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Abstract

Summarising a high dimensional data set with a low dimensional embedding is a standard approach

for exploring its structure. In this paper we provide an overview of some existing techniques for

discovering such embeddings. We then introduce a novel probabilistic interpretation of principal

component analysis (PCA) that we term dual probabilistic PCA (DPPCA). The DPPCA model has

the additional advantage that the linear mappings from the embedded space can easily be non-

linearised through Gaussian processes. We refer to this model as a Gaussian process latent variable

model (GP-LVM). Through analysis of the GP-LVM objective function, we relate the model to

popular spectral techniques such as kernel PCA and multidimensional scaling. We then review a

practical algorithm for GP-LVMs in the context of large data sets and develop it to also handle

discrete valued data and missing attributes. We demonstrate the model on a range of real-world and

artificially generated data sets.

Keywords: Gaussian processes, latent variable models, principal component analysis, spectral

methods, unsupervised learning, visualisation

1. Introduction

Machine learning is often split into three categories: supervised learning, where a data set is split

into inputs and outputs; reinforcement learning, where typically a reward is associated with achiev-

ing a set goal, and unsupervised learning where the objective is to understand the structure of a data

set. One approach to unsupervised learning is to represent the data, Y, in some lower dimensional

embedded space, X. In a probabilistic model the variables associated with such a space are often

known as latent variables. In this paper our focus will be on methods that represent the data in this

latent (or embedded, we shall use the terms interchangeably) space.

Our approach is inspired by probabilistic latent variable models. It has roots in previously pro-

posed approaches such as density networks (MacKay, 1995) where a multi-layer perceptron (MLP)

is used to provide a mapping from the latent projections, X, to the observed data, Y. A prior distri-

bution is placed over the latent-space and the latent-space’s posterior distribution is approximated

by sampling. Density networks made use of the MLP to perform the mapping, Bishop et al. (1996)

replaced the MLP with a radial basis function (RBF) network with the aim of decreasing the training

time for the model. This model evolved (Bishop et al., 1998) into the generative topographic map-

ping (GTM) where the latent-space was now sampled on a uniform grid, and importance sampling

is reinterpreted as the fitting of a mixture model via the expectation-maximisation (EM) algorithm.
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This allows the points in the latent-space to be laid out on a uniform grid1 (rather than sampled).

This grid layout is shared with the self organising map (SOM) (Kohonen, 1990) and in Bishop et al.

(1997) it was argued that the GTM provides a principled alternative to the self organising map.

The models outlined above are typically designed to embed a data set in two dimensions, they

rely on either importance sampling, or a grid of points in the latent-space to achieve this embedding,

this causes problems when the dimensionality of the latent-space increases. Point representations

of the latent-space are useful because they allow for non-linear models: each point is easy to propa-

gate through the non-linear mapping to the data-space. These non-linear mappings are designed to

address the weaknesses in visualising data sets that arise when using standard statistical tools that

rely on linear mappings, such as principal component analysis (PCA) and factor analysis (FA): with

a linear mapping it may not be possible to reflect the structure of the data through a low dimensional

embedding.

Principal component analysis seeks a lower dimensional sub-space (typically represented by its

orthonormal basis) in which the projected variance of the data is maximised. If a two dimensional

sub-space is sought then the projections may be visualised; but it may be necessary to include more

latent dimensions to capture the variability (and therefore hopefully, but by no means necessarily the

structure) in the data. Principal component analysis also has a latent variable model representation

(Tipping and Bishop, 1999) which is strongly related to Factor Analysis (FA) (Bartholomew, 1987;

Basilevsky, 1994). Both are linear-Gaussian latent variable models, but FA allows for a richer noise

model than PCA (for recent work on non-linear factor analysis see Honkela and Valpola, 2005).

Naturally statisticians have not constrained themselves to linear methods when visualising data

and in the next section we shall briefly review multidimensional scaling and related techniques that

rely on proximity data.

1.1 Multidimensional Scaling and Kernel PCA

We have already mentioned several visualisation techniques which rely on learning a mapping from

a latent-space (the embedded space) to the data-space. In this section we will briefly review methods

that use proximity data to obtain a visualisation or embedding. Broadly speaking these methods

are all variants or enhancements of the technique known as multidimensional scaling (MDS). In

these methods, rather than observing data directly, information about the data set is summarised

in an N ×N matrix of either similarities or dissimilarities. Examples include distance matrices (a

dissimilarity matrix) and kernel matrices (a similarity matrix). Each method we review provides

answers to at least one of two questions.

1. How is the proximity matrix compiled?

2. How is the embedding developed from the proximity matrix?

Most of the variants of multidimensional scaling (Mardia et al., 1979) appear to focus on the sec-

ond question. In classical MDS (Torgerson, 1952) an eigendecomposition of the centred similarity

matrix2 is performed. This is sometimes viewed as minimising a particular stress function where

distances in the visualised space are matched to those in the data space. Attempting to preserve these

distances is known as metric MDS, in non-metric MDS only the ordering of distances is preserved.

1. When sampling techniques are used the latent points will be in random positions.

2. When the data is presented in the form of a distance or dissimilarity matrix a simple conversion may be performed to

obtain a similarity matrix.

1784



PROBABILISTIC NON-LINEAR PCA

There are strong connections between MDS and kernel PCA (Schölkopf et al., 1998), some

of which are formalised in Williams (2001). Kernel PCA also provides an answer to the first

question—the suggestion is that the proximity data is provided by a positive semi-definite Mercer

kernel that is computed on the data, Y. The use of this kernel implies the existence of a non-linear

mapping3 from the data-space to the latent-space (recall that the GTM and density networks per-

form the non-linear mapping in the opposite direction). The existence of this function is important

as it allows data points which were not in the training set to be mapped to a position in the latent

space without re-solving the eigenvalue problem. However, for both kernel PCA and MDS meth-

ods, it is not obvious how to project back from the latent-space to the data-space (this is known as

the pre-image problem). Neither is it clear how to handle missing data4 as the proximity data matrix

cannot normally be computed consistently if a particular attribute is not available.

Sammon mappings (Sammon, 1969) also attempt to match the embedded distances between

points with the distances in the observed space (therefore they are a form of MDS). They suffer

from the same weakness as MDS in that projection of data points which were not in the original

data set can be computationally demanding, i.e. despite their name they do not provide an explicit

mapping between the data and latent-space. The lack of a mapping was addressed by the Neuroscale

algorithm of Lowe and Tipping (1996) a version of which was also suggested for MDS (Tipping,

1996).

Other recent work of importance which has focussed on forming the proximity matrix includes

Isomap (Tenenbaum et al., 2000), where an approximation to geodesic distance is used and spectral

clustering (see e.g. Shi and Malik, 2000) where the proximity data is derived from a graph.

In Table 1 we have summarised some of the properties of these algorithms/models. We have

also included the model that is the subject of this paper, the Gaussian process latent variable model

(GP-LVM).

In the remainder of this paper we will introduce the GP-LVM from the latent variable model

perspective. The GP-LVM belongs to the same class of methods as density networks and the GTM,

however there are also connections to classical MDS and kernel PCA. In particular, in the next sec-

tion, we show that the approaches share an objective function. In Section 3 we will cover some of

the algorithmic issues that arise with the model. The framework within which our GP-LVM is de-

veloped makes it straightforward to modify the approach for data for which a Gaussian noise model

is not appropriate (such as binary or ordinal), this is discussed in Section 5. Handling of miss-

ing data attributes is also straightforward (Section 6). The algorithm’s characteristics are explored

empirically in Section 7.

