plus the dimension of
the output vector plus some few for power and control. Provision could
easily be made for paralleling the outputs of more than one such chip.

By a change in architecture, these same components could be used as
associative memories, to compute nonlinear multivariate regression surfaces,
or to compute a posteriori probabilites of an event.

Motivation

To achieve the tremendous speed advantage promised by the parallel
architecture of neural networks, actual hardware "neurons" will have to be
manufactured in huge numbers. This can be accomplished by a) development of
special semiconductor integrated circuits (very large scale integration or
even wafer scale integration) [1], or b) development of optical computer
components (making use of the inherently parallel properties of optics).

It is desirable to develop a standard component which can be used in a
variety of applications. A component which estimates probability density
functions (PDFs) can be used to form networks which can be used to map input
patterns to output patterns, to classify patterns, to form associative
memories, and to estimate probability density functions. The PDF estimator
proposed imposes a minimum of restrictions on the form of the density. It
can have many modes (or regions of activity).
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The Bayes Strategy for Pattern Classification

An accepted norm for decision rules or strategies used to classify
patterns is that they do so in such a way as to minimize the "expected
risk.” Such strategies are called "Bayes strategies" [2] and may be applied
to problems containing any number of categories.

Consider the two-category situation in which the state of nature 6 is
known to be either 6y or 6g. If it is desired to decide whether 6=64 or
8=6p based on a set of measurements represented by the p-dimensional vector
Xt = | Xy .. X5 .. Xp], the Bayes decision rule becomes

d(x)

"

68y if halafa(X) > hplgfp(X)

6 if halafa(X) < hglpfp(X)

(1)
d(X)

where fp(X) and fg(X) are the probability density functions for categories
8y and Bg respectively, 1, is the loss function associated with the decision
d(X) = 6g vhen 8=65, lp is the loss associated with the decision d(X) = 6y
when 6=6g (the losses associated with correct decisions are taken to be
equal to zero), hp is the a priori probability of occurrence of patterns
from category 6,, and hg = 1-h, is the a priori probability that 6=6g. Thus
the boundary between the region in which the Bayes decision d(X)=64 and the
region in which d(X)=6g is given by the equation

£A(X) = K £5(X) (2)

K = hBlB / hA]'A . (3)

where

Note that in general the two-category decision surface defined by (2)
can be arbitrarily complex, since there is no restriction on the densities
except those conditions which all probability density functions must
satisfy; namely, that they are everywhere non-negative, that they are
integrable, and that their integrals over all space equal unity. A similar
decision rule can be stated for the many-category problem (see reference

(4.

The key to using eq. 2 is the ability to estimate PDFs based on training
patterns. Often the a priori probabilities are known or can be estimated
accurately, and the loss functions require subjective evaluation. However,
if the probability densities of the patterns in the categories to be
separated are unknown, and all that is given is a set of training patterns
(training samples), then it is these samples which provide the only clue to
the unknown underlying probability densities.

In his classic paper, Parzen [3] showed that a class of PDF estimators
asymptotically approach the underlying parent density provided that it is
smooth and continuous. The particular estimator used in this study is:

m
£ (X) = 1 1 exp | - (X = Xai)"X - Xa5) [, (4)
A (2m)P/ 2P M £ 4 262
1=
where 1 = pattern number,
X541 = ith training pattern from category 6, and
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o is a "smoothing parameter".

It will be noted that fj(X) is simply the sum of small multivariate
Gaussian distributions centered at each of the training samples. However
the sum is not limited to being Gaussian. It can, in fact, approximate any
smooth density function.

Figure 1 illustrates the effect of ¢ on f;(X) in the case in which the
independent variable X is one-dimensional. The density is plotted from (4)
for four values of o with the same 5 training samples in each case. A value
of 0=0.1 causes the estimated parent density function to have 5 distinct
modes corresponding to the 5 training samples. 0=0.2 brings about a greater
degree of interpolation between points, but the modes remain distinct. With
0=0.5, f5(X) has a single mode and a shape approximating that of the
Gaussian distribution. The value of 0=1.0 causes some flattening of the
density function, with spreading out of the tails.

Equation (4) can be used directly with the decision rule expressed by
(1). Computer programs have been written to perform pattern-recognition
tasks using these equations, and excellent results have been obtained on
practical problems. However, two limitations are inherent in the use of
(4). First, the entire training set must be stored and used during testing;
and second, the amount of computation necessary to classify an unknown point
is proportional to the size of the training set. At the time when this
approach was first proposed and used for pattern recognition [4-7], both of
these considerations severely limited the direct use of (4) in real-time or
dedicated applications. Approximations had to be used instead. Computer
memory has since become sufficiently dense and inexpensive that storage of
the training set is no longer an impediment, but computation time with a
serial computer still is a constraint. Now with large scale neural networks
with massively parallel computing capability on the horizon, the second
impediment to the direct use of (4) will soon be lifted.