2. Gaussian Process Latent Variable Models

In this paper we present the Gaussian process latent variable model. As we shall see, the model is

strongly related to many of the approaches that we have outlined above. There is a point represen-

tation in the latent-space (as there was for the GTM and density networks) and we will minimise

an objective function that can be related to classical MDS and kernel PCA (see Section 2.6). Our

starting point, however, will be a novel probabilistic interpretation of principal component analysis

3. A good reference which introduces Mercer kernels is Schölkopf and Smola (2001) Chapter 2.

4. Here, by missing data, we mean missing attributes which would normally be used in computing the proximity data

matrix. For proximity data methods missing data can also mean elements missing from the proximity matrix, we do

not discuss this case.
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Proximity X → Y Y → X Non-linear Probabilistic Convex

PCA I Y Y I Y

FA Y Y Y Y

Kernel PCA Y Y Y Y

MDS Y Y

Sammon mapping Y Y

Neuroscale Y Y Y

Spectral clustering Y Y Y

Density Networks Y Y Y

GTM Y Y Y

GP-LVM I Y Y Y

Table 1: Overview of the relationship between algorithms. A ‘Y’ indicates the algorithm exhibits

that property, an ‘I’ indicates that there is an interpretation of the algorithm that exhibits

the associated property. The characteristics of the algorithm are: proximity: is the method

based on proximity data? X → Y: does the method lead to a mapping from the embedded

to the data-space? Y → X: does the method lead to a mapping from data to embedded

space? Non-linear: does the method allow for non-linear embeddings? Probabilistic: is

the method probabilistic? Convex: algorithms that are considered convex have a unique

solution, for the others local optima can occur.

which we will refer to as dual probabilistic principal component analysis (DPPCA). Dual proba-

bilistic principal component analysis turns out to be a special case of the more general class of

models we refer to as GP-LVMs.

2.1 Latent Variable Models

Typically we specify a latent variable model relating a set of latent variables, X ∈ ℜ N×q, to a set of

observed variables, Y ∈ ℜ N×D, through a set of parameters. The model is defined probabilistically,

the latent variables are then marginalised and the parameters are found through maximising the

likelihood.

Here we consider an alternative approach: rather than marginalising the latent variables and

optimising the parameters we marginalise the parameters and optimise the latent variables. We will

show how the two approaches can be equivalent: for a particular choice of Gaussian likelihood and

prior both approaches lead to a probabilistic formulation of principal component analysis (PCA). In

the next section we will review the standard derivation of probabilistic PCA (Tipping and Bishop,

1999), then we will show how an alternative probabilistic formulation may be arrived at (see also

Appendix A).

2.2 Probabilistic PCA

Probabilistic PCA (PPCA) is a latent variable model in which the maximum likelihood solution

for the parameters is found through solving an eigenvalue problem on the data’s covariance matrix
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(Tipping and Bishop, 1999). Let’s assume that we are given a set of centred D-dimensional data

Y = [y1 . . .yN ]T. We denote the q-dimensional latent variable associated with each data point by xn.

The relationship between the latent variable and the data point is linear with noise added,

yn = Wxn +ηn

where the matrix W ∈ ℜ D×q specifies the linear relationship between the latent-space and the data

space and the noise values, ηn ∈ ℜ D×1, are taken to be an independent sample from a spherical

Gaussian distribution5 with mean zero and covariance β−1I,

p(ηn) = N
(

ηn|0,β−1I
)

.

The likelihood for a data point can then be written as

p(yn|xn,W,β) = N
(

yn|Wxn,β−1I
)

. (1)

To obtain the marginal likelihood we integrate over the latent variables,

p(yn|W,β) =
Z

p(yn|xn,W,β) p(xn)dxn, (2)

which requires us to specify a prior distribution over xn. For probabilistic PCA the appropriate prior

is a unit covariance, zero mean Gaussian distribution,

p(xn) = N (xn|0,I) .

The marginal likelihood for each data point can then be found analytically (through the marginali-

sation in (2)) as

p(yn|W,β) = N
(

yn|0,WWT +β−1I
)

.

Taking advantage of the independence of the data points, the likelihood of the full data set is given

by

p(Y|W,β) =
N

∏
n=1

p(yn|W,β) . (3)

The parameters W can then be found through maximisation of (3). Tipping and Bishop (1999)

showed that there is an analytic solution to this maximisation. This solution is achieved when the

matrix W spans the principal sub-space of the data. This model therefore has an interpretation as a

probabilistic version of PCA.

Marginalising the latent variables and optimising the parameters via maximum likelihood is

a standard approach for fitting latent variable models. In the next section we will introduce an

alternative approach. Instead of optimising parameters and marginalising latent variables we will

suggest the dual approach of marginalising parameters, W, and optimising with respect to latent

variables, X. For a particular choice of prior distribution on W this probabilistic model will also

turn out to be equivalent to PCA.

5. We use the notation N (z|µ,Σ) to denote a Gaussian distribution over z with mean µ and covariance Σ.
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2.3 Probabilistic PCA through Latent Variable Optimisation

In the Bayesian framework parameters, such as W, are viewed as random variables. The Bayesian

methodology requires a suitable choice of prior for W, and then proceeds to treat the parameters

as latent variables. A simple choice of prior that is conjugate to (1) would be a spherical Gaussian

distribution:

p(W) =
D

∏
i=1

N (wi|0,I)

where wi is the ith row of the matrix W. Unfortunately6 marginalisation of both W and X =
[x1 . . .xN ]T is intractable. If we wish to proceed without turning to approximate methods we are

faced with a choice over what to marginalise. The natural choice seems to be to marginalise X ∈
ℜ N×q as typically it will be of larger dimension7 than W ∈ ℜ D×q. In practice though, it turns out

that the two approaches are equivalent.

Marginalisation of W is straightforward due to our choice of a conjugate prior. The resulting

marginalised likelihood takes the form

p(Y|X,β) =
D

∏
d=1

p(y:,d |X,β) , (4)

where we use y:,d to represent the dth column of Y and

p(y:,d |X,β) = N
(

y:,d |0,XXT +β−1I
)

. (5)

We now look to optimise with respect to the latent variables. As might be expected from the duality

of (3) and (4), this optimisation is very similar to that presented in Tipping and Bishop (1999). Our

objective function is the log-likelihood,

L = −
DN

2
ln2π−

D

2
ln |K|−

1

2
tr
(

K−1YYT
)

, (6)

where

K = XXT +β−1I.

The gradients of (6) with respect to X may be found (Magnus and Neudecker, 1999) as,

∂L

∂X
= K−1YYTK−1X−DK−1X,

a fixed point where the gradients are zero is then given by

1

D
YYTK−1X = X.

In Appendix B we show how the values for X which maximise the likelihood are given by

X = ULVT

6. If it were possible to marginalise both the parameters and latent variables analytically we could use Bayes factors to

perform model selection (see, for example, Bishop, 1999).

7. The matrix X will be of larger dimension than W unless D > N, i.e. there are more features than data points.
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where U is an N×q matrix whose columns are the first q eigenvectors of YYT, L is a q×q diagonal

matrix whose jth element is l j =
(

λ j −
1
β

)− 1
2

where λ j is the eigenvalue associated with the jth

eigenvector of D−1YYT and V is an arbitrary q×q rotation matrix. Here, and in what follows, we

will assume that these eigenvalues are ordered according to magnitude with the largest being placed

first. Note that the eigenvalue problem we have developed can easily be shown to be equivalent

to that solved in PCA (see Appendix C), indeed the formulation of PCA in this manner is a key

step in the development of kernel PCA (Schölkopf et al., 1998) where the matrix of inner products

YYT is replaced with a kernel (see Tipping (2001) for a concise overview of this derivation). Our

probabilistic PCA model shares an underlying structure with that of Tipping and Bishop (1999) but

differs in that where they optimise we marginalise and where they marginalise we optimise.

2.4 Gaussian Processes

Gaussian processes (O’Hagan, 1992; Williams, 1998) are a class of probabilistic models which

specify distributions over function spaces. While a function is an infinite dimensional object, a dis-

tribution over the function space can be considered by focussing only on points where the function is

instantiated. In Gaussian processes the distribution over these instantiations is taken to be Gaussian.

Modelling with Gaussian processes consists of first specifying a Gaussian process prior. Usually

a Gaussian distribution is parameterised by a mean and a covariance. In the case of Gaussian pro-

cesses the mean and covariance must be functions of the space on which the process operates. Typi-

cally the mean function is taken to be zero, while the covariance function is necessarily constrained

to produce positive definite matrices.8

Consider a simple Gaussian process prior over the space of functions that are fundamentally

linear, but are corrupted by Gaussian noise of variance β−1I. The covariance function, or kernel, for

such a prior is given by

k (xi,x j) = xT
i x j +β−1δi j, (7)

where xi and x j are vectors from the space of inputs to the function and δi j is the Kronecker delta. If

these inputs were taken from our embedding matrix, X, and the covariance function was evaluated

at each of the N points we would recover a covariance matrix of the form

K = XXT +β−1I, (8)

where the element at the ith row and jth column of K is given by (7). This is recognised as the

covariance associated with each factor of the marginal likelihood for dual probabilistic PCA (5).

The marginal likelihood for dual probabilistic PCA is therefore a product of D independent Gaussian

processes. In principal component analysis we are optimising the parameters and input positions of

a Gaussian process prior distribution where the (linear) covariance function for each dimension is

given by K.

2.5 Gaussian Process Latent Variable Models

The dual interpretation of probabilistic PCA described above points to a new class of models which

consist of Gaussian process mappings from a latent space, X, to an observed data-space, Y. Dual

8. The positive definite constraint implies that these covariance functions are also valid Mercer kernels. It is therefore

common to refer to the covariance function as a kernel. In this paper we shall use the two terms interchangeably.
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probabilistic PCA is the special case where the output dimensions are a priori assumed to be linear,

independent and identically distributed. However, each of these assumptions can be infringed to ob-

tain new probabilistic models. Independence can be broken, for example, by allowing an arbitrary

rotation on the data matrix Y, the ‘identically distributed’ assumption can be broken by allowing

different covariance functions for each output dimension.9 In this paper we focus on the third as-

sumption, linearity. By replacing the inner product kernel with a covariance function that allows

for non-linear functions we can obtain a non-linear latent variable model. Due to the close relation-

ship with the linear model, which has an interpretation as probabilistic PCA, such a model can be

interpreted as a non-linear probabilistic version of PCA.

2.6 Proximity Data and the GP-LVM

We indicated in the introduction that the GP-LVM has connections with proximity data based meth-

ods such as kernel PCA and classical MDS. These connections are through a unifying objective

function which embraces all three models. In the next section we briefly introduce this objective

function.

2.6.1 A UNIFYING OBJECTIVE FUNCTION

Classical MDS and kernel PCA rely on proximity data, such as similarity matrices. Let’s denote the

matrix of similarities for these methods by S. For the case of positive definite10 similarity measures

the matrix S can be interpreted as a covariance (or covariance function). The cross entropy between

this Gaussian and the Gaussian process whose marginal likelihood was given in (4) is

−
Z

N (z|0,S) lnN (z|0,K)dz =
N

2
ln2π+

1

2
ln |K|+

1

2
tr
(

K−1S
)

. (9)

If we substitute S = D−1YYT we see, up to a scaling of −D, that (9) becomes identical to (6).

Taking K = XXT +β−1I and minimising (9) with respect to X leads to a solution (Appendix B) of

the form

X = ULVT
.

Where the matrix U ∈ ℜ N×q has columns which are the eigenvectors of S. For the specific case11

where S = D−1YYT the optimisation is identical to that of dual probabilistic PCA. However in the

more general case where S is either a kernel function or simply a positive definite matrix of simi-

larities kernel PCA and classical MDS are recovered. We also note that the entropy of N (z|0,S) is

constant in X, we therefore may subtract it from our objective function without affecting the opti-

misation with respect to X. The resulting objective function is then the Kullback-Leibler divergence

(Kullback and Leibler, 1951) between the two Gaussians,

KL(N (z|0,S) ||N (z|0,K)) = −
Z

N (z|0,S) ln
N (z|0,K)

N (z|0,S)
dz

=
1

2
ln |K|−

1

2
ln |S|+

1

2
tr
(

SK−1
)

−
N

2
.

9. A very simple example of this idea would be to allow different noise distributions on each output direction. The

probabilistic model underlying factor analysis allows this flexibility (see, for example, Tipping and Bishop 1999).

10. The analysis that follows can be extended to positive semi-definite S by adding a diagonal term, σ2I to S and consid-

ering the limit as σ2 → 0.

11. In the MDS literature this is also sometimes referred to as principal co-ordinate analysis.
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With appropriate choice of S and K this is a valid objective function for PCA, kernel PCA, classical

MDS and the GP-LVM. For kernel PCA S is a ‘non-linear kernel’ and K is the ‘linear kernel’. For

the GP-LVM S is the ‘linear kernel’ whereas K is a ‘non-linear kernel’. In practice this means that

the GP-LVM is harder to optimise (solving an eigenvalue problem is no longer sufficient) but the

GP-LVM maintains a probabilistic interpretation that kernel PCA doesn’t have.

The methods overlap when both K and S are based on inner product matrices (as outlined for

DPPCA above).

Note that when the similarity measure, S, is not of the form of the inner product kernel the

objective function no longer has an interpretation as a likelihood. Therefore our approach is not a

probabilistic interpretation of multidimensional scaling: we refer the reader to MacKay and Zinnes

(1986) and Oh and Raftery (2001) for details of probabilistic MDS methods.

2.6.2 A NOTE ON REVERSING THE KULLBACK-LEIBLER DIVERGENCE

The Kullback-Leibler divergence is an asymmetric measure of distribution divergence so it is natural

to consider the effect of reversing the role of the distributions and taking expectations under the

distribution governed by K rather than that governed by S. For this special case, the reversed KL

divergence is very similar to the original, only all matrices K and S are now replaced with their

inverses. So the new objective function is

L =
1

2
ln |S|−

1

2
ln |K|+

1

2
tr
(

KS−1
)

−
N

2
,

The minimum can again be found through an eigenvalue problem, but now the retained eigenvalues

from K are the smallest, rather than the largest. In this respect the model leads to minor component

analysis.

3. Fitting a Non-linear GP-LVM

We saw in the previous section how PCA can be interpreted as a Gaussian process that maps latent-

space points to points in data-space. The positions of the points in the latent-space can be determined

by maximising the process likelihood with respect to X. It is natural, therefore, to consider alter-

native GP-LVMs by introducing covariance functions which allow for non-linear processes. The

resulting models will not, in general, be optimisable through an eigenvalue problem.