The Probabalistic Neural Network

There is a striking similarity between a parallel analog network which
can be used to classify patterns using nonparametric estimators of a PDF and
feed-forward neural networks used with other training algorithms. Figure 2
shows a "neural network" organization for classification of input patterns X
into 2 categories.

In Figure 2 the input units are merely distribution units which supply
the same voltage values to all of the pattern units. The pattern units
(shown in more detail in Fig. 3) each form a dot product of the input
pattern vector X with a weight vector Wj, Z; = X*W; , and then perform a
nonlinear operation on Z; before outputting its activation level to the
summation unit. Instead of the Sigmoid Activation Function commonly used
for back-propagation [8], the nonlinear operation used here is
exp [(Z4 —1)/051. Assuming that both X and V; are normalized to unit
length, this is equivalent to using

exp [ - (V; -X)(V; -X) / 202 ]

The summation units simply sum the inputs from the pattern units which
correspond to the category from which the training pattern was selected.

1-527



PROBABNLITY DENSITY 1.(!)

) =03

T g(23) = exp[(2y -1)/0% ]
@ o=I0 PATTERN {X)
Fig. 1 The smoothing effect of o

Fig. 3 The Pattern Unit
on an estimated PDF from 5 samples.

INPUT
UNITS
Figure 2
Organization for PATTERN
Classification UNITS
of Patterns into
Categories.
SUMMATION
UNITS
OUTPUT
UNITS
+-» Al +’Aj.
- - Bi -+ Bj

1-528



f;\l X) fB(x) sznczm CORRECT ON NORMALS

o 100 | T TIX e
reen 0% < - - -
20 -
C ” al%
Z 80 / R ¢
S <PERCENT CCRRECT e
& ON ABNORMALS MATCHED-FILTER
2 O\ SOLUTION WITH -
e “NEAREST-NEIGHSOR COMPUTED
5 6o} DECISION RULE THRESKOLD -
u
% 50 |- ~
w
30 -
w
&
T 30~ —
+1 o
20+ -
i -1 10 - -
ol Lty v bt e bt ]
01234567890 12 14 16 W 20 S0 100
SMOQTHING PARAMETER o
BINARY OUTPUT
Fig. 5 Percentage of testing samples
classified correctly versus
Figure 4 An Output Unit smoothing parameter o.

The decision units are 2-input neurons, as shown in Figure 4, which
produce a binary output. They have only a single variable weight, C; ,
wvhere

c - _ bilpi myy (5)

= " —_—

i hpilai DBy
and
npj = number of training patterns from category Ag ,
ngj = number of training patterns from category Bj .

Note that C; is the ratio of a priori probabilities, divided by the ratio
of samples, and multiplied by the ratio of losses. In any problem in which
the numbers of training samples from categories A and B are taken in
proportion to their a priori probabilities, C; = - lp; / lpi. This final
ratio cannot be determined from the statistics of the training samples, but
only from the significance of the decision. If there is no particular
reason for biasing the decision, C; may simplify to -1 (an inverter).

Training of the network is accomplished by setting each X pattern in the
training set equal to the W; weight vector in one of the pattern units, and
then connecting the pattern unit’s output to the appropriate summation unit.
A separate neuron is required for every training pattern. As is indicated
in Fig. 2, the same pattern units can be grouped by different summation
units to provide additional pairs of categories and additional bits of
information in the output vector.
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Consistency of the Density Estimates

The accuracy of the decision boundaries is dependent on the accuracy with
which the underlying PDFs are estimated. Parzen [3] and Murthy [9] have
shown how one may construct a family of estimates of f(X) which include the
estimator of (4) and which are consistent (asymptotically approach identity
with the PDF) at all points X at which the density function is continuous,
providing o=o(n) is chosen as a function of n such that

lim o(n) = 0 and 1lim no(n) = = . (6)
n-e n-e

Several other functions (Parzen windows) could also be used which have
these same properties and would result in decision surfaces which are also
asymptotically Bayes optimal. For some of these the only difference in the
network would be the form of the nonlinear activation function in the
pattern unit. This leads one to suspect that the exact form of the
activation function is not critical to the usefulness of the network.