3.1 Optimisation of the Non-linear Model

In the previous section we saw for the linear kernel that a closed form solution could be obtained

up to an arbitrary rotation matrix. Typically, for non-linear kernels, there will be no such closed

form solution and there are likely to be multiple local optima. There is a wide choice of non-linear

covariance functions, some of which will be reviewed in Section 7.1. To use a particular kernel in

the GP-LVM we first note that gradients of (6) with respect to the latent points can be found through

first taking the gradient with respect to the kernel,

∂L

∂K
= K−1YYTK−1 −DK−1

, (10)

and then combining it with ∂K
∂xn, j

through the chain rule. As computation of (10) is straightforward

and independent of the kernel choice we only require that the gradient of the kernel with respect to
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the latent points can be computed. These gradients may then be used in combination with (6) in a

non-linear optimiser to obtain a latent variable representation of the data. Furthermore, gradients

with respect to the parameters of the kernel matrix may be computed and used to jointly optimise X

and the kernel’s parameters.

The log-likelihood is a highly non-linear function of the embeddings and the parameters. We are

therefore forced to turn to gradient based optimisation of the objective function. Scaled conjugate

gradient (Møller, 1993) is an approach to optimisation which implicitly considers second order

information while using a scale parameter to regulate the positive definitiveness of the Hessian at

each point. We made use of scaled conjugate gradient (SCG) for our experiments.

3.2 Illustration of GP-LVM via SCG

To illustrate a simple Gaussian process latent variable model we turn to the ‘multi-phase oil flow’

data (Bishop and James, 1993). This is a twelve dimensional data set containing data of three known

classes corresponding to the phase of flow in an oil pipeline: stratified, annular and homogeneous.

In Bishop et al. (1998), see also Section 7.2.1, this data was used to demonstrate the GTM algorithm.

The data set is artificially generated and therefore is known to lie on a lower dimensional manifold.

Here we use a sub-sampled version of the data (containing 100 data points) to demonstrate the fitting

of a GP-LVM with a simple radial basis function (RBF) kernel.

As we saw in Section 2.3, seeking a lower dimensional embedding with PCA is equivalent to a

GP-LVM model with a linear kernel,

k (xi,x j) = xT
i x j +β−1δi j,

where k (xi,x j) is the element in the ith row and the jth column of the kernel matrix K and δi j is the

Kronecker delta function.

For comparison we visualised the data set using several of the approaches mentioned in the

introduction. In Figure 1(a) we show the first two principal components of the data. Figure 1(b)

then shows the visualisation obtained using the GP-LVM with the RBF kernel,

k (xi,x j) = θrbf exp
(

−
γ
2

(xi −x j)
T (xi −x j)

)

+θbias +θwhiteδi j.

To obtain this visualisation the log likelihood was optimised jointly with respect to the latent posi-

tions X and the kernel parameters θbias, θwhite, θrbf and γ. The kernel was initialised using PCA to

set X, the kernel parameters were initialised as θrbf = γ= 1 and θwhite = θbias = exp(−1).
Note that there is a redundancy in the representation between the overall scale of the matrix X

and the value of γ. This redundancy was removed by penalising the log likelihood (6) with half the

sum of the squares of each element of X: this implies we were actually seeking a MAP solution12

with a Gaussian prior for X,

p(X) =
N

∏
n=1

N (xn|0,I) .

The likelihood for the RBF kernel was optimised using scaled conjugate gradient (see http:
//www.dcs.shef.ac.uk/~neil/gplvmapp/ for the code used).

12. Multiplying the likelihood by this prior leads to a joint distribution over data points and latent points. As a func-

tion of X this joint distribution is proportional to the posterior distribution p(X|Y), therefore maximising the joint

distribution is equivalent to seeking a MAP solution.

1792



PROBABILISTIC NON-LINEAR PCA

−2 −1 0 1 2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

(b)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

(c)

−8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

(d)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(e)

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

(f)

Figure 1: Visualisation of the Oil data with (a) PCA (a linear GP-LVM) and (b) A GP-LVM which

uses an RBF kernel, (c) Non-metric MDS using Kruskal’s stress, (d) Metric MDS using

the ‘Sammon Mapping’, (e) GTM and (f) kernel PCA. Red crosses, green circles and

blue plus signs represent stratified, annular and homogeneous flows respectively. The

greyscales in plot (b) indicate the precision with which the manifold was expressed in

data-space for that latent point.
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Method PCA GP-LVM Non-metric MDS Metric MDS GTM* kernel PCA*

Errors 20 4 13 6 7 13

Table 2: Errors made by the different methods when using the latent-space for nearest neighbour

classification in the latent space. Both the GTM and kernel PCA are given asterisks as the

result shown is the best obtained for each method from a range of different parameterisa-

tions.

We also provide visualisations of the data using the range of algorithms we reviewed in the intro-

duction. In Figure 1(c) we show the result of non-metric MDS using the stress criterion of Kruskal

(1964). Figure 1(d) shows the result from metric MDS using the criterion of Sammon (1969). To

objectively evaluate the quality of the visualisations we classified each data point according to the

class of its nearest neighbour in the two dimensional latent-space supplied by each method. The er-

rors made by such a classification are given in Table 2. For the GTM and kernel PCA some selection

of parameters is required. For GTM we varied the size of the latent grid between 3×3 and 15×15,

and the number of hidden nodes in the RBF network was varied between 4 and 36. The best result

was obtained for a 10×10 latent grid with 25 nodes in the RBF network, it is shown in Figure 1(e).

Note the characteristic gridding effect in the GTM’s visualisation which arises from the layout of

the latent points. For kernel PCA we used the RBF kernel and varied the kernel width between 0.01

and 100. The best result was obtained for a kernel width of 0.75, the associated visualisation is

shown in Figure 1(f).

The gradient based optimisation of the RBF based GP-LVM’s latent-space shows results which

are clearly superior (in terms of separation between the different flow phases) to those achieved

by the linear PCA model. The GP-LVM approach leads to a number of errors that is the smallest

of all the approaches used. Additionally the use of a Gaussian process to perform our ‘mapping’

means that we can express uncertainty about the positions of the points in the data space. For our

formulation of the GP-LVM the level of uncertainty is shared across all D dimensions and thus may

be visualised in the latent-space.

3.2.1 VISUALISING THE UNCERTAINTY

Recall that the likelihood (4) is a product of D separate Gaussian processes. In this paper we chose

to retain the implicit assumption in PCA that a priori each dimension is identically distributed by

assuming that the processes shared the same covariance/kernel function K. Sharing of the covari-

ance function also leads to an a posteriori shared level of uncertainty in each process. While it is

possible to use different covariance functions for each dimension and may be necessary when each

of the data’s attributes have different characteristics;13 the more constrained model implemented

here allows us to visualise the uncertainty in the latent space and will be preferred for our empirical

13. A simple example of this is given by Grochow et al. (2004) with the ‘scaled GP-LVM’, where a scale parameter is

associated with each dimension of the data.
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studies.14 In Figure 1(b) (and subsequently) the uncertainty is visualised by varying the intensity of

the background pixels. The lighter the pixel the higher the precision of the mapping.

3.2.2 COMPUTATIONAL COMPLEXITY

While the quality of the results seem good, a quick analysis of the algorithmic complexity shows

that each gradient step requires an inverse of the kernel matrix (see (10)), an O
(

N3
)

operation,

rendering the algorithm impractical for many data sets of interest. In the next section we will show

how a practical algorithm may be developed which circumvents this problem through maximising

a sparse approximation to (6).

4. A Practical Algorithm for GP-LVMs

So far we have shown that PCA can be viewed probabilistically from two perspectives, the first

involves integrating latent variables and the second optimising them. Using the latter perspective

we can develop a non-linear probabilistic version of PCA. Unfortunately the optimisation problem

we are faced with is then non-linear and high dimensional (Nq interdependent parameters/latent-

variables before we consider the parameters of the kernel). In this section we will describe an

approximation that relies on a forced ‘sparsification’ of the model. The resulting computational

advantages make visualisation of large numbers of data points practical. We base our approach on

the informative vector machine algorithm (Lawrence et al., 2003). As we will see in Section 5,

this machinery has the added advantage of allowing us to extend our non-linear PCA model to

non-Gaussian noise models.

4.1 Sparsification

Kernel methods may be sped up through sparsification, i.e. representing the data set by a subset, I,

of d points known as the active set. The remaining points are denoted by J. We make use of the

informative vector machine (IVM) which selects points sequentially according to the reduction in

the posterior process’s entropy that they induce: implementation details for the IVM algorithm are

given in Lawrence et al. (2003).

A consequence of this enforced sparsification is that optimisation of the points in the active set

(with d < N) proceeds much quicker than the optimisation of the full set of latent variables: the

likelihood of the active set is given by

p(YI) =
1

(2π)
D
2 |KI,I|

1
2

exp

(

−
1

2
tr
(

K−1
I,I YIY

T
I

)

)

, (11)

which can be optimised with respect to the kernel’s parameters and XI with gradient evaluations

costing O
(

d3
)

rather than the prohibitive O
(

N3
)

which would arise in the full model. The dominant

cost (asymptotically) becomes that of the active selection which is O
(

d2N
)

.

14. The two approaches, constraining each data direction to the same kernel and allowing each data dimension to have

its own kernel are somewhat analogous to the difference between probabilistic PCA, where each output data shares a

variance, and factor analysis, where each data dimension maintains its own variance.
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Algorithm 1 An algorithm for visualisation with a GP-LVM.

Require: A size for the active set, d. A number of iterations, T .

Initialise X through PCA.

for T iterations. do

Select a new active set using the IVM algorithm.

Optimise (11) with respect to the parameters of K (and optionally the latent positions XI) using

scaled conjugate gradients.

Select a new active set.

for each point not in active set j. do

Optimise (12) with respect to x j using scaled conjugate gradients.

end for

end for

4.2 Latent Variable Optimisation

We are interested in visualising all points in the data set, so while there is a significant speed ad-

vantage to selecting an active set, we still need to optimise the inactive points. Fortunately, active

set selection allows us to optimise each of these points independently as, given a fixed active set,

the individual data points are no longer interdependent. A standard result for Gaussian processes

(see e.g. Williams, 1998) is that a point, j, from the inactive set can be shown to project into the

data-space as a Gaussian distribution

p(y j|x j) = N
(

y j|µ j,σ
2
jI
)

(12)

whose mean is

µ j = YTK−1
I,I kI, j

where KI,I denotes the kernel matrix developed from the active set and kI, j made up of rows in I

from the jth column of K, and the variance15 is

σ2
j = k (x j,x j)−kT

I, jK
−1
I,I kI, j.

Gradients with respect to x j do not depend on other data in J, we can therefore independently

optimise the likelihood of each y j with respect to corresponding x j. Thus the full set XJ can be

optimised with one pass through the data. The active set is then reselected, and the process is

repeated again.

Algorithm 1 summarises the order in which we implemented these steps. The active set is

first selected, then the kernel parameters and active set positions are optimised. The active set is

then re-selected and then the latent positions of the points not in the active set are optimised. In

each iteration we perform two active set selections because the choice of active set is dependent on

both the kernel parameters and the latent point positions. Note also, that for some data sets (when

N >> d) it may not be necessary to optimise XI because the active set is regularly being reselected.

15. This fixed variance for all output dimensions is a consequence of sharing the same kernel for each output as was

discussed in Section 3.2.1.
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Figure 2: The Gaussian process as a latent variable model.

5. Alternative Noise Models

So far we have considered the GP-LVM for the particular case where we have Gaussian noise in

each dimension with variance β−1. In this section we consider extensions to this noise model. To

this end we firstly reformulate our Gaussian process so that it contains an additional latent variable

F = [f1 . . . fN ]T between X and Y.

p(Y|X,θ) =
Z N

∏
n=1

p(yn|fn) p(F|X,θ)dF. (13)

Thus far we have been considering the case where

p(yn|fn) =
D

∏
i=1

N
(

yni| fni,β−1
)

,

it is also straightforward to realise the slightly more general case where the variance is dependent

on both the data point and the output dimension,

p(yn|fn) =
D

∏
i=1

N
(

yni| fni,β−1
ni

)

. (14)

Our approach to different noise models will be to approximate them with a Gaussian noise model

of this form (see also Csató, 2002; Minka, 2001). The noise models we consider in this paper will

be independent across the dimensions,

p(yn|fn) =
D

∏
i=1

p(yni| fni) ,

giving approximations of the form

p(yni| fni) ≈ N
(

mni| fni,β−1
ni

)

.
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The approximation to the noise model leads to a Gaussian approximation to the posterior distribu-

tion,

q(F) ≈ p(F|X,Y) ,

where

q(F) = N
(

f|f̄,Σ
)

where f is a vector constructed by stacking the columns of F, and f̄ is constructed by stacking the

columns of the matrix F̄ =
[

f̄1 . . . f̄N

]T
. The covariance matrix has a block diagonal structure16

Σ =







Σ1 0 0

0
. . . 0

0 0 ΣD






.

It can be shown (see e.g. Csató 2002; Minka 2001) that the parameters of the approximation are

given by

βni =
νni

1−νniςni

(15)

mni =
gni

νni

+ f̄ni (16)

where ςni is nth diagonal element of Σi, gni = ∂
∂ f̄ni

lnZni and νni = g2
ni −2 ∂

∂ςni
lnZni where

Zni =
Z

p(yni| fni)q(F)dF. (17)

To prevent cluttering our notation we have not indicated that the approximation q(F) is typically

formed in a sequential manner: its parameters F̄ and Σ change as data points are incorporated.

This approach to approximating the posterior distribution is known as assumed density filtering (see

Maybeck, 1979, Chapter 12 and Minka, 2001, Chapter 3) .

6. Missing Values

In many applications attributes are missing for particular data points. The ability to handle these

missing values in a principled way is a desirable characteristic of any algorithm. One motivation

behind a probabilistic interpretation of PCA was that the resulting algorithm could handle missing

data in a principled manner. This is a characteristic which the Gaussian process latent variable

model shares. This should be contrasted with kernel PCA where handling missing values is not so

straightforward.

Given the formalism we have described for using different noise models it is straightforward to

handle a missing attribute. The corresponding variance from (14) is set to infinity by taking βni = 0.