Limiting Conditions as ¢90 and as o¥=

It has been shown [4] that the decision boundary defined by equation (2)
varies continuously from a hyperplane when ¢ = ® to a very nonlinear
boundary representing the nearest neighbor classifier when ¢3%0. The nearest
neighbor decision rule has been investigated in detail by Cover and Hart
[10]. Hecht-Nielsen [11] has proposed a neural network which implements
this decision rule.

In general, neither limiting case provides optimal separation of the two
distributions. A degree of averaging of nearest neighbors, dictated by the
density of training samples, provides better generalization than basing the
decision on a single nearest neighbor. The network proposed is similar in
effect to the k-nearest neighbor classifier.

Reference [12] contains an involved discussion of how one should choose a
value of the smoothing parameter, o, as a function of the dimension of the
problem, p, and the number of training patterns, n. However, it has been
found that in practical problems it is not difficult to find a good value of
g, and that the misclassification rate does not change dramatically with
small changes in o.

Reference [5] describes an experiment in which electrocardiograms were
classified as normal or abnormal using the 2-category classification of
equations (1) and (4). There were, in this case, 249 patterns available for
training and 63 independent cases available for testing. Each pattern was
described by a 46-dimensional pattern vector (but not normalized to unity
length). Figure 5 shows the percentage of testing samples classified
correctly versus value of the smoothing parameter, o¢. Several important
conclusions are immediately obvious. Peak diagnostic accuracy can be
obtained with any o between 4 and 6; the peak of the curve is sufficiently
broad that finding a good value of o experimentally is not at all difficult.
Furthermore, any o in the range from 3 to 10 yields results only slightly
poorer than those for the best value, and all values of ¢ from 0 to = give
results which are significantly better than those to be expected from
classification by chance.
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The only parameter to be tweaked in the proposed system is the smoothing
parameter, o. Because it controls the scale factor of the exponential
activation function, its value should be the same for every pattern unit.

An Associative Memory

In the human thinking process, knowledge accumulated for one purpose is
often used in different ways for different purposes. Similarly, in this
situation, if the decision category, but not all of the input variables were
known, then the known input variables could be impressed on the network for
the correct category and the unknown input variables could be varied to
maximize the output of the network. These values represent those most
likely to be associated with the known inputs. If only one parameter were
unknown, then the most probable value of that parameter could be found by
ramping though all possible values of the parameter and choosing the one
which maximized the PDF. If several parameters are unknown, this may be
impractical. 1In this case, one might be satisfied with finding the closest
mode of the PDF. This could be done by the method of steepest ascent.

A more-general approach to forming an associative memory is to avoid
making a distinction between inputs and outputs. By concatenating the X
vector and the Y vector into one longer measurement vector Z, a single
probabalistic network can be used to find the global PDF, £(Z). This PDF
may have many modes clustered at various locations on the hypersphere. To
use this network as an associative memory, one impresses on the inputs of
the network those parameters which are known, and allows the rest of the
parameters to relax to whatever combination maximizes f£(Z), which occurs at
the nearest mode.

Discussion

The most obvious advantage of this network is that training is trivial
and instantaneous. It can be used in real time because as soon as one
pattern representing each category has been observed, the network can begin
to generalize to nev patterns. As additional patterns are observed and
stored into the net, the generalization will improve and the decision
boundary can get more complex.

Other characteristics of this network are: 1) The shape of the decision
surfaces can be made as complex as necessary, or as simple as desired, by
proper choice of the smoothing parameter o. 2) The decision surfaces can
approach Bayes-optimal. 3) It tolerates erroneous samples. 4) It works for
sparse samples. 5) It is possible to make o smaller as n gets larger
without retraining. 6) For time-varying statistics , old patterns can be
overwritten with new patterns.

A practical advantage of the proposed network is that, unlike many
networks, it operates completely in parallel without a need for feedback
from the individual neurons back to the inputs. For systems involving
thousands of neurons, and if the number is too large to fit into a single
chip, such feedback paths would quickly exceed the number of pins available
on a chip. However, with the proposed network, any number of chips could be
connected in parallel to the same inputs if only the partial sums from the
summation units are run off-chip. There would be only 2 such partial sums
per output bit.
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The probabalistic neural network proposed here, with variations, can be
used for mapping, classification, associative memory, or the direct
estimation of a posteriori probabilities.

Acknowledgements and Historical Perspective

Pattern classification using the equations in this paper was first
proposed while the author was a graduate student of Professor Bernard Widrow
at Stanford University in the 1960s. At that time, direct application of
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Advances in integrated circuit technology that allow complex computations to
be addressed by a custom chip prompt the reconsideration of this concept.
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