16. For the special case of Gaussian noise with fixed variance β−1 (i.e. spherical noise) and shared kernels for each data

dimension we find that these blocks are all equal. This leads to computational and memory savings. If the kernels are

different or more general noise models are used the blocks will not be equal.
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7. Results

In this section we present a range of empirical evaluations with different data sets, each explores a

different characteristics of the GP-LVM. Note that for these visualisation algorithms over-fitting is

not a problem as long as the latent-space is of lower dimensionality than the data-space. This is a

consequence of the integration over the mapping between the latent and the data-space.

So far we have briefly considered two different kernel/covariance functions, before proceeding

further we will reconsider these and introduce further kernels which will be used in the experiments

that follow.

7.1 Kernels to Be Used

A Gaussian process covariance function can be developed from any positive definite kernel, new

kernels can also be formed by adding kernels together. In our experiments we principally make use

of three different kernel functions.

7.1.1 LINEAR KERNEL

We have already briefly discussed the linear kernel, it is simply the matrix of inner products,

klin (xi,x j) = θlinxT
i x j,

where we have introduced θlin, the process variance, which controls the scale of the output functions.

7.1.2 RBF KERNEL

We also made use of the popular RBF kernel, it leads to smooth functions that fall away to zero in

regions where there is no data.

krbf (xi,x j) = θrbf exp
(

−
γ
2

(xi −x j)
T (xi −x j)

)

where γ is the inverse width parameter.

7.1.3 MLP KERNEL

The MLP kernel (Williams, 1997) is derived by considering a multi-layer perceptron (MLP) with

an infinite number of hidden units,

kmlp (xi,x j) = θmlp sin−1









wxT
i x j +b

√

(

wxT
i xi +b+1

)

(

wxT
j x j +b+1

)









where we call w the weight variance and b the bias variance (they have interpretations as the vari-

ances of prior distributions in the neural network model). This covariance function also leads to

smooth functions, but they have an important characteristic that differentiates them from the RBF

kernel: outside regions where the data lies functions will not fall to zero, but tend to remain at the

same value.
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7.1.4 THE NOISE TERM

In the experiments in Section 3 we also made use of a ‘white noise term’. A white noise process has

a kernel of the form

kwhite (xi,x j) = θwhiteδi j

where δi j is the Kronecker delta which is zero unless i = j when it takes the value 1. Note that the

use of white noise in the kernel is often redundant with some parameters in the noise model, for

example with a Gaussian noise model, leaving out the white noise term and setting

p(yin| fin) = N (yin| fin,θwhite)

is equivalent to including the white noise kernel and setting

p(yin| fin) = lim
σ2→0

N
(

yin| fin,σ2
)

.

In our experiments we preferred to include the noise term with the kernel as the noise level, θwhite,

can then be jointly optimised with the kernel parameters and the latent point positions.

7.1.5 PARAMETER CONSTRAINTS AND INITIALISATION

All the kernels we have mentioned so far have parameters that need to be constrained to be positive.

In our experiments this was implemented by reparameterising:

θ = ln
(

1+ exp
(

θ′
))

.

Note that as our transformed parameter θ′ →−∞ the parameter θ → 0 and as θ′ → ∞ we see that

θ→ θ′.
We used a consistent initialisation of the parameters for all experiments. This was θlin = 1,

θrbf = 1, γ= 1, θmlp = 1, w = 10 and b = 10 .

7.2 Overview of Experiments

For the experiments that follow we used Algorithm 1 with T = 15 iterations and an active set of size

d = 100. The experiments were run on a ‘one-shot’ basis, i.e. each experiment was only run once

with one setting of the random seed and the values of T and d given.

The remainder of this section is structured as follows, firstly, in Section 7.2.1 we revisit the oil

data first introduced in Section 3.2, but with the revised algorithm which allows us to efficiently

visualise all the data points. As well as comparing the sparse algorithm to the GTM and PCA we

also include a full GP-LVM model. For each of the different algorithms we explore the quality of

the visualisation in terms of the ease with which the different flow regimes can be separated in the

embedded space. In Section 7.3.1 we turn to a much higher (256) dimension data set of hand-written

digits. Again we compare the GTM and PCA with the sparse GP-LVM algorithm by seeing how

well the different digits are separated in the latent-space.

In both of the preceding data sets we made use of the Gaussian noise model, our final experiment

with this noise model concerns issues with initialisation. In the data sets presented above we have

no simple ‘ground truth’ which the algorithm hopes to recover. In Section 7.2.3 we consider the

Swiss-roll data Tenenbaum et al. (2000). For this data the ground truth is known and it turns out that

using PCA to initialise the GP-LVM the ground truth is not recovered, however by initialising using
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Model PCA Sparse GP-LVM (RBF) GP-LVM (RBF) Sparse GP-LVM (MLP) GTM

Errors 162 24 1 14 11

Table 3: Number of errors for nearest neighbour classification in the latent-space for the full oil

data set (1000 points).

Isomap (which is known to give the ground truth) we can recover a probabilistic representation of

this data.

In Section 7.3.1 we move on to non-Gaussian data sets. We consider a binary data set of hand-

written 2s. We compare a binary model with a Gaussian model and show that the binary model is

more effective at reconstructing twos when pixels are obscured from the model.

7.2.1 OIL FLOW DATA

In this section we return to the twelve dimensional oil data set that we first introduced in Section 3.2.

We now visualise all 1000 of the data points. For this data set we are interested in evaluating two

different things: the effect of using the different non-linear kernels and the effect of the sparse

GP-LVM algorithm relative to the full model.

In Figure 3(a) and (b) we present visualisations of the data using sparse GP-LVM algorithm

with the RBF and MLP kernels respectively. In Figure 4(a) we show the data visualised with the

non-sparse GP-LVM algorithm and in Figure 4(b) we have recreated the visualisation in (Bishop

et al., 1998) which uses the GTM algorithm.

Again we considered a nearest neighbour classifier in the latent-space to quantify the quality of

the visualisations.

We note that there appears to be a degradation in the quality of the GP-LVM model associated

with the sparsification, in comparision to the full GP-LVM algorithm and the GTM the sparse GP-

LVM performs worse.

7.2.2 HANDWRITTEN DIGITS

The oil flow data has twelve attributes, twelve dimensions is too many for the structure of the

data set to be visualised without resorting to displaying embedded spaces, but there are many data

sets with much greater dimensionality. One popular data set for visualisation algorithms has been

handwritten digits. We therefore followed Hinton and Roweis (2003) in our 2-D visualisation of a

sub-set of 3000 of the digits 0-4 (600 of each digit) from a 16× 16 greyscale version of the USPS

digit data set (Figure 5). Again we made use of the RBF and the MLP kernel. As well as visualising

with the GP-LVM we present visualisations from a GTM and PCA (Figure 6).

As for the oil data we looked for an objective assessment of the quality of the visualisation

by evaluation errors on a nearest neighbour classifier in the latent-space. The performance bene-

fits associated with the non-linear visualisations are more apparent here than they were for the oil

data (Table 4). The sparse GP-LVM is once again outperformed by the GTM algorithm under this

criterion. Comparision with the full GP-LVM model for this data set is not currently practical.
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Figure 3: The full oil flow data set visualised with (a) an RBF based sparse GP-LVM, (b) an MLP

based sparse GP-LVM.
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Figure 4: (a) The full GP-LVM algorithm with RBF kernel on the oil flow data. (b) GTM with 225

latent points laid out on a 15×15 grid and with 16 RBF nodes.1803
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Figure 5: The digit images visualised in the 2-D latent-space. ‘0’ is represented by red crosses; ‘1’:

green circles; ‘2’: blue pluses; ‘3’: cyan stars and ‘4’: magenta squares. (a) Visualisation

using an RBF kernel. (b) Visualisation using an MLP kernel.1804
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Figure 6: The digit images visualised in the 2-D latent-space. ‘0’ are red crosses, ‘1’ are green cir-

cles, ‘2’ are blue pluses, ‘3’ are cyan stars and ‘4’ are magenta squares. (a) Visualisation

using the GTM algorithm. (b) Visualisation using PCA.
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Model PCA Sparse GP-LVM (RBF) Sparse GP-LVM (MLP) GTM

Errors 780 208 202 158

Table 4: Errors for nearest neighbour classification in the latent-space for the digit data.

7.2.3 INITIALISATION OF THE MODEL

In the experiments we described above PCA was used to initialise the positions of the points in

latent-space, however, there are data sets for which PCA can provide a poor initialisation, causing

the GP-LVM to become caught in a local minima. In Figure 7(a) we show a result from modelling

the ‘Swiss-roll’ data set (Tenenbaum et al., 2000, data available on line). For this data the true

structure is known—the manifold is a two dimensional square twisted into a spiral along one of its

dimensions and living in a three dimensional space. We follow Roweis and Saul (2000) in using

colour to show the position along the sheet.

When the GP-LVM is initialised with PCA it becomes stuck in an optimum that does not re-

cover the true embedded space. However, by initialising using the Isomap algorithm, we are able to

recover the underlying structure and then provide a probabilistic description of the data through the

GP-LVM (Figure 7(b)). In this way we can combine the strengths of the two different approaches—

Isomap (and related proximity data based algorithms) provide a unique solution which can recover

the structure of the manifold on which the data lies, the GP-LVM provides an underlying proba-

bilistic model and an easy way to compute the mapping from the latent to the observed space. Due

to the probabilistic nature of the GP-LVM we can also compare the resulting models through their

log likelihood. The log likelihood of the Isomap initialised model (-45.19) is over a factor of ten

smaller than that of the PCA initialised model (-534.0) further demonstrating the advantage of the

Isomap initialisation for this data set.

7.3 Missing Data and Non-Gaussian Noise Models

The examples we have presented so far are for Gaussian noise models. In cases where the data is

not continuous a Gaussian noise model is no longer appropriate. Non-Gaussian, linear, latent trait

models have already been proposed (Bartholomew, 1987; Tipping, 1999), in this section we use the

ADF approach described in Section 5 to explore two non-Gaussian data sets with GP-LVM models

based around non-Gaussian noise models.

7.3.1 VISUALISATION OF BINARY DATA

In our first example we follow Tipping (1999) in visualising binary handwritten twos. In Figure 8

we show visualisations from an 8× 8 data set derived from the USPS Cedar CD-ROM. The data

contains 700 examples, these examples were taken from the complete data set of all digits used in

Hinton et al. (1995). For both visualisations an RBF kernel was used in combination with a Gaussian

prior over the latent-space, however the two visualisations make use of different noise models. In

Figure 8(a) a Gaussian noise model was used, in Figure 8(b) a Bernoulli noise model was used.

There are certainly differences between the two visualisations in Figure 8, however we again

wish to make an objective assessment of the qualities of the embedded spaces. To this end, we

turned to a test set containing 400 hundred digits. For each digit in the test set we removed 20% of

the pixel values. The digit was then presented to the model and its position in the embedded space
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Figure 7: The effect of a poor initialisation. (a) GP-LVM initialised using PCA. The log-likelihood

of the resulting model was -534.0 (b) GP-LVM initialised using Isomap. The log likeli-

hood of the resulting model was -45.19.

Reconstruction method pixel error rate

GP-LVM with Bernoulli noise 23.5%

GP-LVM with Gaussian noise 35.9%

Assume pixels are ‘not ink’ 51.5%

Table 5: Pixel reconstruction error rates.

optimised. The missing pixels were then filled in by using the mapping from the embedded to the

data-space. Note that there can be local minima in the embedded space, we therefore optimised the

embedded space location ten times with different starting positions and selected that with the largest

likelihood. Since we know the original pixel values we can compute the pixel reconstruction error

rate. These rates are summarised in Table 5. Results are shown for the Bernoulli noise model, the

Gaussian noise model and a baseline approach (which is simply to assume that the missing pixels

do not contain ink).

As might be hoped, both approaches considerably outperform the baseline approach. We also

note that using the Bernoulli noise model leads to far better results than the Gaussian noise model.

To illustrate the type of mistakes that are made we show some randomly sampled results in Figure 9.

For each test digit we present: the original digit, an image showing which pixels are removed and

reconstruction using the three methods outlined above. Note that for the GP-LVM reconstructions,

particularly for the Bernoulli noise model, even when mistakes are made the resulting image often

still looks like a handwritten 2.
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Figure 8: The two images visualised in the 2-D latent-space. (a) Visualisation using an Gaussian

noise model. (b) Visualisation using a Bernoulli noise model.
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Figure 9: Randomly sampled examples from the test data for the ‘twos’ problem. Top row: test

images from the data set of twos, second row: pixels removed from the test images are

shown in red, third row: reconstruction which assumes missing pixels are ‘not ink’, fourth

row: reconstruction by the Gaussian GP-LVM, fifth row: reconstruction by the binary

noise model.

8. Discussion

We have presented the Gaussian process latent variable model, which is a non-linear probabilistic

extension of PCA. Our experiments show that the GP-LVM is a viable alternative to other non-

linear visualisation approaches for small data sets. We reviewed a practical algorithm for fitting

the GP-LVM (Lawrence, 2004) in large data sets, but noted that it is associated with a degradation

in performance of the method. The GP-LVM model was extended in a principled manner to take

account of missing data and binary data. The advantage of explicitly modelling the data type was

shown by a missing data problem in handwritten digits.

8.1 Computing the Likelihood of Test Data

One key advantage of the GP-LVM is that it is probabilistic. There is a likelihood associated with

the training data. The model can be viewed as a non-parametric density estimator: the size of X

grows proportionally with the size of Y. However this introduces particular problems when we are

interested in computing the likelihood of a previously unseen (test) data point. In the traditional

probabilistic PCA model when a new data point, y∗, is presented its likelihood under the marginal

distribution,

p(y∗|W,β) = N
(

y∗|0,WWT +β−1I
)

, (18)

is easily computed. Therefore the likelihood of a previously unseen test data set is straightforward

to compute. In the GP-LVM the likelihood takes a different form. The new datum has an associated

latent variable, x∗. The likelihood of y∗, for the special case where variances over each output

direction are constant, is given by

p(y∗|X,x∗) = N
(

y∗|µ,σ2
)

, (19)

where

µ = YTK−1
I,I kI,∗, (20)

kI,∗ being a column vector developed from computing the elements of the kernel matrix between

the active set and the new point x∗. The variance is then given by

σ2 = k (x∗,x∗)−kT
I,∗K−1

I,I kI,∗. (21)
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To determine the likelihood of the new point, we first find the MAP solution for this new latent

point. The likelihood could then approximated by computing the probability of the observed data

under the distribution given by projecting the MAP solution for x∗ back into data-space. However,

since the posterior over X can be multi-modal with respect to x∗, this solution will not necessarily

be unique. In an ideal world, we would integrate out the latent-space to determine this marginal

likelihood, and the problem with multiple modes would not arise. In practice it may be necessary to

seek several modes by random restarts within the latent-space, if the likelihood is strongly peaked

around each of these modes and there is a large difference between the magnitude of the two largest

modes it is enough to approximate the solution with the largest mode. In other cases it may be

necessary to turn to sampling methods to evaluate the likelihood.

9. Conclusions

We have presented a new class of models for probabilistic modelling and visualisation of high

dimensional data. We provided theoretical groundings for these models by proving that principal

component analysis is a special case. We showed there is a general objective function based on

the Kullback-Leibler divergence that connects these models with proximity data based methods

such as kernel PCA and multidimensional scaling. Further analysis of this objective function is

expected to provide deeper insights into the behaviour of these algorithms. On real world data sets

we showed that visualisations provided by the model placed related data points close to each other.

We demonstrated empirically that the model performed well in traditionally difficult domains that

involve missing and discrete data in high dimensions.

Our approach is related to density networks and the generative topographic mapping in that

these models all provide a non-linear mapping from the embedded space to the observed space.

In all these cases the embedded space is treated as a latent variable and problems of propagating

distributions through the non-linear mapping are avoided by using point representations of the data

within the latent space. A novel characteristic of the GP-LVM is that we can visualise the uncertainty

with which the manifold is defined in the data-space.
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Appendix A. Probabilistic Interpretations of PCA

The standard probabilistic interpretation of PCA (Tipping and Bishop, 1999) involves a likelihood,

p(Y|W,X,β) =
N

∏
n=1

p(yn|W,xn,β)

which is taken to be Gaussian,

p(yn|W,xn,β) = N
(

yn|Wxn,β−1I
)

,
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X

Figure 10: Graphical representation of (a) the standard probabilistic PCA model and (b) its dual

representation which also leads to a probabilistic interpretation of PCA. The nodes

are shaded to represent different treatments. Black shaded nodes are optimised, white

shaded nodes are marginalised and grey shaded nodes are observed variables.

the prior distribution for the latent variables is then taken to be Gaussian,

p(xn) = N (xn|0,I) ,

and is duly marginalised to recover the marginal likelihood for the data,

p(Y|W,β) =
N

∏
n=1

p(yn|W,β) , (22)

where

p(yn|W,β) = N
(

yn|0,WWT +β−1I
)

. (23)

The structure of this model is shown graphically in Figure 10(a).

The dual representation of probabilistic PCA involves integrating out W and maximising with

respect to xn

p(Y|X,β) =
Z N

∏
n=1

p(yn|xn,W,β) p(W)dW.

By first specifying a prior distribution,

p(W) = ∏
i

N (wi|0,I)

where wi is the ith row of the matrix W, and then integrating over W we obtain a marginalised

likelihood for Y,

p(Y|X,β) =
1

(2π)
DN
2 |K|

D
2

exp

(

−
1

2
tr
(

K−1YYT
)

)

, (24)

where K = XXT +β−1I and X =
[

xT
1 . . .xT

N

]T
. The structure of this model is shown in 10(b). Note

that by taking C = WWT +β−1I we and substituting (23) into (22) as

p(Y|X,β) =
1

(2π)
DN
2 |C|

N
2

exp

(

−
1

2
tr
(

C−1YTY
)

)

,
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which highlights to a greater extent the duality between (24) and (22). Optimisation of (24) is

clearly highly related to optimisation of (22). Tipping and Bishop (1999) showed how to optimise

(22), in the next section we review this optimisation for DPPCA, but generalise it slightly so that

it applies for any symmetric matrix S, rather than only the inner product matrix YYT. Thereby the

derivation also covers the kernel PCA and multidimensional scaling cases outlined in Section 2.6.

Appendix B. Optimisation of Dual PCA, KPCA and MDS Objective functions

Maximising (24) is equivalent to minimising

L =
N

2
ln2π+

1

2
ln |K|+

1

2
tr
(

K−1S
)

, (25)

where S = D−1YYT. The derivation that follows holds regardless of the form of S and therefore

also applies to the objective function outlined in Section 2.6. However, S needn’t be constrained to

this form, we outlined an objective function (for kernel PCA) in where S was any positive definite

kernel.

The gradient of the likelihood with respect to X can be found as

∂L

∂X
= −K−1SK−1X+K−1X,

setting the equation to zero and pre-multiplying by K gives

S
[

β−1I+XXT
]−1

X = X.

We substitute X with its singular value decomposition, X = ULVT, giving

SU
[

L+β−1L−1
]−1

VT = ULVT

Right multiplying both sides by V (note that the solution is invariant to V) we have, after some

rearrangement,

SU = U
(

β−1I+L2
)

,

which, since
(

β−1I+L2
)

is diagonal can be solved by an eigenvalue problem where U are eigen-

vectors of S and Λ =
(

β−1I+L2
)

are the eigenvalues. This implies that the elements from the

diagonal of L are given by

li =
(

λi −β−1
)

1
2
. (26)

B.1 The Retained Eigenvalues

The natural follow up question is which of the N possible eigenvalues/vector pairs should be re-

tained? For convenience let us ignore our previously defined ordering of the eigenvalues in terms of

their magnitude and assume that we keep the first q eigenvalues.

First note that

K = U
[

L2 +β−1I
]

UT
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where U is all the eigenvectors of S. The full KL divergence is

KL(S||K) =
1

2
ln |K|−

1

2
ln |S|+

1

2
tr
(

K−1S
)

−
N

2

=
1

2

q

∑
i=1

lnλi −
N −q

2
lnβ−

1

2

N

∑
i=1

lnλi +
1

2
tr
(

[

L2 +β−1I
]−1 Λ

)

= −
1

2

N

∑
i=q+1

lnλi −
N −q

2
lnβ−

N −q

2
+

β
2

N

∑
i=q+1

λi

where we have used the fact that S = UΛUT. Differentiating with respect to β and setting the result

to zero to obtain a fixed point equation then gives

β =
N −q

∑N
i=q+1 λi

which when substituted back leads to

KL(S||K) =
N −q

2

(

ln
∑N

i=q+1 λi

N −q
−

1

N −q

N

∑
i=q+1

lnλi

)

, (27)

which is recognised as the difference between the log ratio of the arithmetic and geometric means

of the discarded eigenvalues. This difference will be zero if and only if the discarded eigenvalues

are constant (when the arithmetic and geometric means become equal) otherwise it is positive. The

difference is minimised by ensuring that the eigenvalues we discard are adjacent to each other in

terms of magnitude.

Which eigenvalues should we then discard? From (26) we note that the retained eigenvalues

must be larger than β, otherwise li will be complex. The only way this can be true is if we discard

the smallest N − q eigenvalues, as retaining any others would force at least one eigenvalue of X to

be negative.

Appendix C. Equivalence of Eigenvalue Problems

In this section we review the equivalence of the eigenvalue problems associated with DPPCA and

PPCA. For DPPCA the eigenvalue problem is of the form

YYTU = UΛ.

Premultiplying by YT then gives

YTYYTU = YTUΛ (28)

Since the U are the eigenvectors of YYT (see the previous section) the matrix UTYYTU = Λ, there-

fore matrix U′ = YTUΛ− 1
2 is orthonormal. Post multiplying both sides of (28) by Λ− 1

2 gives

YTYU′ = U′Λ

which is recognised as the form of the eigenvalue problem associated with PPCA, where the eigen-

vectors of YTY are given by U′ = YTUΛ− 1
2 and the eigenvalues are given by Λ (as they were for

DPPCA).
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